
On the surprising capacity
of linear combinations of embeddings

for natural language processing
Lyndon White

BCM in Computation and Pure Mathematics;
BE in Electrical and Electronic Engineering

April 17, 2019

This thesis is presented for the degree of
Doctor of Philosophy

of The University of Western Australia

ii

Thesis Declaration

I, Lyndon White, certify that:

This thesis has been substantially accomplished during enrolment in the degree.

This thesis does not contain material which has been accepted for the award of any
other degree or diploma in my name, in any university or other tertiary institution.

No part of this work will, in the future, be used in a submission in my name, for any
other degree or diploma in any university or other tertiary institution without the
prior approval of The University of Western Australia and where applicable, any
partner institution responsible for the joint-award of this degree.

This thesis does not contain any material previously published or written by another
person, except where due reference has been made in the text.

The work(s) are not in any way a violation or infringement of any copyright,
trademark, patent, or other rights whatsoever of any person.

The work described in this thesis was partially funded by Australian Research
Council grants DP150102405 and LP110100050; and by a Australian Government
Research Training Program (RTP) Scholarship.

This thesis contains published work and/or work prepared for publication, some of
which has been co-authored.

Lyndon White
April 17, 2019

iii

iv

In memoriam of
Laurie White

1927–2018

vi

Abstract

As Webster’s classic 1900 text “English: Composition and Literature” states “A sen-
tence is a group of words expressing a complete thought.” People use natural lan-
guage to represent thoughts. Thus the representation of natural language, in turn,
is of fundamental importance in the field of artificial intelligence. Natural language
understanding is a research area which revolves around how to represent text in a
form that an algorithm can manipulate in such a way as to mimic the ability of a
human to truly understand the text’s meaning. In this dissertation, we aim to extend
the practical reach of this area, by exploring a commonly overlooked method for nat-
ural language representation: linear combinations (i.e. weighted sums) of embedded
representations. This dissertation is organised as a collection of research publications:
with our novel contributions published in conference proceedings or journals; and with
a comprehensive literature review published as part of a book.

When considering how to represent English input into a natural language processing
system, a common response is to view it as a sequential modelling problem: as a
discrete time-series of words. A more complex alternative is to base the input model
on the grammatical tree structures used by linguists. But there are also simpler
models: systems based on just summing the word embeddings. Word embeddings are
dense vector representations of words, generally learned as part of a neural network
or related system. They are commonly available pretrained, and are used in a variety
of systems for different tasks to those they were originally trained for as a form of
transfer learning. On a variety of tasks, simply summing these word embeddings work
very well – often better than the more complex models. This dissertation examines
these linear combinations of embeddings for natural language understanding tasks.

In brief, it is found that a sum of embeddings is a particularly effective dimensionality-
reduced representation of a bag of words. The dimensionality reduction is carried out
at the word level via the implicit matrix factorization on the collocation probability
matrix. It thus captures into the dense word embeddings the key features of lexical
semantics: words that occur in similar contexts have similar meanings. We find
that summing these representations of words gives us a very useful representation of
structures built upon words: such as sentences, phrases, and word senses.

A limitation of the sum of embedding representation is that it is unable to represent
word order. This representation does not capture any order related information;
unlike for example a recurrent neural network. Recurrent neural networks, and other
more complex models, are outperformed by sums of embeddings in tasks where word
order is not highly significant. It is found that even in tasks where word order does
matter to an extent, the improved training capacity of the simpler model still means
that it performs better than more complex models. This limitation thus impacts
surprisingly little.

vii

viii

Acknowledgements

I must begin by expressing my gratitude towards my supervisors, Prof. Roberto
Togneri, Dr Wei Liu, and Winthrop Prof. Mohammed Bennamoun. I am very fortu-
nate to have such attentive supervisors, who have supported me in my endeavours.
This thesis would not be here without their on-going support and advise.

Further, I wish to more generally thank the staff and faculty from the departments of
electrical engineering and of computer science who’ve helped me during this process.

I would like to express how much I enjoyed working with Naeha Sharif on several
projects. I look forward to reading her thesis in a few years time.

This research was supported by an Australian Government Research Training Pro-
gram (RTP) Scholarship. The lack of which no doubt would have resulted in my
expiration, and the attendant adverse consequences on the completion of this disser-
tation. It was also supported by funding from Australian Research Council grants
DP150102405 and LP110100050.

During my research computing hardware and power was provided due to the support
of the National eResearch Collaboration Tools and Resources project (Nectar), Nvidia,
and the UWA University Computer Club (UCC).

I also to acknowledge the support and assistance I’ve received from my open-source
collaborators and compatriots in the JuliaLang community. In particular: Chris
Rackauckas, Chrisof Stocker, and Jon Malmaud; though I could easily list a dozen
more. One could not ask for a more collegial online community of academics and
programmers.

I am grateful for the ongoing support and companionship of my friends and family.
In particular, my good friend Roland Kerr, who began his Research Masters at the
same time as I was beginning my PhD.

Lastly I must thank my darling wife, Isobel, who has supported me constantly; and
has always forgiven me when I am home hours late after just doing “one last thing”.

ix

x

Authorship declaration

Publications

This thesis contains work that has been published and/or prepared for publication.

Details of the work:
Lyndon White, Roberto Togneri, Wei Liu, and Mohammed Bennamoun (2018a).
Neural Representations of Natural Language. Studies in Computational Intelligence
(Book). Springer Singapore. isbn: 9789811300615
Location in thesis: Part I
Student contribution to work:
Determined content. Created figures. Wrote book. Supervisors reviewed and
provided useful feedback for improvement.

Details of the work:
Lyndon White, Roberto Togneri, Wei Liu, and Mohammed Bennamoun (2015).
“How Well Sentence Embeddings Capture Meaning”. In: Proceedings of the 20th
Australasian Document Computing Symposium. ADCS ’15. Parramatta, NSW,
Australia: ACM, 9:1–9:8. isbn: 978-1-4503-4040-3. doi: 10.1145/2838931.2838932
Location in thesis: Chapter 5
Student contribution to work:
Devised problem. Designed and implemented algorithms. Conducted experiments.
Created figures. Wrote publication. Supervisors reviewed and provided useful
feedback for improvement.

Details of the work:
Lyndon. White, Roberto. Togneri, Wei. Liu, and Mohammed Bennamoun (2018).
“Learning of Colors from Color Names: Distribution and Point Estimation”. In:
Computational Lingustics (Under Review)
Location in thesis: Chapter 6
Student contribution to work:
Devised problem. Designed and implemented algorithms. Conducted experiments.
Created figures. Wrote publication. Supervisors reviewed and provided useful
feedback for improvement.

Details of the work:
Lyndon White, Roberto Togneri, Wei Liu, and Mohammed Bennamoun (2018b).
“Finding Word Sense Embeddings Of Known Meaning”. In: 19th International
Conference on Intelligent Text Processing and Computational Linguistics (CICLing)
Location in thesis: Chapter 7
Student contribution to work:
Devised problem. Designed and implemented algorithms. Conducted experiments.
Created figures. Wrote publication. Supervisors reviewed and provided useful
feedback for improvement.

xi

https://doi.org/10.1145/2838931.2838932

Details of the work:
Lyndon White, Roberto Togneri, Wei Liu, and Mohammed Bennamoun (2018b).
“NovelPerspective: Identifying Point of View Characters”. In: Proceedings of ACL
2018, System Demonstrations. Association for Computational Linguistics
Location in thesis: Chapter 8
Student contribution to work:
Devised problem. Designed and implemented algorithms. Conducted experiments.
Created figures. Wrote publication. Supervisors reviewed and provided useful
feedback for improvement.

Details of the work:
Lyndon White, Roberto Togneri, Wei Liu, and Mohammed Bennamoun (2016a).
“Generating Bags of Words from the Sums of their Word Embeddings”. In: 17th
International Conference on Intelligent Text Processing and Computational
Linguistics (CICLing)
Location in thesis: Chapter 9
Student contribution to work:
Devised problem. Designed and implemented algorithms. Conducted experiments.
Created figures. Wrote publication. Supervisors reviewed and provided useful
feedback for improvement.

Details of the work:
Lyndon White, Roberto Togneri, Wei Liu, and Mohammed Bennamoun (2016b).
“Modelling Sentence Generation from Sum of Word Embedding Vectors as a Mixed
Integer Programming Problem”. In: IEEE International Conference on Data
Mining: High Dimensional Data Mining Workshop (ICDM: HDM). doi:
10.1109/ICDMW.2016.0113
Location in thesis: Chapter 10
Student contribution to work:
Devised problem. Designed and implemented algorithms. Conducted experiments.
Created figures. Wrote publication. Supervisors reviewed and provided useful
feedback for improvement.

Details of the work:
Lyndon White, Roberto Togneri, Wei Liu, and Mohammed Bennamoun (2018a).
“DataDeps.jl: Repeatable Data Setup for Reproducible Data Science”. In: Journal
of Open Research Software (Under Review)
Location in thesis: Appendix A
Student contribution to work:
Primary author of software. Created figures. Wrote publication. Supervisors
reviewed and provided useful feedback for improvement.

Details of the work:
Lyndon White and Sebastin Santy (2018). “DataDepsGenerators.jl: making reusing
data easy by automatically generating DataDeps.jl registration code”. In: Journal of
Open Source Software
Location in thesis: Appendix B
Student contribution to work:
Original author of software. Provided direction, guidance, and code review for its
enhancement. Wrote publication.

Details of the work:
Lyndon White and David Ellison (2018). “Embeddings.jl: easy access to pretrained
word embeddings from Julia”. In: Journal of Open Source Software
Location in thesis: Appendix C
Student contribution to work:
Original and primary author of software. Wrote publication.

xii

https://doi.org/10.1109/ICDMW.2016.0113

Details of the work:
Jonathan Malmaud and Lyndon White (2018). “TensorFlow.jl: An Idiomatic Julia
Front End for TensorFlow”. In: Journal of Open Source Software. doi:
10.21105/joss.01002
Location in thesis: Appendix D
Student contribution to work:
Co-maintainer and second highest contributor to the software. Co-wrote publication.

Permission to use work in thesis

The coauthors signing below give permission to use the aforementioned works in this
dissertation, and certify that the student’s statements regarding their contribution to
the respective co-authored works listed above are correct.

Roberto Togneri:
Primary Supervisor 04/10/18

Wei Liu:
Supervisor 04/10/18

Mohammed Bennamoun:
Supervisor 04/10/18

Sebastin Santy:
24/09/18

David Ellison:
02/10/18

Jonathan Malmaud:
24/09/18

xiii

https://doi.org/10.21105/joss.01002

Contents

1 Introduction 3

I Literature Review 23

2 Word Representations 25

3 Word Sense Representations 51

4 Sentence Representations and Beyond 63

II Publications 79

5 How Well Sentence Embeddings Capture Meaning 81

6 Learning of Colors from Color Names: Distribution and Point
Estimation 95

7 Finding Word Sense Embeddings Of Known Meaning 129

8 NovelPerspective: Identifying Point of View Characters 143

9 Generating Bags of Words from the Sums of their Word Em-
beddings 153

10 Modelling Sentence Generation from Sum of Word Embedding
Vectors as a Mixed Integer Programming Problem 165

11 Conclusion 183

Bibliography 189

xiv

CONTENTS

III Appendix: Tooling 201

A DataDeps.jl: Repeatable Data Setup for Replicable Data Science203

B DataDepsGenerators.jl: Making Reusing Data Easy by Auto-
matically Generating DataDeps.jl Registration Code 211

C Embeddings.jl: Easy Access to Pretrained Word Embeddings
from Julia 215

D TensorFlow.jl: An Idiomatic Julia Front End for TensorFlow 217

xv

CONTENTS

xvi

CONTENTS

Acronyms

Adagram A type of word sense embeddings
BOW Bag of Word
CBOW Continous Bag of Words: A (misleadingly named) type of word

embeddings
CNN Convolutional Neural Network
FastText A type of word embedding
GRU Gated Recurrent Unit: a form of RNN
GloVe A type of word embedding
LCOWE Linear Combination of Word Embeddings. A class of methods

for combining word embeddings, covering both SOWE, MOWE and
others.

LSTM Long Short Term Memory: a form of RNN
MFS Most Frequent (word) Sense
MIP Mixed Integer Programming
ML Machine Learning
MOWE Mean of Word Embeddings
NLP Natural Language Processing
n-gram collections of n-sequential words
RNN Recurrent (sequential) Neural Network
RvNN Recursive (tree structured) Neural Network
PCA Principle Component Analysis: as used in this work, a form of

dimensionality reduction.
POV Point of View, the perspective a novel is told from.
SkipGram A type of word embedding
SOWE Sum of Word Embeddings
SVM Support Vector Machine
URAE Unfolding Recursive Auto-encoder
WSD Word Sense Disambiguation

1

CONTENTS

2

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

It has been a continual surprise, that simple combinations of embeddings
perform so well for a variety of tasks in natural language processing. At
first glance, such simple methods capturing only unordered word use
should have little capacity in representing the rich and highly structured
human language. However at a second glance, similar surface information
has been used in information retrieval with great success since the incep-
tion of the field (Maron 1961). Linear combinations of embeddings can be
considered as a dimensionality reduction of a bag of words, with a partic-
ular weighting scheme. Dimensionality reduction can be characterised as
finding the best low dimensional representation of a high dimensional in-
put according to some quality criterion. In the case of word embeddings,
that quality criterion is generally related to the ability to predict the co-
occurring words – a salient quality of lexical semantics. As such, linear
combinations of embeddings take as input a very sparse high dimensional
bag of words (which is itself a strong surface form representation), then
reduce it to a dense representation that captures lexical semantics.

When we discuss linear combinations of word embeddings (LCOWE),
we are considering various forms of weighted sums of vector word rep-
resentations. These models are equivalent to representing bags of words
(BOW), and are sometimes called bags of vectors (Conneau et al. 2018),
or embedding-BOW (Cífka and Bojar 2018) or similar. The primary focus
of this work has been on sums of word embeddings (SOWE), i.e. linear
combinations with unit weights. Closely related to this is a mean of word
embeddings (MOWE), which is a sum weighted such that it normalizes
over the size of the bag of words. More complicated weightings, such as
using probabilities, or term significance are also options for constructing
LCOWEs.

The mechanism behind the functioning of the addition of word embed-
dings capturing their combined meaning, was partially explained in one
of the pioneering works on word embeddings (Mikolov et al. 2013a). As
shown below, for w and u being words, C being an embedding matrix,
and P (V | a) being the set of probabilities for each word in the vocabu-

3

CHAPTER 1. INTRODUCTION

lary V co-occurring with the word a.

C:,w ∝ logP (V | w) (1.1)
C:,u ∝ logP (V | u) (1.2)

∴ C:,w + C:,u ∝ logP (V | w) + logP (V | u) (1.3)
= logP (V | w) · P (V | u) (1.4)
∝ logP (V | w ∩ u) (1.5)

They note that under the skip-gram model, there is a linear relationship
between a word embedding and the logarithm of the probability distribu-
tion over co-occurring words.1 Thus there is a linear relationship between
the sum of two (or more) embeddings, and the product of the probability
distribution over co-occurring words. Which is roughly proportional to
the probability distribution over words co-occurring with that two-word
bigram (or n-gram).2 Which is to, say it is proportional to the distribu-
tion estimate that would have been found had that bigram (or n-gram)
been replaced with a single token. By the distributional hypothesis, the
similarity of meaning is characterised by the distribution of words that
may co-occur. This is how skip-gram-like word embeddings function,
and this relationship explains why its ability to represent meaning sim-
ilarity generalizes to sums of the word embeddings for short phrases.
If one considers this for larger structures than phrases, giving a larger
bag-of-of-words, it can be considered that a sum of word embeddings,
is proportional to the distribution over other worlds of the likelihood to
co-occur with the entire bag of words. Interestingly, this is a distribution
over the vocabulary, such that words that could have been present and
included in the BOW have a high likelihood.

Throughout the last three years that we have been researching this prob-
lem, others have also found, often to their own surprise, the strength of
simple linear combinations of embeddings.

Arora, Liang, and Ma (2017)’s work describes a “A simple but tough-to-
beat baseline for sentence embeddings”, which is a linear combination of
word embeddings. Their proposed model is a more complicated combina-
tion than considered here. But never-the-less, it is primarily a weighted
sum of embeddings, with small adjustments based on linear dimension-
ality reduction methods. In particular when using the word embeddings
of Wieting et al. (2016), they find this to be very competitive when com-
pared with more complex models which take into account word order.

Cífka and Bojar (2018) found that taking a mean of word embeddings
outperformed almost all of their more sophisticated machine-translation-
based sentence representations, when used on classification and para-
phrase detection tasks. This is not to say that linear combinations of
embeddings are ideal models for all tasks. They clearly cannot truly
handle all the complexities of language. But rather that the occurrence
of the complexities they cannot handle is rarer in practice in many tasks
than is often expected.

1The log in the relationship explains why summing embeddings works well, but taking their
product does not. While the sum of two log-likelihoods is a log of the product of likelihoods, the
product of two log likelihoods does not correspond to anything with intuitive meaning.

2This is only a rough relationship as it depends on the assumption of independence.

4

CHAPTER 1. INTRODUCTION

Conneau et al. (2018) constructed 10 probing tasks to isolate some of the
information captured by sentence representations. They found the strong
performance of the mean of word embeddings on sentence level tasks to
be striking. They attribute it to the sentence level information being
redundantly encoded in the word-forms: the surface level information
is surprisingly useful for tasks which at first look very sophisticated.
With the exception of their word-content task, they did find that more
sophisticated models are able to perform better than the mean of word
embeddings. However, when correlating the performance of their probing
task against real world tasks, they found that the word-content probing
task was by far the most positively correlated with the real word tasks.
This makes it clear how valuable this surface information is in practical
tasks.

In the work presented in this dissertation, we find that even in tasks where
it would seem that non-surface information incorporating word-order is
required, in practice other issues cause the more powerful models that
are (theoretically) able to handle these situations correctly to be never-
the-less outperformed. This is particularly the case where the theoretical
improvement from incorporating this information is small, relative to the
practical complexity of the techniques that are required to leverage it.
Such a case where word order matters but the error from ignoring it is
small, is particular illustrated in Chapter 6.

At a high-level, the success of these techniques comes down to that fact
that most human language is easy to understand and simple. This expec-
tation of language being easily understood is highlighted by the work of
Grice (1975), which claims that the communication is conducted follow-
ing a cooperative principle. The overall supermaxim for Grice’s cooper-
ative principle is that the speakers are expected to “be perspicuous” i.e.
to use speech that is clearly expressed and easily understood. The par-
ticular relevant maxims within the cooperative principle are: the maxim
of quantity, that speakers are expected to make contributions that are
no more, nor less informative than required; and the maxim of manner :
that speakers are expected to avoid ambiguity and obscurity of expres-
sion, and to make contributions that are brief and orderly. While Grice
originally proposed these are exceptions upon conversation, the general
principle applies more broadly to natural language communication. This
general principle being that language used is normally expected to be
understood easily – thus fulfilling the goal of communicating.

Adversarial examples are reasonably easy to construct. An adversarial
example to a linear combination of word embeddings is any text where
the word order significantly affects that meaning; and where multiple
possible word orders exist. For such an adversary to be significant, both
word orders must be reasonably likely to occur. However; such cases
are rarer than one might expect as is demonstrated in Chapter 10. Par-
ticularly when punctuation tokens are included in the embeddings. As
such, while these cases certainly exist, we find that for real applications
they are sufficiently rare that the simplicity of the linear combinations of
embeddings approach can work very well.

The strong performance of LCOWE when applied in sentence or phrase
representation contexts, as discussed in Chapter 5 and Chapter 6, gives

5

CHAPTER 1. INTRODUCTION

support to the notion that often word order us not a very significant
feature in determining meaning. One would think that word order, and
other factors of linguistic structure must contribute significantly to the
meaning of the phrase. However, our results suggest that it is often in a
minor way, and that for many tasks these linear combinations are superior
due to their simplicity and effectiveness. While taking into account the
linguistic structure may be the key to bridging the gap between “almost
perfect” and “perfect”, the current state of the field for many tasks has
not reached “almost perfect”, and as such simpler methods still form
an important part. The successes of the sums of word embeddings for
sentence and phrase embeddings, leads us to consider other uses of linear
combinations for representation. Chapter 7 and Chapter 8 consider tasks
well outside of phrase representation where the order clearly does not
matter: namely word-sense representation, and context of named entity
usage across a document.

To further understand the relationship between SOWE and BOW, and
the extent to which word order matters, Chapter 9 and Chapter 10 inves-
tigate if it is possible to reverse the conversion from sentence to SOWE.
The results in Chapter 9 show that it is largely possible to reconstruct
bags of words from SOWE, suggesting that when considered as a dimen-
sionality reduction technique SOWE does not lose much information.
This is extended in Chapter 10 to order those bags of words back to
sentences via a simple tri-gram language model. This had some suc-
cess at outright reconstructing the sentences. This highlights the idea
that for many bags of words (which can be reconstructed from a sum
of word embeddings) there may truly be only one reasonable sentence
from which they might have come. This would explain why SOWE, and
BOW, ignorance of word order does not prevent them from being useful
representations of sentences.

One of the attractive features of these linear combinations is their sim-
plicity. This is true both in an implementation sense, and in the sense
of gradient descent. For example, the vanishing gradient problem in
deep networks, especially RNNs (Bengio, Simard, and Frasconi 1994)
and RvNNs (Socher 2014), simply does not exist for a sum of word em-
beddings. A sum of word embeddings is not a deep input structure – it
is only one hidden layer. This is in contrast to recurrent neural networks
(RNNs) which are deep in time: having effective depth O(n) where n is
the number of terms. Similarly, recursive neural networks (RvNNs) are
deep in structure: having effective depth O(log n). Information does not
have to propagate as far when a SOWE is used as an input represen-
tation. Thus it is easier to attribute changes during gradient descent.
This is not to say that SOWE can only be used in a shallow network –
it is simply an input representation subnetwork. Just like for RNNs and
RvNNs, a deep network can be placed on top of the SOWE.

1.1 Background and Extended Nomenclature

For ease of reference we include here a brief background, structured
around definitions of key terms and techniques used in the area. Part I
contains significantly more details on each of these. Each chapter in

6

CHAPTER 1. INTRODUCTION

Part II also reintroduces its own key background information.

1.1.1 Embedding

An embedding is, for purposes of this work, a representation of some-
thing in a dense vector space. In particular we focus on word embeddings,
and other closely related embeddings for natural language. These dense
embeddings are very useful for applying machine learning methods to
natural language understanding. There are two reasons for this: Firstly,
for various algorithmic and implementation reasons, the majority of ma-
chine learning methods function far better on dense continuous spaces
than on sparse discrete spaces. Secondly, the embeddings are often pre-
trained on another task, for which there exists plentiful training data.
Thus using them as inputs allows for some transfer learning to assist in
the final task (Bengio et al. 2003; Collobert and Weston 2008).

A particularly common task to use for pretraining word embeddings, is
language modelling, which requires predicting probabilities of co-occuring
words. Traditional language modelling, involves using preceding words
to predict the next word, as was implemented in Bengio et al. (2003).
Advancements on this, to create better embeddings, is the continuous
bag of words (CBOW) which uses the context words from both sides
of a word to predict it; and its complement the SkipGram, which uses
a single word to predict all words occurring in its context (Mikolov et
al. 2013b; Mikolov, Yih, and Zweig 2013). Direct advancements and
variants upon this include GloVE (Pennington, Socher, and Manning
2014) and FastText (Bojanowski et al. 2017). Further extensions on this
idea include: Adagram(Bartunov et al. 2015) for word senses, and Skip-
Thought (Kiros et al. 2015) for sentences.

The key concern of our work, is given a collection of embeddings for com-
ponents of a larger structure, how can an embedding for the whole be
created. An example of such composite larger structures include: sen-
tences made of words, patterns of co-occurring words around a named
entity, meaning of a word usage considered as having components from
standard word senses. Depending on the use case, options for this com-
bination step include RNNs, RvNNs and LCOWE.

1.1.2 Linear Combination of Word Embeddings (LCOWE)

A linear combination of word embeddings (LCOWE) is some method
to take a collection of word embeddings W = [w̃1, . . . , w̃n] and some set
of weights A = [a1, . . . , an], and determine the combined representation
as:

1=n∑
i=1

aiw̃i (1.6)

Such a collection of embeddings can be created from any bag of words.

Two special cases of this are the sum of word embeddings (SOWE), and
the mean of word embeddings (MOWE). Both are given by weighting
all words equally. SOWE is defined by giving all words unit weight:

7

CHAPTER 1. INTRODUCTION

ai = 1. Thus SOWE is given by:
1=n∑
i=1

w̃i (1.7)

MOWE normalizes the weights by the number of words in the collection.
The weights are given by ai =

1
n
. Thus MOWE is given by:

1=n∑
i=1

1

n
w̃i (1.8)

These are simple, but surprisingly effective ways to represent the collec-
tion of words. It is on this that this thesis focuses.

1.1.3 Recurrent Neural Network (RNN)

A Recurrent Neural Network (RNN) is a technique to process sequential
data, such as text, using neural networks. An encoder RNN takes in a
sequence of inputs and produces a single representation of all of them –
the encoding. These are useful for natural language understanding tasks,
including the color problem in Chapter 6. The complement of this is the
decoder RNN which takes a single input and unrolls it into a sequence.
This is useful for natural language generation tasks. By connecting the
encoding from the encoder RNN to the input of the decoder RNN, one
can define an encoder-decoder RNN (Cho et al. 2014b). This is use-
ful for sequence to sequence tasks, such as translation and abstractive
summarisation.

The core functioning of a RNN is the recurrent unit. This same unit,
with the same network parameters (weights and biases), is repeated at
each time-step of the sequence in the network. At each time step, for the
inputs it takes an external input (e.g. the word embedding of the next
word in the sequence), and a state; and for the outputs it produces an
external output, and the updated state. In an encoder RNN all but the
last output is ignored and not connected to the rest of the network. In a
decoder RNN all but the first input is an artificially generated prompt, for
example the concatenation of the last output with the original timestep
input. These recurrent units are chained together connected by each
state output to the next state input, and can thus process sequential in-
formation, taking into account order of the sequence. The recurrent unit
comes in many forms including the Long Short Term Memory (LSTM)
unit (Hochreiter and Schmidhuber 1997; Gers, Schmidhuber, and Cum-
mins 1999) and the Gated Recurrent Unit (GRU) (Chung et al. 2014;
Cho et al. 2014b). Another enhancement to the RNN is the bidirectional
RNN which considers the sequence both from start to finish, and finish to
start (Schuster and Paliwal 1997). A core goal of these enhancements is
to combat the shortness of the RNN’s memory. The distance in terms of
recurrent units from the output of an encoder, to the most distant word
is generally multiple recurrent units. Each recurrent unit must carry the
burden of representing not only its input but those of every input before,
which it receives in its state. The sequential nature of the RNN means
that key information must be identified and must continue to be stored in

8

CHAPTER 1. INTRODUCTION

the recurrent unit’s state for multiple steps. This is further compounded
if a deep network is placed on top of the encoder. It is a challenging task
to train a network and propagate this learning from the output where
the loss is defined, though-out the network such that key features of all
stages of the input are captured. This is not a problem for a LCOWE, as
it is shallow and has the same distance from all inputs to the encoding:
a single, non-trained, sum.

1.1.4 Recursive Neural Network (RvNN)

The Recursive Neural Network (RvNN) is the extension of the ideas
of the RNN, to apply to trees rather than sequences. It is exemplified
by the work of Socher (2014). Rather than a recurrent unit placed at
each point in the sequence, a RvNN has a recursive unit placed at each
vertex of the tree. For a encoding tree, each recursive unit for its input
has the representations of each of the branches below, and for its output
produces a combined representation. For a decoding tree, it task as input
a combined representation, and outputs a representation for each branch
above. It suffers from similar problems with the distance from input to
encoding problems that the RNN does; though the branches are shorter.
Further, its nature highlights a problem that RNNs share: for a practical
task there is no certainty that compressing according to the linguistic
structure (or word order for RNNs) is optimal at representing the inputs
for a given task. For surface level tasks, where knowing what words were
used matters more than how they were used, a LCOWE may be a more
logical choice.

1.2 Thesis Outline and Contributions

This research tackles a number of natural language understanding prob-
lems, and in the solutions draws conclusions on the capacity of linear
combinations of embeddings. The dissertation is organised into two parts.

Part I contains a detailed discussion of the established methods for input
representation in natural language understanding tasks. This literature
review, however, does not focus on linear combinations of embeddings,
which we develop upon through-out the rest of this dissertation. Rather
it focuses upon the techniques we build upon, and the alternatives to
our methods. Part I was originally published as the main content of our
book Neural Representations of Natural Language (White et al. 2018a).
It excludes the introductory chapters on machine learning and recurrent
neural networks which were present in the book. Part II contains investi-
gations on how LCOWE perform in key NLP tasks. These investigations
constitute the bulk of this research effort. Further to the literature review
section of this dissertation, each chapter in Part II includes a background
or related works section with particularly relevant works to that paper
discussed.

9

CHAPTER 1. INTRODUCTION

Part I: Chapter 2 Word Representations

We begin by introducing word embeddings in Chapter 2. Word embed-
dings form the basis of the work in this dissertation, and more so the
basis of many of the advancements in the field more generally. The chap-
ter begins with the consideration from a language modelling perspective,
where word embeddings are equivalent to onehot input representations
in a neural network being employed for a language modelling task. Then
expands towards the considerations of word embeddings as more general
purpose representations. This chapter also includes detailed tutorials
explaining the details of hierarchical softmax and negative sampling.

Part I: Chapter 3 Word Sense Representations

Word sense representations are discussed in Chapter 3. These are of
particular relevance to the work discussed in Chapter 7. More generally
the considerations of words having multiple senses informs the discussion
of meaning representation more broadly.

Part I: Chapter 4 Sentence Representations and Beyond

Chapter 4 contains an overview of methods used for representing struc-
tures large than just words. In particular this section focuses on sen-
tences, but also discusses techniques relevant to shorter phrases. This
chapter contains some discussion of the sums of word embeddings that
are the focus of this work, but primarily discusses the alternatives which
we contrast against.

Overview of Novel Contributions (Part II)

An overview of the tasks investigated in this work is shown in Table 1.1.
The representation of sentences is investigated in Chapter 5, through a
paraphrase grouping tasks. Similarly, the representation of phrases is in-
vestigated in Chapter 6 through a color understanding (estimation) task.
Given the observed properties found by sums of word embeddings, this
leads to the investigation into if weighted sums of word sense embeddings
might better resplendent a particular usage of a word in Chapter 7. The
capacity also lends to the investigation of using a sum of word embeddings
to represent the contexts of all usages of a named entity, for the point-
of-view character detection task investigated in Chapter 8. We conclude
with a pair of complementary works in Chapters 9 and 10, which inves-
tigate the ability to recover bags of words and sentences, from SOWE
represented sentences. These final works illustrate some of the reasons
why linear combinations work so well.

