
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Communication-Safe Web Programming in
TypeScript with Routed Multiparty Session Types

Anonymous Author(s)

Abstract
Modern web programming involves coordinating interac-

tions between web browser clients and a web server. Typi-

cally, the interactions in web-based distributed systems are

informally described, making it difficult to ensure communi-

cation correctness, or communication safety, i.e. all endpoints
progress their communications without type errors or dead-

locks, conforming to a given multiparty protocol.

We present STScript, a toolchain that generates TypeScript
APIs for communication-safe web development over Web-

Sockets, and RouST, a new session type theory that supports

multiparty communications with routing mechanisms.

STScript provides developers with TypeScript APIs gen-
erated from a communication protocol specification based

on RouST. The generated APIs build upon TypeScript con-
currency practices, complement the event-driven style of

programming in full-stack web development, and are com-

patible with the Node.js runtime for server-side endpoints

and the React.js framework for browser-side endpoints.

RouST can express multiparty interactions routed via an

intermediate participant. It supports peer-to-peer commu-

nication between browser-side endpoints by routing com-

munication via the server in a way that avoids excessive

serialisation. RouST guarantees communication safety for

endpoint web applications written using STScript APIs.
We evaluate the expressiveness of STScript for modern

web programming using several production-ready case stud-

ies deployed as web applications.

Keywords: TypeScript, WebSocket, API generation, session

types, deadlock freedom

1 Introduction
Web technology advancements have changed the way peo-

ple use computers. Many services that required standalone

applications, such as email, chat, video conferences, or even

games, are now provided in a browser. While the Hypertext

Transfer Protocol (HTTP) is widely used for serving web

pages, its Request-Response model limits the communication

patterns — the server may not send data to a client without

the client first making a request.

TheWebSocket protocol [12] addresses this limitation by

providing a bi-directional channel between the client and

the server, akin to a Unix socket. Managing the correct usage

PL’18, January 01–03, 2018, New York, NY, USA
2018.

Routed
message

Message
Legend:

B A S

Suggest

Query

Available

Quote

OK

Confirm

No

Reject

Full
Full

Restart

alt

alt

Figure 1. Travel Agency Protocol as a Sequence Diagram

of WebSockets introduces an additional concern in the devel-

opment process, due to a lack of WebSocket testing tools,
1

requiring an (often ad-hoc) specification of the communica-

tion protocol between server and clients.

Consider the scenario in Fig. 1, where an online travel

agency operates a “travelling with a friend” scheme. It starts

when a traveller (B) suggests a trip destination to their friend
(A), who then queries the travel agency (S) if the trip is avail-
able. If so, the friends discuss among themselves whether to

accept or reject the quoted price. If the trip was unavailable,

the friends start again with a new destination.

An implementation of the travel agency protocol may

contain programming errors, risking communication safety.
For example, the following implementation of the client-side

endpoint for traveller A sending a quote to traveller B.
1 <input type='number' id='quote' />

2 <button id='submitQuote'>Send Quote to B</button>

3 <script>

4 document.getElementById('submitQuote')

5 .addEventListener('click', () => {

6 const quote = document.getElementById('quote').value;

7 travellerB.send({ label: 'quote', quote });

8 travellerB.onMessage(/* go to different screen */);

9 /* ...snip... */ }); </script>

1
Servers and clients tested separately using e.g. https://github.com/lensesio/
cypress-websocket-testing/ and https://www.websocket.org/echo.html

1

https://github.com/lensesio/cypress-websocket-testing/
https://github.com/lensesio/cypress-websocket-testing/
https://www.websocket.org/echo.html

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

PL’18, January 01–03, 2018, New York, NY, USA Anon.

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

There are subtle errors that violate the communication pro-

tocol, but these bugs are unfortunately left for the developer

to manually identify and test against:

Communication Mismatch Whilst the input field man-

dates a numerical value (Line 1) for the quote, the value from
the input field is actually a string. If B expects a number
and performs arithmetic operations on the received payload

fromA, the type mismatch may be left hidden due to implicit

type coercion and cause unintended errors.

Channel Usage Violation As Bmay take time to respond,

A can experience a delay between sending the quote and

receiving a response. Notice that the button remains active
after sending the quote — A could click on the button again,

and send additional quotes (thus reusing the communication

channel), but B may be unable to deal with extra messages.

Handling Session Cancellation An additional concern is

how to handle browser disconnections, as both travellers can

freely close their browsers at any stage of the protocol. Sup-

pose S temporarily reserves a seat on A’s query. If A closes

their browser, the developer would need to make sure that A
notifies S prior to disconnecting, and S needs to implement

recovery logic (e.g. releasing the reserved seat) accordingly.

To prevent these errors and ensure deadlock-freedom, we

propose to apply session types [14, 15] into practical interac-

tive web programming. The scenario described in Fig. 1 can

be precisely described with a global type using the typing

discipline ofmultiparty session types (MPST) [15]. Well-typed

implementations conform to the given global protocol, are
guaranteed free from communication errors by construction.

Whereas session type programming is well-studied [1], its

application on web programming, in particular, interactive

web applications, remains relatively unexplored. Integrat-

ing session types with web programming has been piloted

by recent work [13, 20, 22], yet none is able to seamlessly

implement the previous application scenario: Fowler [13]

uses binary (2-party) session types; and King et al. [20] re-

quire each non-server role to only communicate to the server,

hence preventing interactions between non-server roles (cf.

talking to a friend in the scenario). The programming lan-

guages used in these works are, respectively, Links [8] and

PureScript [26], both not usually considered mainstream

in the context of modern web programming. The Jolie lan-

guage [22] focuses more on the server side, with limited

support for an interactive front end of web applications.

This paper presents a toolchain, Session TypeScript (STScript),
for implementing multiparty protocols safely in web pro-

gramming. STScript integrates with modern tools and prac-

tices, utilising the popular programming language Type-
Script, front end framework React.js and back end runtime

Node.js. Developers first specify a multiparty protocol and

we generate correct-by-construction APIs for developers to

implement the protocol. The generated APIs use WebSocket

to establish communication between participants, utilising

its flexibility over the traditional HTTP model. When de-

velopers use our generated APIs to correctly implement the

protocol endpoints, STScript guarantees the freedom from

communication errors, including deadlocks, communication

mismatches, channel usage violation or cancellation errors.

Our toolchain is backed by a new session theory, a routed
multiparty session types theory (RouST), to endow servers

with the capacity to route messages between web clients. The

new theory addresses a practical limitation that WebSocket

connections still require clients to connect to a prescribed

server, constraining the ability for inter-client communi-

cation. To overcome this, our API routes inter-client mes-

sages through the server, improving the expressiveness over

previous work and enabling developers to correctly imple-

ment multiparty protocols. In our travel agency scenario,

the agency plays the server role: it will establish WebSocket

channels with each participant, and be tasked with routing

all the messages between the friends. We formalise this rout-

ing mechanism as RouST and prove deadlock-freedom of

RouST and show a behaviour-preserving encoding from the

original MPST to RouST. The formalism and results in RouST
directly guide a deadlock-free protocol implementation in

Node.js via the router, preserving communication structures

of the original protocol written by a developer.

Finally, we evaluate our toolchain (STScript) by case stud-

ies. We evaluate the expressiveness by implementing a num-

ber ofweb applications, such as interactivemultiplayer games

(Noughts and Crosses, Battleship) and web services (Travel
Agency) that require routed communication.

Contributions and Structure of the Paper.
§ 2 We present an overview of our toolchain STScript, for
generating communication-safe web applications in Type-
Script from multiparty protocol descriptions.