Part II: Chapter 5. “How Well Sentence Embeddings Capture
Meaning”

Originally published as: Lyndon White, Roberto Togneri, Wei Liu,
and Mohammed Bennamoun (2015). “How Well Sentence Embeddings

10

CHAPTER 1. INTRODUCTION

Chapter Structure Task Embeddings
Chapter 5 Sentences Paraphrase grouping Word2Vec

(Mikolov et al. 2013a)
Chapter 6 Short Phrases Color understanding FastText

(Bojanowski et al. 2017)
Chapter 7 Word Senses Similarity with context

& Word sense disam-
biguation

AdaGram
(Bartunov et al. 2015)
& Bespoke greedy sense
embeddings

Chapter 8 Adj. Contexts POV character detec-
tion

FastText
(Bojanowski et al. 2017)

Chapter 9 Sentences Recovering bags of
words

GLoVE
(Pennington, Socher,
and Manning 2014)

Chapter 10 Sentences Recovering sentences GLoVE
(Pennington, Socher,
and Manning 2014)

Table 1.1: Summary of the investigations published within this dissertation. The
structure column gives the type of linguistic structure being worked with, the embed-
dings column lists the embedding methods investigated, and the task column describes
the goal of the work.

Capture Meaning”. In: Proceedings of the 20th Australasian Document
Computing Symposium. ADCS ’15. Parramatta, NSW, Australia: ACM,
9:1–9:8. isbn: 978-1-4503-4040-3. doi: 10.1145/2838931.2838932.

We begin by examining methods for representing sentences. Sentences
are a fundamental unit of communication – a sentence is a single com-
plete idea. The core goal is to determine if different sentence embedding
methods clearly separate the different ideas.

Paraphrases are defined by a bidirectional entailment relationship be-
tween two sentences. This is an equivalence relationship, it thus gives
rise to a partitioning of all sentences in the space of a natural language.
If a sentence embedding is of high quality, it will be easy to define a cor-
responding partitioning of the embedding space. One way to determine
how easy it is to define the corresponding partitioning is to attempt to
do just that as a supervised classification task using a weak classifier.
A weak classifier, namely a linear support vector machine (SVM)), was
used as a more powerful classifier could learn arbitrary transforms. The
classification task is to take in a sentence embedding and predict which
group of paraphrases it belongs to. The target paraphrase group is de-
fined using other paraphrases with the same meaning as the candidate.

Under this course of evaluation it was found that the sum and mean
of word embeddings performed very well as a sentence representation.
These LCOWEs were the best performing models under evaluation. They
were closely followed by the bag of words, which has the advantage of be-
ing of much higher dimensionality than the other models. The LCOWEs
outperform the bag of words as they also capture synonyms and other
features of lexical relatedness. Slightly worse than the bag of words was
the bag of words with PCA dimensionality reduction to 300 dimensions.
This confirms our expectation that LCOWEs are a better form of di-
mensionality reduction for preserving meaning from a bag of words than
PCA.

11

https://doi.org/10.1145/2838931.2838932

CHAPTER 1. INTRODUCTION

The poor results of the paragraph vector models (Le and Mikolov 2014) is
in line with the observation in the footnotes of the less well-known follow
up work of Mesnil et al. (2014). Where it was found that the performance
reported in Le and Mikolov (2014) cannot be reliably repeated on other
tasks, or even on the same tasks with a slightly different implementation.
A limitation of our investigation is that it does not include the examina-
tion of any encoder-decoder based methods, such as Skip-Thought (Kiros
et al. 2015), or machine translation models. Another limitation of the
work is that the unfolding recursive autoencoder (Socher et al. 2011a)
evaluation used a pretrained model with only 200 dimensions, rather than
300 dimensions as was used in the other evaluations.
The key contribution of this work was to evaluate the properties of
sentence representations using an abstract task. This is in-contrast to
most prior evaluations, which use less abstract real-world tasks. While
real world tasks have their own important value, it is harder to judge
the generalisation ability from such cases. For example, a sentence rep-
resentation that works well for sentiment analysis may not work well
for other NLP tasks. The paraphrase space partitioning task is much
more abstract and considers the geometric nature of the representation.
We thus expect that as an abstract task it would be more informative
as a probing evaluation. This idea of using an abstract probing task
to evaluate sentence representations has been significantly advanced and
generalised to a battery of such tasks in later works such as Adi et al.
(2017) and Conneau et al. (2018). The interesting finding in our work,
which significantly contributed to the direction of this dissertation, was
that the LCOWEs (SOWE/MOWE) were notably the best performing
models. They performed very well on the task to separate meaning.
Different word content, particularly with lexical similarity features, ef-
fectively gives a much stronger separability of the meaning space than
any of the more complex methods considered.
Paraphrases provide one source of grounding for evaluation of sentences.
Color names are a subset of short phrases which also have a ground truth
for meaning – the intended color. They are thus useful for evaluating the
performance of LCOWE on short phrases.

Part II: Chapter 6. “Learning of Colors from Color Names:
Distribution and Point Estimation”

Originally published as: Lyndon. White, Roberto. Togneri, Wei. Liu,
and Mohammed Bennamoun (2018). “Learning of Colors from Color
Names: Distribution and Point Estimation”. In: Computational Lingus-
tics (Under Review).
To evaluate the performance of input representations for short phrases,
we considered a color understanding task. Color understanding is consid-
ered a grounded microcosm of natural language understanding (Monroe,
Goodman, and Potts 2016). It appears as a complicated sub-domain,
with many of the same issues that plague natural language understand-
ing in general: it features a lot of ambiguity, substantial morphological
and syntax structure, and depends significantly on context that is not
made available to the natural language understanding algorithms. Unlike

12

CHAPTER 1. INTRODUCTION

natural language more generally, it has a comparatively small vocabulary,
and it has grounded meaning. The meaning of a particular utterance,
say bluish green, can be grounded to a point in color space, say in
HSV (192°, 93%, 72%), based on questioning the speaker. The general
meaning of a color phrase can be grounded to a distribution over the
color space, based on surveying the population of speakers.

Models were thus created to learn a mapping from the natural language
space, to points or distributions in the color space. Three input represen-
tations were considered: a sum of word embeddings (SOWE), a convo-
lutional neural network (CNN), and a recurrent neural network (RNN).
The SOWE corresponds to a bag of words – no knowledge of order. The
CNN corresponds to a bag of ngrams – it includes features of all length,
thus can encode order. The RNN is a fully sequential model – all inputs
are processed in order and it must remember previous inputs.

It was expected that this task would benefit significantly from a knowl-
edge of word order. For example, bluish green and greenish blue
are visibly different colors. The former being greener than the later.
However, it was found that the SOWE was the best performing input
representation, followed closely by the CNN , with the RNN performing
much worse. This was even the case when the test set was restricted to
only contain color names for which multiple different word orders (rep-
resenting different colors) were found in the training set. This can be
attributed to the difficulty in training the more complicated models. In
contrast to a simple feed-forward SOWE, in a RNN the gradient must
propagate further from the output, and there are more weights to be
learned in the gates. This difficulty dominated over the limitation in be-
ing able to model the color names correctly. We note that while bluish
green and greenish blue are different colors, they are still very similar
colors. As such, the error from treating them as the same, is less than
the error caused by training difficulties.

Estimating colors from their natural language color names has pragmatic
uses. Color estimation from description is useful as a tool for improv-
ing human-computer interaction. For example allowing free(-er) text for
specifying colors in plotting software, using point estimation. It is also
useful in education: people from different cultures, especially non-native
English speakers, may not know exactly what color range is described by
dark salmon. Our model allows for tools to be created to answer such
queries using distribution estimation.

A limitation of this study is in the metrics used. For distribution es-
timation, the perplexity of the discretized distributions in color space
is reported. It would be preferable to use Kullback–Leibler divergence,
which would allow comparisons to future works that output truly contin-
uous distributions. Kullback–Leibler divergence is monotonically related
the to discretized perplexity, however. For point estimation, it would be
preferable to also report an evaluation metric, such as a Delta-E, which
is controlled for the varying sensitivity of human perception for different
hues. Neither limitation has direct bearing on the assessment of the in-
put representations; which is the assessment of primary interest in the
context of this dissertation.

The key contribution of this work was to evaluate the properties of

13

CHAPTER 1. INTRODUCTION

short phrase representations using a grounded task of color understand-
ing. Secondary contributions include creating a neural network based
method for color distribution estimation, which itself has practical use
as a teaching tool and in human-computer interaction; and demonstrat-
ing a novel method for point estimation of angular data, such as HSV
colors. Again, we found surprisingly that SOWE was the most effective
input representation.

Part II: Chapter 7. “Finding Word Sense Embeddings Of Known
Meaning”

Originally published as: Lyndon White, Roberto Togneri, Wei Liu, and
Mohammed Bennamoun (2018b). “Finding Word Sense Embeddings Of
Known Meaning”. In: 19th International Conference on Intelligent Text
Processing and Computational Linguistics (CICLing).

With the demonstrated utility of linear combinations of embeddings for
representing the meanings of larger structures made from words, it is
worth investigating their utility for representing the possible different
meanings of words. When it comes to representing word senses, it may be
desirable to find a representation for the exact sense of a word being used
in a particular example. A very fine grained word sense for just that one
use. If one has a collection of induced word senses, it seems reasonable to
believe that the ideal word sense for a particular use, would lie somewhere
between them in the embedding space. Furthermore, if one knows the
probability of each of the coarse induced senses being the correct sense
for this use, then it is reasonable to assume that the location of the
fine grained sense embedding would be closer to the more likely coarse
sense, and further from the less likely coarse sense. As such we propose
a method to define these specific case word senses based on a probability
weighted sum of coarser word sense embeddings. We say that we refit the
original sense embeddings, using the single example sentence to induce
the fine grained sense embedding.

Using this we define a similarity measure which we call RefittedSim,
which we find to work better than AvgSimC (Reisinger and Mooney
2010). AvgSimC is a probability-weighted average of all the pairwise
similarity scores for each sense embedding. In contrast RefittedSim is
a single similarity score as measured between the two refitted vectors –
which are the probability weighted averages of the coarser sense vectors.
On the embeddings used in our evaluations this gave a solid improvement
over AvgSimC. It is also asymptotically faster to evaluate.

We also evaluated the use of refitting for word sense disambiguation
(WSD). Normally, induced senses cannot be used for word sense disam-
biguation, as they do not correspond to standard dictionary word senses.
By using the WordNet gloss (definition) as an example sentence, we are
able to use refitting to create a new set of sense embeddings suitable for
WSD. Using these new word sense embeddings we can use the skip-gram
formulation for probability of the context given the refitted sense, and so
apply Bayes’ theorem to find the most-likely sense. However, we found
that the results were only marginally better than the most frequent sense
baseline. Though it was notably better than the results of the method

14

CHAPTER 1. INTRODUCTION

presented by Agirre et al. (2006); which, to the best of our knowledge,
is the only prior method for leveraging induced senses for WSD with
only a limited number of examples. Nearly unsupervised WSD is a very
difficult problem; with a strong baseline of simply reporting the most-
common sense. Our results do suggest that our refitting method does
not learn features that are antithetical to its use WSD. However, they do
incorporate the most frequent sense as a prior and seem to provide little
benefit beyond that.
A limitation of this study is that the evaluations were not performed
on refitting state-of-the-art word-sense embeddings; rather it only evalu-
ated on AdaGram (Bartunov et al. 2015), and a bespoke greedy baseline
method. As such, while its comparisons between these embeddings using
different algorithms are valid, they cannot be readily compared to the
current state-of-the-art on the tasks when using better base embedding
methods.
The key contribution of this work was to define a method for spe-
cializing word sense embeddings for a single use case. In doing so, an
important property of embeddings from skip-gram like formulations was
demonstrated. We showed that a good representation can be found by
linearly interpolating between less ideal representations according to how
likely they are to be correct. Important secondary contributions include
the method for smoothing the probability of correctness; and Refitted-
Sim, a new similarity measure using this refitting to evaluate the simi-
larity of words in context.

Part II: Chapter 8. “NovelPerspective: Identifying Point of
View Characters”

Originally published as: Lyndon White, Roberto Togneri, Wei Liu, and
Mohammed Bennamoun (2018b). “NovelPerspective: Identifying Point
of View Characters”. In: Proceedings of ACL 2018, System Demonstra-
tions. Association for Computational Linguistics.
Given the success of LCOWEs for representing meaningful linguistic
structures (sentences and phrases), a natural follow up question is on
their capacity to represent combinations of words that do not feature
this natural kind of structure. These would be more arbitrary bags of
words; that never-the-less may be useful features for a particular task.
The task investigated in this work was about identifying the point of
view characters in a novel.
Given some literary text written in third person limited point of view,
such as Robert Jordan’s popular “Wheel of Time” series of novels, it
is useful to a reader (or person analysing the text), to identify which
sections are from the perspective of which character. That is to say, we
would like to classify the chapters of a book according to which charac-
ter’s point of view it is told from. This at first looks like a multiclass
classification problem; however it is in-fact an information extraction
problem. The set of possible classes for any given chapter is the set of
all named entities in the book. Different books have different charac-
ters, thus the set of named entities in the training data will not match
that of an arbitrary book selected by a user. As such, the named entity

15

CHAPTER 1. INTRODUCTION

tokens themselves cannot be used in training for this task. Instead, it
must be determined whether or not a named entity is the point of view
character, based on how the named entity token is used. To do this, a
representation of the context of use is needed.

The task can be treated as a binary classification problem. Given some
feature vector representing how a particular named entity token was used
throughout a chapter, we attempt to find the probability of that named
entity being the point of view character. We considered two possible
feature sets to use to generate the feature vectors for named entity token
use. Both feature sets consider the context primarily in terms of the token
(word) immediately prior to, and the token (word) immediately after the
named entity. We define a 200 dimensional hand-crafted classical feature
set in terms of the counts of adjacent part of speech tags, position in the
text, and token frequency. We define a mean of word embedding based
feature set as the concatenation of the mean of the word embedding for
the words occurring immediately prior, to the mean of the word occurring
immediately after. As this was using 300 dimensional embeddings, this
gives a 600 dimensional feature vector.

It was found that the two feature sets performed similarly, with both
working very well. It seems like the primary difficulty was with the high
dimensionality of the word embedding based feature set. Without suffi-
cient training data, it over-fits easily. Its performance dropped sharply
on the test set, compared to its oracle performance if trained on the test
set, when the largest book series was removed. This likely could have
been ameliorated by using lower dimensional embeddings.

The good performance of the word embedding based feature set is sur-
prising here, as it does not include any frequency information. We used
a mean, rather than a sum, of word embeddings to represent the context
of named entity token use. In the classical feature set, we found that by
far the most important feature was how often that named entity token
was used. Indeed just reporting the most frequently mentioned named
entity gave a very strong baseline. The lexical information captured by
the MOWE is clearly similarly useful to the part of speech tag counts,
and almost certainly makes more fine grained information available to
the classifier. Thus allowing it to define good decisions boundaries if the
feature vector represents a point of view character or not.

A limitation of this study is that different binary classifiers were used
for the two feature sets. Ideally, the performance using a range of clas-
sifiers for both would have been reported. Our preliminary results, not
including in the study, suggested that the classifier choice was not par-
ticularly important. With logistic regression, SVM, and decision trees
giving similarly high results for both feature sets.

The key contribution of this work was to produce a system to identify
the point of view characters from the context of the named entity tokens
being used. In doing so it was demonstrated that a MOWE can perform
similarly well to a hand-engineered feature set. The system produced
was deployed, and is openly available for public use at https://white.
ucc.asn.au/tools/np.

16

https://white.ucc.asn.au/tools/np
https://white.ucc.asn.au/tools/np

CHAPTER 1. INTRODUCTION

Part II: Chapter 9. “Generating Bags of Words from the Sums
of their Word Embeddings”

Originally published as: Lyndon White, Roberto Togneri, Wei Liu, and
Mohammed Bennamoun (2016a). “Generating Bags of Words from the
Sums of their Word Embeddings”. In: 17th International Conference on
Intelligent Text Processing and Computational Linguistics (CICLing).

Given the consideration of a sum of word embeddings as a dimensionality
reduced form of a bag of words (BOW), an important question to ask
is how well is the bag of words recoverable from the sum. A practical
way to find a lower-bound on the loss of information is to demonstrate a
deterministic method that can recover a portion of the bag of words.

We propose a method to extract the original bag of words from a sum of
word embeddings. Thus placing a bound on the information loss during
the transformation of BOW to SOWE. This is done via a simple greedy
algorithm with a correction step. The core of this method functions by
iteratively searching the vocabulary of word embeddings for the nearest
embedding to the sum, adding its word to the bag of words and subtract-
ing its embedding from the sum. It is thus only computationally viable
with reasonably small vocabularies. This method works as each compo-
nent word in the sum has a unique directional contribution in the high
dimensional space. As one would expect, this works better for higher
dimensional embeddings, and for BOW with fewer words. Even with rel-
atively low dimensions it works quite well. This shows that embeddings
are not for example constantly cancelling each other in the sum.

We do note that the method would not work as well on a MOWE –
unless the number of words in the BOW was known in advance. In a
MOWE the magnitude of each word embedding is effectively normalized
so that the magnitude of the sum is the invariant to the number of
words. This normalisation does not affect the direction, and effects all
magnitudes proportionally, thus it would not prevent the greedy search
from finding the nearest word vector to the sum. The step to subtract the
found embedding from the sum cannot be performed without knowing
the number of words in the BOW as this determined the weighting on
the embeddings. However, the key properties of the summed embeddings
not interfering (or cancelling out), do still hold for the MOWE, since it
is just a scaled SOWE.

An interesting alternative to this deterministic method would be to train
a supervised model to project from SOWE to a fuzzy bag of words. This
is similar to the word-content task considered by Adi et al. (2017). In
that task a binary classifier was trained to take a sentence representation
and a word embedding for a single word that may or may not appear in
the sentence.

The key contribution of this work is a system which (lossily) converts
from a SOWE to the BOW which defined it. In doing so it was demon-
strated that one can largely recover the bag of words from the sum of
word embeddings, thus showing that word content information was ef-
fectively maintained.

17

CHAPTER 1. INTRODUCTION

Part II: Chapter 10. “Modelling Sentence Generation from Sum
of Word Embedding Vectors as a Mixed Integer Programming
Problem”

Originally published as: Lyndon White, Roberto Togneri, Wei Liu,
and Mohammed Bennamoun (2016b). “Modelling Sentence Generation
from Sum of Word Embedding Vectors as a Mixed Integer Programming
Problem”. In: IEEE International Conference on Data Mining: High
Dimensional Data Mining Workshop (ICDM: HDM). doi: 10.1109/
ICDMW.2016.0113.

Given that it was demonstrated that the bag of word can be recovered,
the obvious follow up question is if we can recover the sentence.

Given a bag of words, a trigram language model is employed to determine
the most-likely order for words. This allows bags of words to be turned
into the most likely sentences. We define a deterministic algorithm to
solve this using linear mixed integer programming. Using this algorithm
we can use the partially recovered bags of words from Chapter 9 and de-
termine how frequently they can be correctly ordered to find the original
sentence.

We find that surprisingly often they can. The majority of sentences of
length up to 18 can be successfully recovered from a SOWE. Although,
the longer the sentence the more difficult the recovery; we do note that
most sentences are short. This suggests that the number of likely possible
orderings for the words in an arbitrary sentence is much lower than it may
at first seem. Particularly, since this method does so well even though it
is based on a simple trigram language model. There is no doubt that a
more sophisticated language model would perform even better.

The algorithm used in our method is a minor extension of that of Horvat
and Byrne (2014). We take advantage of the slight differences between
the word ordering problem and the generalised asymmetric travelling
salesman problem. We can eliminate some branches that would not be
possible for a travelling salesman solver; by directly defining it as a mixed
integer linear programming problem.

The key contribution of this work is a system to order bags of words
recovered from the sums of word embeddings into the most likely sen-
tences. The capacity to do this and match the original sentence order
places a lower-bound on how well sentences can be represented. If a
correctly sentence can be fully recovered from a sum of word embed-
dings using just a language model; then a SOWE is effectively sending
sentences to unique areas of the representation space. The use of the
methods of Chapter 9 and Chapter 10, together with a system trained
to output an approximation to a SOWE, is an interesting, though not
necessarily practical, method for natural language generation.

Part III Appendix Tooling

Beyond the main content of this dissertation, included is an appendix
detailing software contributions. These tools do not directly contribute
towards the main content of this thesis. However, they were created as

18

https://doi.org/10.1109/ICDMW.2016.0113
https://doi.org/10.1109/ICDMW.2016.0113

CHAPTER 1. INTRODUCTION

a result of of this research; and have facilitated several of the experi-
ments involved. They are presented in the form of short software papers.
The detail collaborations on improving the Julia (Bezanson et al. 2014)
data-science ecosystem, in particular in the area of reproducibility and
machine learning.

1.3 Concluding Remarks on Semantic Space Cap-
turing in Natural Language Understanding

We can consider that there is a true semantic space of ideas: a mean-
ing space. When speaking, this space is projected down to a natural
languages space, which we represent using an embedding in the repre-
sentation space, with the hope that this representation can be related to
the meaning space. This is shown in the diagram in Figure 1.1.
To quote Webster (1900): “A sentence is a group of words expressing a
complete thought.”, it is not a complete thought, only the expression of
one. This projection from idea (the meaning space) to utterance (the
natural language space) is imperfect – it is lossy. Many ideas are ex-
pressed the same way, and language thus has a lot of ambiguity. When
we try to understand the meaning of a natural language utterance we are
trying to find the point in the meaning space that the speaker intends.
Some times the natural language space alone is enough to recover a good
idea of the point in the meaning space the speaker intends, but other
times it is not.
The preimage3 of a point in the natural language space (e.g. a sentence),
is a probability distribution over the meaning space that could have lead
to that utterance, P (meaning | utterance). This distribution could be
combined with other factors (in a Bayesian way); either from that natural
language context, or the environment more broadly. For example, to
use a meaning that centres around word sense: we can identify two (of
the many) senses of the word apples: one in reference to the fruit,
the other in reference to the computers. Thus, on its own the sentence
Apples are good. suggests a distribution with at least two peaks in the
meaning space. Combine that utterance, with the context of being in a
computer store, rather than a grocer, and the probability of one of the two
peaks can be increased, though the other not entirely removed. Further
around each peak remains adjacent closely related possible meanings. For
example the statement could be in relation to only computers, or also
to other products. The meaning space is a continuous space, with every
thought corresponding to a unique point. It is uncountably large. In
contrast, the natural language space is countably large, being composed
of finite length combinations of symbols taken from a finite alphabet. An
uncountable number of points in the meaning space are projected down
to a single point in a natural language space when a thought is put to
words.
An embedding space is a particular instance of a representation space,
much like the English language is a particular instance of a natural
language space. When designing an embedding method (for sentences,

3We say preimage in an abuse of mathematical terminology.

19

CHAPTER 1. INTRODUCTION

the meaning spaceideas, thoughts, concepts

the natural language spaceutterances, sentences, words

the representation spaceembeddings

Figure 1.1: The representation space is a computationally manipulate representation
of the meaning space. The natural language utterances come from points in the mean-
ing space; though due to ambiguity we can only truly hope to estimate distributions
over meanings when interpreting them. A single point embedding is an approximation
to a distribution with a single tight peak.

words or other structures), we seek to define a representation space that
has good properties for reflection relationships in the meaning space in a
way that is computationally manipulatable using simple operations (like
sums). In particular, it should have a continuous mapping to and from
the meaning space. A neighbourhood in the representation space, should
correspond to a neighbourhood in the meaning space. Chapter 5 investi-
gates this for sentence embeddings. This is done by taking points in the
natural language space known to come from very nearby points in the
meaning space, that is to say paraphrases, and then checking that they
belong to nearby points in the embedding space.

As each point in the natural language space defines a distribution over
the meaning space of what may be meant; and the representation space
is attempting to be in correspondence to the meaning space; it is such
that each point in the natural language space should project to a distri-
bution over the embedding space. Instead, most methods project each
natural language point to a single point in the embeddings space. This is
viable when the region in the meaning space that the utterance (natural
language point) could have come from is small – in particular when the
distribution in the meaning space has is of narrow variance and is mono-
modal. In that case the single point estimate in the embedding space is
a useful approximation.

This has a particularly clear utility for word sense embeddings, which are
defined by multimodal distributions, with large peaks for each homonym,
and smaller nearby peaks for each polyseme. Furthermore we cannot rule
out the speaker using the word incorrectly or metaphorically, which gives
rise to nonzero values elsewhere in the meaning space. Word-sense em-
beddings produce multiple sense embeddings – ideally one corresponding
to each peak in the meaning space. We know that these peaks are only
rough approximations to the true point in the meaning space for a given
usage of a word. Chapter 7 attempts to find other points in the embed-
dings space, that better corresponds to the true point in the meaning
space for the particular use. These will be near those peaks given by the
point estimates from the senses found using word sense induction. The
refitting method (discussed in Chapter 7) efficiently interpolates a point
between those peaks based on likelihood.

Unsupervised methods, in particular word embeddings (though it applies

20

CHAPTER 1. INTRODUCTION

also more generally), are ungrounded. They are based only on the natural
language space observations. The goal is not to capture meaning in this
space, but rather to create a space that is a good input to a supervised
system that can learn a good correspondence from the natural language
space to the meaning space. While one would not normally think of the
SOWE sentence representation space as one for which there would be
an easy alignment to the meaning space, Chapter 5 shows that it is. A
strong point in its favour is that it directly benefits from word embed-
dings. While themselves ungrounded, word embeddings are excellently
suited for creating a representation space, as they have an internal consis-
tency which makes it easy to apply supervision to give grounded meaning
representations. Its great strength comes from Firth’s distributional hy-
pothesis, that words occurring in similar contexts have similar meaning.
While this does not allow the encoding of meaning itself, it does allow
the encoding of similarity of meaning. This is ideally suited for creat-
ing a space that will make a good source representation for a supervised
method applied for natural language understanding task on words. Were
that task accomplished with a neural network, the later hidden layers,
or the fine-turned embeddings would form a grounded representation of
the meaning space. Our results show that that strength is carried forth
into linear combinations of such embeddings.

The color understanding task considered in Chapter 6 is interesting. It is
a typical natural language understanding system, which takes a point in
a natural language space (a color name), moves through a representation
space (the output of one of the input modules: SOWE, CNN, or RNN)
using supervision to output something from a meaning space. Notably
however, the meaning space is very well grounded to the HSV color space.
We can, for many purposes, say for this natural language understand-
ing task, the color space is the meaning space. Using point estimation
it outputs a point in the meaning space, reflecting (in some sense) the
most reasonable guess of the meaning. Using distribution estimation it
outputs a distribution over the meaning space, fully reflecting the knowl-
edge we have to infer the meaning. An important idea is highlighted by
the fact that even on the subset of the testing data where word order was
ambiguous, SOWE was the best performing model. Word order ambigu-
ity is just one amongst many sources of ambiguity in any representation
of natural language. In the color case, it boils down to the additional
ambiguity of being unable to encode the word order difference between
bluish green and greenish blue being negligible compared to the in-
herent ambiguity in the meaning of either. Both phrases give rise to a
large and overlapping distribution across the meaning space.

In cases where there are multiple reasonable word orderings, this means
that multiple points in the true meaning space, correspond to a single
point in the representational LCOWE space. However, this is not ex-
ceptional: many sentences have two or more interpretations, a humorous
example being an accidental pun. Thus even in a representation space
that fully captures the natural language features, a single point in that
representation space corresponds to two points in the meaning space; as
the single point in the natural language space could have come from ei-
ther point in the meaning space. As such, the ambiguity from loss of
word order is not a unique and unsalvageable problem. If we thus had a

21

CHAPTER 1. INTRODUCTION

distribution over the meaning space, corresponding to the interpretation
of a SOWE, it would have two peaks corresponding to two different word
orders. While such a discussion is purely theoretical as we do not have
any way to generate such a distribution over the true meaning space, it
remains interesting for cases where we have a space that we can treat as
being the meaning space (e.g. the HSV space for colors). As we can use
other contextual information to define a prior and thus decrease distri-
butions associated with other ambiguities, we can use language models
to provide a prior over those peaks; based on the likelihood of word or-
ders. There exists a trivial extension of the work presented in Chapters 9
and 10, where the mixed integer programming model is constrained to
give the second (and so forth) most likely solution, together with its prob-
ability. However, it is not computationally practical, nor useful without
a better meaning space representation.
While the research presented in this dissertation has made use of the
idea that we are working with a sample from a distribution over a proxy
for the meaning space, it is our belief that further advancements would
benefit from fully considering word embeddings and other objects from
the representation spaces, not as discrete points but as random variables
with a linked distribution. This, however, comes with significant chal-
lenges as working with the high dimensional distributions that would be
required is computationally difficult.
Chapter 5 and Chapter 6 both consider representing contiguous linguistic
structures, in particular sentences and shore phrases. Chapter 5 directly
explores the ability to find regions of the representation space that match
to regions of the meaning space. Further, the output of the input modules
discussed in Chapter 6 are (once trained) points in a grounded represen-
tation space, though that work did not examine it directly. Chapter 7
considers the representation of word senses, and it navigates the rep-
resentation space to find new representations which better describe a
particular use of a word. Chapter 8 is more atypical: the need is to
represent how a particular named entity token was used throughout a
chapter. Which is not a representation of contiguous linguistic structure,
but never-the-less is a representation problem for natural language un-
derstanding. In all these problems, it seems like linear combinations of
embeddings would not suffice for our representational needs. Yet, we find
in each case that it is a surprisingly practical representation that should
not be discarded out-of-hand. It effectively meets many of our goals for
a good representation space.

22

Part I

Literature Review

23

CHAPTER 2. WORD REPRESENTATIONS

Chapter 2

Word Representations

This chapter originally appeared as Chapter 3 of the book “Neural Representations of Natural Language”,

published by by Springer.

You shall know a word by the
company it keeps.

– J.R. Firth, 1957

Abstract

Word embeddings are the core innovation that has brought machine learning
to the forefront of natural language processing. This chapter discusses how one
can create a numerical vector that captures the salient features (e.g. semantic
meaning) of a word. Discussion begins with the classic language modelling prob-
lem. By solving this, using a neural network-based approach, word-embeddings
are created. Techniques such as CBOW and skip-gram models (word2vec), and
more recent advances in relating this to common linear algebraic reductions on
co-locations as discussed. The chapter also includes a detailed discussion of
the often confusing hierarchical softmax, and negative sampling techniques. It
concludes with a brief look at some other applications and related techniques.

We begin the consideration of the representation of words using neural
networks with the work on language modeling. This is not the only place
one could begin the consideration: the information retrieval models, such
as LSI (Dumais et al. 1988) and LDA (Blei, Ng, and Jordan 2003), based
on word co-location with documents would be the other obvious starting
point. However, these models are closer to the end point, than they
are to the beginning, both chronologically, and in this chapter’s layout.
From the language modeling work, comes the contextual (or acausal)
language model works such as skip-gram, which in turn lead to the post-
neural network co-occurrence based works. These co-occurrence works
are more similar to the information retrieval co-location based methods
than the probabilistic language modeling methods for word embeddings
from which we begin this discussion.

Word embeddings are vector representations of words. An dimensional-
ity reduced scatter plot example of some word embeddings is shown in
Figure 2.1.

25

CHAPTER 2. WORD REPRESENTATIONS

Figure 2.1: Some word embeddings from the FastText project (Bojanowski et al.
2017). They were originally 300 dimensions but have been reduced to 2 using t-SNE
(Maaten and Hinton 2008) algorithm. The colors are from 5 manually annotated cat-
egories done before this visualisation was produced: foods, sports, colors, tools,
other objects, other. Note that many of these words have multiple meanings (see
Chapter 3), and could fit into multiple categories. Also notice that the information
captioned by the unsupervised word embeddings is far finer grained than the manual
categorisation. Notice, for example, the separation of ball-sports, from words like run
and walk. Not also that china and turkey are together; this no doubt represents
that they are both also countries.

26

CHAPTER 2. WORD REPRESENTATIONS

2.1 Representations for Language Modeling

The language modeling task is to predict the next word given the prior
words (Rosenfeld 2000). For example, if a sentence begins For lunch I
will have a hot, then there is a high probability that the next word
will be dog or meal, and lower probabilities of words such as day or are.
Mathematically it is formulated as:

P (W i=wi | W i−1=wi−1, . . . ,W 1=w1) (2.1)

or to use the compact notation

P (wi | wi−1, . . . , w1) (2.2)

where W i is a random variable for the ith word, and wi is a value (a
word) it could, (or does) take. For example:

P (dog | hot, a, want, I, lunch, For)

The task is to find the probabilities for the various words that wi could
represent.
The classical approach is trigram statistical language modeling. In this,
the number of occurrences of word triples in a corpus is counted. From
this joint probability of triples, one can condition upon the first two
words, to get a conditional probability of the third. This makes the
Markov assumption that the next state depends only on the current
state, and that that state can be described by the previous two words.
Under this assumption Equation (2.2) becomes:

P (wi | wi−1, . . . , w1) = P (wi | wi−1, wi−2) (2.3)

More generally, one can use an n-gram language model where for any
value of n, this is simply a matter of defining the Markov state to contain
different numbers of words.
This Markov assumption is, of-course, an approximation. In the previ-
ous example, a trigram language model finds P (wi | hot, a). It can be
seen that the approximation has lost key information. Based only on
the previous 2 words the next word wi could now reasonably be day,
but the sentence: For lunch I will have a hot day makes no sense.
However, the Markov assumption in using n-grams is required in order
to make the problem tractable – otherwise an unbounded amount of
information would need to be stored.
A key issue with n-gram language models is that there exists a data-
sparsity problem which causes issues in training them. Particularly for
larger values of n. Most combinations of words occur very rarely (Ha et
al. 2009). It is thus hard to estimate their occurrence probability. Com-
binations of words that do not occur in the corpus are naturally given a
probability of zero. This is unlikely to be true though – it is simply a mat-
ter of rare phrases never occurring in a finite corpus. Several approaches
have been taken to handle this. The simplest is add-one smoothing which
adds an extra “fake” observation to every combination of terms. In com-
mon use are various back-off methods (Katz 1987; Kneser and Ney 1995)
which use the bigram probabilities to estimate the probabilities of un-
seen trigrams (and so forth for other n-grams.). However, these methods

27

CHAPTER 2. WORD REPRESENTATIONS

are merely clever statistical tricks – ways to reassign probability mass to
leave some left-over for unseen cases. Back-off is smarter than add-one
smoothing, as it portions the probability fairly based on the (n−1)-gram
probability. Better still would be a method which can learn to see the
common-role of words (Brown et al. 1992). By looking at the fragment:
For lunch I want a hot, any reader knows that the next word is most
likely going to be a food. We know this for the same reason we know the
next word in For elevenses I had a cold … is also going to be a food.
Even though elevenses is a vary rare word, we know from the context
that it is a meal (more on this later), and we know it shares other traits
with meals, and similarly have / had, and hot / cold. These traits in-
fluence the words that can occur after them. Hard-clustering words into
groups is nontrivial, particularly given words having multiple meanings,
and subtle differences in use. Thus the motivation is for a language mod-
eling method which makes use of these shared properties of the words,
but considers them in a flexible soft way. This motivates the need for
representations which hold such linguistic information. Such representa-
tions must be discoverable from the corpus, as it is beyond reasonable
to effectively hard-code suitable feature extractors. This is exactly the
kind of task which a neural network achieves implicitly in its internal
representations.

2.1.1 The Neural Probabilistic Language Model

Bengio et al. (2003) present a method that uses a neural network to create
a language model. In doing so it implicitly learns the crucial traits of
words, during training. The core mechanism that allowed this was using
an embedding or loop-up layer for the input.

Simplified Model considered with Input Embeddings

To understand the neural probabilistic language model, let’s first consider
a simplified neural trigram language model. This model is a simplification
of the model introduced by Bengio et al. (2003). It follows the same
principles, and highlights the most important idea in neural language
representations. This is that of training a vector representation of a word
using a lookup table to map a discrete scalar word to a continuous-space
vector which becomes the first layer of the network.
The neural trigram probabilistic network is defined by:

P (wi | wi−1, wi−2) =

smax
(
V ϕ

(
U
[
C:,wi−1 ;C:,wi−2

]
+ b̃
)
+ k̃
)

(2.4)

where U, V, b̃, k̃ are the weight matrices and biases of the network. The
matrix C defines the embedding table, from which the word embeddings,
C:,wi−1 and C:,wi−2 , representing the previous two words (wi−1 and wi−2)
are retrieved. The network is shown in Figure 2.2
In the neural trigram language model, each of the previous two words
is used to look-up a vector from the embedding matrix. These are then
concatenated to give a dense, continuous-space input to the above hidden

28

CHAPTER 2. WORD REPRESENTATIONS

Figure 2.2: The Neural Trigram Language Model

wi−1 wi−2

...

• • • • •C:,5
• • • • •C:,4
• • • • •C:,3
• • • • •C:,2
• • • • •C:,1
• • • • •C:,0

Embedding
Table

C:,wi−1 C:,wi−2

ϕ
(
Uz̃embs + b̃

)
z̃embs

smax
(
V z̃hid + k̃

)
z̃hid

P (wi | wi−1, wi−2)

layer. The output layer is a softmax layer, it gives the probabilities for
each word in the vocabulary, such that ŷwi = P (wi | wi−1, wi−2). Thus
producing a useful language model.

The word embeddings are trained, just like any other parameter of the
network (i.e. the other weights and biases) via gradient descent. An
effect of this is that the embeddings of words which predict the same
future word will be adjusted to be nearer to each other in the vector
space. The hidden layer learns to associate information with regions of
the embedding space, as the whole network (and every layer) is a con-
tinuous function. This effectively allows for information sharing between
words. If two word’s vectors are close together because they mostly pre-
dict the same future words, then that area of the embedding space is
associated with predicting those words. If words a and b often occur as
the word prior to some similar set of words (w, x, y, . . .) in the training
set and word b also often occurs in the training set before word z, but
(by chance) a never does, then this neural language model will predict
that z is likely to occur after a. Where-as an n-gram language model
would not. This is because a and b have similar embeddings, due to
predicting a similar set of words. The model has learnt common features
about these words implicitly from how they are used, and can use those
to make better predictions. These features are stored in the embeddings
which are looked up during the input.

29

CHAPTER 2. WORD REPRESENTATIONS

Figure 2.3: Neural Trigram Language Model as considered with output embeddings.
This is mathematically identical to Figure 2.2

wi−1 wi−2

...

• • • • •C:,5
• • • • •C:,4
• • • • •C:,3
• • • • •C:,2
• • • • •C:,1
• • • • •C:,0

Input
Embedding

Table

C:,wi−1 C:,wi−2

ϕ
(
U z̃embs + b̃

)
z̃embs

exp
(
Vwi,:z̃

hid+k̃wi,:

)
∑

∀j exp
(
Vj,:z̃hid+k̃j

) i.e.
smax(. . .)wi

z̃hid

P (wi | wi−1, wi−2)

...

• • • • •V5,:
• • • • •V4,:
• • • • •V3,:
• • • • •V2,:
• • • • •V1,:
• • • • •V0,:

Output
Embedding

Table

Simplified Model considered with input and output embeddings

We can actually reinterpret the softmax output layer as also having em-
beddings. An alternative but equivalent diagram is shown in Figure 2.3.

The final layer of the neural trigram language model can be rewritten
per each index corresponding to a possible next word (wi):

smax(V z̃hid + k̃)wi =
exp

(
Vwi,:z̃

hid + k̃wi

)
∑

∀j exp
(
Vj,:z̃hid + k̃j

) (2.5)

In this formulation, we have Vwi,: as the output embedding for wi. As we
considered C:,wi

as its input embedding.

Bayes-like Reformulation

When we consider the model with output embeddings, it is natural to
also consider it under a Bayes-like reformulation (Similar discussion for

30

CHAPTER 2. WORD REPRESENTATIONS

softmax more general appears in Chapter 1 of White et al. (2018a)):

P (Y=i | Z=z̃) =
R(Z=z̃ | Y=i)R(Y=i)∑
∀j R(Z=z̃ | Y=j)R(Y=j)

(2.6)

which in this case is:

P (wi | wi−1, wi−2) =

R(Z=z̃hid | W i=wi)R(W i=wi)∑
∀v∈V R(Z = z̃hid | W i=v)R(W i=v)

(2.7)

where
∑

∀v∈V is summing over every possible word v from the vocabulary
V, which does include the case v = wi.
Notice the term:

R(W i=wi)∑
∀v∈V R(W i=v)

=
exp

(
k̃wi

)
∑

∀v∈V exp
(
k̃v

) (2.8)

=
1∑

∀v∈V exp
(
k̃v − k̃wi

) (2.9)

The term R(W i=wi) = exp
(
k̃wi

)
is linked to the unigram word probabil-

ities: P (Y = y). If E(R(Z | Wi) = 1 then the optimal value for k̃ would
be given by the log unigram probabilities: kwi = logP (W i=wi). This
condition is equivalent to if E(V z̃hid) = 0. Given that V is normally1

initialized as a zero mean Gaussian, this condition is at least initially
true. This suggests, interestingly, that we can predetermine good initial
values for the output bias k̃ using the log of the unigram probabilities. In
practice this is not required, as it is learnt rapidly by the network during
training.

The Neural Probabilistic Language Model

Bengio et al. (2003) derived a more advanced version of the neural lan-
guage model discussed above. Rather than being a trigram language
model, it is an n-gram language model, where n is a hyper-parameter
of the model. The knowledge sharing allows the data-sparsity issues to
be ameliorated, thus allowing for a larger n than in traditional n-gram
language models. Bengio et al. (2003) investigated values for 2, 4 and
5 prior words (i.e. a trigram, 5-gram and 6-gram model). The network
used in their work was marginally more complex than the trigram neu-
ral language model. As shown in Figure 2.4, it features a layer-bypass
connection. For n prior words, the model is described by:

P (wi | wi−1, . . . , wi−n) = smax(

+ V ϕ
(
Uhid

[
C:,wi−1 ; . . . ;C:,wi−n

]
+ b̃
)

+ Ubypass
[
C:,wi−1 ; . . . ;C:,wi−n

]
+ k̃)wi (2.10)

1no pun intended

31

CHAPTER 2. WORD REPRESENTATIONS

Figure 2.4: Neural Probabilistic Language Model

wi−1 wi−2 . . . wi−n

...

• • • • •C:,5
• • • • •C:,4
• • • • •C:,3
• • • • •C:,2
• • • • •C:,1
• • • • •C:,0

Embedding
Table

C:,wi−1 C:,wi−2 . . . C:,wi−n

ϕ
(
Uhidz̃embs + b̃

)
z̃embs

smax

(
V z̃hid + Ubypassz̃embs + k̃

)
z̃hid

P (wi | wi−1, wi−2, . . . , wi−n)

The layer-bypass is a contrivance to aid in the learning. It allows the
input to directly affect the output without being mediated by the shared
hidden layer. This layer-bypass is an unusual feature, not present in
most future work building upon this, such as Schwenk (2004). Though
in general it is not an unheard of technique in neural network machine
learning.

This neural network is where we will begin our study of using neural
networks with vector representations of words. Bengio et al. focused
on the use of the of sliding window of previous words – much like the
traditional n-grams. At each time-step the window is advanced forward
and the next is word predicted based on the shifted context of prior words.
This is of-course exactly identical to extracting all n-grams from the
corpus and using those as the training data. They very briefly mention
that an RNN could be used in its place.

2.1.2 RNN Language Models

In Mikolov et al. (2010) an RNN is used for language modelling, as shown
in Figure 2.5. Using the terminology of Chapter 2 of (White et al. 2018a),
this is an encoder RNN, made using Basic Recurrent Units. Using an
RNN eliminates the Markov assumption of a finite window of prior words
forming the state. Instead, the state is learned, and stored in the state
component of the RUs.

32

CHAPTER 2. WORD REPRESENTATIONS

Figure 2.5: RNN Language Model. The RU equation shown is the basic RU used in
Mikolov et al. (2010). It can be substituted for a LSTM RU or an GRU as was done
in Sundermeyer, Schlüter, and Ney (2012) and Jozefowicz, Zaremba, and Sutskever
(2015), with appropriate changes.

wi−1wi−2. . .

...

• • • • •C:,5
• • • • •C:,4
• • • • •C:,3
• • • • •C:,2
• • • • •C:,1
• • • • •C:,0

Embedding
Table

RU
ϕ
(
Uh̃i−2 + C:,wi−1

)

smax
(
V h̃i−1

)
wi

h̃i−1

P (wi | wi−1, . . . , w1)

RU
ϕ
(
Uh̃i−3 + C:,wi−2

)

smax
(
V h̃i−2

)
wi−1

h̃i−2

P (wi−1 | wi−2, . . . , w1)

h̃i−2RU
. . .

h̃i−3

This state h̃i being the hidden state (and output as this is a basic RU)
from the i time-step. The ith time-step takes as its input the ith word.
As usual this hidden layer was an input to the hidden-layer at the next
time-step, as well as to the output softmax.

h̃i = ϕ
(
Uh̃i−1 + C:,wi−1

)
(2.11)

P (wi | wi−1, . . . w1) = smax
(
V h̃i−1

)
wi

(2.12)

Rather than using a basic RU, a more advanced RNN such as a LSTM
or GRU-based network can be used. This was done by Sundermeyer,
Schlüter, and Ney (2012) and Jozefowicz, Zaremba, and Sutskever (2015),
both of whom found that the more advanced networks gave significantly
better results.

2.2 Acausal Language Modeling

The step beyond a normal language model, which uses the prior words to
predict the next word, is what we will term acausal language modelling.
Here we use the word acausal in the signal processing sense. It is also
sometimes called contextual language modelling, as the whole context is
used, not just the prior context. The task here is to predict a missing
word, using the words that precede it, as well as the words that come
after it.

33

CHAPTER 2. WORD REPRESENTATIONS

Figure 2.6: CBOW Language Model

wi−1 wi+1.wi−n
2 wi+n

2

...

• • • • •C:,5
• • • • •C:,4
• • • • •C:,3
• • • • •C:,2
• • • • •C:,1
• • • • •C:,0

Input
Embedding

Table

smax
(
V
∑j=n

2
j=1

(
C:,wi−j + C:,wi+j

))
P (wi | wi−n

2 , ..., wi−1, wi+1, ..., wi+n
2))

As it is acausal it cannot be implemented in a real-time system, and for
many tasks this renders it less, directly, useful than a normal language
model. However, it is very useful as a task to learn a good representation
for words.

The several of the works discussed in this section also feature hierarchical
softmax and negative sampling methods as alternative output methods.
As these are complicated and easily misunderstood topics they are dis-
cussed in a more tutorial fashion in Section 2.4. This section will focus
just on the language model logic; and assume the output is a normal
softmax layer.

2.2.1 Continuous Bag of Words

The continuous bag of words (CBOW) method was introduced by Mikolov
et al. (2013b). In truth, this is not particularly similar to bag of words at
all. No more so than any other word representation that does not have
regard for order of the context words (e.g. skip-gram, and GloVe).

The CBOW model takes as its input a context window surrounding a
central skipped word, and tries to predict the word that it skipped over.
It is very similar to earlier discussed neural language models, except that
the window is on both sides. It also does not have any non-linearities;

34

CHAPTER 2. WORD REPRESENTATIONS

Figure 2.7: Skip-gram language Language Model. Note that the probability P (wj |
wi) is optimised during training for every wj in a window around the central word
wi. Note that the final layer in this diagram is just a softmax layer, written in in
output embedding form.

wi

...

• • • • •C:,5
• • • • •C:,4
• • • • •C:,3
• • • • •C:,2
• • • • •C:,1
• • • • •C:,0

Input
Embedding

Table

exp
(
Vwj,:C:,wi

)
∑

∀v∈V exp
(
Vv,:C:,wi

)

C:,wi

P (wj | wi)

...

• • • • •V5,:
• • • • •V4,:
• • • • •V3,:
• • • • •V2,:
• • • • •V1,:
• • • • •V0,:

Output
Embedding

Table

Vwj ,:

and the only hidden layer is the embedding layer.
For a context window of width n words – i.e. n

2
words to either side, of

the target word wi, the CBOW model is defined by:

P (wi | wi−n
2 , . . . , wi−1, wi+1, . . . , wi+n

2)

= smax

V

j=n
2∑

j=i+1

(
C:,wi−j + C:,wi+j

)
wi

(2.13)

This is shown in diagrammatic form in Figure 2.6. By optimising across
a training dataset, useful word embeddings are found, just like in the
normal language model approaches.

2.2.2 Skip-gram

The converse of CBOW is the skip-grams model Mikolov et al. (2013b).
In this model, the central word is used to predict the words in the context.

35

CHAPTER 2. WORD REPRESENTATIONS

Figure 2.8: Example of analogy algebra

C:,aunt

C:,uncle

C:,queen

C:,king

C:,aunt − C:,uncle

C:,queen − C:,king

The model itself is single word input, and its output is a softmax for the
probability of each word in the vocabulary occurring in the context of
the input word. This can be indexed to get the individual probability of
a given word occurring as usual for a language model. So for input word
wi the probability of wj occurring in its context is given by:

P (wj | wi) = smax
(
V C:,wi)

)
wj (2.14)

The goal, is to maximise the probabilities of all the observed outputs
that actually do occur in its context. This is done, as in CBOW by
defining a window for the context of a word in the training corpus, (i−
n
2
, . . . , i − 1, i + i, . . . , i + n

2
). It should be understood that while this

is presented similarly to a classification task, there is no expectation
that the model will actually predict the correct result, given that even
during training there are multiple correct results. It is a regression to an
accurate estimate of the probabilities of co-occurrence (this is true for
probabilistic language models more generally, but is particularly obvious
in the skip-gram case).
Note that in skip-gram, like CBOW, the only hidden layer is the embed-
ding layer. Rewriting Equation (2.14) in output embedding form:

P (wj | wi) = smax
(
V C:,wi

)
wj (2.15)

P (wj | wi) =
exp

(
Vwj ,:C:,wi

)∑
∀v∈V exp (Vv,:C:,v)

(2.16)

The key term here is the product Vwj ,: C:,wi . The remainder of Equa-
tion (2.16) is to normalise this into a probability. Maximising the prob-
ability P (wj | wi) is equivalent to maximising the dot produce between
Vwj ,:, the output embedding for wj and C:,wi the input embedding for wi.
This is to say that the skip-gram probability is maximised when the an-
gular difference between the input embedding for a word, and the output
embeddings for its co-occurring words is minimised. The dot-product is
a measure of vector similarity – closely related ot the cosine similarity.
Skip-gram is much more commonly used than CBOW.

2.2.3 Analogy Tasks

One of the most notable features of word embeddings is their ability to
be used to express analogies using linear algebra. These tasks are keyed

36

CHAPTER 2. WORD REPRESENTATIONS

Figure 2.9: Vectors involved in analogy ranking tasks, this may help to understand
the math in Equation (2.19)

C:,a

C:,b

C:,c

C:,d

C:,a − C:,b

C:,c − C:,d

around answering the question: b is to a, as what is to c? For example,
a semantic analogy would be answering that Aunt is to Uncle as King
is to Queen. A syntactic analogy would be answering that King is to
Kings as Queen is to Queens. The latest and largest analogy test set
is presented by Gladkova, Drozd, and Matsuoka (2016), which evaluates
embeddings on 40 subcategories of knowledge. Analogy completion is not
a practical task, but rather serves to illustrate the kinds of information
being captured, and the way in which it is represented (in this case
linearly).
The analogies work by relating similarities of differences between the
word vectors. When evaluating word similarity using using word embed-
dings a number of measures can be employed. By far the cosine similarity
is the most common. This is given by

sim(ũ, ṽ) =
ũ · ṽ
‖ũ‖ ‖ṽ‖

(2.17)

This value becomes higher the closer the word embedding ũ and ṽ are
to each other, ignoring vector magnitude. For word embeddings that are
working well, then words with closer embeddings should have correspond-
ingly greater similarity. This similarity could be syntactic, semantic or
other. The analogy tasks can help identify what kinds of similarities the
embeddings are capturing.
Using the similarity scores, a ranking of words to complete the analogy is
found. To find the correct word for d in: d is to c as b is to a the following
is computed using the table of embeddings C over the vocabulary V:

argmax
∀d∈V

sim(C:,d − C:,c, C:,a − C:,b) (2.18)

i.e argmax
∀d∈V

sim(C:,d, C:,a − C:,b + C:,c) (2.19)

This is shown diagrammaticality in Figures 2.8 and 2.9. Sets of embed-
dings where the vector displacement between analogy terms are more
consistent score better.
Initial results in Mikolov, Yih, and Zweig (2013) were relatively poor, but
the surprising finding was that this worked at all. Mikolov et al. (2013b)
found that CBOW performed poorly for semantic tasks, but compara-
tively well for syntactic tasks; skip-gram performed comparatively well
for both, though not quite as good in the syntactic tasks as CBOW. Sub-
sequent results found in Pennington, Socher, and Manning (2014) were
significantly better again for both.

37

CHAPTER 2. WORD REPRESENTATIONS

2.3 Co-location Factorisation

2.3.1 GloVe

Skip-gram, like all probabilistic language models, is a intrinsically prediction-
based method. It is effectively optimising a neutral network to predict
which words will co-occur in the with in the range of given by the con-
text window width. That optimisation is carried out per-context window,
that is to say the network is updated based on the local co-occurrences.
In Pennington, Socher, and Manning (2014) the authors show that if one
were to change that optimisation to be global over all co-occurrences,
then the optimisation criteria becomes minimising the cross-entropy be-
tween the true co-occurrence probabilities, and the value of the embed-
ding product, with the cross entropy measure being weighted by the
frequency of the occurrence of the word. That is to say if skip-gram were
optimised globally it would be equivalent to minimising:

Loss = −
∑

∀wi∈V

∑
∀wj∈V

Xwi,wjP (wj | wi) log(Vwj ,: C:,wi) (2.20)

for V being the vocabulary and for X being the a matrix of the true
co-occurrence counts, (such that Xwi,wj is the number of times words wi

and wj co-occur), and for P being the predicted probability output by
the skip-gram.
Minimising this cross-entropy efficiently means factorising the true co-
occurrence matrix X, into the input and output embedding matrices C
and V , under a particular set of weightings given by the cross entropy
measure.
Pennington, Socher, and Manning (2014) propose an approach based on
this idea. For each word co-occurrence of wi and wj in the vocabulary:
they attempt to find optimal values for the embedding tables C, V and
the per word biases b̃, k̃ such that the function s(wi, wj) (below) expresses
an approximate log-likelihood of wi and wj.

optimise s(wi, wj) = Vwj ,: C:,wi + b̃wi + k̃wj (2.21)
such that s(wi, wj) ≈ log(Xwi,wj) (2.22)

This is done via the minimisation of

Loss = −
∑
∀wi

∑
∀wj

f(Xwi,wj)
(
s(wi, wj)− log(Xwi,wj)

)
(2.23)

Where f(x) is a weighing between 0 and 1 given by:

f(x) =

{(
x
100

)0.75
x < 100

1 otherwise
(2.24)

This can be considered as a saturating variant of the effective weighing
of skip-gram being Xwi,wj .
While GloVe out-performed skip-gram in initial tests subsequent more
extensive testing in Levy, Goldberg, and Dagan (2015) with more tuned
parameters, found that skip-gram marginally out-performed GloVe on all
tasks.

38

CHAPTER 2. WORD REPRESENTATIONS

2.3.2 Further equivalence of Co-location Prediction to Factori-
sation

GloVe highlights the relationship between the co-located word prediction
neural network models, and the more traditional non-negative matrix
factorization of co-location counts used in topic modeling. Very simi-
lar properties were also explored for skip-grams with negative sampling
in Levy and Goldberg (2014) and in Li et al. (2015) with more direct
mathematical equivalence to weighed co-occurrence matrix factorisation;
Later, Cotterell et al. (2017) showed the equivalence to exponential prin-
cipal component analysis (PCA). Landgraf and Bellay (2017) goes on to
extend this to show that it is a weighted logistic PCA, which is a special
case of the exponential PCA. Many works exist in this area now.

2.3.3 Conclusion

We have now concluded that neural predictive co-location models are
functionally very similar to matrix factorisation of co-location counts
with suitable weightings, and suitable similarity metrics. One might
now suggest a variety of word embeddings to be created from a vari-
ety of different matrix factorisations with different weightings and con-
straints. Traditionally large matrix factorisations have significant prob-
lems in terms of computational time and memory usage. A common
solution to this, in applied mathematics, is to handle the factorisation
using an iterative optimisation procedure. Training a neural network,
such as skip-gram, is indeed just such an iterative optimisation proce-
dure.

2.4 Hierarchical Softmax and Negative Sampling

Hierarchical softmax, and negative sampling are effectively alternative
output layers which are computationally cheaper to evaluate than regular
softmax. They are powerful methods which pragmatically allow for large
speed-up in any task which involves outputting very large classification
probabilities – such as language modelling.

2.4.1 Hierarchical Softmax

Hierarchical softmax was first presented in Morin and Bengio (2005). Its
recent use was popularised by Mikolov et al. (2013b), where words are
placed as leaves in a Huffman tree, with their depth determined by their
frequency.
One of the most expensive parts of training and using a neural language
model is to calculate the final softmax layer output. This is because the
softmax denominator includes terms for each word in the vocabulary.
Even if only one word’s probability is to be calculated, one denominator
term per word in the vocabulary must be evaluated. In hierarchical
softmax, each word (output choice), is considered as a leaf on a binary
tree. Each level of the tree roughly halves the space of the output words

39

CHAPTER 2. WORD REPRESENTATIONS

to be considered. The final level to be evaluated for a given word contains
the word’s leaf-node and another branch, which may be a leaf-node for
another word, or a deeper sub-tree

The tree is normally a Huffman tree (Huffman 1952), as was found to be
effective by Mikolov et al. (2013b). This means that for each word wi,
the word’s depth (i.e its code’s length) l(wi) is such that over all words:∑

∀wj∈V P (wj)× l(wj) is minimised. Where P (wi) is word wi’s unigram
probability, and V is the vocabulary. The approximate solution to this
is that l(wi) ≈ − log2(P (wi)). From the tree, each word can be assign a
code in the usual way, with 0 for example representing taking one branch,
and 1 representing the other. Each point in the code corresponds to a
node in the binary tree, which has decision tied to it. This code is used
to transform the large multinomial softmax classification into a series
of binary logistic classifications. It is important to understand that the
layers in the tree are not layers of the neural network in the normal sense
– the layers of the tree do not have an output that is used as the input
to another. The layers of the tree are rather subsets of the neurons on
the output layer, with a relationship imparted on them.

It was noted by Mikolov et al. (2013b), that for vocabulary V:

• Using normal softmax would require each evaluation to perform |V|
operations.

• Using hierarchical softmax with a balanced tree, would mean the
expected number of operations across all words would be log2(|V|).

• Using a Huffman tree gives the expected number of operations:∑
∀wj∈V−P (wj) log2(P (wi)) = H(V), where H(V) is the unigram

entropy of words in the training corpus.

The worse case value for the entropy is log2(|V|). In-fact Huffman encod-
ing is provably optimal in this way. As such this is the minimal number
of operations required in the average case.

An incredibly gentle introduction to hierarchical softmax

In this section, for brevity, we will ignore the bias component of each
decision at each node. It can either be handled nearly identically to
the weight; or the matrix can be written in design matrix form with an
implicitly appended column of ones; or it can even be ignored in the
implementation (as was done in Mikolov et al. (2013b)). The reasoning
for being able to ignore it is that the bias in normal softmax encodes
unigram probability information; in hierarchical softmax, when used with
the common Huffman encoding, its the tree’s depth in tree encodes its
unigram probability. In this case, not using a bias would at most cause
an error proportionate to 2−k, where k is the smallest integer such that
2−k > P (wi).

First consider a binary tree with just 1 layer and 2 leaves The leaves
are n00 and n01, each of these leaf nodes corresponds to a word from the
vocabulary, which has size two, for this toy example.

40

CHAPTER 2. WORD REPRESENTATIONS

Figure 2.10: Tree for 2 words

n0

n01n00

From the initial root which we call n0, we can go to either node n00 or
node n01, based on the input from the layer below which we will call z̃.

Here we write n01 to represent the event of the first non-root node being
the branch given by following left branch, while n01 being to follow the
right branch. (The order within the same level is arbitrary in any-case,
but for our visualisation purposes we’ll used this convention.)

We are naming the root node as a notation convenience so we can talk
about the decision made at n0. Note that P (n0) = 1, as all words include
the root-node on their path.

We wish to know the probability of the next node being the left node (i.e.
P (n00 | z̃)) or the right-node (i.e. P (n01 | z̃)). As these are leaf nodes,
the prediction either equivalent to the prediction of one or the other of
the two words in our vocabulary.

We could represent the decision with a softmax with two outputs. How-
ever, since it is a binary decision, we do not need a softmax, we can just
use a sigmoid.

P (n01 | z̃) = 1− P (n00 | z̃) (2.25)

The weight matrix for a sigmoid layer has a number of columns governed
by the number of outputs. As there is only one output, it is just a row
vector. We are going to index it out of a matrix V . For the notation, we
will use index 0 as it is associated with the decision at node n0. Thus we
call it V0,:.

P (n00 | z̃) = σ(V0,:z̃) (2.26)
P (n01 | z̃) = 1− σ(V0,:z̃) (2.27)

Note that for the sigmoid function: 1 − σ(x) = σ(−x). Allowing the
formulation to be written:

P (n01 | z̃) = σ(−V0,:z̃) (2.28)

thus
P (n0i | z̃) = σ((−1)iV0,:z̃) (2.29)

Noting that in Equation (2.29), i is either 0 (with −10 = 1) or 1 (with
−11 = −1)).

Now consider 2 layers with 3 leaves Consider a tree with nodes: n0,
n00,n000, n001, n01. The leaves are n000, n001, and n01, each of which
represents one of the 3 words from the vocabulary.