§ 3 We motivate how the generated code executes the mul-

tiparty protocol descriptions, and present how STScript pre-
vents common errors in the context of web applications.

§ 4 We present RouST, multiparty session types (MPST) ex-

tended with routing, and define a trace-preserving encoding

of the original MPST into RouST.
§ 5 We show the expressiveness of STScript via a case study.
§ 6 We give related and future work.

Supplementary material lists omitted code, definitions,

performance benchmarks and detailed proofs, appendix in

the paper refers to the supplementary material. STScript
is available on GitHub (https://github.com/STScript-2020/
STScript, anonymised). We shall submit code for the bench-

mark, case studies and STScript as our artifact.

2 Overview
In this section, we give an overview of our code generation

toolchain STScript (Fig. 3), demonstrate how to implement

the travel agency scenario (Fig. 1) as a TypeScript web appli-
cation, and explain how STScript prevents those errors.

2

https://github.com/STScript-2020/STScript
https://github.com/STScript-2020/STScript

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Communication-Safe Web Programming in TypeScript with Routed Multiparty Session Types PL’18, January 01–03, 2018, New York, NY, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

A Global Type G
Projection onto
each Participant

TA

Local Type

for A

TB

Local Type

for B

TS

Local Type

for S

Figure 2. Top-down MPST Design Methodology

Figure 3. Overview of the toolchain STScript

Multiparty Session Type DesignWorkflow. Multiparty

session types (MPST) [15] use a top-down design method-

ology (Fig. 2). Developers begin with specifying the global

communication pattern of all participants in a global type
or a global protocol. The protocol is described in the Scrib-

ble protocol description language [16, 29, 32]. We show the

global protocol of the travel agency scenario (in § 1) in Fig. 4.

The Scribble language provides a user-friendly way to de-

scribe the global protocol in terms of a sequence of message

exchanges between roles. A message is identified by its label

(e.g. Suggest, Query, etc), and carries payloads (e.g. number,
string, etc). The choice syntax (e.g. Line 4) describes pos-
sible branches of the protocol – in this case, the Server may

respond to the query either with Available, so the customer

continues booking, or with Full, so the customer retries by

restarting the protocol via the do syntax (Line 13).
In this scenario, we designate the roles A and B as client

roles, and role S as a server role. Participating endpoints

can obtain their local views of the communication proto-

col, known as local types, via projection from the specified

global type (Fig. 2). The local type of an endpoint can be then

used in the code generation process, to generate APIs that

are correct by construction [17, 20, 33].

1 global protocol TravelAgency(role A, role B, role S)

2 { Suggest(string) from B to A; // friend suggests place

3 Query(string) from A to S;

4 choice at S

5 { Available(number) from S to A;

6 Quote(number) from A to B; // check quote with friend

7 choice at B

8 { OK(number) from B to A;

9 Confirm(credentials) from A to S; }

10 or { No() from B to A;

11 Reject() from A to S; } }

12 or { Full() from S to A; Full() from A to B;

13 do TravelAgency(A, B, S); } }

Figure 4. Travel Agency Protocol in Scribble

The code generation toolchain STScript (Fig. 3) follows
the MPST design philosophy. In STScript, we take the global
protocol as inputs, and generate endpoint code for a given

role as outputs, depending on the nature of the role. We

use the Scribble toolchain for initial processing, and use an

endpoint finite state machine (EFSM) based code generation

technique targeting the TypeScript Language.

Targeting Web Programming. The TypeScript [2] pro-
gramming language is used for web programming, with a

static type system and a compiler to JavaScript. TypeScript
programs follow a similar syntax to JavaScript, but may

contain type annotations that are checked statically by the

TypeScript type-checker. After type-checking, the compiler

converts TypeScript programs into JavaScript programs, so

they can be run in browsers and other hosts (e.g. Node.js).
To implement a wide variety of communication patterns,

we use theWebSocket protocol [12], enabling bi-directional
communication between the client and the server after con-

nection. This contrasts with the traditional request-response

model of HTTP, where the client needs to send a request

and the server may only send a response after receiving the

request. WebSockets require an endpoint to listen for connec-

tions and the other endpoint connecting. Moreover, clients,

using the web application in a browser, may only start a

connection to a WebSocket, and servers may only listen for

new connections. The design of WebSocket limits the ability

for two clients to communicate directly via a WebSocket (e.g.

Line 2 in Fig. 4). STScript uses the server to route messages

between client roles, enabling communication between all

participants via a star network topology.

An important aspect of web programming is the interac-

tivity of the user interface (UI). Viewed in a browser, the web

application interacts with the user via UI events, e.g. mouse

clicks on buttons. The handling of UI events may be imple-

mented to sendmessages to the client (e.g. when the “Submit”

button on the form is clicked), which may lead to practical

problems. For instance, would clicking “Submit” button twice

create two bookings for the customer? We use the popular

React.js UI framework for generating client endpoints, and

generate APIs that prevent such errors from happening.

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

PL’18, January 01–03, 2018, New York, NY, USA Anon.

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

1 2 3

4

5

6

7

8

9

B?Suggest S!Query

S?FullB!Fu
ll

S?Available

B!Quote

B?Ok

B?No

S!Confirm

S!Reject

Figure 5. EFSM for TravelAgency role A
Callback-Style API for Clients and Servers. Our code

generation toolchain STScript produces TypeScript APIs in
a callback-style fashion [33] to statically guarantee chan-

nel linearity. The input global protocol is analysed by the

toolchain for well-formedness, and an endpoint finite state
machine (EFSM) is produced for each endpoint. We illus-

trate the EFSM for role A in Fig. 5. The states in the EFSM

represent local types (subject to reductions) and transitions

represent communication actions (The symbol ! stands for

sending actions, ? stands for receiving actions).

In the callback API style, type signatures of callbacks are

generated for transitions in the EFSM. Developers imple-

ment the callbacks to complete the program logic part of

the application, whilst a generated runtime takes care of the
communication aspects. For callbacks, sending actions cor-

respond to callbacks prompting the payload type as a return
type, so that the returned value can be sent by the runtime.

Dually, receiving actions correspond to callbacks taking the

payload type as an argument, so that the runtime invokes

the callback with the received value.

Implementing the Server Role. In the travel agency pro-

tocol, as shown in Fig. 4, we designate role S as the server

role. The server role does not only interact with the two

clients, but also routes messages for the two clients. The

routing will be handled automatically by the runtime, sav-

ing the need for developers to specify manually. As a result,

the developer only handles the program logic regarding the

server, in this use case, namely providing quotes for holiday

bookings and handling booking confirmations.

1 import { Session, S } from "./TravelAgency/S";

2 const agencyProvider = (sessionID: string) => {

3 const handleQuery = Session.Initial({

4 Query: async (Next, dest) => {

5 // Provide quotes for holiday bookings

6 const res = await checkAvailability(sessionID, dest);

7 if (res.status === "available") {

8 return Next.Available([res.quote], Next => ...);

9 } else { return Next.Full([], handleQuery); } }, });

10 return handleQuery; };

All callbacks carry an extra parameter, Next, which acts as
a factory function for constructing the successor state. This

empowers IDEs to provide auto-completion for developers.

For example, the factory function provided by the callback

for handling a Querymessage (Line 4) prompts the permitted

labels in the successor send state, as illustrated in Fig. 6.