From earlier we still have:

41

CHAPTER 2. WORD REPRESENTATIONS

Figure 2.11: Tree for 3 words

n0

n01n00

n001n000

P (n00 | z̃) = σ(V0,:z̃) (2.30)
P (n01 | z̃) = σ(−V0,:z̃) (2.31)

We must now to calculate P (n000 | z̃). Another binary decision must be
made at node n00. The decision at n00 is to find out if the predicted next
node is n000 or n001. This decision is made, with the assumption that we
have reached n00 already.

So the decision is defined by P (n000 | z, n00) is given by:

P (n000 | z̃) = P (n000 | z̃, n00)P (n00 | z̃) (2.32)
P (n000 | z̃, n00) = σ(V00,:z̃) (2.33)
P (n001 | z̃, n00) = σ(−V00,:z̃) (2.34)

We can use the conditional probability chain rule to recombine to com-
pute the three leaf nodes final probabilities.

P (n01 | z̃) = σ(−V0,:z̃) (2.35)
P (n000 | z̃) = σ(V00,:z̃)σ(V0,:z̃) (2.36)
P (n001 | z̃) = σ(−V00,:z̃)σ(V0,:z̃) (2.37)

Continuing this logic Using this system, we know that for a node en-
coded at position [0t1t2t3 . . . tL] , e.g. [010 . . . 1], its probability can be
found recursively as:

P (n0t1...tL | z̃) =
P (n0t1...tL | z̃, n0t1...tL−1

)P (n0t1...tL−1 | z̃) (2.38)

Thus:

P (n0t1 | z̃) = σ
(
(−1)t1V0,:z̃

)
(2.39)

P (n0t1,t2 | z̃, n0t1) = σ
(
(−1)t2V0t1,:z̃

)
(2.40)

P (n0t1...ti | z̃, n0t1...ti−1

) = σ
(
(−1)tiV0t1...ti−1,:z̃

)
(2.41)

The conditional probability chain rule, is applied to get:

P (n0t1...tL | z̃) =
i=L∏
i=1

σ
(
(−1)tiV0t1...ti−1,:z̃

)
(2.42)

42

CHAPTER 2. WORD REPRESENTATIONS

Formulation

The formulation above is not the same as in other works. This subsection
shows the final steps to reach the conventional form used in Mikolov et al.
(2013a).

Here we have determined that the 0th/left branch represents the posi-
tive choice, and the other probability is defined in terms of this. It is
equivalent to have the 1th/right branch representing the positive choice:

P (n0t1...tL | z̃) =
i=L∏
i=1

σ
(
(−1)ti+1V0t1...ti−1,:z̃

)
(2.43)

or to allow it to vary per node: as in the formulation of Mikolov et al.
(2013a). In that work they use ch(n) to represent an arbitrary child node

of the node n and use an indicator function Ja = bK =

{
1 a = b

−1 a 6= b
such

that they can write
q
nb = ch(na)

y
which will be 1 if na is an arbitrary

(but consistent) child of nb, and 0 otherwise.

P (n0t1...tL | z̃) =
i=L∏
i=1

σ
(r

n0t1...ti = ch(n0t1...ti−1

)
z
V0t1...ti−1,:z̃

)
(2.44)

There is no functional difference between the three formulations. Though
the final one is perhaps a key reason for the difficulties in understanding
the hierarchical softmax algorithm.

Loss Function

Using normal softmax, during the training, the cross-entropy between
the model’s predictions and the ground truth as given in the training set
is minimised. Cross entropy is given by

CE(P ?, P) =
∑

∀wi∈V

∑
∀zj∈Z

−P ?(wi | zj) logP (wi | zj) (2.45)

Where P ? is the true distribution, and P is the approximate distribution
given by our model (in other sections we have abused notation to use P for
both). Z is the set of values that are input into the model, (or equivalently
the values derived from them from lower layers) – Ithe context words in
language modelling. V is the set of outputs, the vocabulary in language
modeling. The training dataset X consists of pairs from V× Z.

The true probabilities (from P ?) are implicitly given by the frequency of
the training pairs in the training dataset X .

Loss = CE(P ?, P) =
1

|X |
∑
∀(wi,zi)∈X

− logP (wi | zi) (2.46)

43

CHAPTER 2. WORD REPRESENTATIONS

The intuitive understanding of this, is that we are maximising the proba-
bility estimate of all pairings which actually occur in the training set, pro-
portionate to how often the occur. Note that the Z can be non-discrete
values, as was the whole benefit of using embeddings, as discussed in
Section 2.1.1.

This works identically for hierarchical softmax as for normal softmax.
It is simply a matter of substituting in the (different) equations for P .
Then applying back-propagation as usual.

2.4.2 Negative Sampling

Negative sampling was introduced in Mikolov et al. (2013a) as another
method to speed up this problem. Much like hierarchical softmax in
its purpose. However, negative sampling does not modify the network’s
output, but rather the loss function.

Negative Sampling is a simplification of Noise Contrast Estimation (Gut-
mann and Hyvärinen 2012). Unlike Noise Contrast Estimation (and un-
like softmax), it does not in fact result in the model converging to the
same output as if it were trained with softmax and cross-entropy loss.
However the goal with these word embeddings is not to actually perform
the language modelling task, but only to capture a high-quality vector
representation of the words involved.

A Motivation of Negative Sampling

Recall from Section 2.2.2 that the (supposed) goal, is to estimate P (wj |
wi). In truth, the goal is just to get a good representation, but that is
achieved via optimising the model to predict the words. In Section 2.2.2
we considered the representation of P (wj | wi) as the wjth element of
the softmax output.

P (wj | wi) = smax(V C:,wi)wj (2.47)

P (wj | wi) =
exp

(
Vwj ,:C:,wi

)∑k=N
k=1 exp (Vk,:C:,k)

(2.48)

This is not the only valid representation. One could use a sigmoid neuron
for a direct answer to the co-location probability of wj occurring near wi.
Though this would throw away the promise of the probability distribution
to sum to one across all possible words that could be co-located with wi.
That promise could be enforced by other constraints during training,
but in this case it will not be. It is a valid probability if one does not
consider it as a single categorical prediction, but rather as independent
predictions.

P (wj | wi) = σ(V C:,wi)wj (2.49)
i.e. P (wj | wi) = σ(Vwj ,:C:,wi) (2.50)

44

CHAPTER 2. WORD REPRESENTATIONS

Lets start from the cross-entropy loss. In training word wj does occur
near wi, we know this because they are a training pair presented from the
training dataset X . Therefore, since it occurs, we could make a loss func-
tion based on minimising the negative log-likelihood of all observations.

Loss =
∑

∀(wi,wj)∈X

− logP (wj | wi) (2.51)

This is the cross-entropy loss, excluding the scaling factor for how often
it occurs.
However, we are not using softmax in the model output, which means
that there is no trade off for increasing (for example) P (w1 | wi) vs
P (w2 | wi). This thus admits the trivially optimal solution ∀wj ∈ V
P (wj | wi) = 1. This is obviously wrong – even beyond not being a
proper distribution – some words are more commonly co-occurring than
others.
So from this we can improve the statement. What is desired from the loss
function is to reward models that predict the probability of words that do
co-occur as being higher, than the probability of words that do not. We
know that wj does occur near wi as it is in the training set. Now, let us
select via some arbitrary means a wk that does not – a negative sample.
We want the loss function to be such that P (wk | wi) < P (wj | wi). So
for this single term in the loss we would have:

loss(wj, wi) = logP (wk | wi)− logP (wj | wi) (2.52)

The question is then: how is the negative sample wk to be found? One
option would be to deterministically search the corpus for these negative
samples, making sure to never select words that actually do co-occur.
However that would require enumerating the entire corpus. We can in-
stead just pick them randomly, we can sample from the unigram distri-
bution. As statistically, in any given corpus most words do not co-occur,
a randomly selected word in all likelihood will not be one that truly does
co-occur – and if it is, then that small mistake will vanish as noise in the
training, overcome by all the correct truly negative samples.
At this point, we can question, why limit ourselves to one negative sam-
ple? We could take many, and do several at a time, and get more
confidence that P (wj | wi) is indeed greater than other (non-existent)
co-occurrence probabilities. This gives the improved loss function of

loss(wj, wi) =

∑
∀wk∈samples(D1g)

logP (wk | wi)

− logP (wj | wi) (2.53)

where D1g stands for the unigram distribution of the vocabulary and
samples(D1g) is a function that returns some number of samples from it.
Consider, though is this fair to the samples? We are taking them as
representatives of all words that do not co-occur. Should a word that
is unlikely to occur at all, but was unlucky enough to be sampled, con-
tribute the same to the loss as a word that was very likely to occur?
More reasonable is that the loss contribution should be in proportion to
how likely the samples were to occur. Otherwise it will add unexpected

45

CHAPTER 2. WORD REPRESENTATIONS

changes and result in noisy training. Adding a weighting based on the
unigram probability (P 1g(wk)) gives:

loss(wj, wi) = ∑
∀wk∈samples(D1g)

P 1g(wk) logP (wk | wi)

− logP (wj | wi) (2.54)

The expected value is defined by

E
X∼D
[f(x)] =

∑
∀x values for X

P df(x) (2.55)

In an abuse of notation, we apply this to the samples, as a sample ex-
pected value and write:

k=n∑
k=1

E
wk∼D1g
[logP (wk | wi)] (2.56)

to be the sum of the n samples expected values. This notation (abuse)
is as used in Mikolov et al. (2013a). It gives the form:

loss(wj, wi) = (
k=n∑
k=1

E
wk∼D1g
[logP (wk | wi)])

)
− logP (wj | wi) (2.57)

Consider that the choice of unigram distribution for the negative samples
is not the only choice. For example, we might wish to increase the relative
occurrence of rare words in the negative samples, to help them fit better
from limited training data. This is commonly done via subsampling in
the positive samples (i.e. the training cases)). So we replace D1g with
Dns being the distribution of negative samples from the vocabulary, to
be specified as a hyper-parameter of training.

Mikolov et al. (2013a) uses a distribution such that

PDns

(wk) =
PD1g

(wk)
2
3∑

∀wo∈V P
D1g(wo)

2
3

(2.58)

which they find to give better performance than the unigram or uniform
distributions.

Using this, and substituting in the sigmoid for the probabilities, this
becomes:

loss(wj, wi) = (
k=n∑
k=1

E
wk∼Dns
[log σ(Vwk,:C:,wi)

)
− log σ(Vwj ,:C:,wi) (2.59)

By adding a constant we do not change the optimal value. If we add the
constant −K, we can subtract 1 in each sample term.

46

CHAPTER 2. WORD REPRESENTATIONS

loss(wj, wi) =(
k=n∑
k=1

E
wk∼Dns
[−1 + log σ(Vwk,:C:,wi)

)
− log σ(Vwj ,:C:,wi) (2.60)

Finally we make use of the identity 1− σ(z̃) = σ(−z̃) giving:

loss(wj, wi) =

− log σ(Vwj ,:C:,wi)−
k=n∑
k=1

E
wk∼Dns
[log σ(−Vwk,:C:,wi)] (2.61)

Calculating the total loss over the training set X :

Loss = −
∑

∀(wi,wj)∈X(
log σ(Vwj ,:C:,wi) +

k=n∑
k=1

E
wk∼Dns
[log σ(−Vwk,:C:,wi)]

)
(2.62)

This is the negative sampling loss function used in Mikolov et al. (2013a).
Perhaps the most confusing part of this is the notation. Without the
abuses around expected value, this is written:

Loss = −
∑

∀(wi,wj)∈X(
log σ(Vwj ,:C:,wi) +

∑
∀wk∈samples(Dns)

PDns

(wk) log σ(−Vwk,:C:,wi)

)
(2.63)

2.5 Natural Language Applications – beyond lan-
guage modeling

While statistical language models are useful, they are of-course in no
way the be-all and end-all of natural language processing. Simultaneously
with the developments around representations for the language modelling
tasks, work was being done on solving other NLP problems using similar
techniques (Collobert and Weston 2008).

2.5.1 Using Word Embeddings as Features

Turian, Ratinov, and Bengio (2010) discuss what is now perhaps the most
important use of word embeddings. The use of the embeddings as fea-
tures, in unrelated feature driven models. One can find word embeddings
using any of the methods discussed above. These embeddings can be then
used as features instead of, for example bag of words or hand-crafted fea-
ture sets. Turian, Ratinov, and Bengio (2010) found improvements on
the state of the art for chunking and Named Entity Recognition (NER),
using the word embedding methods of that time. Since then, these results
have been superseded again using newer methods.

47

CHAPTER 2. WORD REPRESENTATIONS

2.6 Aligning Vector Spaces Across Languages

Given two vocabulary vector spaces, for example one for German and one
for English, a natural and common question is if they can be aligned such
that one has a single vector space for both. Using canonical correlation
analysis (CCA) one can do exactly that. There also exists generalised
CCA for any number of vector spaces (Fu et al. 2016), as well as kernel
CCA for a non-linear alignment.

The inputs to CCA, are two sets of vectors, normally expressed as ma-
trices. We will call these: C ∈ RnC×mC and V ∈ RnV×mV . They are
both sets of vector representations, not necessarily of the same dimen-
sionality. They could be the output of any of the embedding models
discussed earlier, or even a sparse (non-embedding) representations such
as the point-wise mutual information of the co-occurrence counts. The
other input is series pairs of elements from within those those sets that
are to be aligned. We will call the elements from that series of pairs from
the original sets C? and V ? respectively. C? and V ? are subsets of the
original sets, with the same number of representations. In the example
of applying this to translation, if each vector was a word embedding: C?

and V ? would contains only words with a single known best translation,
and this does not have to be the whole vocabulary of either language.

By performing CCA one solves to find a series of vectors (also expressed
as a matrix), S =

[
s̃1 . . . s̃d

]
and T =

[
t̃1 . . . t̃d

]
, such that the correlation

between C?s̃i and V ?t̃i is maximised, with the constraint that for all j < i
that C?s̃i is uncorrelated with C?s̃j and that V ?t̃i is uncorrelated with
V ?t̃j. This is very similar to principal component analysis (PCA), and
like PCA the number of components to use (d) is a variable which can be
decreased to achieve dimensionality reduction. When complete, taking
S and T as matrices gives projection matrices which project C and V to
a space where aligned elements are as correlated as possible. The new
common vector space embeddings are given by: CS and V T . Even for
sparse inputs the outputs will be dense embeddings.

Faruqui and Dyer (2014) investigated this primarily as a means to use
additional data to improve performance on monolingual tasks. In this,
they found a small and inconsistent improvement. However, we suggest
it is much more interesting as a multi-lingual tool. It allows similar-
ity measures to be made between words of different languages. Gujral,
Khayrallah, and Koehn (2016) use this as part of a hybrid system to
translate out of vocabulary words. Klein et al. (2015) use it to link
word-embeddings with image embeddings.

Dhillon, Foster, and Ungar (2011) investigated using this to create word-
embeddings. We noted in Equation (2.16), that skip-gram maximise
the similarity of the output and input embeddings according to the dot-
product. CCA also maximises similarity (according the correlation), be-
tween the vectors from one set, and the vectors for another. As such
given representations for two words from the same context, initialised
randomly, CCA could be used repeatedly to optimise towards good word
embedding capturing shared meaning from contexts. This principle was
used by Dhillon, Foster, and Ungar (2011), though their final process
more complex than described here. It is perhaps one of the more un-

48

CHAPTER 2. WORD REPRESENTATIONS

usual ways to create word embeddings as compared to any of the methods
discussed earlier.
Aligning embeddings using linear algebra after they are fully trained is
not the only means to end up with a common vector space. One can also
directly train embeddings on multiple languages concurrently as was done
in Shi et al. (2015), amongst others. Similarly, on the sentence embedding
side Zou et al. (2013), and Socher et al. (2014) train embeddings from
different languages and modalities (respectively) directly to be near to
their partners (these are discussed in Chapter 4). A survey paper on
such methods was recently published by Ruder (2017).

49

CHAPTER 2. WORD REPRESENTATIONS

50

CHAPTER 3. WORD SENSE REPRESENTATIONS

Chapter 3

Word Sense Representations

This chapter originally appeared as Chapter 4 of the book “Neural Representations of Natural Language”,

published by by Springer.

1a. In a literal, exact, or actual
sense; not figuratively,
allegorically, etc.

1b. Used to indicate that the
following word or phrase must
be taken in its literal sense,
usually to add emphasis.

1c. colloq. Used to indicate that
some (frequently conventional)
metaphorical or hyperbolical
expression is to be taken in the
strongest admissible sense:
‘virtually, as good as’; (also)
‘completely, utterly, absolutely’
…

2a With reference to a version of
something, as a transcription,
translation, etc.: in the very
words, word for word.

2b. In extended use. With exact
fidelity of representation;
faithfully.

3a. With or by the letters (of a
word). Obs. rare.

3b. In or with regard to letters or
literature. Obs. rare.

– the seven senses of literally, Oxford English Dictionary, 3rd ed.,
2011

Abstract

In this chapter, techniques for representing the multiple meanings of a single
word are discussed. This is a growing area, and is particularly important in lan-

51

CHAPTER 3. WORD SENSE REPRESENTATIONS

Figure 3.1: The relationship between terms used to discuss various word sense prob-
lems. The lemma is used as the representation for the lexeme, for WordNet’s purposes
when indexing. For many tasks each the word-use is pre-tagged with its lemma and
POS tag, as these can be found with high reliability using standard tools. Note that
the arrows in this diagram are directional. That is to say, for example, each Synset
has 1 POS, but each POS has many Synsets.

Word-use
e.g.

Fred goes shopping

POS
e.g.
verb

Lexeme
e.g.

{go, going,
goes, went}

Synset
e.g.

{go, move,
locomote}

Word
e.g.
goes

has 1

has 1

has 1

has 1

has 1

has 1

has many

Gloss
e.g.

to change location …

has 1

Lemma
e.g.
gohas 1

guages where polysemous and homonymous words are common. This includes
English, but it is even more prevalent in Mandarin for example. The tech-
niques discussed can broadly be classified as lexical word sense representation,
and as word sense induction. The inductive techniques can be sub-classified as
clustering-based or as prediction-based.

3.1 Word Senses

Words have multiple meanings. A single representation for a word can-
not truly describe the correct meaning in all contexts. It may have some
features that are applicable to some uses but not to others, it may be
an average of all features for all uses, or it may only represent the most
common sense. For most word-embeddings it will be an unclear com-
bination of all of the above. Word sense embeddings attempt to find
representations not of words, but of particular senses of words.

The standard way to assign word senses is via some lexicographical re-
source, such as a dictionary, or a thesaurus. There is not a canonical list
of word senses that are consistently defined in English. Every dictionary
is unique, with different definitions and numbers of word senses. The
most commonly used lexicographical resource is WordNet (Miller 1995),
and the multi-lingual BabelNet (Navigli and Ponzetto 2010). The rela-
tionship between the terminology used in word sense problems is shown
in Figure 3.1

52

CHAPTER 3. WORD SENSE REPRESENTATIONS

3.1.1 Word Sense Disambiguation

Word sense disambiguation is one of the hardest problems in NLP. Very
few systems significantly out perform the baseline, i.e. the most frequent
sense (MFS) technique.

Progress on the problem is made difficult by several factors.

The sense is hard to identify from the context. Determining the sense
may require very long range information: for example the information on
context may not even be in the same sentence. It may require knowing the
domain of the text, because word sense uses vary between domains. Such
information is external to the text itself. It may in-fact be intentionally
unclear, with multiple correct interpretations, as in a pun. It maybe
unintentionally unknowable, due to a poor writing style, such that it
would confuse any human reader. These difficulties are compounded by
the limited amount of data available.

There is only a relatively small amount of labelled data for word sense
problems. It is the general virtue of machine learning that given enough
data, almost any input-output mapping problem (i.e. function approxi-
mation) can be solved. Such an amount of word sense annotated data is
not available. This is in contrast to finding unsupervised word embed-
dings, which can be trained on any text that has ever been written. The
lack of very large scale training corpora renders fully supervised methods
difficult. It also results in small sized testing corpora; which leads to sys-
tems that may appear to perform well (on those small test corpora), but
do not generalise to real world uses. In addition, the lack of human agree-
ment on the correct sense, resulting in weak ground truth, further makes
creating new resources harder. This limited amount of data compounds
the problem’s inherent difficulties.

It can also be said that word senses are highly artificial and do not ade-
quately represent meaning. However, WSD is required to interface with
lexicographical resources, such as translation dictionaries (e.g. Babel-
Net), ontologies (e.g. OpenCyc), and other datasets (e.g. ImageNet
(Deng et al. 2009)).

It may be interesting to note, that the number of meanings that a word
has is approximately inversely proportional related to its frequency of use
rank (Zipf 1945). That is to say the most common words have far more
meanings than rarer words. It is related to (and compounds with) the
more well-known Zipf’s Law on word use (Zipf 1949), and can similarly
be explained-based on Zipf’s core premise of the principle of least effort.
This aligns well with our notion that precise (e.g. technical) words exist
but are used only infrequently – since they are only explaining a single
situation. This also means that by most word-uses are potentially very
ambiguous.

The most commonly used word sense (for a given word) is also over-
whelmingly more frequent than its less common brethren – word sense
usage also being roughly Zipfian distributed (Kilgarriff 2004). For this
reason the Most Frequent Sense (MFS) is a surprisingly hard baseline to
beat in any WSD task.

53

CHAPTER 3. WORD SENSE REPRESENTATIONS

Most Frequent Sense

Given a sense annotated corpus, it is easy to count how often each sense of
a word occurs. Due to the overwhelming frequency of the most frequent
sense, it is unlikely for a small training corpus to have the most frequent
sense differ significantly from the use in the language as a whole.

The Most Frequent Sense (MFS) method of word sense disambiguation
is defined by counting the frequency of a particular word sense for a
particular POS tagged word. For the ith word use being the word wi,
having some sense sj then without any further context the probability
of that sense being the correct sense is P (sj | wi). One can use the
part of speech tag pi (for the ith word use) as an additional condition,
and thus find P (sj | wi, pi). WordNet encodes this information for each
lemma-synset pair (i.e. each word sense) using the SemCor corpus counts.
This is also used for sense ordering, which is why most frequent sense
is sometimes called first sense. This is a readily available and practical
method for getting a baseline probability of each sense. Most frequent
sense can be applied for word sense disambiguation using this frequency-
based probability estimate: argmax∀sj P (sj | wi, pi).

In the most recent SemEval WSD task (Moro and Navigli 2015), MFS
beat all submitted entries for English, both overall, and on almost all cuts
of the data. The results for other languages were not as good, however
in other languages the true corpus-derived sense counts were not used.

3.2 Word Sense Representation

It is desirable to create a vector representation of a word sense much like
in Chapter 2 representations were created for words. We desire to an
embedding to represent each word sense, as normally represented by a
word-synset pair. This section considers the representations for the lexi-
cal word senses as given from a dictionary. We consider a direct method
of using a labelled corpus, and an indirect method makes use of simpler
sense-embeddings to partially label a corpus before retraining. These
methods create representations corresponding to senses from WordNet.
Section 3.3 considers the case when the senses are to also be discovered,
as well as represented.

3.2.1 Directly supervised method

The simple and direct method is to take a dataset that is annotated with
word senses, and then treat each sense-word pair as if it were a single
word, then apply any of the methods for word representation discussed in
Chapter 2. Iacobacci, Pilehvar, and Navigli (2015) use a CBOW language
model (Mikolov et al. 2013b) to do this. This does, however, run into
the aforementioned problem, that there is relatively little training data
that has been manually sense annotated. Iacobacci, Pilehvar, and Navigli
(2015) use a third-party WSD tool, namely BabelFly (Moro, Raganato,
and Navigli 2014), to annotate the corpus with senses. This allows for
existing word representation techniques to be applied.

54

CHAPTER 3. WORD SENSE REPRESENTATIONS

Chen, Liu, and Sun (2014) applies a similar technique, but using a word-
embedding-based partial WSD system of their own devising, rather than
an external WSD tool.

3.2.2 Word embedding-based disambiguation method

Chen, Liu, and Sun (2014) uses an almost semi-supervised approach to
train sense vectors. They partially disambiguate their training corpus,
using initial word sense vectors and WordNet. They then completely
replace these original (phase one) sense-vectors, by using the partially
disambiguated corpus to train new (phase two) sense-vectors via a skip-
gram variant. This process is shown in Figure 3.2.

The first phase of this method is in essence a word-embedding-based
WSD system. When assessed as such, they report that it only marginally
exceeds the MFS baseline, though that is not at all unusual for WSD
algorithms as discussed above.

They assign a sense vector to every word sense in WordNet. This sense
vector is the average of word-embeddings of a subset of words in the gloss,
as determined using pretrained skip-grams (Mikolov et al. 2013b). For
the word w with word sense wsi , a set of candidate words, cands(wsi),
is selected from the gloss based on the following set of requirements.
First, the word must be a content word: that is a verb, noun, adverb or
adjective; secondly, its cosine distance to w must be below some threshold
δ; finally, it must not be the word itself. When these requirements are
followed cands(wsi) is a set of significant closely related words from the
gloss.

The phase one sense vector for wsi is the mean of the word vectors for
all the words in cands(wsi). The effect of this is that we expect that the
phase one sense vectors for most words in the same synset will be similar
but not necessarily identical. This expectation is not guaranteed however.
As an example, consider the use of the word china as a synonym for
porcelain: the single sense vector for china will likely be dominated by
its more significant use referring to the country, which would cause very
few words in the gloss for the porcelain synset to be included in cands.
Resulting in the phase one sense vectors for the synonymous senses of
porcelain and china actually being very different.

The phase one sense vectors are used to disambiguate the words in their
unlabelled training corpus. For each sentence in the corpus, an initial
content vector is defined by taking the mean of the skip-gram word em-
bedding (not word sense) for all content words in the sentence. For each
word in the sentence, each possible sense-embedding is compared to the
context vector. If one or more senses vectors are found to be closer than
a given threshold, then that word is tagged with the closest of those
senses, and the context vector is updated to use the sense-vector instead
of the word vector. Words that do not come within the threshold are not
tagged, and the context vector is not updated. This is an important part
of their algorithm, as it ensures that words without clear senses do not
get a sense ascribed to them. This thus avoids any dubious sense tags
for the next training step.

55

CHAPTER 3. WORD SENSE REPRESENTATIONS

In phase two of training Chen, Liu, and Sun (2014) employ the skip-
gram word-embedding method, with a variation, to predict the word
senses. They train it on the partially disambiguated corpus produced in
phase one. The original sense vectors are discarded. Rather than the
model being tasked only to predict the surrounding words, it is tasked to
predict surrounding words and their sense-tags (where present). In the
loss function the prediction of tags and words is weighted equally.

Note that the input of the skip-gram is the just central word, not the
pair of central word with sense-tag. In this method, the word sense
embeddings are output embeddings; though it would not be unreasonable
to reverse it to use input embeddings with sense tags, or even to do both.
The option to have input embeddings and output embeddings be from
different sets, is reminiscent of Schwenk (2004) for word embeddings.

The phase one sense vectors have not been assessed on their representa-
tional quality. It could be assumed that because the results for these were
not reported, they were worse than those found in phase two. The phase
two sense vectors were not assessed for their capacity to be used for word
sense disambiguation. It would be desirable to extend the method of
Chen, Liu, and Sun (2014), to use the phase two vectors for WSD. This
would allow this method to be used to disambiguate its own training
data, thus enabling the method to become self-supervised.

3.3 Word Sense Induction (WSI)

In this section we will discuss methods for finding a word sense without
reference to a standard set of senses. Such systems must discover the
word senses at the same time as they find their representations. One
strong advantage of these methods is that they do not require a labelled
dataset. As discussed there are relatively few high-quality word sense
labelled datasets. The other key advantage of these systems is that they
do not rely on fixed senses determined by a lexicographer. This is par-
ticularly useful if the word senses are highly domain specific; or in a
language without strong lexicographical resources. This allows the data
to inform on what word senses exist.

Most vector word sense induction and representation approaches are eval-
uated on similarity tests. Such tests include WordSim-353 (Finkelstein
et al. 2001) for context-less, or Stanford’s Contextual Word Similarities
(SCWS) for similarity with context information (Huang et al. 2012). This
evaluation is also suitable for evaluating single sense word-embeddings,
e.g. skip-grams.

We can divide the WSI systems into context clustering-based approaches,
and co-location prediction-based approaches. This division is similar
to the separation of co-location matrix factorisation, and co-location
prediction-based approaches discussed in Chapter 2. It can be assumed
thus that at the core, like for word embeddings, they are fundamentally
very similar. One could think of prediction of collocated words as a soft
indirect clustering of contexts that can have those words.

56

CHAPTER 3. WORD SENSE REPRESENTATIONS

Figure 3.2: The process used by Chen, Liu, and Sun (2014) to create word sense
embeddings.

WordNet

Phase One: For each word, in each synset

Select candidate
words from gloss

Average their
word embeddings

Word
Vectors

Phase One
Sense Vectors

Untagged
Corpus

Disambiguation Step: For each sentence in the corpus

Initialize with
average of all

word’s embeddings
Context-Vector

For each word in the sentence

Attempt to disambiguate
the word

by comparing current context-vector
with each of its sense vectors

If close enough
update Context-Vector

with sense vector
and tag word in corpus

Phase Two:

Train modified skip-gram
to use contexts word so predict

words and sense-tags

Output embeddings
for sense tag prediction
are sense embeddings

Phase Two
Sense Vectors

Partially Tagged
Corpus

57

CHAPTER 3. WORD SENSE REPRESENTATIONS

3.3.1 Context Clustering-based Approaches

As the meaning of a word, according to word embedding principles, is
determined by the contexts in which it occurs, we expect that different
meanings (senses) of the same words should occur in different contexts.
If we cluster the contexts that a word occurs in, one would expect to find
distinct clusters for each sense of the word. It is on this principle that
the context clustering-based approaches function.

Offline clustering

The fundamental method for most clustering-based approaches is as per
Schütze (1998). That original work is not a neural word sense embedding,
however the approach remains the same. Pantel and Lin (2002) and
Reisinger and Mooney (2010) are also not strictly neural word embedding
approaches (being more classical vector representations), however the
overall method is also very similar.

The clustering process is done by considering all word uses, with their
contexts. The contexts can be a fixed-sized window of words (as is done
with many word-embedding models), the sentence, or defined using some
other rule. Given a pair of contexts, some method of measuring their sim-
ilarity must be defined. In vector representational works, this is ubiqui-
tously done by assigning each context a vector, and then using the cosine
similarity between those vectors.

The first step in all the offline clustering methods is thus to define the
representations of the contexts. Different methods define the context
vectors differently:

• Schütze (1998) uses variations of inverse-document-frequency (idf)
weighted bags of words, including applying dimensionality reduction
to find a dense representation.

• Pantel and Lin (2002) use the mutual information vectors between
words and their contexts.

• Reisinger and Mooney (2010), use td-idf or χ2 weighted bag of
words.

• Huang et al. (2012) uses td-idf weighted averages of (their own)
single sense word embeddings for all words in the context.

• Kågebäck et al. (2015) also uses a weighted average of single sense
word skip-gram embeddings, with the weighting based on two fac-
tors. One based on how close the words were, and the other on how
likely the co-occurrence was according to the skip-gram model.

It is interesting to note that idf, td-idf, mutual information, skip-gram co-
occurrence probabilities (being a proxy for point-wise mutual information
(Levy and Goldberg 2014)), are all closely related measures.

The second step in off-line clustering is to apply a clustering method
to cluster the word-uses. This clustering is done based on the calculated
similarity of the context representation where the words are used. Again,
different WSI methods use different clustering algorithms.

58

CHAPTER 3. WORD SENSE REPRESENTATIONS

• Schütze (1998) uses a group average agglomerative clustering method.
• Pantel and Lin (2002) use a custom hierarchical clustering method.
• Reisinger and Mooney (2010) use mixtures of von-Mises-Fisher dis-

tributions.
• Huang et al. (2012) use spherical k-means.
• Kågebäck et al. (2015) use k-means.

The final step is to find a vector representation of each cluster. For
non-neural embedding methods this step is not always done, as defining
a representation is not the goal, though in general it can be derived
from most clustering techniques. Schütze (1998) and Kågebäck et al.
(2015) use the centroids of their clusters. Huang et al. (2012) use a
method of relabelling the word uses with a cluster identifier, then train a
(single-sense) word embedding method on cluster identifiers rather than
words. This relabelling technique is similar to the method later used by
Chen, Liu, and Sun (2014) for learning lexical sense representations, as
discussed in Section 3.2.2. As each cluster of contexts represents a sense,
those cluster embeddings are thus also considered as suitable word sense
embeddings.
To summarize, all the methods for inducing word sense embeddings via
off-line clustering follow the same process. First: represent the contexts
of word use, so as to be able to measure their similarity. Second: use
the context’s similarity to cluster them. Finally: find a vector represen-
tation of each cluster. This cluster representation is the induced sense
embedding.

Online clustering

The methods discussed above all use off-line clustering. That is to say
the clustering is performed after the embedding is trained. Neelakantan
et al. (2015) perform the clustering during training. To do this they use
a modified skip-gram-based method. They start with a fixed number of
randomly initialised sense vectors for each context. These sense vectors
are used as input embeddings for the skip-gram context prediction task,
over single sense output embeddings. Each sense also has, linked to it, a
context cluster centroid, which is the average of all output embeddings for
the contexts that the sense is assigned to. Each time a training instance
is presented, the average of the context output embeddings is compared
to each sense’s context cluster centroid. The context is assigned to the
cluster with the closest centroid, updating the centroid value. This can
be seen as similar to performing a single k-means update step for each
training instance. Optionally, if the closest centroid is further from the
context vector than some threshold, a new sense can be created using
that context vector as the initial centroid. After the assignment of the
context to a cluster, the corresponding sense vector is selected for use as
the input vector in the skip-gram context prediction task.
Kågebäck et al. (2015) investigated using their weighting function (as dis-
cussed in Section 3.3.1) with the online clustering used by Neelakantan
et al. (2015). They found that this improved the quality of the represen-
tations. More generally any such weighting function could be used. This

59

CHAPTER 3. WORD SENSE REPRESENTATIONS

online clustering approach is loosely similar to the co-location prediction-
based approaches.

3.3.2 Co-location Prediction-based Approaches

Rather than clustering the contexts, and using those clusters to determine
embeddings for different senses, one could consider the sense as a latent
variable in the task used to find word embeddings – normally a language
modelling task. The principle is that it is not the word that determines
its collocated context words, but rather the word sense. So the word
sense can be modelled as a hidden variable, where the word, and the
context words are being observed.
Tian et al. (2014) used this to define a skip-gram-based method for word
sense embeddings. For input word wi with senses S(wi), the probability
of output word wo occurring near wi can be given as:

P (wo | wi) =
∑

∀sk∈S(wi)

P (wo | sk, wi)P (sk | wi) (3.1)

Given that a sense sk only belongs to one word wi, we know that kth
sense of the ith word only occurs when the ith word occurs. We have
that the join probability P (wi, sk) = P (sk).
We can thus rewrite Equation (3.1) as:

P (wo | wi) =
∑

∀sk∈S(wi)

P (wo | sk)P (sk | wi) (3.2)

A softmax classifier can be used to define P (wo | sk), just like in normal
language modelling. With output embeddings for the words wo, and
input embeddings for the word senses sk. This softmax can be sped-up
using negative sampling or hierarchical softmax. The later was done by
Tian et al. (2014).
Equation (3.2) is in the form of a mixture model with a latent vari-
able. Such a class of problems are often solved using the Expectation
Maximisation (EM) method. In short, the EM procedure functions by
performing two alternating steps. The E-step calculates the expected
chance of assigning word sense for each training case (P̂ (sl | wo)) in the
training set X . Where a training case is a pairing of a word use wi, and
context word wo, with sl ∈ S(wi), formally we have:

P̂ (sl | wo) =
P̂ (sl | wi)P (wo | sl)∑

∀sk∈S(wi) P̂ (wo | sk)P (sk | wi)
(3.3)

The M-step updates the prior likelihood of each sense (that is without
context) using the expected assignments from the E-step.

P̂ (sl | wi) =
1

|X |
∑

∀(wo,wi)∈X

P̂ (sl | wo) (3.4)

60

CHAPTER 3. WORD SENSE REPRESENTATIONS

During this step the likelihood of the P (wo | wi) can be optimised to
maximise the likelihood of the observations. This is done via gradient
descent on the neural network parameters of the softmax component:
P (wo | sk). By using this EM optimisation the network can fit values for
the embeddings in that softmax component.

A limitation of the method used by Tian et al. (2014), is that the number
of each sense must be known in advance. One could attempt to solve this
by using, for example, the number of senses assigned by a lexicographical
resource (e.g. WordNet). However, situations where such resources are
not available or not suitable are one of the main circumstances in which
WSI is desirable (for example in work using domain specific terminology,
or under-resourced languages). In these cases one could apply a heuristic-
based on the distribution of senses-based on the distribution of words
(Zipf 1945). An attractive alternative would be to allow senses to be
determined-based on how the words are used. If they are used in two
different ways, then they should have two different senses. How a word
is being used can be determined by the contexts in which it appears.

Bartunov et al. (2015) extend on this work by making the number of
senses for each word itself a fit-able parameter of the model. This is a
rather Bayesian modelling approach, where one considers the distribution
of the prior.

Considering again the form of Equation (3.2)

P (wo | wi) =
∑

∀sk∈S(wi)

P (wo | sk)P (sk | wi) (3.5)

The prior probability of a sense given a word, but no context, is P (sk |
wi). This is Dirichlet distributed. This comes from the definition of
the Dirichlet distribution as the the prior probability of any categorical
classification task. When considering that the sense my be one from
an unlimited collection of possible senses, then that prior becomes a
Dirichlet process.

In essence, this prior over a potentially unlimited number of possible
senses becomes another parameter of the model (along with the input
sense embeddings and output word embeddings). The fitting of the pa-
rameters of such a model is beyond the scope of this book; it is not
entirely dissimilar to the fitting via expectation maximisation incorpo-
rating gradient descent used by Tian et al. (2014). The final output of
Bartunov et al. (2015) is as desired: a set of induced sense embeddings,
and a language model that is able to predict how likely a word is to occur
near that word sense (P (wo | sk)).

By application of Bayes’ theorem, the sense language model can be in-
verted to take a word’s context, and predict the probability of each word
sense.

P (sl | wo) =
P (wo | sl)P (sl | wi)∑

∀sk∈S(wi) P (wo | sk)P (sk | wi)
(3.6)

with the common (but technically incorrect) assumption that all words
in the context are independent.

61

CHAPTER 3. WORD SENSE REPRESENTATIONS

Given a context window:
W i =

(
wi−n

2 , . . . , wi−1, wi+1, . . . , wi+n
2

)
, we have:

P (sl | W i) =

∏
∀wj∈Wi P (wj | sl)P (sl|wi)∑

sk∈S(wi)

∏
∀wj∈Wi P (wj | sk)P (sk|wi)

(3.7)

3.4 Conclusion

Word sense representations allow the representations of the senses of
words when one word has multiple meanings. This increases the expres-
siveness of the representation. These representations can in general be
applied anywhere word embeddings can. They are particularly useful for
translation, and in languages with large numbers of homonyms.
The word representation discussions in this chapter naturally lead to the
next section on phrase representation. Rather than a single word having
many meanings, the next chapter will discuss how a single meaning may
take multiple words to express. In such longer structure’s representa-
tions, the sense embeddings discussed here are often unnecessary, as the
ambiguity may be resolved by the longer structure. Indeed, the methods
discussed in this chapter have relied on that fact to distinguish the senses
using the contexts.

62

CHAPTER 4. SENTENCE REPRESENTATIONS AND BEYOND

Chapter 4

Sentence Representations and
Beyond

This chapter originally appeared as Chapter 5 of the book “Neural Representations of Natural Language”,

published by by Springer.

A sentence is a group of words
expressing a complete thought.

– English Composition and Literature, Webster, 1923

Abstract

This chapter discusses representations for larger structures in natural language.
The primary focus is on the sentence level. However, many of the techniques also
apply to sub-sentence structures (phrases), and super-sentence structures (doc-
uments). The three main types of representations discussed here are: unordered
models, such as sum of word embeddings; sequential models, such as recurrent
neural networks; and structured models, such as recursive autoencoders.

It can be argued that the core of true AI, is in capturing and manipulating
the representation of an idea. In natural language a sentence (as defined
by Webster in the quote above), is such a representation of an idea, but
it is not machine manipulatable. As such the conversion of sentences
to a machine manipulatable representation is an important task in AI
research.

All techniques which can represent documents (or paragraphs) by ne-
cessity represent sentences as well. A document (or a paragraph), can
consist only of a single sentence. Many of these models always work
for sub-sentence structures also, like key-phrases. When considering rep-
resenting larger documents, neural network embedding models directly
compete with vector information retrieval models, such as LSI (Dumais
et al. 1988), probabilistic LSI (Hofmann 2000) and LDA (Blei, Ng, and
Jordan 2003).

63

CHAPTER 4. SENTENCE REPRESENTATIONS AND BEYOND

4.1 Unordered and Weakly Ordered Representations

A model that does not take into account word order cannot perfectly
capture the meaning of a sentence. Mitchell and Lapata (2008) give the
poignant examples of:

• It was not the sales manager who hit the bottle that day,
but the office worker with the serious drinking problem.

• That day the office manager, who was drinking, hit the problem
sales worker with a bottle, but it was not serious.

These two sentences have the same words, but in a different structure,
resulting in their very different meanings. In practice, however, repre-
sentations which discard word order can be quite effective.

4.1.1 Sums of Word Embeddings

Classically, in information retrieval, documents have been represented
as bags of words (BOW). That is to say a vector with length equal to
the size of the vocabulary, with each position representing the count of
the number of occurrences of a single word. This is much the same as
a one-hot vector representing a word, but with every word in the sen-
tence/document counted. The word embedding equivalent is sums of
word embeddings (SOWE), and mean of word embeddings (MOWE).
These methods, like BOW, lose all order information in the representa-
tion. In many cases it is possible to recover a BOW from a much lower
dimensional SOWE (White et al. 2016a).
Surprisingly, these unordered methods have been found on many tasks to
be extremely well performing, better than several of the more advanced
techniques discussed later in this chapter. This has been noted in several
works including: White et al. (2015), Ritter et al. (2015) and Wang,
Liu, and McDonald (2017). It has been suggested that this is because in
English there are only a few likely ways to order any given bag of words.
It has been noted that given a simple n-gram language model the original
sentences can often be recovered from BOW (Horvat and Byrne 2014)
and thus also from a SOWE (White et al. 2016b). Thus word-order may
not in-fact be as important as one would expect in many natural language
tasks, as it is in practice more proscribed than one would expect. That
is to say very few sentences with the same word content, will in-practice
be able to have it rearranged for a very different meaning. However, this
is unsatisfying, and certainly cannot capture fine grained meaning.
The step beyond this is to encode the n-grams into a bag of words like
structure. This is a bag of n-grams (BON), e.g. bag of trigrams. Each
index in the vector thus represents the occurrence of an n-gram in the
text. So It is a good day today, has the trigrams: (It is a),(is
a good),(a good day), (good day today). As is obvious for all but
the most pathological sentences, recovering the full sentence order from
a bag of n-grams is possible even without a language model.
The natural analogy to this with word embeddings might seem to be
to find n-gram embeddings by the concatenation of n word embeddings;
and then to sum these. However, such a sum is less informative than

64

CHAPTER 4. SENTENCE REPRESENTATIONS AND BEYOND

it might seem. As the sum in each concatenated section is equal to the
others, minus the edge words.
Instead one should train an n-gram embedding model directly. The
method discussed in Chapter 2, can be adapted to use n-grams rather
than words as the basic token. This was explored in detail by (Li et al.
2017). Their model is based on the skip-gram word embedding method.
They take as input an n-gram embedding, and attempt to predict the
surrounding n-grams. This reduces to the original skip-gram method for
the case of unigrams. Note that the surrounding n-grams will overlap in
words (for n > 1) with the input n-gram. As the overlap is not complete,
this task remains difficult enough to encourage useful information to be
represented in the embeddings. Li et al. (2017) also consider training
n-gram embeddings as a bi-product of text classification tasks.

4.1.2 Paragraph Vector Models (Defunct)

Le and Mikolov (2014) introduced two models for representing documents
of any length by using augmented word-embedding models. The models
are called Paragraph Vector Distributed Memory (PV-DM) model, and
the Paragraph Vector Distributed Bag of Words model (PV-DBOW).
The name Paragraph Vector is a misnomer, it function on texts of any
length and has most often (to our knowledge) been applied to documents
and sentences rather than any in-between structures. The CBOW and
skip-gram models are are extended with an additional context vector that
represents the current document (or other super-word structure, such as
sentence or paragraph). This, like the word embeddings, is initialised
randomly, then trained during the task. Le and Mikolov (2014) consid-
ered that the context vector itself must contain useful information about
the context. The effect in both cases of adding a context vector is to
allow the network to learn a mildly different accusal language model de-
pending on the context. To do this, the context vector would have to
learn a representation for the context.
PV-DBOW is an extension of CBOW. The inputs to the model are not
only the word-embedding C:,wj

for the words wj from the window, but
also a context-embedding D:,dk for its current context (sentence, para-
graph or document) dk. The task remains to predict which word was
the missing word from the center of the context wi.

P (wi | dk, wi−n
2 , ..., wi−1, wi+1, ..., wi+n

2)

= smax(WD:,dk + U

j=n
2∑

j=i+1

(
C:,wi−j + C:,wi+j

)
) (4.1)

PV-DM is the equivalent extension for skip-grams. Here the input to the
model is not only the central word, but also the context vector. Again,
the task remains to predict the other words from the window.

P (wj | dk, wi) =
[
smax(WD:,dk + V C:,wi)

]
wj

(4.2)

The results of this work are now considered of limited validity. There were
failures to reproduce the reported results in the original evaluations which

65

CHAPTER 4. SENTENCE REPRESENTATIONS AND BEYOND

Figure 4.1: The unrolled structure of an RNN for use in (a) Matched-sequence (b)
Encoding, (c) Decoding and (d) Encoding-Decoding (sequence-to-sequence) problems.
RU is the recurrent unit – the neural network which reoccurs at each time step.

(a) RNN Matched-Sequence:
Variable n inputs: x̃t

Variable n outputs: ŷt
RU

x̃1

ŷ1

RU

x̃2

ŷ2

RU

x̃3

ŷ3

RU

x̃4

ŷ4

RU

x̃5

ŷ5

RU

x̃6

ŷ6

…

…

…

RU

x̃n

ŷn

state state state state state state state

(b) RNN Encoder:
Variable n inputs: x̃t

1 output: ŷ
RU

x̃1

RU

x̃2

RU

x̃3

RU

x̃4

RU

x̃5

RU

x̃6

…

…

RU

x̃n

state state state state state state state

ŷ

(c) RNN Decoder:
1 input: x

variable m outputs: ŷt

with prompts: r̃t (often ỹt−1)

x

RU

ŷ1

[r̃1; x̃]

RU

ŷ2

[r̃2; x̃]

RU

ŷ3

[r̃3; x̃]

RU

ŷ4

[r̃4; x̃]

RU

ŷ5

[r̃5; x̃]

RU

ŷ6

[r̃6; x̃]

…

…

…

RU

ŷm

[r̃8; x̃]

state state state state state state state

(d) RNN Encoder-Decoder:
Variable n inputs: x̃t

Variable m outputs ŷt
Prompts: r̃t (often yt−1)

RUE

x̃1

RUE

x̃2

…

…

RUE

x̃n

state state state

RUD

[z̃; r̃1]

ŷ1

z̃

RUD

[z̃; r̃2]

ŷ2

z̃

…

…

…

z̃

RUD

[z̃; r̃m]

ŷm

z̃

state state state

were on sentiment analysis tasks. These were documented online by
several users, including by the second author.1 A follow up paper, Mesnil
et al. (2014) found that reweighed bags of n-grams (Wang and Manning
2012) out performed the paragraph vector models. Conversely, Lau and
Baldwin (2016) found that on short text-similarity problems, with the
right tuning, the paragraph vector models could perform well; however
they did not consider the reweighed n-grams of (Wang and Manning
2012). On a different short text task, White et al. (2015) found the
paragraph vector models to significantly be out-performed by SOWE,
MOWE, BOW, and BOW with dimensionality reduction. This highlights
the importance of rigorous testing against a suitable baseline, on the task
in question.

4.2 Sequential Models

The majority of this section draws on the recurrent neural networks
(RNN). Further reference and background on these can be found in Chap-

1 https://groups.google.com/forum/#!msg/word2vec-toolkit/Q49FIrNOQRo/DoRuBoVNFb0J

66

https://groups.google.com/forum/#!msg/word2vec-toolkit/Q49FIrNOQRo/DoRuBoVNFb0J

CHAPTER 4. SENTENCE REPRESENTATIONS AND BEYOND

ter 2 of White et al. (2018a). Every RNN learns a representation of all
its input and output in its state. We can use RNN encoders and de-
coders (as shown in Figure 4.1) to generate representations of sequences
by extracting a coding layer. One can take any RNN encoder, and select
one of the hidden state layers after the final recurrent unit (RU) that has
processed the last word in the sentence. Similarly for any RNN decoder,
one can select any hidden state layer before the first recurrent unit that
begins to produce words. For an RNN encoder-decoder, this means se-
lecting the hidden layer from between. This was originally considered
in Cho et al. (2014a), when using a machine translation RNN, to create
embeddings for the translated phrases. Several other RNNs have been
used in this way since.

4.2.1 VAE and encoder-decoder

Bowman et al. (2016b) presents an extension on this notion, where in-
between the encode and the decode stages there is a variational autoen-
coder (VAE). This is shown in Figure 4.2. The variational autoencoder
(Kingma and Welling 2014) has been demonstrated to have very good
properties in a number of machine learning applications: they are able
to work to find continuous latent variable distributions over arbitrary
likelihood functions (such as in the neural network); and are very fast to
train. Using the VAE, it is hoped that a better representation can be
found for the sequence of words in the input and output.
Bowman et al. (2016b) trained the network as encoder-decoder reproduc-
ing its exact input. They found that short syntactically similar sentences
were located near to each other according to this space, further to that,
because it has a decoder, it can generate these nearby sentences, which
is not possible for most sentence embedding methods.
Interestingly, they use the VAE output, i.e. the code, only as the state
input to the decoder. This is in-contrast to the encoder-decoders of Cho
et al. (2014a), where the code was concatenated to the input at every
timestep of the decoder. Bowman et al. (2016b) investigated such a
configuration, and found that it did not yield an improvement in perfor-
mance.

4.2.2 Skip-thought

Kiros et al. (2015) draws inspiration from the works on acausal language
modelling, to attempt to predict the previous and next sentence. Like
in the acausal language modelling methods, this task is not the true
goal. Their true goal is to capture a good representation of the current
sentence. As shown in Figure 4.3 they use an encoder-decoder RNN, with
two decoder parts. One decoder is to produce the previous sentence. The
encoder part takes as it’s input is the current sentence, and produces as
its output the code, which is input to the decoders. The other decoder
is to produce the next sentence. The prompt (artificial input) used for
the decoders includes the previous word, concatenated to the code (from
the encoder output).
That output code is the representation of the sentence.

67

CHAPTER 4. SENTENCE REPRESENTATIONS AND BEYOND

Figure 4.2: The VAE plus encoder-decoder of Bowman et al. (2016b). Note that dur-
ing training, ŷi = wi, as it is an autoencoder model. As is normal for encoder-decoders
the prompts are the previous output (target during training, predicted during test-
ing): ri = yi−1, with r1 = y0 = <EOS> being a pseudo-token marker for the end of
the string. The Emb. step represents the embedding table lookup. In the diagrams
for Chapter 2 we showed this as as a table but just as a block here for conciseness.

RUE

Emb.

C:,w1

w1

. . .

Emb.

. . .

RUE

Emb.

C:,wn

wn

V AE

RUD

ŷ1

Emb.

r1

C:,r1

. . .

. . .

Emb.

. . .

RUD

ŷm

Emb.

rm

C:,rm

state state

state state

output

output
(code)

68

CHAPTER 4. SENTENCE REPRESENTATIONS AND BEYOND

Figure 4.3: The skip-thought model (Kiros et al. 2015). Note that for the next and
previous sentences respectively the outputs are q̂i and p̂i, and the prompts are qi−1

and pi−1. As there is no intent to use the decoders after training, there is no need
to worry about providing an evaluation-time prompt, so the prompt is always the
previous word. p0 = pm

p

= q0 = qm
q

= <EOS> being a pseudo-token marker for the
end of the string. The input words are wi, which come from the current sentence.
the Emb. steps represents the look-up of the embedding for the word.

RUE

Emb.

C:,w1

w1

. . .

Emb.

. . .

RUE

Emb.

C:,wn

wn

RUN

[z̃;C:,q0]

q̂1

Emb.

q0

C:,q0

. . .

. . .

. . .

Emb.

. . .

RUN

[z̃;C:,qmN−1]

q̂m
N

Emb.

qm
N−1

C
:,qm

N−1

RUP

[z̃;C:,p0]

p̂1

Emb.

p0

C:,p0

. . .

. . .

. . .

Emb.

. . .

RUP

[z̃;C:,pmP−1]

p̂m
P

Emb.

pm
P−1

C
:,pm

P−1

z̃
output
(code)

state state

state state

state state

69

CHAPTER 4. SENTENCE REPRESENTATIONS AND BEYOND

4.3 Structured Models

The sequential models are limited to processed the information as a series
of time-steps one after the other. They processes sentences as ordered
lists of words. However, the actual structure of a natural language is
not so simple. Linguists tend to break sentences down into a tree struc-
ture. This is referred to as parsing. The two most common forms are
constituency parse trees, and dependency parse trees. Examples of each
are shown in Figures 4.4 and 4.5. It is beyond the scope of this book
to explain the precise meaning of these trees, and how to find them.
The essence is that these trees represent the structure of the sentence,
according to how linguists believe sentences are processed by humans.

The constituency parse breaks the sentence down into parts such as noun
phrase (NP) and verb phrase (VP), which are in turn broken down into
phrases, or (POS tagged) words. The constituency parse is well thought-
of as a hierarchical breakdown of a sentence into its parts. Conversely,
a dependency parse is better thought of as a set of binary relations be-
tween head-terms and their dependent terms. These structures are well
linguistically motivated, so it makes sense to use them in the processing
of natural language.

We refer here to models incorporating tree (or graph) structures as struc-
tural models. Particular variations have their own names, such as recur-
sive neural networks (RvNN), and recursive autoencoders (RAE). We use
the term structural model as an all encompassing term, and minimise the
use of the easily misread terms: recursive vs recurrent neural networks.
A sequential model (an RNN) is a particular case of a structural model,
just as a linked list is a particular type of tree. However, we will exclude
sequential models them this discussion except where marked.

The initial work on structural models was done in the thesis of Socher
(2014). It builds on the work of Goller and Kuchler (1996) and Pol-
lack (1990), which present back-propagation through structure. Back-
propagation can be applied to networks of any structure, as the chain-
rule can be applied to any differentiable equation to find its derivative.
Structured networks, like all other networks, are formed by the composi-
tion of differentiable functions, so are differentiable. In a normal network
the same composition of functions is used for all input cases, whereas in a
structured network it is allowed to vary based on the inputs. This means
that structuring a network according to its parse tree is possible.

4.3.1 Constituency Parse Tree (Binary)

Tree structured networks work by applying a recursive unit (which we
will call RV) function across pairs (or other groups) of the representations
of the lower levels, to produce a combined representation. The network
structure for an input of binary tree structured text is itself a binary
tree of RVs. Each RV (i.e. node in the graph) can be defined by the

70

CHAPTER 4. SENTENCE REPRESENTATIONS AND BEYOND

Figure 4.4: A constituency parse tree for the sentence: This is a simple example
of a parse tree. In this diagram the leaf nodes are the input words, their intimidate
parents are their POS tags, and the other nodes with multiple children represent sub-
phrases of the sentence, for example NP is a Noun Phrase.

ROOT

S

NP

DT

this

VP

VBZ

is

NP

NP

DT

a

JJ

simple

NN

example

PP

IN

of

NP

DT

a

NN

parse

NN

tree

Figure 4.5: A dependency parse tree for the sentence This is a simple example
of a parse tree, This flattened view may be misleading. example is at the peak
of the tree, with direct children being: this,is,a,simple, and tree. tree has direct
children being: of,a, and parse.

this is a simple example of a parse tree

DT VBZ DT JJ NN IN DT NN NN
compoundamod

detdet
casecop

nmodnsubj

71

CHAPTER 4. SENTENCE REPRESENTATIONS AND BEYOND

composition function:

fRV(ũ, ṽ) = ϕ

([
S R

] [ũ
ṽ

]
+ b̃

)
(4.3)

= ϕ
(
Sũ+Rṽ + b̃

)
(4.4)

where ũ and ṽ are the left and right substructures embeddings (word
embeddings at the leaf node level), and S and R are the matrices defining
how the left and right children’s representations are to be combined.
This is a useful form as all constituency parse trees can be converted into
binary parse trees, via left-factoring or right factoring (adding new nodes
to the left or right to take some of the children). This is sometimes called
binarization, or putting them into Chomsky normal form. This form
of structured network has been used in many words, including Socher,
Manning, and Ng (2010), Socher et al. (2011c), Socher et al. (2011a),
Socher et al. (2011b) and Zhang et al. (2014). Notice that S and R
matrices are shared for all RVs, so all substructures are composed in the
same way, based only on whether they are on the left, or the right.

4.3.2 Dependency Tree

The dependency tree is the other commonly considered parse-tree. Struc-
tured networks based upon the dependency tree have been used by Socher
et al. (2014), Iyyer et al. (2014), and Iyyer, Boyd-Graber, and Daumé
III (2014). In these works rather than a using composition matrix for
left-child and right-child, the composition matrix varies depending on
the type of relationship of between the head word and its child. Each
dependency relationship type has its own composition matrix. That is
to say there are distinct composition matrices for each of nsub, det,
nmod, case etc. This allows for multiple inputs to a single head node to
be distinguished by their relationship, rather than their order. This is
important for networks using a dependency parse tree structure as the
relationship is significant, and the structure allows a node to have any
number of inputs.
Consider a function π(i, j) which returns the relationship between the
head word at position i and the child word at position j. For example,
using the tree shown in Figure 4.5, which has w8 = parse and w9 =
tree then π(8, 9) = compound. This is used to define the composed
representation for each RV:

fRV(i) = ϕ

W headC:,wi +
∑

j∈children(i)

W π(i,j) fRV (j) + b̃

 (4.5)

Here C:,wi is the word embedding for wi, and W head encodes the contribu-
tion of the headword to the composed representation. Similarly, W π(i,j)

encodes the contribution of the child words. Note that the terminal case
is just fRV (i) = ϕ

(
W headC:,wi + b̃

)
when a node i has no children. This

use of the relationship to determine the composition matrix, increases
both the networks expressiveness, and also handles the non-binary na-
ture of dependency trees.

72

CHAPTER 4. SENTENCE REPRESENTATIONS AND BEYOND

A similar technique could be applied to constituency parse trees. This
would be using the part of speech (e.g. VBZ, NN) and phrase tags (e.g.
NP, VP) for the sub-structures to choose the weight matrix. This would,
however, lose the word-order information when multiple inputs have the
same tag. This would be the case, for example, in the right-most branch
shown in Figure 4.4, where both parse and tree have the NN POS tag,
and thus using only the tags, rather than the order would leave parse
tree indistinguishable from tree parse. This is not a problem for the
dependency parse, as word relationships unambiguously correspond to
the role in the phrase’s meaning. As such, allowing the dependency
relationship to define the mathematical relationship, as encoded in the
composition matrix, only enhances expressibility.
For even greater capacity for the inputs to control the composition, would
be to allow every word be composed in a different way. This can be done
by giving the child nodes there own composition matrices, to go with
there embedding vectors. The composition matrices encode the relation-
ship, and the operation done in the composition. So not only is the
representation of the (sub)phrase determined by a relationship between
its constituents (as represented by their embeddings), but the nature of
that relationship (as represented by the matrix) is also determined by
those same constituents. In this approach at the leaf-nodes, every word
not only has a word vector, but also a word matrix. This is discussed in
Section 4.4.

4.3.3 Parsing

The initial work for both contingency tree structured networks (Socher,
Manning, and Ng 2010) and for dependency tree structured networks
(Stenetorp 2013) was on the creation of parsers. This is actually rather
different to the works that followed. In other works the structure is pro-
vided as part of the input (and is found during preprocessing). Whereas
a parser must induce the structure of the network, from the unstructured
input text. This is simpler for contingency parsing, than for dependency
parsing.
When creating a binary contingency parse tree, any pair of nodes can
only be merged if they are adjacent. The process described by Socher,
Manning, and Ng (2010), is to consider which nodes are to be composed
into a higher level structure each in turn. For each pair of adjacent
nodes, an RV can be applied to get a merged representation. A linear
scoring function is also learned, that takes a merged representation and
determines how good it was. This is trained such that correct merges
score highly. Hinge loss is employed for this purpose. The Hinge loss
function works on similar principles to negative sampling (see the moti-
vation given in Section 2.4.2). Hinge loss is used to cause the merges that
occur in the training set to score higher than those that do not. To per-
form the parse, nodes are merged; replacing them with their composed
representation; and the new adjacent pairing score is then recomputed.
Socher, Manning, and Ng (2010) considered both greedy, and dynamic
programming search to determine the order of composition, as well as
a number of variants to add additional information to the process. The
dependency tree parser extends beyond this method.