Figure 6. IDE Auto-Completion for Successor State

Implementing the Client Roles. To implement client

roles, merely implementing the callbacks for the program

logic is not sufficient — unlike servers, web applications have

interactive user interfaces, additional to program logic. As

mentioned previously, our code generation toolchain tar-

gets React.js for client roles. For background, the smallest

building blocks in React.js are components, which can carry

properties (immutable upon construction) and states (muta-

ble). Components are rendered into HTML elements, and

they are re-rendered when the component state mutates.

To bind the program logic with an interactive user in-

terface, we provide component factories that allow the UI

component to be interposed with the current state of the

EFSM. Developers can provide the UI event handler to the

component factory, and obtain a component for rendering.

The generate code structure enforces that the state transition

strictly follows the EFSM, so programmer errors (such as the

double “submit” problem) are prevented by design.

1 render() {

2 const OK = this.OK('onClick', () => [this.state.split]);

3 const NO = this.No('onClick', () => []);

4 return (...

5 <NO><Button color='secondary'>No</Button></NO>

6 <OK><Button color='primary'>OK</Button></OK> ...); }

Using the send state component in the FSM for the end-

point B as an example, Line 2 reads, “generate a React com-

ponent that sends the OK message with this.state.split
as payload on a click event”. It is used on Line 6 as a wrapper

for a stylised <Button> component. The runtime invokes the

handler and performs the state transition, which prevents

the double “submit” problem by design.

GuaranteeingCommunication Safety. Returning to the
implementation in § 1, we outline how STScript prevents
common errors to enable type-safe web programming.

Communication Mismatch All generated callbacks are

typed according to the permitted payload data type specified

in the protocol, making it impossible for traveller A to send

the quote as a string by accident.

Channel Usage Violation The generated client-side run-

time requires the developer to provide different UI compo-

nents for each EFSM state – once travellerA submits a quote,

the runtime will transition to, thus render the component of,

4

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Communication-Safe Web Programming in TypeScript with Routed Multiparty Session Types PL’18, January 01–03, 2018, New York, NY, USA

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

a different EFSM state. This guarantees that, whilst waiting

for a response from traveller B, it is impossible for traveller

A to submit another quote and violate channel linearity.

Handling Session Cancellation If either traveller closes

their browser before the protocol runs to completion, the

generated runtimes leverage the events available on their

WebSocket connections to notify (via the server) other roles

about the session cancellation. The travel agency can imple-

ment the error handler callback (generated by STScript) to
perform clean-up logic in response to cancellations.

3 Implementation
In this section, we explain how the generated code executes

the EFSM for Node.js and React.js targets. We also present

how STScript APIs handle errors in a dynamic web-based

environment (for full code, see Appendix D).

Session Runtime. The purpose of the session runtime is

to execute the EFSM in a manner permitted by the multiparty

protocol description. The runtime keeps track of the current

state, performs the required communication action (i.e. send

or receive a message), and transitions to the successor state.

The runtime provides seams for the developer to inject the

callback implementations, which define application-specific

concerns for the EFSM, such aswhatmessage payload to send

(and dually, how to process a received message). This design

conceals the WebSocket APIs from the developer and entails

that the developer cannot trigger a send or receive action,

so STScript can statically guarantee protocol conformance.

Executing the EFSM inNode.js. Each state of the EFSM
is characterised by a (generated) State class and a type de-

scribing the shape of the callback (supplied by the developer).

To allow the server to correctly manage concurrent sessions,

the developer can access a (generated) session ID when imple-

menting the callbacks. STScript also generates IO interfaces
for each kind of EFSM state – send, receive, or terminal. The

generated State class implements the interface correspond-

ing to the type of communication action it performs.

1 next(state: State.Type) {

2 switch (state.type) {

3 case 'Send': return state.performSend(

4 this.next, this.cancel, this.send);

5 case 'Receive': return state.prepareReceive(

6 this.next, this.cancel, this.registerMessageHandler);

7 case 'Terminal': return; }}

The session runtime for Node.js is a class that executes
the EFSM using a state transition function parameterised

by the State class of the current EFSM state. As the IO

interfaces constitute a discriminated union, the runtime can

parse the type of the current EFSM state and propagate the

appropriate IO functions (for sending or receiving) to the

State class. In turn, the State class invokes the callback

supplied by the developer to inject program logic into the

EFSM, perform the communication action (using this.send

or this.registerMessageHandler), and invoke the state

transition function with the successor state.

Notably, the routed messages are completely absent be-

cause the generated code transparently routesmessageswith-

out exposing any details. As messages specify their intended

recipient, the runtime identifies messages not intended for

the server by inspecting the metadata, and forwards them

to the WebSocket connected to the intended recipient.

Executing the EFSM inReact.js. Each state in the EFSM
is encoded as an abstract React component. The developer

implements the EFSM by extending the abstract classes to

provide their own implementation – namely, to build their

user interface. Components for send states can access com-
ponent factories to generate React components that perform

a send action when a UI event (e.g. onClick, onMouseOver)
is triggered. Components for receive states must implement

abstract methods to handle all possible incoming messages.

The session runtime for React.js is a React component,

instantiated using the developer’s implementation of each

EFSM state. Channel communications are managed by the

runtime, so the developer’s implementations cannot access

the WebSocket APIs, which prevents channel reuse by con-

struction. The runtime renders the component of the current

EFSM state and binds the permitted communication action

through supplying component properties.

Error Handling. An error handling mechanism is critical

for web applications. Clients can disconnect from the session

due to network connectivity issues or simply by closing the

browser. Similarly, servers may also face connectivity issues.

Upon instantiating the session runtime, STScript requires
developers to supply a cancellation handler to handle local
exceptions (e.g. errors thrown by application logic) and global
session cancellations (e.g. disconnection events by another

endpoint). The session runtime detects cancellation by lis-

tening to the close event on the WebSocket connection, and

invokes the cancellation handler with appropriate arguments

on a premature close event. We parameterise the cancellation

handlers with additional information (e.g. which role discon-

nected from the session, the reason for the disconnection) to

let developers be more specific in their error handling logic.

Cancellation Handlers for Servers. Server endpoints

define cancellation handlers through a function, parame-

terised by the session ID, the role which initiated the cancel-

lation, and (optionally) the reason for the cancellation — if

the server-side logic throws an exception, the handler can

access the thrown error through the reason parameter.

1 const handleCancel = async (sessionID, role, reason) => {

2 if (role === Role.Self) {

3 console.error(`${sessionID}: internal server error`); }

4 else { await tryRelease(sessionID); }};

5 // Instantiate session runtime

6 new S(wss, handleCancel, agencyProvider);

5

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

PL’18, January 01–03, 2018, New York, NY, USA Anon.

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

Using the Travel Agency scenario introduced in § 1, if the

customer prematurely closes their browser before respond-

ing to a Quote, the server can detect this (Line 4) and release

the reservation to preserve data integrity.

Cancellation Handlers for Clients. Browser-side end-
points also define cancellation handlers through a function

parameterised in the same way as those in Node.js, but must

return a React component to be rendered by the session

runtime. In the context of the Travel Agency scenario, the

customer can render a different UI depending on whether the

server disconnected or their friend closed their web browser

prematurely. Browser endpoints can also respond to cancel-

lations emitted by other client-side roles: when a browser

endpoint disconnects, the server detects this and propagates

the cancellation to the other client-side roles.

4 RouST: Routed Session Types
This section defines the syntax and semantics of RouST and

proves some important properties. We show the sound and

complete trace correspondence between a global type and

a collection of endpoint types projected from the global

type (Theorem 4.6). Using this result, we prove deadlock

freedom (Theorem 4.7). We then show that, in spite of the

added routed communications, RouST does not over-serialise
communications by proving communication preservations be-
tween the original MPST and RouST (Theorem 4.11). These

three theorems ensure that STScript endpoint programs are

communication-safe, always make progress, and correctly

conforms to the user-specified protocol.

4.1 Syntax of Routed Multiparty Session Types
We define the syntax of global typesG and local types (or end-
point types) T in Definition 4.1. Global types are also known

as protocols and describe the communication behaviour be-

tween all participating roles (participants), while local types

describe the behaviour of a single participating role. We

shade additions to the original (or canonical) multiparty ses-

sion type (MPST) [9, 11, 15, 28] in this colour .

Definition 4.1 (Global and Local Types). The syntax of

global and local types are defined below:

G ::= end | t | µt.G
| p→ q : {li :Gi }i ∈I
| p−s� q : {li :Gi }i ∈I

T ::= end | t | µt.T | p ↪→ q : {li :Ti }i ∈I
| p⊕ {li :Ti }i ∈I | p⊕⟨q⟩ {li :Ti }i ∈I
| p& {li :Ti }i ∈I | p&⟨q⟩ {li :Ti }i ∈I

Global Types. p→ q : {li :Gi }i ∈I describes a direct com-
munication of a message li from a role p to q. We require

that p , q, that labels li are pairwise distinct, and that the

index set I is not empty. The message in the communica-

tion can carry a label among a set of permitted labels li
and some payload. After a message with label li is received
by q, the communication continues with Gi , according to

the chosen label. For simplicity, we do not include payload

types (integers, strings, booleans, etc) in the syntax. Wewrite

p→ q : l : G for single branches. For recursion, we adopt

an equi-recursive view [25, §21], and use µt.G and t for a
recursive protocol and a type variable. We require that re-

cursive types are contractive (guarded), i.e. the recursive type
µt.G progresses after the substitutionG[µt.G/t], prohibiting
types such as µt.t. We use end to mark the termination of

the protocol, and often omit the final end.
To support routed communication, we allow messages

to be sent through a router role. A routed communication
p−s� q : {li :Gi }i ∈I describes a router role s coordinating
the communication of a message from p to q: q offers p a

choice in the index set I , but p sends the selected choice li to
the router s instead. The router forwards the selection from

p to q. After q receives p’s selection, the communication

continues with Gi . s ranges over the set of roles p,q, · · · ,
but we use s by convention as the router is usually some

server. The syntax for routed communication shares the

same properties as direct communication, butwe additionally

require that p , q , s. We use pt (G) to denote the set of

participants in the global type G.

Example 4.2 (Travel Agency). The travel agency protocol,

as shown in Fig. 4, is described by the global type Gtravel in

the original MPST, and GR
travel

in RouST.
G
travel

= µt.B→A : Suддest . A→ S : Query .

S→A :


Available :

A→B : Quote . B→A :{
OK :A→ S : Conf irm
No :A→ S : Reject

}
Full :A→B : Full .t


GR
travel

= µt.B−S�A : Suддest . A→ S : Query .

S→A :


Available :

A−S�B : Quote . B−S�A :{
OK :A→ S : Conf irm
No :A→ S : Reject

}
Full :A−S�B : Full .t


Local Types. We first describe the local types in the orig-

inal MPST theory.q& {li :Ti }i ∈I stands for branching and

q⊕ {li :Ti }i ∈I stands for selection. From the perspective of

p, branching (resp. selection) offers (resp. selects) a choice
among an index set I to (resp. from) q, and communication

continues with the corresponding Ti . Local types µt.T , t and
end have the same meaning as their global type counterparts.

We add new syntax constructs to express routed commu-

nication from the perspective of each role involved. The local

typep&⟨s⟩ {li :Ti }i ∈I is a routed branching: q is offering a

choice from an index set I to p (the intended sender), but ex-

pects to receive p’s choice via the router role s; if the message

received is labelled li , q will continue with local typeTi . The
local typeq⊕⟨s⟩ {li :Ti }i ∈I is a routed selection: p makes a

selection from an index set I to q (the intended recipient),

but sends the selection to the router role s; if the message

sent is labelled li , p will continue with local type Ti . The
local typep ↪→ q : {li :Ti }i ∈I is a routing communication.
The router role s orchestrates the communication from p to

6

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

Communication-Safe Web Programming in TypeScript with Routed Multiparty Session Types PL’18, January 01–03, 2018, New York, NY, USA

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

q, and continues with local typeTi depending on the label of

the forwarded message. We keep track of the router role to

distinguish between routing communications from normal

selection and branching interactions.

Endpoint Projection. The local typeT of a participant p
in a global typeG is obtained by the endpoint projection ofG
onto p, denoted by G as G ↾p.

Definition 4.3 (Projection). The projection of G onto r,
written G ↾r is defined as:(
p−s� q : {li :Gi }i ∈I

)
↾r

=


q⊕⟨s⟩ {li :Gi ↾r}i ∈I if r = p
p&⟨s⟩ {li :Gi ↾r}i ∈I if r = q
p ↪→ q : {li :Gi ↾r}i ∈I if r = s
⊓i ∈I Gi ↾r otherwise

(µt.G)↾r

=

{
µt.(G ↾r) if G ↾r , t′

end otherwise

end↾r = end
t↾r = t

The projection (p→ q : {li :Gi)}i ∈I ↾ r is defined similar to

(p−s� q : {li :Gi }i ∈I) ↾ r dropping s (in the resulting local

type) and the third case.

The rule uses the merging operator (⊓) when projecting a

routed communication onto a non-participant. The opera-

tor checks that the projections of all continuations must be

“compatible” (see Definition A.2).

Example 4.4 (Merging Local Types). Two branching types

from the same role with disjoint labels canmerged into a type

carrying both labels, e.g. A& Hello.end ⊓ A& Bye .end =
A& {Hello : end;Bye : end} . The same is not true for selec-

tions,A⊕ Hello.end ⊓ A⊕ Bye .end is undefined.

G1 =A→B :

{
Greet :A→C : Hello . end
Farewell :A→C : Bye . end

}
G2 =A→B :

{
Greet :C→A : Hello . end
Farewell :C→A : Bye . end

}
Consequently, the global type G1 can be projected to role C,
but not G2. Moreover, G1 is well-formed, and G2 is not.

Well-formedness. In the original theory, a global type G
is well-formed (or realisable), denoted wellFormed (G), if the
projection is defined for all its participants.

wellFormed (G)
def

= ∀p ∈ pt (G). G ↾p exists

We assume that the global type G is contractive (guarded).

In RouST, we say that a global type is well-formed with
respect to the role s acting as the router. We define the charac-

teristics that s must display in G to prove that it is a router,

and formalise this as an inductive relation, G ⊛ s (Defini-
tion 4.5), which reads s is a centroid in G. The intuition is

that s is at the centre of all communication interactions.

Definition 4.5 (Centroid). The relation G ⊛ s (s is the cen-
troid of G) is defined by the two axioms end ⊛ s and t ⊛ s
and by the following rules:

G ⊛ s

µt.G ⊛ s

s ∈ {p,q} ∀i ∈ I . Gi ⊛ s

p→ q : {li : Gi }i ∈I ⊛ s

r = s ∀i ∈ I . Gi ⊛ s

p−r� q : {li :Gi }i ∈I ⊛ s

For direct communication, s must be a participant and a

centroid of all continuations. For routed communication, s
must be the router and be a centroid of all continuations. Now

we define of well-formedness of a global type G in RouST
with respect to the router s (denoted wellFormedR (G, s)):

wellFormedR (G, s) def

= (∀p ∈ pt (G). G ↾p exists) ∧G ⊛ s

4.2 Semantics of RouST
This subsection defines the labelled transition system (LTS)

over global types for RouST, building upon [11].