73

CHAPTER 4. SENTENCE REPRESENTATIONS AND BEYOND

Dependency trees can have child-nodes that do not correspond to adja-
cent words (non-projective language). This means that the parser must
consider that any (unlinked) node be linked to any other node. Tradi-
tional transition-based dependency parsers function by iteratively pre-
dicting links (transitions) to add to the structure based on its current
state. Stenetorp (2013) observed that a composed representation similar
to Equation (4.4), was an ideal input to a softmax classifier that would
predict the next link to make. Conversely, the representation that is
suitable for predicting the next link to make, is itself a composed rep-
resentation. Note, that Stenetorp (2013) uses the same matrices for all
relationships (unlike the works discussed in Section 4.3.2). This is re-
quired, as the relationships must be determined from the links made,
and thus are not available before the parse. Bowman et al. (2016a),
presents a work an an extension of the same principles, which combines
the parsing step with the processing of the data to accomplish some task,
in their case detecting entailment.

4.3.4 Recursive Autoencoders

Recursive autoencoders are autoencoders, they reproduce their input.
It should be noted that unlike the encoder-decoder RNN discussed in
Section 4.2.1, they cannot be trivially used to generate natural language
from an arbitrary embeddings, as they require the knowledge of the tree
structure to unfold into. Solving this would be the inverse problem of
parsing (discussed in Section 4.3.3).

The models presented in Socher et al. (2011a) and Iyyer, Boyd-Graber,
and Daumé III (2014) are unfolding recursive autoencoders. In these
models an identical inverse tree is defined above the highest node. The
loss function is the sum of the errors at the leaves, i.e. the distance in
vector space between the reconstructed words embeddings and the input
word-embeddings. This was based on a simpler earlier model: the normal
(that is to say, not unfolding) recursive autoencoder.

The normal recursive autoencoder, as used in Socher et al. (2011c) and
Zhang et al. (2014) only performs the unfolding for a single node at a time
during training. That means that it assesses how well each merge can in-
dividually be reconstructed, not the success of the overall reconstruction.
This per merge reconstruction has a loss function based on the difference
between the reconstructed embeddings and the inputs embeddings. Note
that those inputs/reconstructions are not word embeddings: they are
the learned merged representations, except when the inputs happen to
be leaf node. This single unfold loss covers the auto-encoding nature of
each merge; but does not give any direct assurances of the auto-encoding
nature of the whole structure. However, it should be noted that while it
is not trained for, the reconstruction components (that during training
are applied only at nodes) can nevertheless be applied recursively from
the top layer, to allow for full reconstruction.

74

CHAPTER 4. SENTENCE REPRESENTATIONS AND BEYOND

Semi-supervised

In the case of all these autoencoders, except Iyyer, Boyd-Graber, and
Daumé III (2014), a second source of information is also used to calculate
the loss during training. The networks are being simultaneously trained
to perform a task, and to regenerate their input. This is often considered
as semi-supervised learning, as unlabelled data can be used to train the
auto-encoding part (unsupervised) gaining a good representation, and
the labelled data can be used to train the task output part (supervised)
making that representation useful for the task. This is done by imposing
an additional loss function onto the output of the central/top node.

• In Socher et al. (2011c) this was for sentiment analysis.

• In Socher et al. (2011a) this was for paraphrase detection.

• In Zhang et al. (2014) this was the distance between embeddings of
equivalent translated phrases of two RAEs for different languages.

The reconstruction loss and the supervised loss can be summed, opti-
mised in alternating sequences, or the reconstructed loss can be optimised
first, then the labelled data used for fine-tuning.

4.4 Matrix Vector Models

4.4.1 Structured Matrix Vector Model

Socher et al. (2012) proposed that each node in the graph should define
not only a vector embedding, but a matrix defining how it was to be
combined with other nodes. That is to say, each word and each phrase
has both an embedding, and a composition matrix.

Consider this for binary constituency parse trees. The composition func-
tion is as follows:

fRV(ũ, ṽ, U, V) = ϕ
(
[S R][Uṽ;V ũ] + b̃

)
(4.6)

= ϕ
(
S Uṽ +RV ũ+ b̃

)
(4.7)

FRV(U, V) = W [U ;V] = W lU +W rV (4.8)

fRV gives the composed embedding, and FRV gives the composing matrix.
The S and R represent the left and right composition matrix components
that are the same for all nodes (regardless of content). The U and V
represent the per word/node child composition matrix components. We
note that S and R could, in theory, be rolled in to U and R as part of the
learning. The ũ and ṽ represent the per word/node children embeddings,
and W represents the method for merging two composition matrices.

We note that one can define increasingly complex and powerful structured
networks along these lines; though one does run the risk of very long
training times and of over-fitting.

75

CHAPTER 4. SENTENCE REPRESENTATIONS AND BEYOND

4.4.2 Sequential Matrix Vector Model

A similar approach, of capturing a per word matrix, was used on a se-
quential model by Wang, Liu, and McDonald (2017). While sequential
models are a special case of structured models, it should be noted that
unlike the structured models discussed prior, this matrix vector RNN
features a gated memory. This matrix-vector RNN is an extension of the
GRU (Chung et al. 2014; Cho et al. 2014b), but without a reset gate.

In this sequential model, advancing a time step, is to perform a composi-
tion. This composition is for between the input word and the (previous)
state. Rather than directly between two nodes in the network as in the
structural case. It should be understood that composing with the state
is not the same as composing the current input with the previous in-
put. But rather as composing the current input with all previous inputs
(though not equally).

As depicted in Figure 4.6 each word, wt is represented by a word embed-
ding x̃t and matrix: X̃wt , these are the inputs at each time step. The
network outputs and states are the composed embedding ŷt and matrix
Y t.

ht = tanh
(
W h[xt; ŷt−1] + b̃h

)
(4.9)

zt = σ
(
Y t−1xt +X tŷt−1 + b̃z

)
(4.10)

ŷt = zt � ht + (1− zt)� ŷt−1 (4.11)

Y t = tanh
(
WY[Y t−1;X t] + b̃Y

)
(4.12)

The matrices W h, WY and the biases b̃h, b̃z, b̃Y are shared across all
time steps/compositions. WY controls how the next state-composition
Y t matrix is generated from its previous value and the input composi-
tion matrix, X t; W h similarly controls the value of the candidate state-
embedding ht.

ht is the candidate composed embedding (to be output/used as state).
zt is the update gate, it controls how much of the actual composed em-
bedding (ŷt) comes from the candidate ht and how much comes from the
previous value (ŷt−1). The composition matrix Y t (which is also part of
the state/output) is not gated.

Notice, that the state composition matrix Y t−1 is only used to control the
gate zt, not to directly affect the candidate composited embedding ht.
Indeed, in fact one can note that all similarity to the structural method of
Socher et al. (2012) is applied in the gate zt. The method for calculating
ht is similar to that of a normal RU.

The work of Wang, Liu, and McDonald (2017), was targeting short
phrases. This likely explains the reason for not needing a forget gates.
The extension is obvious, and may be beneficial when applying this
method to sentences

76

CHAPTER 4. SENTENCE REPRESENTATIONS AND BEYOND

Figure 4.6: A Matrix Vector recurrent unit

ht = tanh
(
W h[xt; ŷt−1] + b̃h

)
zt = σ

(
Y t−1xt +Xtŷt−1 + b̃z

)

ŷt = zt � ht + (1− zt)� ŷt−1

Y t = tanh
(
WY[Y t−1;Xt] + b̃Y

)
zt

ht

input

Xt xt

Xt

xt

xt

old state

Y t−1ŷt−1

ŷt−1

ŷt−1

ŷt−1

Y t−1

Y t−1

new state
i.e output

Y t ŷt

Y t

ŷt

Update Gate Candidate New State Vector

New State Matrix

4.5 Conclusion, on compositionality

It is tempting to think of the structured models as compositional, and
the sequential models as non-compositional. However, this is incorrect.

The compositional nature of the structured models is obvious: the vector
for a phrase is composed from the vectors of the words that the phrase
is formed from.

Sequential models are able to learn the structures. For example, learning
that a word from n time steps ago is to be remembered in the RNN state,
to then be optimally combined with the current word, in the determina-
tion of the next state. This indirectly allows the same compositionality
as the structured models. It has been shown that sequential models are
indeed in-practice able to learn such relationships between words (White
et al. 2017). More generally as almost all aspects of language have some
degree of compositionality, and sequential models work very well on most
language tasks, this implicitly shows that they have sufficient represen-
tational capacity to learn sufficient degrees of compositional processing
to accomplish these tasks.

In fact, it has been suggested that even some unordered models such
as sum of word embeddings are able to capture some of what would be
thought of as compositional information. Ritter et al. (2015) devised a
small corpus of short sentences describing containing relationships be-
tween the locations of objects. The task and dataset was constructed
such that a model must understand some compositionality, to be able to
classify which relationships were described. Ritter et al. (2015) tested

77

CHAPTER 4. SENTENCE REPRESENTATIONS AND BEYOND

several sentence representations as the input to a naïve Bayes classifier
being trained to predict the relationship. They found that when using
sums of high-quality word embeddings as the input, the accuracy not
only exceeded the baseline, but even exceeded that from using represen-
tation from a structural model. This suggests that a surprising amount of
compositional information is being captured into the embeddings; which
allows simple addition to be used as a composition rule. Though it be-
ing ignorant of word order does mean it certainly couldn’t be doing so
perfectly, however the presence of other words my be surprisingly effec-
tive hinting at the word order (White et al. 2016b), thus allow for more
apparently compositional knowledge to be encoded than is expected.
To conclude, the compositionality capacity of many models is not as
clear cut as it may initially seem. Further to that the requirement for
a particular task to actually handle compositional reasoning is also not
always present, or at least not always a significant factor in practical
applications. We have discussed many models in this section, and their
complexity varies significantly. They range from the very simple sum of
word embeddings all the way to the the structured matrix models, which
are some of the more complicated neural networks ever proposed.

78

Part II

Publications

79

CHAPTER 5. HOW WELL SENTENCE EMBEDDINGS CAPTURE MEANING

Chapter 5

How Well Sentence
Embeddings Capture
Meaning

This paper was presented at the 20th Australasian Document Computing Symposium, in 2015.

Abstract

Several approaches for embedding a sentence into a vector space have been devel-
oped. However, it is unclear to what extent the sentence’s position in the vector
space reflects its semantic meaning, rather than other factors such as syntactic
structure. Depending on the model used for the embeddings this will vary –
different models are suited for different down-stream applications. For appli-
cations such as machine translation and automated summarization, it is highly
desirable to have semantic meaning encoded in the embedding. We consider this
to be the quality of semantic localization for the model – how well the sentences’
meanings coincides with their embedding’s position in vector space. Currently
the semantic localization is assessed indirectly through practical benchmarks for
specific applications.

In this paper, we ground the semantic localization problem through a se-
mantic classification task. The task is to classify sentences according to their
meaning. A SVM with a linear kernel is used to perform the classification using
the sentence vectors as its input. The sentences from subsets of two corpora, the
Microsoft Research Paraphrase corpus and the Opinosis corpus, were partitioned
according to their semantic equivalence. These partitions give the target classes
for the classification task. Several existing models, including URAE, PV–DM
and PV–DBOW, were assessed against a bag of words benchmark.

5.1 Introduction

Sentence embeddings are often referred to as semantic vector space rep-
resentations Iyyer, Boyd-Graber, and Daumé III 2014. Embedding the
meaning of a sentence into a vector space is expected to be very useful for
natural language tasks. Vector representation of natural languages en-
ables discourse analysis to take advantage of the array of tools available
for computation in vector spaces. However, the embeddings of a sentence
may encode a number of factors including semantic meaning, syntactic
structure and topic. Since many of these embeddings are learned unsu-
pervised on textual corpora using various models with different training
objectives, it is not entirely clear the emphasis placed on each factor

81

CHAPTER 5. HOW WELL SENTENCE EMBEDDINGS CAPTURE MEANING

in the encoding. For applications where encoding semantic meaning is
particularly desirable, such as machine translation and automatic sum-
marization, it is crucial to be able to assess how well the embeddings
capture the sentence’s semantics. In other words, for successful appli-
cation to these areas it is required that the embeddings generated by
the models correctly encode meaning such that sentences with the same
meaning are co-located in the vector space, and sentences with differing
meanings are further away. However, few current models are directly
trained to optimize for this criteria.

Currently sentence embeddings are often generated as a byproduct of
unsupervised, or semi-supervised, tasks. These tasks include: word pre-
diction Le and Mikolov 2014; recreation of input, as in the auto-encoders
of Socher et al. 2011c; Socher et al. 2011a and Iyyer, Boyd-Graber,
and Daumé III 2014; and syntactic structural classification Socher et
al. 2013a; Socher, Manning, and Ng 2010. As a result the vector rep-
resentations of the input sentences learned by these models are tuned
towards the chosen optimization task. When employing the embeddings
produced as features for other tasks, the information captured by the
embeddings often proved to be very useful: e.g. approaching or exceed-
ing previous state-of-the-art results, in sentiment analysis Socher et al.
2011c; Socher et al. 2012; Le and Mikolov 2014 and paraphrase detection
Socher et al. 2011a. However these practical applications do not directly
show how well meaning is captured by the embeddings.

This paper provides a new method to assess how well the models are cap-
turing semantic information. A strict definition for the semantic equiv-
alence of sentences is: that each sentence shall entail the other. Such
mutually entailing sentences are called paraphrases. In this paper we
propose to use paraphrases to assess how well the true semantic space
aligns with the vector space the models embed into. It thus assesses
whether projecting a sentence via the models in to the vector space pre-
serves meaning.

The evaluation corpora were prepared by grouping paraphrases from the
Microsoft Research Paraphrase (MSRP) Dolan and Brockett 2005 and
Opinosis Ganesan, Zhai, and Han 2010 corpora. A semantic classification
task was defined which assesses if the model’s embeddings could be used
to correctly classify sentences as belonging to the paraphrase group with
semantically equivalent sentences. Ensuring that sentences of common
meaning, but differing form are located in vector space together, is a
challenging task and shows a model’s semantic encoding strength. This
assessment, together with out recent work in the area, allows for a better
understanding of how these models work, and suggest new directions for
the development in this area.

The assessment proposed in this paper adds to the recent work on seman-
tic evaluation methods, such as the work of Gershamn and Tenenbaum
Gershman and Tenenbaum 2015 and of Ritter et. al. Ritter et al. 2015.
In particular, the real-world corpus based assessment in this paper is
highly complementary to the structured artificial corpus based assess-
ment of Ritter et. al. These methods are discussed in more detail in the
next section.

The rest of the paper is organized into the following sections. Section 5.2

82

CHAPTER 5. HOW WELL SENTENCE EMBEDDINGS CAPTURE MEANING

discusses the existing models being assessed, the traditional assessment
methods, and the aforementioned more recent semantic correctness based
assessnements. Section 5.3 describes the processes by which the models
are evaluated using our new method, and the parameters used in the
evaluation. Section 5.4 continues into more details on the development
of the evaluation corpora for the semantic classification evaluation task.
Section 5.5 details the results from evaluating the models and discusses
the implications for their semantic consistency. Section 5.6 closes the
paper and suggests new directions for development.

5.2 Background

5.2.1 Models

Three well known sentence embedding methods are evaluated in this
work. The compositional distributed model of the Unfoldering Recussive
Autoencoder (URAE) by Socher et. al. Socher et al. 2011a; and the
two word content predictive models, Distributed Memory (PV-DM) and
Distributed Bag of Words by Le and Mikolov Le and Mikolov 2014. In
addition to these advanced sentence embedding models, a simple average
of word embeddings, from Mikolov et. al. Mikolov et al. 2013a, is also
assessed. These models and their variant forms have been applied to a
number of natural language processing tasks in the past, as detailed in
the subsequent sections, but not to a real-sentence semantic classification
task as described here.

Unfolding Recursive Auto-Encoder (URAE)

The Unfolding Recursive Autoencoder (URAE) Socher et al. 2011a is
an autoencoder based method. It functions by recursively using a single
layer feedforward neural-network to combine embedded representations,
following the parse tree. Its optimization target is to be be able to reverse
(unfold) the merges and produce the original sentence. The central fold-
ing layer – where the whole sentence is collapsed to a single embedding
vector – is the sentence representation.

PV-DM

The Distributed Memory Paragraph Vectors (PV-DM) Le and Mikolov
2014 method is based on an extension of the Continuous Bag-of-Words
word-embedding model Mikolov et al. 2013b. It is trained using a slid-
ing window of words to predict the next word. The softmax predictor
network is fed a word-embedding for each word in the window, plus an
additional sentence embedding vector which is reused for all words in the
sentence – called the paragraph vector in Le and Mikolov 2014. These
input embeddings can be concatenated or averaged; in the results below
they were concatenated. During training both word and sentence vec-
tors are allowed to vary, in evaluation (i.e. inference), the word vectors
are locked and the sentence vector is trained until convergence on the
prediction task occurs.

83

CHAPTER 5. HOW WELL SENTENCE EMBEDDINGS CAPTURE MEANING

PV-DBOW

Distributed Bag of Words Paragraph Vectors (PV-DBOW) Le and Mikolov
2014, is based on the Skip-gram model for word-embeddings, also from
Mikolov et al. 2013b. In PV-DBOW a sentence vector is used as the
sole input to a neural net. That network is tasked with predicting the
words in the sentence. At each training iteration, the network is tasked
to predict a number of words from the sentence, selected with a speci-
fied window size, using the sentence vector being trained as the input.
As with PV-DM to infer embedding the rest of the network is locked,
and only the sentence vector input allowed to vary, it is then trained to
convergence.

Sum and Mean of Word Embeddings (SOWE and MOWE)

Taking the element-wise sum or mean of the word embeddings over all
words in the sentence also produces a vector with the potential to encode
meaning. Like traditional bag of words no order information is encoded,
but the model can take into consideration word relations such as syn-
onymy as encoded by the word vectors. The mean was used as baseline
in Le and Mikolov 2014. The sum of word embeddings first considered
in Mikolov et al. 2013a for short phrases, it was found to be an effective
model for summarization in Kågebäck et al. 2014. The cosine distance,
as is commonly used when comparing distances between embeddings, is
invariant between sum and mean of word embeddings. Both sum and
mean of word embeddings are computationally cheap models, particu-
larly given pretrained word embeddings are available.

5.2.2 General Evaluation Methods

As discussed in the introduction, current methods of evaluating the qual-
ity of embedding are on direct practical applications designed down-
stream.

Evaluation on a Paraphrase Detection task takes the form of being pre-
sented with pairs of sentences and tasked with determining if the sen-
tences are paraphrases or not. The MSRP Corpus, Dolan and Brockett
2005 which we used in the semantic classification task, is intended for
such use. This pairwise check is valuable, and does indicate to a certain
extent if the embeddings are capturing meaning, or not. However, by
considering groups of paraphrases, a deeper intuition can be gained on
the arrangement of meaning within the vector space.

Sentiment Analysis is very commonly used task for evaluating embed-
dings. It was used both for the recursive autoencoder in Socher et al.
2011c and for the paragraph vector models in Le and Mikolov 2014. Sen-
timent Analysis is classifying a text as positive or negative, or assigning
a score as in the Sentiment Treebank Socher et al. 2013b. Determining
the sentiment of a sentence is partially a semantic task, but it is lacking
in several areas that would be required for meaning. For example, there
is only an indirect requirement for the model to process the subject at

84

CHAPTER 5. HOW WELL SENTENCE EMBEDDINGS CAPTURE MEANING

all. Sentiment Analysis is a key task in natural language processing, but
it is distinct from semantic meaning.
Document Classification is a classic natural language processing task. A
particular case of this is topic categorization. Early work in the area goes
back to Maron 1961 and Borko and Bernick 1963. Much more recently
it has been used to assess the convolution neural networks of Zhang and
LeCun 2015, where the articles of several news corpora were classified
into categories such as “Sports”, “Business” and “Entertainment”. A
huge spectrum of different sentences are assigned to the same topic. It
is thus too board and insufficiently specific to evaluate the consistency
of meanings. Information retrieval can be seen as the inverse of the
document classification task.
Information Retrieval is the task of identifying the documents which most
match a query. Such document selection depends almost entirely on topic
matching. Suitable results for information retrieval have no requirement
to agree on meaning, though text with the same meaning are more likely
to match the same queries.
The evaluation of semantic consistency requires a task which is fine
grained, and preserving meaning. Document Classification and Infor-
mation Retrieval are insufficiently fine-grained. Sentiment Analysis does
not preserve meaning, only semantic orientation. Paraphrase Detection is
directly relevant to evaluating semantic constancy, however it is a binary
choice based on a pairwise comparison – a more spatial application is de-
sirable for evaluating these vector spaces. Thus the current down-steam
application tasks are not sufficient for assessing semantic consistency –
more specialized methods are required.

5.2.3 Evaluations of Semantic Consistency

Semantic consistency for word embeddings is often measured using the
analogy task. In an analogy the meta-relation: A is to B as C is to
D. Mikolov et. al.Mikolov, Yih, and Zweig 2013 demonstrated that the
word-embedding models are semantically consistent by showing that the
semantic relations between words were reflected as a linear offset in the
vector space. That is to say, for embeddings x̃a, x̃b, x̃c, x̃d corresponding
to words A, B, C and D, respectively; it was tested that if for a strong re-
lationship matching between A/B and C/D, then the offset vector would
be approximately equal: x̃b − x̃a u x̃d − x̃c. Rearranging this in word
space gets the often quoted example of King− Man+ Woman u Queen, As
man is to woman, king is to queen. In the rating task as described by Ju-
rgens et al. 2012, the goal is to rank such analogous word pairs based on
the degree the relation matches. Thus to evaluate the word-embedding
model using this task, it was a matter of sorting closeness of the corre-
sponding offset vectors. Surprisingly strong results were found on this
taskMikolov, Yih, and Zweig 2013. It was thus demonstrated that word
embeddings were not simply semantically consistent, but more so that
this consistency was displayed as local linearity. This result gives con-
fidence in the semantic quality of the word embeddings. However, this
relationship analogy test cannot be performed for sentence embeddings.
Gershman et. al. Gershman and Tenenbaum 2015, compares the dis-

85

CHAPTER 5. HOW WELL SENTENCE EMBEDDINGS CAPTURE MEANING

tances of modified sentences in vector space, to the semantic distances
ascribed to them by human raters. Like the analogy task for word vec-
tors, this task requires ranking the targets based on the vector distance,
however instead of rating on the strength of relationships it measures
simply the similarities of the sentences to an original base sentence for
each group. In that evaluation 30 simple base sentences of the form A
[adjective1] [noun1] [prepositional phrase] [adjective2] [noun2]
were modified to produce 4 difference derived sentences. The derived sen-
tences were produced by swapping the nouns, swapping the adjectives,
reversing the positional phrase (so behind becomes in front of), and
a paraphrase by doing all of the aforementioned changes. Human raters
were tasked with sorting the transformed sentences in similarity to the
base sentence. This evaluation found that the embedding models con-
sidered did not agree with the semantic similarity rankings placed by
humans. While the sentence embedding models performed poorly on the
distance ranking measure, it is also worth considering how they perform
on a meaning classification task.

A meaning classification task was recently proposed by Ritter et al.
(2015), to classify sentences based on which spatial relationship was de-
scribed. The task was to classify the sentence as describing: Adhesion
to Vertical Surface, Support by Horizontal Surface, Full Containment,
Partial Containment, or Support from Above. In this evaluation also, the
sentences took a very structured form: There is a [noun1] [on/in]
the [noun2]. These highly structured sentences take advantage of the
disconnection between word content and the positional relationship de-
scribed to form a task that must be solved by a compositional under-
standing combining the understanding of the words. “The apple is on
the refrigerator” and “The magnet is on the refrigerator” belong to two
separate spatial categories, even though the word content is very simi-
lar. Surprisingly, the simple model of adding word vectors outperformed
compositional models such as the recursive autoencoder. The result does
have some limitation due to the highly artificial nature of the sentences,
and the restriction to categorizing into a small number of classes based
only on the meaning in terms of positional relationship. To generalize
this task, in this paper we consider real world sentences being classed
into groups according to their full semantic meaning.

5.3 Methodology

To evaluate how well a model’s vectors capture the meaning of a sen-
tence, a semantic classification task was defined. The task is to classify
sentences into classes where each shares the same meaning. Each class
is thus defined as a paraphrase groups. This is a far finer-grained task
than topic classification. It is a multiclass classification problem, rather
than the binary decision problem of paraphrase detection. Such multi-
class classification requires the paraphrase groups to be projected into
compact and distinct groups in the vector space. A model which pro-
duces such embeddings which are thus easily classifiable according to
their meaning can been thus seen to have good semantic localization.

This semantic classification does not have direct practical application –

86

CHAPTER 5. HOW WELL SENTENCE EMBEDDINGS CAPTURE MEANING

Trained
model

Subcorpus
Sentences

Training
Paraphrases

Testing
Paraphrases

Trained SVM

Infer
Embeddings

Test–Train
Set

Splitting

Model Pretraining

Base
Corpus

Paraphrase
Grouping

SVM
Training

SVM
Evaluation

Classification
Accuracy

Corpus Preparation

Model Preparation

Semantic Classification

Figure 5.1: Process Diagram for the Evaluation of Semantic Consistency via our
method

it is rare that the need will be to quantify sentences into groups with
the same prior known meaning. Rather it serves as a measure to assess
the models general suitability for other tasks requiring a model with
consistency between meaning and embedding.

To evaluate the success at the task three main processes are involved, as
shown in Figure 5.1: Corpus Preparation, Model Preparation, and the
Semantic Classification task itself.

5.3.1 Corpus Preparation

The construction of each of the corpora is detailed more fully in the next
section. In brief: Two corpora were constructed by selecting subsets of
the Microsoft Research Paraphrase (MSRP) (Dolan and Brockett 2005)
and of the Opinosis (Ganesan, Zhai, and Han 2010) corpora. The corpora
were partitioned into groups of paraphrases – sentences with the same
meaning. Any paraphrase groups with less than three sentences were dis-
carded. The paraphrase grouping was carried out manually for Opinosis,
and automatically for the MSRP corpus using the existing paraphrase
pairings. The paraphrase groups divide the total semantic space of the
corpora into discrete classes, where each class contains sentences sharing
the same meaning.

It is by comparing the ability of the models to produce embeddings which
can be classified back into these classes, that we can compare the real
semantic space partitions to their corresponding vector embedding space
regions.

5.3.2 Model Preparation and Inferring Vectors

Prior to application to semantic classification, as with any task the mod-
els had to be pretrained. Here we use the term pretraining to differen-
tiate the model training from the classifier training. The pretraining is
not done using the evaluation corpora as they are both very small. In-
stead other data are used, and the inference/evaluation procedure given
for each method was then used to produce the vectors for each sentence.
The model parameters used are detailed below.

87

CHAPTER 5. HOW WELL SENTENCE EMBEDDINGS CAPTURE MEANING

Unfolding Recursive Auto-Encoder (URAE)

In this evaluation we make use of the pretrained network that Socher et.
al. have graciously made available1, full information is available in the
paper (Socher et al. 2011a). It is initialized on the unsupervised Collobert
and Weston word embeddings (Collobert and Weston 2008), and training
on a subset of 150,000 sentences from the gigaword corpus. It produces
embeddings with 200 dimensions. This pretrained model when used with
dynamic pooling and other word based features performed very well on
the MSRP corpus paraphrase detection. However in the evaluation below
the dynamic pooling techniques are not used as they are only directly
suitable for enhancing pairwise comparisons between sentences.

Paragraph Vector Methods (PV-DM and PV-DBOW)

Both PV-DM and PV-DBOW, were evaluated using the GenSim imple-
mentation (Rehůrek and Sojka 2010) from the current develop branch2.
Both were trained on approximately 1.2 million sentences from randomly
selected Wikipedia articles, and the window size was set to 8 words, and
the vectors were of 300 dimensions.

Sum and Mean of Word Embeddings (SOWE and MOWE)

The word embeddings used for MOWE were taken from the Google News
pretrained model3 based on the method described in (Mikolov et al.
2013a). This has been trained on 100 million sentences from Google
News. A small portion of the evaluation corpus did not have embed-
dings in the Google News model. These tokens were largely numerals,
punctuation symbols, proper nouns and unusual spellings, as well as the
following stop-words: “and”, “a” and “of”. These words were simply
skipped. The resulting embeddings have 300 dimensions, like the word
embeddings they were based on.

Bag of Words (BOW and PCA BOW)

A bag of words (BOW) model is also presented as a baseline. There
is a dimension in each vector embedding for the count of each token,
including punctuation, in the sentence. In the Opinosis and MSRP sub-
corpora there were a total of 1,085 and 2,976 unique tokens respectively,
leading to BOW embeddings of corresponding dimensionality. As it is
a distributional rather than distributed representation, the BOW model
does not need any pretraining step. For comparison to the lower di-
mensional models Principle Component Analysis (PCA) was applied to
the BOW embeddings to produce an additional baseline set of embed-
dings of 300 dimensions – in line with PV-DM, PV-DBOW, SOWE, and
MOWE models. It does not quite follow the steps shown in Figure 5.1,
as the PCA pretraining step is performed on the training embeddings

1http://www.socher.org/index.php/Main/DynamicPoolingAndUnfoldingRecursiveAutoencoders-
ForParaphraseDetection

2https://github.com/piskvorky/gensim/tree/develop/
3https://code.google.com/p/word2vec/

88

http://www.socher.org/index.php/Main/DynamicPoolingAndUnfoldingRecursiveAutoencodersForParaphraseDetection
http://www.socher.org/index.php/Main/DynamicPoolingAndUnfoldingRecursiveAutoencodersForParaphraseDetection
https://github.com/piskvorky/gensim/tree/develop/
https://code.google.com/p/word2vec/

CHAPTER 5. HOW WELL SENTENCE EMBEDDINGS CAPTURE MEANING

only during the SVM classification process, and it is used to infer the
PCA BOW embeddings during the testing step. This avoids unfair in-
formation transfer where the PCA would otherwise be about to choose
representations optimized for the whole set, including the test data. It
was found that when the PCA model was allowed to cheat in this way it
performed a few percentage points better. The bag of words models do
not have any outside knowledge.

5.3.3 Semantic Classification

The core of this evaluation procedure is in the semantic classification
step. A support vector machine (SVM), with a linear kernel, and class
weighting was applied to the task of predicting which paraphrase group
each sentence belongs to. Classification was verified using 3-fold cross-
validation across different splits of the testing/training data, the average
results are shown in this section. The splits were in proportion to the
class size. For the smallest groups this means there were two training
cases and one test case to classify.
In this paper, only a linear kernel was used, because a more powerful
kernel such as RBF may be able to compensate for irregularities in the
vector space, which makes model comparison more difficult. Scikit-learn
(Pedregosa et al. 2011) was used to orchestrate the cross-validation and to
interface with the LibLinear SVM implementation (Fan et al. 2008). As
the linear SVM’s classification success depends on how linearly separable
the input data is, thus this assessed the quality of the localization of the
paraphrase groupings embeddings.

5.4 Corpus Construction

5.4.1 Microsoft Research Paraphrased Grouped Subcorpus

The MSRP corpus is a very well established data set for the paraphrase
detection task (Dolan and Brockett 2005). Sentences are presented as
pairs which are either paraphrases, or not. A significant number of para-
phrases appear in multiple different pairings. Using this information,
groups of paraphrases can be formed.
The corpus was partitioned according to sentence meaning by taking
the symmetric and transitive closures the set of paraphrase pairs. For
example if sentences A, B, C and D were present in the original corpus
as paraphrase pairs: A, B, D, A and B,C then the paraphrase group
{A,B,C,D} is found. Any paraphrase groups containing less than 3
phrases were discarded. The resulting sub-corpus has the breakdown as
shown in Figure 5.2.

5.4.2 Opinosis Paraphrase Grouped Subcorpus

The Opinosis Corpus (Ganesan, Zhai, and Han 2010) was used as sec-
ondary source of original real-world text. It is sourced from several online
review sites: Tripadvisor, Edmunds.com, and Amazon.com, and contains

89

CHAPTER 5. HOW WELL SENTENCE EMBEDDINGS CAPTURE MEANING

0 1 2 3 4 5 6

Number of Paraphrases

0

50

100

150

200

250
N

u
m

b
e
r

o
f

P
a
ra

p
h
ra

se
 G

ro
u
p
s MSRP Subcorpus

Figure 5.2: Break down of how many paraphrases groups are present in the MSRP
subcorpus of which sizes.It contains a total of 859 unique sentences, broken up into
273 paraphrase groups.

single sentence statements about hotels, cars and electronics. The ad-
vantage of this as a source for texts is that comments on the quality of
services and products tend to be along similar lines. The review sen-
tences are syntactically simpler than sentences from a news-wire corpus,
and also contain less named entities. However, as they are from more
casual communications, the adherence to grammar and spelling may be
less formal.
Paraphrases were identified using the standard criterion: bidirectional
entailment. For a paraphrase group S of sentences: ∀s1, s2 ∈ S, s1 �
s2 ∧ s2 � s1, every sentence in the group entails the every other sentence
in the group. A stricter interpretation of bidirectional entailment was
used, as compared to the “mostly bidirectional entailment” used in the
MSRP corpus. The grouping was carried out manually. Where it was
unclear as to the group a particular phrase should belong to it was left
out of the corpus entirely. The general guidelines were as follows.

• Tense, Transitional Phrases, and Discourse and Pragmatic Markers
were ignored.

• Statement intensity was coarsely quantized.
• Approximately equal quantitative and qualitative values were treated

as synonymous.
• Sentences with entities mentioned explicitly were grouped separately

from similar statements where they were implied.
• Sentences with additional information were grouped separately from

those without that information.
The final point is the most significant change from the practices apparent
in the construction of the MSRP corpus. Sentences with differing or addi-
tional information were classified as non-paraphrases. This requirement
comes from the definition of bidirectional entailment. For example, “The
staff were friendly and polite.”, “The staff were polite.” and “The staff

90

CHAPTER 5. HOW WELL SENTENCE EMBEDDINGS CAPTURE MEANING

0 5 10 15 20 25 30 35

Number of Paraphrases

0

5

10

15

20

25

30

35

40

N
u
m

b
e
r

o
f

P
a
ra

p
h
ra

se
 G

ro
u
p
s Opinosis Subcorpus

Figure 5.3: Break down of how many paraphrases groups are present in the Opinosis
subcorpus of which sizes. It contains a total of 521 unique sentences, broken up into
89 paraphrase groups.

were friendly.” are in three separate paraphrase groups. The creators of
the MSRP corpus, however, note “...the majority of the equivalent pairs
in this dataset exhibit ‘mostly bidirectional entailments’, with one sen-
tence containing information ‘that differs’ from or is not contained in the
other.” (Dolan and Brockett 2005). While this does lead to more varied
paraphrases; it strays from the strict linguistic definition of a paraphrase,
which complicates the evaluation of the semantic space attempted here.
This stricter adherence to bidirectional entailment resulted in finer sep-
aration of groups, which makes this a more challenging corpus.
After the corpus had been broken into paraphrase groups some simple
post-processing was done. Several artifacts present in the original cor-
pus were removed, such as substituting the ampersand symbol for &.
Any paraphrase groups containing identical sentences were merged, and
duplicates removed. Finally, any group with less than three phrases was
discarded. With this complete the breakdown is as in Figure 5.3.
Further information on the construction of the corpora in this section,
and download links are available online.4

5.5 Results and Discussion

5.5.1 Classification Results and Discussion

The results of performing the evaluation method described in Section 5.3
are shown in Table 5.1.
While the relative performance of the models is similar between the
corpora, the absolute performance differs. On the absolute scale, all
the models perform much better on the MSRP subcorpus than on the
Opinosis subcorpus. This can be attributed to the significantly more

4http://white.ucc.asn.au/resources/paraphrase_grouped_corpora/

91

http://white.ucc.asn.au/resources/paraphrase_grouped_corpora/

CHAPTER 5. HOW WELL SENTENCE EMBEDDINGS CAPTURE MEANING

MSRP Subcorpus Opinosis Subcorpus
PV-DM 78.00% 38.26%

PV-DBOW 89.93% 32.19%
URAE 51.14% 20.86%
MOWE 97.91% 69.30%
SOWE 98.02% 68.75%
BOW 98.37% 65.23%

PCA BOW 97.96% 54.43%

Table 5.1: The semantic classification accuracy of the various models across the two
evaluation corpora.

distinct classes in the MSRP subcorpus. The Opinosis subcorpus draws
a finer line between sentences with similar meanings. As discussed ear-
lier, for example there is a paraphrase group for “The staff were polite.”,
another for “The staff were friendly.”, and a third for “The staff were
friendly and polite.”. Under the guidelines used for paraphrases in MSRP,
these would all have been considered the same group. Secondly, there is
a much wider range of topics in the MSRP. Thus the paraphrase groups
with different meanings in MSRP corpus are also more likely to have
different topic entirely than those from Opinosis. Thus the the ground
truth of the semantics separability of phrases from the MSRP corpus
is higher than for Opinosis, making the semantic classification of the
Opinosis subcorpus is a more challenging task.

The URAE model performs the worst of all models evaluated. In (Kåge-
bäck et al. 2014) is was suggested that the URAE’s poor performance
at summarizing the Opinosis corpus could potentially be attributed to
the less formally structured product reviews – the URAE being a highly
structured compositional model. However, here it also performed poorly
on the MSRP – which it was created for Socher et al. (2011a). The exact
same model used by the authors of the paper was used here – though this
did put it at a dimensional disadvantage over the other models having
200 dimensions to the other’s 300. The key difference from the evaluation
in Socher et al. (2011a), beyond the changing to a multiclass classifica-
tion problem, was the lack of the complementary word-level features as
used in the dynamic pooling layer. This suggests the model could benefit
from such world level features – as the very strong performance of the
word-based model indicates.

The word based models, MOWE, SOWE, BOW and PCA BOW, per-
formed very well. This suggests that word choice is a very significant
factor in determining meaning; so much so that the models which can
make use of word order information, URAE and PV-DM, were signifi-
cantly outperformed by methods which made more direct use of the word
content.

The very high performance of the BOW maybe attributed to its very high
dimensionality, though the MOWE and SOWE performed similarly. The
PCA step can be considered as being similar to choosing an optimal set
of words to keep so as to maximum variability in the bag of words. It
loses little performance, even though decreasing vector size by an order
of magnitude – particularly on the easier MSRP dataset.

92

CHAPTER 5. HOW WELL SENTENCE EMBEDDINGS CAPTURE MEANING

3
4

4
5

5
6

2
6

3
6

3
6

4
4

4
4

0
4

3
4

1
4

7
7

1
7

4
7

2
6

1
8

4
8

2
7

3
24

3
46

2
20

PCA BOW
6

BOW
4

SOWE
7

MOWE
8

URAE
138

PV-DBOW
32

PV-DM
63

MSRP

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

39
57

30
43

27
42

9
59

10
55

17
59

21
41

24
44

7
57

10
55

13
60

40
48

6
48

11
46

9
47

7
50

13
47

9
50

4
96

6
98

9
81

PCA BOW
65

BOW
63

SOWE
52

MOWE
55

URAE
135

PV-DBOW
109

PV-DM
109

OPINOSIS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 5.4: The misclassification agreement between each of the models for the
MSRP (left) and Opinosis (right) subcorpora. Below each model name is the to-
tal mistakes made. The denominator of each fraction is the number of test cases
incorrectly classified by both models. The numerator is the portion of those misclas-
sifications which were classified in the same (incorrect) way by both models. The
shading is in-proportion to that fraction.

5.5.2 Model Agreement

The misclassifications of the models can be compared. By selecting one of
the test/train folds from the classification task above, and comparing the
predicted classifications for each test-set sentence, the similarities of the
models were assessed. The heatmaps in Figure 5.4 show the agreement
in errors. Here misclassification agreement is given as an approximation
to P (m1(x) = m2(x) |m1(x) 6= y ∧ m2(x) 6= y), for a randomly selected
sentence x, with ground truth classification y, where the models m1 and
m2 are used to produce classifications. Only considering the cases where
both models were incorrect, rather than simple agreement, avoids the
analysis being entirely dominated by the agreement of the models with
the ground truth.

The word based models showed significant agreement. Unsurprisingly
MOWE and SOWE have almost complete agreement in both evalua-
tions. The other models showed less agreement – while they got many
of the same cases wrong the models produced different misclassifications.
This overall suggests that the various full sentence models are produc-
ing substantially dissimilar maps from meaning to vector space. Thus it
seems reasonable that using a ensemble approach between multiple sen-
tence models and one word-based model would produce strong results.
Yin and Schütze (2015) found this successful when combining different
word embedding models.

5.5.3 Limitations

This evaluation has some limitations. As with all such empirical eval-
uations of machine learning models, a more optimal choice of hyper-
parameters and training data will have an impact on the performance.
In particular, if the model training was on the evaluation data the models
would be expected to be better able to position their embedding. This
was however unfeasible due to the small sizes of the datasets used for
evaluation, and would not reflect real word application of the models to

93

CHAPTER 5. HOW WELL SENTENCE EMBEDDINGS CAPTURE MEANING

data not prior seen. Beyond the limitation of the use of the datasets is
their contents.
The paraphrase groups were not selected to be independent of the word
content overlap – they were simply collected on commonality of meaning
from real world sourced corpora. This is a distinct contrast to the the
work of Ritter et al. (2015) discussed in Section 5.2.3 where the classes
were chosen to not have meaningful word overlap. However our work
is complementary to theirs, and our findings are well aligned. The key
difference in performance is the magnitude of the performance of the
sum of word embeddings (comparable to the mean of word embeddings
evaluated here). In Ritter et al. 2015 the word embedding model per-
formed similarly to the best of the more complex models. In the results
presented above we find that the word embedding based model performs
significantly beyond the more complex models. This can be attributed to
the word overlap in the paraphrase groups – in real-world speech people
trying to say the same thing do in-fact use the same words very often.

5.6 Conclusion

A method was presented, to evaluate the semantic localization of sen-
tence embedding models. Semantically equivalent sentences are those
which exhibit bidirectional entailment – they each imply the truth of the
other. Paraphrases are semantically equivalent. The evaluation method
is a semantic classification task – to classify sentences as belonging to
a paraphrase group of semantically equivalent sentences. The datasets
used were derived from subsets of existing sources, the MRSP and the
Opinosis corpora. The relative performance of various models was con-
sistent across the two tasks, though differed on an absolute scale.
The word embedding and bag of word models performed best, followed by
the paragraph vector models, with the URAE trailing in both tests. The
strong performance of the sum and mean of word embeddings (SOWE
and MOWE) compared to the more advanced models aligned with the
results of Ritter et al. (2015). The difference in performance presented
here for real-word sentences, were more marked than for the synthetic
sentence used by Ritter et. al. This may be attributed to real-world
sentences often having meaning overlap correspondent to word overlap –
as seen also in the very strong performance of bag of words. Combining
the result of this work with those of Ritter et. al., it can be concluded
that summing word vector representations is a practical and surprisingly
effective method for encoding the meaning of a sentence.

94

CHAPTER 6. LEARNING OF COLORS FROM COLOR NAMES:
DISTRIBUTION AND POINT ESTIMATION

Chapter 6

Learning of Colors from Color
Names: Distribution and
Point Estimation

This paper is currently under review for Computational Linguistics.

Abstract

Color names are often made up of multiple words. As a task in natural language
understanding we investigate in depth the capacity of neural networks based on
sums of word embeddings (SOWE), recurrence (LSTM and GRU based RNNs)
and convolution (CNN), to estimate colors from sequences of terms. We consider
both point and distribution estimates of color. We argue that the latter has
a particular value as there is no clear agreement between people as to what a
particular color describes – different people have a different idea of what it means
to be “very dark orange”, for example. Surprisingly, despite it’s simplicity, the
sum of word embeddings generally performs the best on almost all evaluations.

6.1 Introduction

Consider that the word tan may mean one of many colors for different
people in different circumstances: ranging from the bronze of a tanned
sunbather, to the brown of tanned leather; green may mean anything
from aquamarine to forest green; and even forest green may mean
the rich shades of a rain-forest, or the near grey of Australian bush land.
Thus the color intended cannot be uniquely inferred from a color name.
Without further context, it does nevertheless remain possible to estimate
likelihoods of which colors are intended based on the population’s use of
the words.

Color understanding, that is, generating color from text, is an important
subtask in natural language understanding. For example, in a natu-
ral language enabled human-machine interface, when asked to select the
dark bluish green object, it would be much useful if we could rank each
object based on how likely its color matches against a learned distribu-
tion of the color name dark bluish green. This way if the most-likely
object is eliminated (via another factor), the second most likely one can
be considered. A threshold can be set to terminate the search. This kind

95

CHAPTER 6. LEARNING OF COLORS FROM COLOR NAMES:
DISTRIBUTION AND POINT ESTIMATION

of likelihood-based approach is not possible when we have only exact
semantics based on point estimates.
Color understanding is a challenging domain, due to high levels of am-
biguity, the multiple roles taken by the same words, the many modifiers,
and the many shades of meaning. In many ways it is a grounded micro-
cosm of natural language understanding. Due to its difficulty, texts con-
taining color descriptions such as the flower has petals that are
bright pinkish purple with white stigma are used to demonstrate
the capability of the-state-of-the-art image generation systems (Reed et
al. 2016; Mansimov et al. 2015). The core focus of the work we present
is to map from the short-phrase descriptions of a color, to representa-
tion in a color-space such as HSV (Smith 1978). The HSV color space
is a grounded meaning space for the short phrase. Due to this ground-
ing, and the aforementioned linguistic phenomena, this is a particularly
interesting short phrase understanding task. Issues of illumination and
perceived color based on context are considered out of the scope of this
article.

6.1.1 Distribution vs. Point Estimation

As illustrated, proper understanding of color names requires considering
the color intended as a random variable. In other words, a color name
should map to a distribution, not just a single point or region. For a
given color name, any number of points in the color-space could be in-
tended, with some being more or less likely than others. Or equivalently,
up to interpretation, it may intend a region but the likelihood of what
points are covered is variable and uncertain. This distribution is often
multimodal and has a high and asymmetrical variance, which further
renders regression to a single point unsuitable.
A single point estimate does not capture the diverse nature of the color
names adequately. Moreover, it is impossible to find the single best point
estimation method. For example: for a bimodal distribution, using the
distribution’s mean as a point estimate will minimize the total squared
error, but it will select a point in the valley between the peaks, which is
less likely and less meaningful as a characterisation of that color. Sim-
ilarly for an asymmetrical distribution, where the mean will be off to
one side of the peak. Conversely, using the modes of the distribution
the highest (most likely) peaks will be selected, but will on average be
more incorrect as measured by the mean squared error. The correct
trade-off, if a point estimate is required, depends on the final use of the
system. Another problem is that point estimates do not capture the
sensitivity. In an asymmetrical distribution, having a point slightly off-
centre in one direction may result in a very different probability, this
more generally holds for a narrow variance distribution. Conversely for
a very wide variance distribution (for example one approaching the uni-
form distribution) the point estimate value may matter very little with all
points providing similar probabilities. Color distributions are almost al-
ways multimodal or asymmetrical, and exhibit widely differing variances
for different names. This can be seen in the histograms of the training
data shown in Figure 6.7 in Section 6.6.1. Note that while only a small
(but particularly interesting) set of colors demonstrate multimodality in

96

CHAPTER 6. LEARNING OF COLORS FROM COLOR NAMES:
DISTRIBUTION AND POINT ESTIMATION

the hue channel, as noted by McMahan and Stone (2015), when consid-
ering all channels the other problematic features abound. Asymmetry
in-particular is ubiquitous in the value and saturation channels. Given
these issues, producing a point estimate has only limited value: estimat-
ing a distribution is a more general task. However we do consider the
point estimation task, as it allows contrast in assessing the input mod-
ule (SOWE/CNN/GRU/LSTM) of our proposed methods across the two
different output modules (distribution/point estimation).

Generation of color from text has not received much attention in prior
work. To the best of our knowledge, the only similar work is Kawakami
et al. (2016); which only considers point estimation, and uses a dataset
containing far too few observations to allow for learning probability dis-
tributions from population usages of the color names. Kawakami et al.
(2016) uses a character sequence based model, rather than a word se-
quence model, which is inline with the very small amount of training
data for each color name they have. To our knowledge the generation
of probability distributions in a color-space, from color names as con-
sidered as sequences of words, has not been investigated at all by any
prior work. This paper is the first investigation of such kind. There
have been several works on the reverse problem (McMahan and Stone
2015; Meo, McMahan, and Stone 2014; Monroe, Goodman, and Potts
2016): the generation of a textual name for a color from a point in a
color-space. From these works on the reverse problem, there is a clear
trend towards data-driven approaches in recent years where more color
names and observations are used. This motivates our own data-driven
approach presented in this paper.

6.1.2 Contributions

Problem statement: given a set of 〈color-name, (h, s, v)〉 pairs, we
need to learn a mapping from any color-name, seen or unseen, to a color-
value or a distribution in HSV color space.

We propose a neural network based architecture that can be broken down
into an input module, which learns a vector representation of color-
names, and a linked output module, which produces either a probabil-
ity distribution or a point estimate. The output module uses a softmax
output layer for probability distribution estimation, or a novel HSV out-
put layer for point estimation. To carry out the representational learning
of color-names, four different color-name embedding learning models are
investigated for use in the input module: Sum Of Word Embeddings
(SOWE), Convolutional Neural Network (CNN) and two types of Recur-
rent Neural Network (LSTM and GRU RNNs). All four input modules
use pretrained FastText embeddings (Bojanowski et al. 2017) to repre-
sent the individual tokens making up the color names, but combine them
using difference mechanisms. The capacity of these input models is of
primary interest to this work.

To evaluate and compare the three learning models, we designed a series
of experiments to assess their capability in capturing compositionality of
language used in color names. These include: (1) evaluation on all color
names (full task); (2) evaluation on color names when the order of the

97

CHAPTER 6. LEARNING OF COLORS FROM COLOR NAMES:
DISTRIBUTION AND POINT ESTIMATION

words matters (order task); (3) evaluation on color names which never
occur in the training data in that exact form, but for which all terms
occur in the training data (unseen combination task); (4) qualitative
demonstration of outputs for color names with terms which do not occur
in the training data at all, but for which we know their word embeddings
(embedding only task).

To express the estimated distribution for the output module, we discretize
the HSV color-space to produce a histogram. This allows us to take
advantage of the well-known softmax based methods for the estimation
of a probability mass distribution using a neural network. An interesting
challenge when considering this discretization is the smoothness of the
estimate. The true space is continuous, even if we are discretizing it at a
resolution as high as the original color monitors used to collect the data.
Being continuous means that a small change in the point location in the
color-space should correspond to a small change in how likely that point
is according to the probability distribution. Informally, this means the
histograms should look smooth, and not spiky. We investigated using
a Kernel Density Estimation (KDE) based method for smoothing the
training data, and further we conclude that the neural networks learn
this smoothness.

We conclude that the simplest SOWE model is generally the best model
for all tasks both for distribution and point estimation. It is followed
closely by the CNN; with the RNNs both performing significantly worse
(see Section 6.6). We believe that due to the nature of color understand-
ing as a microcosm of natural language understanding, the results of
our investigations have some implications for the capacity of how these
models can be used for representing language compositionality in short
phrase understanding.

6.2 Related Work

The understanding of color names has long been a concern of psycholin-
guistics and anthropologists (Berlin and Kay 1969; Heider 1972; Heider
and Olivier 1972; Mylonas et al. 2015). It is thus no surprise that there
should be a corresponding field of research in natural language process-
ing.

The earliest works revolve around explicit color dictionaries. This in-
cludes the ISCC-NBS color system (Kelly 1955) of 26 words, that are
composed according to a context free grammar, such that phrases are
mapped to single points in the color-space; and the simpler, non-compositional,
11 basic colors of Berlin and Kay (1969). Works including Berk, Kauf-
man, and Brownston (1982), Conway (1992), Lammens (1994), Mo-
jsilovic (2005), Menegaz et al. (2007), and Van De Weijer et al. (2009)
propose methods for the automatic mapping of colors to and from these
small manually defined sets of color names. We note that Menegaz et al.
(2007) and Van De Weijer et al. (2009) both propose systems that dis-
cretize the color-space, though to a much coarser level than we consider
in this work.

The large Munroe dataset (Munroe 2010), has allowed a data driven

98

CHAPTER 6. LEARNING OF COLORS FROM COLOR NAMES:
DISTRIBUTION AND POINT ESTIMATION

approach to natural language color problems. In-contrast to earlier man-
ually defined color dictionaries, it has a large number of colors, a non-
trivial vocabulary, and is sourced from a survey of hundreds of thousands
of respondents. Full details on this dataset can be found in Section 6.4.4.
The availability of a large color corpus has allowed machine learning
based methods to be used in recent works including McMahan and Stone
(2015), Meo, McMahan, and Stone (2014), Monroe, Goodman, and Potts
(2016), and Winn and Muresan (2018) and this article.

McMahan and Stone (2015) and Meo, McMahan, and Stone (2014) present
a Bayesian method for color estimation and color naming. Their work
primarily focuses on mapping from colors to to their exact names, the
reverse of our task. While their method is reversible: to go from ex-
act color names to probabilities, they do not present any evaluations of
this. These works are based on defining fuzzy rectangular distributions in
the color-space to cover the distribution estimated from the data, which
are used in a Bayesian system to non-compositionally determine the color
name. This work focuses only on exact color names, where as later works
consider the sequential nature of multi-word color names.

Monroe, Goodman, and Potts (2016) map a point in the color-space,
to a sequence of probability estimates over color words. They extend
beyond all prior color naming systems to produce a compositional color
namer based on the Munroe dataset. Their method uses a recurrent
neural network (RNN), which takes as input a color-space point, and the
previous output word, and gives a probability of the next word to output
– this is a conditional language model. We tackle the inverse problem,
natural language understanding rather than generation. Our distribution
estimation models map from a sequence of terms, to a distribution in
color-space. Similarly, our point estimation models map from a sequence
of terms to a single point in color-space.

Kawakami et al. (2016) proposes another compositional color naming
model. They use a per-character RNN and a variational autoencoder
approach. It is in principle very similar to Monroe, Goodman, and Potts
(2016), but functioning on a character, rather than word level. The work
by Kawakami et al. also includes a method for generating colors. How-
ever they only consider the generation of point estimates, rather than
distributions. The primary focus of our work is on generating distribu-
tions. The datasets used by Kawakami et al. contain only very small
numbers of observations for each color name (often just one). These
datasets are thus not suitable for modeling the distribution in color-space
as interpreted by a population. Further, given the very small number of
examples they are not well suited for use with word-based modeling: the
character based modeling employed by Kawakami et al. is much more
suitable. As such, we do not attempt to compare with their work.

Monroe et al. (2017) present a neural network solution to a communica-
tion game, where a speaker is presented with three colors and asked to
describe one of them, and the listener is to work out which color is being
described. Speaker and listener models are trained, using LSTM-based
decoders and encoders, respectively. The final time-step of their model
produces a 100 dimensional representation of the description provided.
From this, a Gaussian distributed score function is calculated, over a

99

CHAPTER 6. LEARNING OF COLORS FROM COLOR NAMES:
DISTRIBUTION AND POINT ESTIMATION

Data

Training Data
Preparation

Input
Tokenization

Output
Preparation

Sect.
6.3.2

Sect.
6.3.3

Input Modules

GRU RNN

LSTM RNN

SOWE

CNN
Sect.
6.3.4

Sect.
6.3.4

Sect.
6.3.4 Output Modules

Softmax

Novel HSV
Regression

Sect.
6.3.5

Sect.
6.3.5

Probability
Distribution
Estimate

Point
Estimate

Figure 6.1: The overall architecture of our system.

high dimensional color-space defined by Monroe, Goodman, and Potts
(2016), which is then used to score each of the three options. While this
method does work with a probability distribution, as a step in its goal,
this distribution is always both symmetric and unimodal – albeit in a
high-dimensional color-space.
Winn and Muresan (2018) demonstrates a neural network for produc-
ing directional vectors in a color space indicating how comparatives such
as lighter and darker change a color. This effectively creates a ray
(half-line) in color space along which possible colors described lie. Their
networks takes as its inputs a word embedding for a comparative ad-
jective, and a point in RGB color-space. It outputs a directional vec-
tor in the RGB space along which occurs the possible modified ver-
sion of the input color point according to the given adjective. The
magnitude of this directional vector is trained such that adding it to
the source color point, will give a good point estimate of the modi-
fied color. For example mapping from green to a darker green is:
((164, 227, 77), darker) 7→ (141, 190, 61) for a point estimate. When us-
ing it for a ray estimate it is the half line from the first, through the
second point, where every point further along the ray is darker than the
earlier point. The color adjectives may have up to two words, to allow
for expressions such as more neon. This is allowed by taking as a fixed
sized input of two embeddings – when only one input is required, the
other is replaced by a zero vector. Their training and evaluation is based
on data sourced from the Munroe dataset.

6.3 Method

6.3.1 System Architecture

Our overall system architecture for all models is shown in Figure 6.1.
This shows how color names are transformed into distribution or point
estimates over the HSV color-space.

6.3.2 Input Data Preparation

We desire a color prediction model which takes as input a sequence of
words that make up the color’s name rather than simply mapping from

100

CHAPTER 6. LEARNING OF COLORS FROM COLOR NAMES:
DISTRIBUTION AND POINT ESTIMATION

the whole phrase (whole phrase mapping does not scale to new user
input, given the combinatorial nature of language). Towards this end,
color names are first tokenized into individual words. For the input
into our neural network based models, these words are represented with
pretrained word embeddings.

Tokenization

During tokenization a color name is split into terms with consistent
spelling. For example, bluish kahki would become the sequence of
3 tokens: [blue, ish, khaki]. Other than spelling, the tokenization re-
sults in the splitting of affixes and combining tokens (such as hyphens).
Combining tokens and related affixes affect how multiple colors can be
combined. The full list of tokenization rules can be found in the accom-
panying source code. Some further examples showing how combining
tokens and affixes are used and tokenized:

• blue purple 7→ [blue, purple].

• blue-purple 7→ [blue, -, purple].

• bluish purple 7→ [blue, ish, purple]

• bluy purple 7→ [blue, y, purple]

• blurple 7→ [blue-purple]

The final example of blurple 7→ [blue-purple] is a special-case. It
is the only portmanteau in the dataset, and we do not have a clear
way to tokenize it into a series of terms which occur in our pretrained
embedding’s vocabulary (see Section 6.3.2). The portmanteau blurple is
not in common use in any training set used for creating word embeddings,
so no pretrained embedding is available.1 As such we handle it by treating
it as the single token blue-purple for purposes of finding an embedding.
There are many similar hyphenated tokens in the pretrained embeddings
vocabulary, however (with that exception) we do not use them as it
reduces the sequential modeling task to the point of being uninteresting.

Embeddings

All our neural network based solutions incorporate an embedding layer.
This embedding layer maps from tokenized words to vectors. We make
use of 300 dimensional pretrained FastText embeddings (Bojanowski et
al. 2017)2.

The embeddings are not trained during the task, but are kept fixed.
As per the universal approximation theorem (Leshno et al. 1993; Son-
oda and Murata 2017) the layers above the embedding layer allow for
arbitrary continuous transformations. By fixing the embeddings, and
learning this transformation, we can produce estimates of colors from
embeddings alone, without any training data at all, as shown in Sec-
tion 6.6.4.

1Methods do exist to generate embeddings for out of vocabulary words (like blurple), particularly
with FastText embeddings (Bojanowski et al. 2017). But we do not investigate those here.

2Available from https://fasttext.cc/docs/en/english-vectors.html

101

https://fasttext.cc/docs/en/english-vectors.html

CHAPTER 6. LEARNING OF COLORS FROM COLOR NAMES:
DISTRIBUTION AND POINT ESTIMATION

6.3.3 Output Data Preparation for Training Distribution Es-
timation Models

To train the distribution estimation models we need to preprocess the
training data into a distribution. The raw training data itself, is just a
collection of 〈color-name, (h, s, v)〉 pairs – samples from the distributions
for each named-color. This is suitable for training the point estimation
models, but not for the distribution estimation models . We thus convert
it into a tractable form, of one histogram per output channel – by as-
suming the output channels are conditionally independent of each other.

Conditional Independence Assumption

We make the assumption that given the name of the color, the distribu-
tion of the hue, saturation and value channels are independent. That is
to say, it is assumed if the color name is known, then knowing the value
of one channel would not provide any additional information as to the
value of the other two channels. The same assumption is made, though
not remarked upon, in Meo, McMahan, and Stone (2014) and McMahan
and Stone (2015). This assumption of conditional independence allows
considerable saving in computational resources. Approximating the 3D
joint distribution as the product of three 1D distributions decreases the
space complexity from O(n3) to O(n) in the discretized step that follows.

Superficial checks were carried out on the accuracy of this assumption.
Spearman’s correlation on the training data suggests that for over three
quarters of all color names, there is only weak correlation between the
channels for most colors (Q3 = 0.187). However, this measure underes-
timates correlation for values which have a circular relative value, such
as hue. Of the 16 color-spaces evaluated, HSV had the lowest correlation
by a large margin. Full details, including the table of correlations, are
available in supplementary materials (Section 6.8.1). These results are
suggestive, rather than solidly indicative, on the degree of correctness of
the conditional independence assumption. We consider the assumption
sufficient for this investigation; as it does not impact on the correctness
of results. A method that does not make this assumption may perform
better when evaluated using the same metrics we use here.

Discretization

For distribution estimation, our models are trained to output histograms.
This is a discretized representation of the continuous distribution. Fol-
lowing standard practice, interpolation-based methods can be used to
handle it as a continuous distribution. By making use of the conditional
independence assumption (see Section 6.3.3), we output one 256-bin his-
togram per channel. We note that 24-bit color (as was used in the survey
that collected the dataset) can have all the information captured by a 256
bin discretization per channel. 24 bit color allows for a total of 224 colors
to be represented, and even one-hot encoding for each of the 256 bin dis-
cretization channels allows for the same. As such there is no meaningful
loss of information during the discretization step when using histograms

102

CHAPTER 6. LEARNING OF COLORS FROM COLOR NAMES:
DISTRIBUTION AND POINT ESTIMATION

over a truly continuous estimation method, such as a Gaussian mix-
ture model. Although such models may have other advantages (such as
the apriori information added by specifying the distribution), we do not
investigate them here, instead considering the simplest non-parametric
estimation model (the histogram), which has the simple implementation
in a neural network using a softmax output layer.