First, we define the labels (actions) in the LTS which dis-

tinguish the direct sending (and reception) of a message from

the sending (and reception) of a message via an intermediate

routing endpoint. Labels range over l, l ′, · · · are defined by:

l ::= pq!j | pq?j | via⟨s⟩(pq!j) | via⟨s⟩(pq?j)

The label via⟨s⟩(pq!j) represents the sending (performed

by p) of a message labelled j to q through the intermediate

router s. The label via⟨s⟩(pq?j) represents the reception (ini-

tiated by q) of a message labelled j send from p through the

intermediate router s. The subject of a label l , denoted by

subj(l), is defined as: subj(via⟨s⟩(pq!j)) = subj(pq!j) = p;
and subj(via⟨s⟩(pq?j)) = subj(pq?j) = q.

LTS Semantics over Global Types. The LTS semantics

models asynchronous communication to reflect our imple-

mentation. We introduce intermediate states (i.e. messages

in transit) within the grammar of global types: the con-

struct p⇝ q. j : {li :Gi }i ∈I represents that the message lj
has been sent by p but not yet received by q; and the con-

structp⇝
s
q. j : {li :Gi }i ∈I represents that lj has been sent

from p to the router s but not yet routed to q. We define the

LTS semantics over global types, denoted by G
l

−−→ G ′
, in

Fig. 7. [Gr1] and [Gr2] model the emission and reception

of a message; [Gr3] models recursions; [Gr4] and [Gr5]

model causally unrelated transmissions — we only enforce

the syntactic order of messages for the participants involved

in the action l . [Gr6] and [Gr7] are analogous to [Gr1] and

[Gr2] for describing routed communication, but uses the

“routed in-transit” construct instead. [Gr8] and [Gr9] are

analogous to [Gr4] and [Gr5]. An important observation

from [Gr8] and [Gr9] is that, for the router, the syntactic

order of routed communication can be freely interleaved

between the syntactic order of direct communication. This

is crucial to ensure that the router does not over-serialise

communication. See Example 4.13 for an LTS example.

Relating Semantics ofGlobal andLocal Types. Weprove

the soundness and completeness of our LTS semantics with

respect to projection. We take three steps following [11]:

1. We extend the LTS semantics with configuration (®T , ®w),

a collection of local types ®T with FIFO queues between

each pair of participants ®w .

2. We extend the definition of projection, to obtain a config-

uration of a global type (a projected configuration), which
expresses intermediate communication over FIFO queues.

7

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PL’18, January 01–03, 2018, New York, NY, USA Anon.

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

[Gr1]

p→ q : {li :Gi }i ∈I
pq!j

−−−−−−−−→ p⇝ q. j : {li :Gi }i ∈I

[Gr2]

p⇝ q. j : {li :Gi }i ∈I
pq?j

−−−−−−−−→ G j

∀i ∈ I . Gi
l

−−→ G ′
i subj(l) < {p,q}

[Gr4]

p→ q : {li :Gi }i ∈I
l

−−−−−−−−→ p→ q :

{
li :G

′
i
}
i ∈I

G j
l

−−→ G ′
j subj(l) , q ∀i ∈ I \ {j}. G ′

i = Gi
[Gr5]

p⇝ q. j : {li :Gi }i ∈I
l

−−−−−−−−→ p⇝ q. j :
{
li :G

′
i
}
i ∈I

G[µt.G/t]
l

−−→ G ′

[Gr3]

µt.G
l

−−→ G ′

[Gr6]

p−s� q : {li :Gi }i ∈I
via⟨s⟩(pq!j)
−−−−−−−−→ p⇝

s
q. j : {li :Gi }i ∈I

[Gr7]

p⇝
s
q. j : {li :Gi }i ∈I

via⟨s⟩(pq?j)
−−−−−−−−→ G j

∀i ∈ I . Gi
l

−−→ G ′
i subj(l) < {p,q}

[Gr8]

p−s� q : {li :Gi }i ∈I
l

−−−−−−−−→ p−s� q :

{
li :G

′
i
}
i ∈I

G j
l

−−→ G ′
j subj(l) , q ∀i ∈ I \ {j}. G ′

i = Gi
[Gr9]

p⇝
s
q. j : {li :Gi }i ∈I

l
−−−−−−−−→ p⇝

s
q. j :

{
li :G

′
i
}
i ∈I

Figure 7. LTS over Global Types in RouST

3. We prove the trace equivalence between the global type

and its projected configuration (i.e. the initial configura-
tion of G, (®T , ®ϵ), where ®T = {G ↾p}p∈P are a set of local

types projected from G and ϵ is an empty queue).

The proof is non-trivial: due to space limitations, we omit

the LTS semantics of local types, configurations and global

configurations, and only state the main result (see Appen-

dices A and B).

Theorem 4.6 (Sound and Complete Trace Equivalence). Let
G be a well-formed canonical global type. Then G is trace
equivalent to its initial configuration.

Theorem 4.7 proves traces specified by a well-formed

global protocol are deadlock-free, i.e. the global type either
completes all communications, or otherwise makes progress.

Note that this theorem implies the deadlock-freedom of con-

figurations by Theorem 4.6.

Theorem 4.7 (Deadlock Freedom). Let G be a global type.
Suppose G is well-formed with respect to some router s, i.e.
wellFormedR (G, s). Then we have:

∀G ′.

(
G →∗ G ′ =⇒ (G ′ = end) ∨ ∃G ′′, l . (G ′ l

−−→ G ′′)

)
4.3 From Canonical MPST to RouST
We present an encoding from the canonical MPST theory

(no routers) to RouST. This encoding is parameterised by

the router role (conventionally denoted as s); the intuition
is that we encode all communication interactions to involve

s. If the encoding preserves the semantics of the canonical

global type, then this encoding can guide a correct protocol

implementation in Node.js via s, preserving communication

structures of the original protocol without deadlock.

Router-Parameterised Encoding. We define the router-

parameterised encoding on global types, local types and

LTS labels in the MPST theory. We start with global types,

as presented in Definition 4.8. The main rule is the direct

communication: if the communication did not go through s,
then the encoded communication involves s as the router.

Definition 4.8 (Encoding on Global Types). The encoding
of global typeG with respect to the router role s, denoted by

JG, sK, is defined as:

Jend, sK = end Jt, sK = t Jµt.G, sK = µt.JG, sK

Jp→ q : {li :Gi }i ∈I , sK =

{
p→ q :

{
li :JGi , sK

}
i ∈I if s ∈ {p,q}

p−s� q :

{
li :JGi , sK

}
i ∈I otherwise

Local types express communication from the perspective

of a particular role, hence the encoding takes two roles.

Definition 4.9 (Encoding on Local Types). The encoding
of local type T (from the perspective of roleq) with respect

to the router role s, denoted by JT , q, sK, is defined as:

Jend, q, sK = end Jt, q, sK = t Jµt.T , q, sK = µt.JT , q, sK

Jp⊕ {li :Ti }i ∈I , q, sK =

{
p⊕

{
li :JTi , q, sK

}
i ∈I if s ∈ {p,q}

p⊕⟨s⟩
{
li :JTi , q, sK

}
i ∈I otherwise

Jp& {li :Ti }i ∈I , q, sK =

{
p&

{
li :JTi , q, sK

}
i ∈I if s ∈ {p,q}

p&⟨s⟩
{
li :JTi , q, sK

}
i ∈I otherwise

Lemma 4.10 (Correspondence between Encodings). The
projection of an encoded global type JG, sK↾r is equal to the
encoded local type after projection JG ↾r, r, sK, with respect to
router s, i.e. ∀r, s,G .

(
r , s =⇒ JG, sK↾r = JG ↾r, r, sK

)
.

The constraint r , s is necessary because we would other-
wise lose information on the right-hand side of the equality:

the projection of s in the original communication does not

contain the routed interactions, so applying the local type

encoding cannot recover this information.

Theorem 4.11 (Encoding Preserves Well-Formedness). Let
G be a global type, and s be a role. Then we have:

wellFormed (G) ⇐⇒ wellFormedR
(
JG, sK, s

)
Preserving Communication. We present a crucial re-

sult that directly addresses the pitfalls of naive definitions

of routed communication — our encoding does not over-

serialise the original communication. We prove that our

encoding preserves the LTS semantics over global types —

or more precisely, we can use the encodings over global

types and LTS actions to encode all possible transitions

8

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

Communication-Safe Web Programming in TypeScript with Routed Multiparty Session Types PL’18, January 01–03, 2018, New York, NY, USA

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

in the LTS for global types in the canonical MPST theory.

We define the encoding of label l in the original MPST as:

Jpq!j, sK = via⟨s⟩(pq!j) and Jpq?j, sK = via⟨s⟩(pq?j) if
s < {p,q} and otherwise Jl, sK = l .

Theorem 4.12 (Encoding Preserves Semantics). Let G,G ′

be well-formed global types such thatG
l

−−→ G ′ for some label
l . Then we have:

∀l,s.
(
G

l
−−→ G ′ ⇐⇒ JG, sK

Jl , sK
−−−−−−−−→ JG ′, sK

)
We conclude with an example which demonstrates global

semantics in RouST and a use of the encoding.

Example 4.13 (Encoding Preserves Semantics). Consider
the global type

G = p→ q : M1 . s→ q : M2 . end.

We apply our encoding with respect to the router role s:
JG, sK = p−s� q : M1 . s→ q : M2 . end.

We note that l = sq!M2 can reduceG through [Gr1] (via one

application of [Gr4]). After encoding, we have that Jl, sK = l .
The encoded global type JG, sK can be reduced by l through
[Gr1] (via one application of [Gr8]), as demonstrated by

Theorem 4.12. The label l = sq!M2 is a prefix of a valid

execution trace for G, given below.

G
sq!M2

−−−−−−−−→
pq!M1

−−−−−−−−→
pq?M1

−−−−−−−−→
sq?M2

−−−−−−−−→ end

Interested readers can verify that the encoded trace (given

below) is a valid execution trace for JG, sK.

JG, sK
sq!M2

−−−−−−−−→
via⟨s⟩(pq!M1)
−−−−−−−−−−−→

via⟨s⟩(pq?M1)
−−−−−−−−−−−→

sq?M2

−−−−−−−−→ end

5 Case Study: Noughts and Crosses Game
In this section, we demonstrate the expressiveness and appli-

cability of STScript for modern web programming. We walk

through how to implement Noughts and Crosses game with

our toolchain, showing how the generated APIs prevent com-

mon errors. We choose this game since we can demonstrate

the main features of STScript within the limited space. In

Appendix C.2, we include performance benchmarks and ad-

ditional larger cases studies: Battleship, another game with

more complex program logic; and Travel Agency (Fig. 1),

demonstrating the full feature of RouST.

Overview. We present the classic two-player turn-based

game of Noughts and Crosses2 here — see Appendix C.2 for

other case studies. We formalise the game interactions using

a Scribble protocol: both players, identified by noughts (O’s)
or crosses (X’s) respectively, take turns to place a mark on an

unoccupied cell of a 3-by-3 grid, until a player wins (when

their markers form a straight line on the board) or a stalemate

is reached (when all cells are occupied and no one wins).

2
Deployed as http://stscript-noughts-and-crosses.herokuapp.com/

1 // Position on game board

2 type <typescript> "Coordinate" from "./Types" as Pt;

3 global protocol Game(role Svr, role P1, role P2) {

4 Pos(Pt) from P1 to Svr;

5 choice at Svr

6 { Lose(Pt) from Svr to P2; Win(Pt) from Svr to P1; }

7 or { Draw(Pt) from Svr to P2; Draw(Pt) from Svr to P1; }

8 or { Update(Pt) from Svr to P2; Update(Pt) from Svr to P1;

9 do Game(Svr, P2, P1); }} // Players swap turns

Game Server. We set up the game server as an Express.js
application on top of the Node.js runtime. We define our

own game logic in a Board class to keep track of the game

state and expose methods to query the result. When the

server receives a move, it notifies the game logic to update

the game state asynchronously and return the game result

caused by that move. The expressiveness of STScript enable
the developer to define the handlers as async functions to
use the game logic API correctly – this is prevalent inmodern

web programming, but not directly addressed in [13, 20].

The generated session runtime for Node.js is given as:

1 const gameManager = (gameID: string) => {

2 const handleP1Move = Session.Initial({

3 Pos: async (Next, move: Point) => {

4 // Update current game with new move, return result

5 switch (await DB.attack(gameID, 'P1', move)) {

6 case MoveResult.Win:

7 // Send losing result to P2, winning result to P1

8 return Next.Lose([move], Next => (

9 Next.Win([move], Session.Terminal))));

10 case MoveResult.Draw: ...

11 case MoveResult.Continue:

12 // Notify both players and proceed to P2's turn

13 return Next.Update([move], Next => (

14 Next.Update([move], handleP2Move)) }}});

15 const handleP2Move = ... // defined similarly

16 return handleP1Move; }

17 // Initialise game server

18 new Svr(wss, handleCancellation, gameManager);

The runtime is initialised by a function parameterised by the

session ID and returns the initial state. The developer can use

the session ID as an identifier to keep track of concurrent

sessions and update the board of the corresponding game.

Game Players. On the browser side, the main implemen-

tation detail for game players is to make moves. Intuitively,

the developer implements a grid and binds a mouse click

handler for each vacant cell to send its coordinates in a

Pos(Point) message to the game server. Without STScript,
developers need to synchronise the UI with the progression

of protocol manually — for instance, they need to guarantee

that the game board is inactive after the player makes a move,

and manual efforts are error-prone and unscalable.

The generated React APIs from STScript make this intu-

itive, and guarantees communication safety in the meantime.

By providing React component factories for send states, the

9

http://stscript-noughts-and-crosses.herokuapp.com/

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

PL’18, January 01–03, 2018, New York, NY, USA Anon.

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

APIs let the developer trigger the same send action on multi-

ple UI events with possibly different payloads. In the context

of Noughts and Crosses, for each vacant cell on the game

board, we create a <SelectCell> React component from the

component factory function (Line 6). The factory builds a

component that sends the Pos message with x-y coordinate

as payload when the user clicks on it. We bind the onClick
event to the table cell by wrapping it with the <SelectCell>
component.

1 {board.map((row, x) => (<tr>

2 {row.map((cell, y) => {

3 const tableCell = <td>{cell}</td>;

4 if (cell === Cells.VACANT) {

5 const makeMove = (ev: React.MouseEvent) => ({ x, y });

6 const SelectCell = this.props.Pos('onClick', makeMove);

7 return <SelectCell>{tableCell}</SelectCell>; }

8 else { return tableCell; }})} </tr>)}

The session cancellation handler allows the developer to

render useful messages to the player by making application-
specific interpretations of the cancellation event. For example,

if the opponent disconnects, the event can be interpreted as

a forfeiture and a winning message can be rendered.

6 Related and Future Work
There are a vast number of studies on theories of session

types [19], some of which are integrated in programming lan-

guages [1], or implemented as tools [30]. Here we focus on

the most closely related work: (1) code generation from ses-

sion types; (2) web applications based on session types; and

(3) encoding multiparty sessions into binary connections.

Code Generation from Session Types. In general, a code
generation toolchain takes a protocol (session type) descrip-

tion (in a domain specific language) and produces well-typed
APIs conforming to the protocol. The Scribble [29, 32] lan-

guage is widely used to describe multiparty protocols, agnos-

tic to target languages. The Scribble toolchain implements

the projection of global protocols, and the construction of

endpoint finite state machines (EFSM). Many implementa-

tions use an EFSM-based approach to generate APIs for target

programming languages, e.g. Java [17], Go [7], and F# [23],

for distributed applications. Our work also falls into this cat-

egory, where we generate correct-by-construction TypeScript
APIs, but focusing on interactive web applications. Follow-

ing [33], we generate callback-style APIs, adapted to fit the

event-driven paradigm in web programming.

Alternatively, Demangeon et al. [10] propose MPST-based

runtimemonitors to dynamically verify protocol conformance,

also available from code generation. Whilst a runtime ap-

proach is viable for JavaScript applications, our method,

which leverages the TypeScript type system to statically
provide communication safety to developers, gives a more

rigorous guarantee. Ng et al. [24] propose a different kind of

MPST-based code generation, where sequential C code can

be parallelised according to a global protocol using MPI.

Session-TypedWebDevelopment. Fowler [13] integrates
binary session types into web application development. Our

work encodes multiparty session types for web applications,

subsuming binary sessions. King et al. [20] extend the Scrib-

ble toolchain for web applications targeting PureScript [26],

a functional web programming language. In their work, a

client may only communicate with one designated server

role, whereas our work addresses this limitation via routing
through a designated role. Jolie [22, 31] is a programming

language designed for web services, capable of expressing

multiparty sessions. Jolie extends the concept of choreogra-

phy programming [5], where a choreography contains be-

haviour of all participants, and endpoints are derived directly

from projections. Our work implements each endpoint sep-

arately. Moreover, we generate server and client endpoints

using different styles to better fit their use case. Note that

Links [8], PureScript [26] and Jolie [31] are not usually con-

sidered mainstream in modern web programming, whereas

our tool targets popular web programming technologies.

Encoding of Multiparty Session Types. RouST models

an “orchestrating” role (the router) for forwarding messages

between roles, and this information is used to directly guide

STScript to correctly implement the protocol in Node.js. The
use of a medium process to encode multiparty into binary

session types has been studied in theoretical settings, in

particular, linear logic based session types [3, 4, 6]. In their

setting, one medium process is used for orchestrating the

multiparty communications between all roles in binary ses-

sion types.Our encoding models the nature of web applica-

tions running over WebSockets, where browser clients can

only directly connect to a server, not other clients.

Scalas et al. [27] show a different encoding of multiparty

session types into linear π -calculus, which decomposes a

multiparty session into binary channels without a medium

process. This encoding is used to implement MPST with

binary session types in Scala. Their approach uses session
delegation, i.e. passing channels, which is difficult to imple-

ment with WebSockets. Our RouST focuses on modelling the

routing mechanism at the global types level, so that our en-

coding can directly guide correct practical implementations.

Conclusion and Future Work. We explore the applica-

tion of session types to modern interactive web program-

ming, by using code generation to generate communication-

safe APIs from a multiparty protocol specification. We incor-

porate routing semantics to seamlessly adapt MPST to ad-

dress the practical challenges of using WebSocket protocols.

Our approach integrates with popular industrial frameworks,

and is backed by our theory of routed multiparty session

types that guarantees communication safety.

For future work, we would like to extend (1) STScriptwith
additional practical extensions of MPST, e.g. explicit connec-

tions [18], (2) our code generation approach to implement

typestates in TypeScript, inspired by [21].

10

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Communication-Safe Web Programming in TypeScript with Routed Multiparty Session Types PL’18, January 01–03, 2018, New York, NY, USA

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

References
[1] Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos,

Giuseppe Castagna, Pierre-Malo Deniélou, Simon J. Gay, Nils Gesbert,

Elena Giachino, Raymond Hu, Einar Broch Johnsen, Francisco Mar-

tins, Viviana Mascardi, Fabrizio Montesi, Rumyana Neykova, Nicholas

Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida. 2016.

Behavioral Types in Programming Languages. Found. Trends Program.
Lang. 3, 2–3 (July 2016), 95–230. https://doi.org/10.1561/2500000031

[2] Gavin Bierman, Martín Abadi, and Mads Torgersen. 2014. Under-

standing TypeScript. In ECOOP 2014 – Object-Oriented Programming,
Richard Jones (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,

257–281.

[3] Luís Caires and Jorge A. Pérez. 2016. Multiparty Session Types Within

a Canonical Binary Theory, and Beyond. In Formal Techniques for
Distributed Objects, Components, and Systems, Elvira Albert and Ivan

Lanese (Eds.). Springer International Publishing, Cham, 74–95.

[4] Marco Carbone, Sam Lindley, Fabrizio Montesi, Carsten Sc huermann,

and Philip Wadler. 2016. Coherence Generalises Duality: a logical

explanation of multipart y session types. In CONCUR’16 (Leibniz Inter-
national Proceedings in Informatics (LIPIcs), Vol. 59). Schloss Dagstuhl,
33:1–33:15.

[5] Marco Carbone and Fabrizio Montesi. 2013. Deadlock-Freedom-by-

Design: Multiparty Asynchronous Global Programming. In Proceedings
of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (Rome, Italy) (POPL ’13). Association for

Computing Machinery, New York, NY, USA, 263–274. https://doi.org/
10.1145/2429069.2429101

[6] Marco Carbone, Fabrizio Montesi, Carsten Schormann, and Nobuko

Yoshida. 2015. Multiparty Session Types as Coherence Proofs. In

CONCUR 2015 (LIPIcs, Vol. 42). Schloss Dagstuhl, 412–426.
[7] David Castro, Raymond Hu, Sung-Shik Jongmans, Nicholas Ng,

and Nobuko Yoshida. 2019. Distributed Programming Using Role-

parametric Session Types in Go: Statically-typed Endpoint APIs for

Dynamically-instantiated Communication Structures. Proc. ACM
Program. Lang. 3, POPL, Article 29 (Jan. 2019), 30 pages. https:
//doi.org/10.1145/3290342

[8] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2007.

Links: Web Programming Without Tiers. In Formal Methods for Com-
ponents and Objects, Frank S. de Boer, Marcello M. Bonsangue, Susanne

Graf, and Willem-Paul de Roever (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 266–296.

[9] Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and

Luca Padovani. 2016. Global progress for dynamically interleaved

multiparty sessions. MSCS 26, 2 (2016), 238–302. https://doi.org/10.
1017/S0960129514000188

[10] Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova,

and Nobuko Yoshida. 2015. Practical interruptible conversations:

distributed dynamic verification with multiparty session types and

Python. Formal Methods in System Design 46, 3 (Jun 2015), 197–225.

https://doi.org/10.1007/s10703-014-0218-8
[11] Pierre-Malo Deniélou and Nobuko Yoshida. 2013. Multiparty Compati-

bility in Communicating Automata: Characterisation and Synthesis of

Global Session Types. In 40th International Colloquium on Automata,
Languages and Programming (LNCS, Vol. 7966). Springer, 174–186. a
full version: http://arxiv.org/abs/1304.1902.

[12] Ian Fette and Alexey Melnikov. 2011. The WebSocket Protocol. RFC
6455. RFC Editor. 1–71 pages. https://www.rfc-editor.org/info/rfc6455

[13] Simon Fowler. 2020. Model-View-Update-Communicate: Session Types

Meet the Elm Architecture. In 34th European Conference on Object-
Oriented Programming (ECOOP 2020) (Leibniz International Proceedings
in Informatics (LIPIcs), Vol. 166), Robert Hirschfeld and Tobias Pape

(Eds.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl,

Germany, 14:1–14:28. https://doi.org/10.4230/LIPIcs.ECOOP.2020.14

[14] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. 1998. Language

primitives and type discipline for structured communication-based

programming. In Programming Languages and Systems, Chris Hankin
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 122–138.

[15] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2016. Multiparty

Asynchronous Session Types. J. ACM 63 (2016), 1–67. Issue 1-9.

https://doi.org/10.1145/2827695
[16] Raymond Hu. 2017. Distributed Programming Using Java APIs Gen-

erated from Session Types. Behavioural Types: from Theory to Tools
(2017), 287–308.

[17] Raymond Hu and Nobuko Yoshida. 2016. Hybrid Session Verification

through Endpoint API Generation. In 19th International Conference
on Fundamental Approaches to Software Engineering (LNCS, Vol. 9633).
Springer, Berlin, Heidelberg, 401–418. https://doi.org/10.1007/978-3-
662-49665-7_24

[18] Raymond Hu and Nobuko Yoshida. 2017. Explicit Connection Actions

in Multiparty Session Types. In Fundamental Approaches to Software
Engineering, Marieke Huisman and Julia Rubin (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 116–133.

[19] Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco

Carbone, Pierre-Malo Deniélou, Dimitris Mostrous, Luca Padovani,

António Ravara, Emilio Tuosto, Hugo Torres Vieira, and Gianluigi

Zavattaro. 2016. Foundations of Session Types and Behavioural Con-

tracts. ACM Comput. Surv. 49, 1, Article 3 (2016). https://doi.org/10.
1145/2873052

[20] Jonathan King, Nicholas Ng, and Nobuko Yoshida. 2019. Multiparty

Session Type-safe Web Development with Static Linearity. In Pro-

ceedings Programming Language Approaches to Concurrency- and
Communication-cEntric Software, Prague, Czech Republic, 7th April

2019 (Electronic Proceedings in Theoretical Computer Science, Vol. 291),
Francisco Martins and Dominic Orchard (Eds.). Open Publishing Asso-

ciation, 35–46. https://doi.org/10.4204/EPTCS.291.4
[21] Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay.

2016. Typechecking Protocols with Mungo and StMungo. In Proceed-
ings of the 18th International Symposium on Principles and Practice of
Declarative Programming (Edinburgh, United Kingdom) (PPDP ’16).
Association for Computing Machinery, New York, NY, USA, 146–159.

https://doi.org/10.1145/2967973.2968595
[22] Fabrizio Montesi. 2016. Process-aware web programming with Jolie.

Science of Computer Programming 130 (2016), 69 – 96. https://doi.org/
10.1016/j.scico.2016.05.002

[23] Rumyana Neykova, Raymond Hu, Nobuko Yoshida, and Fahd Ab-

deljallal. 2018. A Session Type Provider: Compile-time API Gener-

ation of Distributed Protocols with Refinements in F#. In Proceed-
ings of the 27th International Conference on Compiler Construction
(Vienna, Austria) (CC 2018). ACM, New York, NY, USA, 128–138.

https://doi.org/10.1145/3178372.3179495
[24] Nicholas Ng, Jose G.F. Coutinho, and Nobuko Yoshida. 2015. Protocols

by Default: Safe MPI Code Generation based on Session Types. In CC
2015 (LNCS, Vol. 9031). Springer, 212–232.

[25] Benjamin C. Pierce. 2002. Types and Programming Languages (1st ed.).
The MIT Press.

[26] PureScript. 2020. purescript/purescript. PureScript. Accessed on 10th

August 2020.

[27] Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida.

2017. A Linear Decomposition of Multiparty Sessions for Safe Dis-

tributed Programming. In 31st European Conference on Object-Oriented
Programming (ECOOP 2017) (Leibniz International Proceedings in Infor-
matics (LIPIcs), Vol. 74), Peter Müller (Ed.). Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik, Dagstuhl, Germany, 24:1–24:31. https:
//doi.org/10.4230/LIPIcs.ECOOP.2017.24

[28] Alceste Scalas and Nobuko Yoshida. 2019. Less is More: Multiparty

Session Types Revisited. Proc. ACM Program. Lang. 3, POPL, Article
30 (Jan. 2019), 29 pages. https://doi.org/10.1145/3290343

11

https://doi.org/10.1561/2500000031
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1145/3290342
https://doi.org/10.1145/3290342
https://doi.org/10.1017/S0960129514000188
https://doi.org/10.1017/S0960129514000188
https://doi.org/10.1007/s10703-014-0218-8
http://arxiv.org/abs/1304.1902
https://www.rfc-editor.org/info/rfc6455
https://doi.org/10.4230/LIPIcs.ECOOP.2020.14
https://doi.org/10.1145/2827695
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1145/2873052
https://doi.org/10.1145/2873052
https://doi.org/10.4204/EPTCS.291.4
https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1016/j.scico.2016.05.002
https://doi.org/10.1016/j.scico.2016.05.002
https://doi.org/10.1145/3178372.3179495
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.1145/3290343

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

PL’18, January 01–03, 2018, New York, NY, USA Anon.

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

[29] Scribble Authors. 2015. Scribble: Describing Multi Party Protocols.

http://www.scribble.org/.
[30] António Ravara Simon Gay (Ed.). 2017. Behavioural Types: from Theory

to Tools. River Publisher. https://www.riverpublishers.com/research_
details.php?book_id=439

[31] The Jolie Team. 2020. Jolie Programming Language – Official Website.

https://jolie-lang.org/. Accessed on 11th November 2020.

[32] Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng.

2014. The Scribble Protocol Language. In 8th International Sympo-
sium on Trustworthy Global Computing - Volume 8358 (Buenos Aires,
Argentina) (TGC 2013). Springer-Verlag, Berlin, Heidelberg, 22–41.
https://doi.org/10.1007/978-3-319-05119-2_3

[33] Fangyi Zhou, Francisco Ferreira, RaymondHu, Rumyana Neykova, and

Nobuko Yoshida. 2020. Statically Verified Refinements for Multiparty

Protocols. Proc. ACM Program. Lang. 4, OOPSLA, Article 148 (Nov.

2020), 30 pages. https://doi.org/10.1145/3428216

12

http://www.scribble.org/
https://www.riverpublishers.com/research_details.php?book_id=439
https://www.riverpublishers.com/research_details.php?book_id=439
https://jolie-lang.org/
https://doi.org/10.1007/978-3-319-05119-2_3
https://doi.org/10.1145/3428216

	Abstract
	1 Introduction
	2 Overview
	3 Implementation
	4 RouST: Routed Session Types
	4.1 Syntax of Routed Multiparty Session Types
	4.2 Semantics of RouST
	4.3 From Canonical MPST to RouST

	5 Case Study: Noughts and Crosses Game
	6 Related and Future Work
	References