Discretizing the data in this way is a useful solution used in several other
machine learning systems. Oord, Kalchbrenner, and Kavukcuoglu (2016)
and Oord et al. (2016) apply a similar discretization step and found their
method to outperform the more complex truly continuous distribution
outputting systems.

For training purposes we thus convert all the observations into histograms.
One set of training histograms is produced per color description present
in the dataset – that is to say a training histogram is created for brownish
green, greenish brown, green etc. We perform uniform weight attribu-
tion of points to bins as described by Jones and Lotwick (1984). In-short,
this method of tabulation is to define the bins by their midpoints, and to
allocate probability mass to each bin based on how close an observe point
is to the adjacent midpoints. A point precisely on a midpoint would have
all its probability mass allocated to that bin; whereas a point halfway
between midpoints would have 50% of its mass allocated to each. For ex-
ample were we to have bins with midpoints at 1 and 3: then observation
at 2, then 50% of probability mass for this observation would be allocated
to the bin with midpoint 1, and 50Whereas if there observation was at
2.5 then 25% of its mass would be allocated to the bin at 1, and 25% of
its mass to the bin at 3. Our bins are at much finer resolution than this
example, dividing the space between 0 and 1 into 256 bins. This form
of tabulation commonly used during the first step of performing kernel
density estimation, prior to the application of the kernel.

6.3.4 Color Name Representation Learning (Input Modules)

For each of the models investigated we define an input module. This
module handles the input of the color name, which is provided as a
sequence of tokens. It produces a fixed sized dense representation of the
color name, which is the input to the output module Section 6.3.5). In
all models the input and output modules are trained concurrently as a
single system.

Recurrent Neural Networks (GRU and LSTM RNNs)

A Recurrent Neural Network (RNN) is a common choice for this kind of
task, due to the variable length of the input. We consider two ”flavours”
of RNN: Gated Recurrent Unit (GRU) networks (Cho et al. 2014b), and
Long Short Term Memory (LSTM) networks (Hochreiter and Schmidhu-
ber 1997; Gers, Schmidhuber, and Cummins 1999). They differ only in
their recurrent unit’s internal structure. The general structure of both
input modules is shown in Figure 6.2. It is similar to Monroe, Good-
man, and Potts (2016), or indeed to most other word sequence learning
models. Each word is first transformed to an embedding representation.

103

CHAPTER 6. LEARNING OF COLORS FROM COLOR NAMES:
DISTRIBUTION AND POINT ESTIMATION

ReLU

Output Module

GRU/
LSTM

GRU/
LSTM

GRU/
LSTM

GRU/
LSTM

GRU/
LSTM

Embedding

〈EOS〉

Embedding

green

Embedding

ish

Embedding

blue

Embedding

light

Figure 6.2: The LSTM/GRU Input module for the example input light greenish
blue. Each dashed box represents 1 time-step. .

This representation is trained with the rest of the network allowing per
word information to be efficiently learned. The embedding is used as the
input for the recurrent unit, either a GRU or an LSTM depending on
the model considered. The stream is terminated with an End of Stream
(<EOS>) pseudo-token, represented using a zero-vector. The output of
the last time-step is fed to a Rectified Linear Unit (ReLU), and then to
the output model.

During preliminary investigations we also considered a vanilla RNN (that
is to say one without any gating). Early results on the development set
suggested that it performed only marginally worse than the GRU or
LSTM networks. That it does not perform much worse than the models
with features to improve memory is unsurprising, as the color names
have at most 5 terms. We constrained our full investigation to the more
popular GRU and LSTM networks.

Sum of Word Embeddings (SOWE)

Using a simple sum of word embeddings as a layer in a neural network
is less typical than an RNN structure, though it is well established as a
useful representation, and has been used as an input to other classifiers
such as support vector machines (e.g. as in White et al. (2015) and
White et al. (2018b)). Any number of word embeddings can be added to
the sum, thus allowing it to handle sequences of any length. However,
it has no representation of the order. The structure we used is shown in
Figure 6.3.

Convolutional Neural Network(CNN)

A convolutional neural network (shown in Figure 6.4) can be applied to
the task by applying 2D convolution over the stacked word embeddings.
We use 64 filters of size between one and five. Five is number of tokens
in the longest color-name, so this allows it to learn full length relations.

104

CHAPTER 6. LEARNING OF COLORS FROM COLOR NAMES:
DISTRIBUTION AND POINT ESTIMATION

∑

Embedding

green

Embedding

ish

Embedding

blue

Embedding

light

ReLU

Output Module

Figure 6.3: The SOWE input module for the example input light bluish green

stack into grid

Embedding

green

Embedding

ish

Embedding

blue

Embedding

light

2D Convolution

ReLU

MaxPooling

ReLU

Output Module

Figure 6.4: The CNN input module for the example input light bluish green.

105

CHAPTER 6. LEARNING OF COLORS FROM COLOR NAMES:
DISTRIBUTION AND POINT ESTIMATION

Input Module

Softmax Softmax Softmax

Hue Saturation Value

Figure 6.5: The Distribution Output Module

6.3.5 Distribution and Point Estimation (Output Modules)

On top of the input module, we define an output module to suit the
neural network for the task of either distribution estimation or point
estimation. The input module defines how the terms are composed into
the network. The output module defines how the network takes its hidden
representation and produces an output.

Distribution Estimation

The distributions are trained to produce the discretized representation as
discussed in Section 6.3.3. Making use of the conditional independence
assumption (see Section 6.3.3), we output the three discretized distribu-
tions. As shown in Figure 6.5, this is done using three softmax output
layers – one per channel. They share a common input, but have sepa-
rate weights and biases. The loss function is given by the sum of the
cross-entropy for each of the three softmax outputs.

Point Estimation

Our point estimation output module is shown in Figure 6.6. The hidden-
layer from the top of the input module is fed to four single output neu-
rons.3 Two of these use the sigmoid activation function (range 0:1) to
produce the outputs for the saturation and value channels. The other two
use the tanh activation function (range -1:1), and produce the intermedi-
ate output that we call yshue and ychue for the sine and cosine of the hue
channel respectively. The hue can be found as yhue = atan2 (yshue, ychue).
We use the intermediate values when calculating the loss function. Dur-
ing training we use the following loss function for each observation y?,

3Equivalently these four single neurons can be expressed as a layer with four outputs and two
different activation functions.

106

CHAPTER 6. LEARNING OF COLORS FROM COLOR NAMES:
DISTRIBUTION AND POINT ESTIMATION

Input Module

yhue ysat yval

σ σ

atan2 (yshue, ychue)

tanh tanh

yshue ychue

Figure 6.6: The Point Estimate Output Module. Here atan2 is the quadrant preserv-
ing arctangent, outputting the angle in turns.

and each corresponding prediction y.

loss =
1

2
(sin(y?hue)− yshue)

2

+
1

2
(cos(y?hue)− ychue)

2

+ (y?sat − ysat)
2

+ (y?val − yval)
2 (6.1)

The mean of this loss is taken over all observations in each mini-batch
during training. This loss function is continuous and correctly handles
the wrap-around nature of the hue channel (White 2016).

6.4 Evaluation

6.4.1 Perplexity in Color-Space

Perplexity is a measure of how well the distribution, estimated by the
model, matches the reality according to the observations in the test set.
Perplexity is commonly used for evaluating language models. Here how-
ever, it is being used to evaluate the discretized distribution estimate. It
can be loosely thought of as to how well the model’s distribution does in
terms of the size of an equivalent uniform distribution. Note that this
metric does not assume conditional independence of the color channels.
Here τ is the test-set made up of pairs consisting of a color name t, and
a color-space point x̃; and p(x̃ | t) is the output of the evaluated model.
Perplexity is defined as:

PP (τ) = exp2

−1
|τ |

∑
∀(t,(x̃))∈τ

log2 p(x̃ | t)

 (6.2)

As the perplexity for a high-resolution discretized model will inherently
be very large and difficult to read, we define the standardized perplex-
ity: PP (τ)

nres
, where nres is the total number of bins in the discretization

107

CHAPTER 6. LEARNING OF COLORS FROM COLOR NAMES:
DISTRIBUTION AND POINT ESTIMATION

scheme. For all the results we present here nres = 2563. This stan-
dardized perplexity gives the easily interpretable values usually between
zero and one. It is equivalent to comparing the relative performance of
the model to that of a uniform distribution of the same total resolution.
PP (τ)
nres

= 1 means that the result is equal to what we would see if we
had distributed the probability mass uniformly into all bins in a 3D his-
togram. PP (τ)

nres
= 0.5 means the result is twice as good as if we were

to simply use a uniform distribution: it is equivalent to saying that the
correct bin is selected as often as it would be had a uniform distribution
with half as many bins been used (i.e. larger bins with twice the area).
The standardized perplexity is also invariant under different output res-
olutions. Though for brevity we only present results with 256 bins per
channel, our preliminary results for using other resolutions are similar
under standardized perplexity.

6.4.2 Angularly Correct Calculations on HSV

We use the HSV color-space (Smith 1978) throughout this work. In
this format: hue, saturation and value all range between zero and one.
Note that we measure hue in turns, rather than the more traditional
degrees, or radians. Having hue measured between zero and one, like
the other channels, makes the modeling task more consistent. Were the
hue to range between 0 and 2π (radians) or between 0 and 360 (degrees)
it would be over-weighted in the loss function and evaluation metrics
compared to the other channels. This regular space means that errors on
all channels can be considered equally. Unlike many other colors spaces
(CIELab, Luv etc.) the gamut is square and all combinations of values
from the different channels correspond to realizable colors.
When performing calculations with the HSV color-space, it is important
to take into account that hue is an angle. As we are working with the
color-space regularized to range between zero and one for all channels,
this means that a hue of one and a hue of zero are equivalent (as we
measure in turns, in radians this would be 0 and 2π).
The square error of two hue values is thus calculated as:

SE(h1, h2) = min
(
(h1 − h2)

2 , (h1 − h2 − 1)2
)

(6.3)
This takes into account that the error can be calculated clockwise or
counter-clockwise; and should be the smaller. Note that the −1 term is
related to using units of turns, were we using radians it would be −2π.
The mean of a set of hues ({h1, . . . , hN}) is calculated as:

h̄ = atan2

(
1

N

i=N∑
i=1

sin(hi),
1

N

i=N∑
i=1

cos(hi)

)
(6.4)

This gives the mean angle.

6.4.3 Non-compositional Baselines

We consider a non-compositional model to establish a baseline on the
color modeling part of this task; with the exclusion of the language un-
derstanding part.

108

CHAPTER 6. LEARNING OF COLORS FROM COLOR NAMES:
DISTRIBUTION AND POINT ESTIMATION

The non-compositional methods do not process each term in the name;
they do not work with the language at all. They simply map from the
exact input text (no tokenization) to the pre-calculated distribution or
mean of the training data for the exact color name. As there is plenty of
training data for most color names (see Section 6.4.4) this is a very ef-
fective approach. Strictly speaking, this non-compositional baseline has
less information than the neural network models as it does not have the
tokenized color name given to it, but only the whole name. However,
pragmatically learning to compose the sequence of terms into a mean-
ingful whole is by far the harder part of this task. This non-compositional
baseline bypasses the compositional language understanding part of the
process. It is as if the input module (as discussed in Section 6.3.4) would
perfectly resolve the sequence of terms into a single item. These models
can exploit the training observations without the need to determine how
to compose the tokens. This is a useful baseline, as our neural models
(SOWE, CNN, GRU and LSTM) each differs in how they compose the
tokens, and on that this study focuses.

In theory the term-based neural models shoukd out-perform the non-
compositional baseline, if they learn a very good compositional under-
standing of the language. This would require learning how the terms in
the color name combine in a way that exceeds the information directly
present in the training data per class. It is this capacity of learning how
the terms combine that allow for the models to predict the outputs for com-
binations of terms that never occur in the training data (Section 6.4.4).
Learning a compositional model that exploits its term based knowledge
in such a way that generalizes to get better results than the direct ex-
ploitation of the training data (as in the non-compositional baseline), is
very difficult and would require very well calibrated control of (over/un-
der)fitting. This is particularly true in the case where there is a large
amount of training data for the whole phrase. Conversely, when there
is no training data for the whole phrase (as considered in Section 6.4.4)
non-compositional models can not function at all.

Non-compositional Baseline for Distribution Estimation: KDE

To define a non-compositional baseline for the distribution estimation
tasks, we use kernel-density estimation (KDE) in a formulation for non-
parametric estimation (Silverman 1986) . The KDE effectively pro-
duces a smoothed histogram from the training data as processed in Sec-
tion 6.3.3. It causes adjacent bins to have most similar probabilities, thus
matching to the mathematical notion of a continuous random variable.
This is applied on-top of the histogram used for the training data. We
use the Fast Fourier Transform (FFT) based KDE method of the Silver-
man (1982). We use a Gaussian kernel, and select the bandwidth per
color description based on leave-one-out cross validation on the training
data. A known issue with the FFT-based KDE method is that it has
a wrap-around effect near the boundaries, where the probability mass
that would be assigned outside the boundaries is instead assigned to the
bin on the other side. For the value and saturation channels we follow
the standard solution of initially defining additional bins outside the true
boundaries, then discarding those bins and rescaling the probability to

109

CHAPTER 6. LEARNING OF COLORS FROM COLOR NAMES:
DISTRIBUTION AND POINT ESTIMATION

one. For the hue channel this wrap-around effect is exactly as desired.

In our evaluations using KDE rather than just the training histograms
directly proved much more successful on all distribution estimation tasks.
This is because it avoids empty bins, and effectually interpolates prob-
abilities between observations. We found in preliminary investigations
that using KDE-based method to be much better than add-one smooth-
ing.

We also investigated the application of KDE to the training data, be-
fore training our term-based neural network based distribution models.
Results for this can be found in Section 6.8.2. In brief, we found that
smoothing the training data does not significantly affect the result of the
neural network based models. As discussed in Section 6.6.2, this is be-
cause the neural networks are able to learn the smoothness relationship
of adjacent bins.

Our KDE-based non-compositional baseline for distribution estimation
bypasses the natural language understanding part of the task, and di-
rectly uses the standard non-parametric probability estimation method
to focus solely on modeling the distributions. Matching its performance
indicates that a model is effectively succeeding well at both the natu-
ral language understanding component and the distribution estimation
component.

Non-Compositional Baseline for Point Estimation: Mean-point

In a similar approach, we also propose a method that directly produces
a point estimate from a color name. We define this by taking the mean
(centroid) of all the training observations for a given exact color name.
The mean is taken in the angularly correct way (as discussed in Sec-
tion 6.4.2). Taking the mean of all the observations gives the theoreti-
cally optimal solution to minimize the squared error on the training data
set. As with our direct distribution estimation method, this bypasses
the term based language understanding, and directly exploits the train-
ing data. It thus represents an approximate upper bound on the point
estimation performance of the term based models. Though, as discussed
in Section 6.1, the notion of mean and of minimizing the square error
is not necessarily the correct way to characterize selecting the optimal
point estimate for colors. It is however a consistent way to do so, and so
we use it for our evaluations.

6.4.4 Evaluation Strategies and Data

Full Task

We make use of the Munroe dataset as prepared by McMahan and Stone
(2015) from the results of the XKCD color survey. The XKCD color
survey (Munroe 2010) collected over 3.4 million observations from over
222,500 respondents. McMahan and Stone take a subset from Munroe’s
full survey, by restricting it to the responses from native English speakers,
and removing very rare color names with less than 100 uses. This gives

110

CHAPTER 6. LEARNING OF COLORS FROM COLOR NAMES:
DISTRIBUTION AND POINT ESTIMATION

a total of 2,176,417 observations and 829 color names. They also define
a standard test, development and train split.

Full Task Corpus Statistics

• In the full corpus 829 unique color names made up of 308 unique
terms.

• Training split

– There are a total of 1,523,108 training observations.

– The distribution of observations between color names has the
following quartile statistics: Q0: 70.0, Q1: 109.0, Q2: 214.0,
Q3: 627.0, Q4: 152,953.0.

– The distribution of observations between terms has the follow-
ing quartile statistics: Q0: 70.0, Q1: 148.5, Q2: 345.0, Q3:
2,241.75, Q4: 347,173.0.

• Development split

– There are a total of 108,545 development observations.

– The distribution of observations between color names has the
following quartile statistics: Q0: 5.0, Q1: 7.0, Q2: 15.0, Q3:
45.0, Q4: 10,925.0.

– The distribution of observations between terms has the follow-
ing quartile statistics: Q0: 5.0, Q1: 10.0, Q2: 24.5, Q3: 159.25,
Q4: 24,754.0.

• Test split

– There are a total of 544,764 testing observations.

– The distribution of observations between color names has the
following quartile statistics: Q0: 25.0, Q1: 40.0, Q2: 78.0, Q3:
225.0, Q4: 54,627.0.

– The distribution of observations between terms has the follow-
ing quartile statistics: Q0: 26.0, Q1: 54.75, Q2: 124.5, Q3:
804.0, Q4: 124,138.0.

Unseen combination Task

A primary interest in using the term based models is to be able to make
predictions for never before seen descriptions of colors. For example,
based on the learned understanding of salmon and of bright, from ex-
amples like bright green and bright red, we wish for the system to
make predictions about bright salmon, even though that description
never occurs in the training data. The ability to make predictions, such
as these, illustrates term-based natural language understanding. This
cannot be done with the non-compositional baseline models, which by-
pass the term processing step. To evaluate this generalization capacity,
we define new sub-datasets for both testing and training. We select the
rarest 100 color descriptions from the full dataset, with the restriction
that every token in a selected description must still have at least 8 uses

111

CHAPTER 6. LEARNING OF COLORS FROM COLOR NAMES:
DISTRIBUTION AND POINT ESTIMATION

in other descriptions in the training set. The selected examples include
multi-token descriptions such as: bright yellow green and also sin-
gle tokens that occur more commonly as modifiers than as stand-alone
descriptions such as pale.

The unseen combination testing set has only observations from the full
test set that do use those rare descriptions. We define a corresponding
restricted training set made up of the data from the full training set,
excluding those corresponding to the rare descriptions. A restricted de-
velopment set is created similarly to the training set, containing data
from the full (original) validation set, with the exclusion of rare descrip-
tions used in the test set. This was done so that no direct knowledge of
the combined terms can leak during early-stopping.

By training on the restricted training set and testing on the unseen com-
binations, we can assess the model’s capacity of compositionality to make
predictions for color descriptions not seen during training. A similar ap-
proach was used in Winn and Muresan (2018) and in Atzmon et al.
(2016). We contrast this to the same models when trained on the full
training set to see how much accuracy was lost.

Unseen Combinations Corpus Statistics

• In the unseen combinations testset, there are (by design) 100 unique
color names, that is 12.06% of the full set of color names. Thus
the number of unique color names in the restricted training set is
decreased by 100 names (i.e 12.06% smaller).

• 20,460 observations were removed from the training set . Thus the
restricted training set contains 13.43% fewer observations than the
full training set.

• 14 terms are used across the 100 color names in the unseen combi-
nations test set. They are blue, bright, brown, dark, deep, dull,
green, grey, ish, light, lime, olive, orange, pale, pink, purple,
red, rose, teal, very, violet, y, yellow, and -.

Order Task

It is believed that the order of words in a color description matters, at
least to some extent, for it’s meaning. For example, greenish brown and
brownish green are distinct, if similar, colors. To assess the models
on their ability to make predictions when order matters we construct
the order test set. This is a subset of the full test set containing only
descriptions with terms that occur in multiple different orders. There
are 76 such descriptions in the full dataset. Each of which has exactly
one alternate ordering. This is unsurprising as while color descriptions
may have more than 2 terms, normally one or more of the terms is a
joining token such as ish or -. We only construct an order testing set,
and not a corresponding training set, as this is an evaluation using the
model trained on the full training data.

Order Task Corpus Statistics

112

CHAPTER 6. LEARNING OF COLORS FROM COLOR NAMES:
DISTRIBUTION AND POINT ESTIMATION

• 76 unique color names with 2 possible orders for their terms are
used. They makes up 9.17% of the unique color names in the full
data set.

• In the full training set (which is used for training for this evaluation)
there are 63,048 observations of these color names, making up 4.14%
of all training observations.

• 16 terms are used in these ambiguous ordered color names. Namely:
apple, blue, bright, brown, green, grey, ish, light, orange,
pink, purple, red, violet, y, yellow and -.

6.5 Experimental Setup

6.5.1 Implementation

The implementation of all the models was in the Julia programming
language (Bezanson et al. 2014). The full implementation can be down-
loaded from the GitHub repository.4 The machine learning components
makes heavy use of the MLDataUtils.jl5 and TensorFlow.jl (Malmaud
and White 2018) packages, the latter of which was enhanced significantly
to allow for this work to be carried out. The discretization and the KDE
for the non-compositional baseline is done using KernalDensityEstima-
tion.jl.6 The training data is managed with DataDeps.jl (White et al.
2018).

6.5.2 Common Network Features

Drop-out (Srivastava et al. 2014) is used on all ReLU layers and on the
recurrent units in the RNNs, with threshold of 0.5 during training. The
network is optimized using Adam (Kingma and Ba 2014), and a learn-
ing rate of 0.001. Early stopping is checked every 10 epochs using the
development dataset. Distribution estimation methods are trained using
the full batch (where each observation is a distribution) for every epoch.
Point Estimation methods are trained using randomized mini-batches of
216 observations (which are each color-space triples). All hidden-layers,
except as otherwise precluded (inside the convolution, and in the penul-
timate layer of the point estimation networks) have the same width 300,
as does the embedding layer.

6.6 Results

6.6.1 Qualitative Results

To get an understanding of the problem and how the models are perform-
ing, we consider some of the outputs of the model for particular cases.
Figure 6.7 shows examples of distribution estimates, and Figure 6.8 shows

4Implementation source is at https://github.com/oxinabox/ColoringNames.jl
5MLDataUtils.jl is available from https://github.com/JuliaML/MLDataUtils.jl
6KernalDensityEstimation.jl is available from https://github.com/JuliaStats/KernelDensity.

jl

113

https://github.com/oxinabox/ColoringNames.jl
https://github.com/JuliaML/MLDataUtils.jl
https://github.com/JuliaStats/KernelDensity.jl
https://github.com/JuliaStats/KernelDensity.jl

CHAPTER 6. LEARNING OF COLORS FROM COLOR NAMES:
DISTRIBUTION AND POINT ESTIMATION

Training DataTraining Data

Training Data

Non-compositional
Baseline

Non-compositional
Baseline

Non-compositional
Baseline

SOWESOWE

SOWE

CNNCNN

CNN

GRUGRU

GRU

LSTMLSTM

LSTM

Figure 6.7: Some examples of the output distribution estimates from the models
trained on the full dataset

114

CHAPTER 6. LEARNING OF COLORS FROM COLOR NAMES:
DISTRIBUTION AND POINT ESTIMATION

Non-compositional
Baseline

Non-compositional
Baseline

SOWE

SOWE

CNN

CNN

GRU

GRU

LSTM

LSTM

Figure 6.8: Some examples of the output point estimates from the models trained on
the full dataset

115

CHAPTER 6. LEARNING OF COLORS FROM COLOR NAMES:
DISTRIBUTION AND POINT ESTIMATION

similar examples for point estimates. Both are taken from models trained
on the full training dataset. It can be seen that the models’ outputs using
term based estimation are generally similar to the non-term-based non-
compositional baseline, as is intended. This shows that the models are
correctly fitting to estimate the colors. It can be noted that in general
the colors are very good, with only a few marked exceptions, discussed
in the following sections, particularly around multi-word colors. To the
naked eye, it is hard to to distinguish between the outputs of the different
models. The general high quality of the estimates aligns with the strong
results found in the quantitative evaluations discussed in Section 6.6.2.
The example shown in Figures 6.7 and 6.8 serve to indicate that while
the quantitative results do show that some of the models perform better
than others, the true visual difference is very small.

On the effects of word-order

The different input modules have a different capacity to leverage word-
order. This is reflected in Figures 6.7 and 6.8, when considering the
pairs of outputs that differ only in word order, such as purple-pink and
pink-purple. The plots presented for the training data and for the non-
compositional baseline show that such color name pairs are subtly differ-
ent but similar. The SOWE model is unable to take into account word
order at all, and so produces identical outputs for all orders. The CNN
models produce very similar outputs but not strictly identical – spotting
the difference requires a very close observation. This is in-line with the
different filter sizes allowing the CNN to effectively use n-gram features,
and finding that the unigram features are the most useful. Both RNN
models (GRU and LSTM) produce estimated distributions that visibly
depend on the order of words. It seems that the first term dominates the
final output: for example greenish brown is more green, and brownish
green is more brown, contrary to the linguistic understanding. The RNN
outputs are more similar to the color described by first term than any
later terms. We can see that the first term is not solely responsible for the
final output however, as purple-pink, purple and purplish (tokenized
as purple, ish) are all different. It is surprising that the RNNs outputs
are dominated by the first term and not the latter terms7. This shows
that they are functioning to remember the earlier inputs. However, they
are struggling to attribute the significance of the word order. Linguisti-
cally we would expect the last term to be the most significant: greenish
brown is a shade of brown, not green. This expectation is reflected in
the histogram for the training data. Although, for many of the order
swapped colors the training histograms shown are very similar regardless
of the order.

On the smoothness of the distribution estimates

In Figure 6.7 it can be seen that the term-based distribution estima-
tion models are much smoother than the corresponding histograms taken
from the training data. They are not as smooth as the non-compositional

7So much so that we double checked our implementation to be sure that it wasn’t processing the
inputs backwards.

116

CHAPTER 6. LEARNING OF COLORS FROM COLOR NAMES:
DISTRIBUTION AND POINT ESTIMATION

Table 6.1: The results for the full distribution estimation task. Lower perplexity
(PP) is better.

Method PP
2563

Non-compositional Baseline 0.071
SOWE 0.075
CNN 0.078
GRU 0.089
LSTM 0.092

baseline which explicitly uses KDE. However, they are much smoother
than would be expected, had the output bins been treated independently.
Thus it is clear that the models are learning that adjacent bins should
have similar output values. This is a common feature of all the training
data, no matter which color is being described. This learned effect is
in line with the fact that color is continuous, and is only being repre-
sented here as discrete. We note in relation to this learned smoothness:
that while the models capture the highly asymmetrical shapes of most
distributions well, they do not do well at capturing small dips. Larger
multi-modes as seen in the achromatic colors such as white, grey, black,
white, are captured; but smaller dips such as the hue of greenish being
more likely to be on either side of the green spectrum are largely filled
in. In general, it seems clear that additional smoothing of the training
data is not required for the neural network based models. This aligns
with the results presented in Section 6.8.2.

6.6.2 Quantitative Results

Overall, we see that our models are able to learn to estimate colors based
on sequences of terms. From the consideration of all the results shown
in Tables 6.1 to 6.6, the CNN and SOWE models perform almost as well
as the non-compositional baseline. With the SOWE having a marginal
lead for distribution estimation, and the CNN and SOWE being nearly
exactly equal for most point estimation tasks. We believe the reason for
this is that the SOWE is an easier to learn model from a gradient descent
perspective: it is a shallow model with only one true hidden layer. In
general the results for the LSTM and GRU were very similar, and both
much worse than the non-recurrent models. While it is only marginally
behind the SOWE and CNN on the full point estimation task (Table 6.2),
on all other tasks for both point estimation and distribution estimation
it is significantly worse. This may indicate that it is hard to capture
the significant relationships between terms in the sequence. However,
as discussed Section 6.6.2 it did learn generally acceptable colors to the
human eye, but the quantitative results presented in this section show
that it is not as close a match to the population’s expectation.

Ordered Task

The performance of SOWE on the order tasks (Tables 6.3 and 6.4) is
surprising. For the distribution estimation it outperforms the CNN, and
for point estimation it ties with the CNN. The CNN and RNN, can take

117

CHAPTER 6. LEARNING OF COLORS FROM COLOR NAMES:
DISTRIBUTION AND POINT ESTIMATION

Table 6.2: The results for the full point estimation task. Lower mean squared
error (MSE) is better.

Method MSE

Non-compositional Baseline 0.066
SOWE 0.067
CNN 0.067
GRU 0.071
LSTM 0.071

Distribution Mean Non-compositional Baseline 0.066
Distribution Mean SOWE 0.068
Distribution Mean CNN 0.069
Distribution Mean GRU 0.077
Distribution Mean LSTM 0.077

Table 6.3: The results for the order distribution estimation task. Lower per-
plexity (PP) is better. This is a subset of the full test set containing only tests where
the order of the words matters.

Method PP
2563

Non-compositional Baseline 0.053
SOWE 0.055
CNN 0.057
GRU 0.124
LSTM 0.125

into account word order, but the SOWE model cannot. The good results
for SOWE suggest that the word-order is not very significant for color
names. While word order matters, different colors with the same terms
in different order are similar enough for most colors that it still performs
very well. In theory the models that are capable of using word order have
the capacity to ignore it, and thus could achieve a similar result. An RNN
can learn to perform a sum of its inputs (the word embeddings), and the
CNN can learn to weight all non-unigram filters to zero. In practice we
see that for the RNN in particular this clearly did not occur. This can be
attributed to the more complex networks being more challenging to train
via gradient descent. It seems that color-naming is not a task where word
order substantially matters, and thus the simpler SOWE model excels.

Table 6.4: The results for the order point estimation task. Lower mean squared
error (MSE) is better. This is a subset of the full test set containing only tests where
the order of the words matters.

Method MSE

Non-compositional Baseline 0.065
SOWE 0.066
CNN 0.066
GRU 0.096
LSTM 0.096

Distribution Mean Non-compositional Baseline 0.065
Distribution Mean SOWE 0.066
Distribution Mean CNN 0.066
Distribution Mean GRU 0.095
Distribution Mean LSTM 0.088

118

CHAPTER 6. LEARNING OF COLORS FROM COLOR NAMES:
DISTRIBUTION AND POINT ESTIMATION

Unseen Combinations of Terms

The SOWE and CNN models are able to generalize well to making es-
timates for combinations of color terms that are not seen in training.
Tables 6.5 and 6.6 show the results of the model on the test set made up
of rare combinations of color names (as described in Section 6.4.4) for
the restricted training set (which does not contain those terms). These
results on this test set are compared with the same models when trained
on the full training set. The non-compositional baseline are unable to
produce estimates from the unseen combinations testing set as they do
not process the color names term-wise. Performing well on this task is
indicative as to if the models are learning how the terms combine to de-
termine the color, as they cannot be simply matching the full color name
(term sequence) against one that occurs in training. This is an impor-
tant test, as due to the combinatorial nature of language, it is common
to encounter term sequences in the real world that never occur during
training.

On distribution estimation (Table 6.5) the SOWE results are only marginally
worse for the restricted training set as they are for the full training set.
The CNN results are worse again, but they are still better than the re-
sults on the full test-set. The distribution estimates are good on absolute
terms, having low evaluated perplexity.

In the point estimation task (Table 6.6) the order is flipped with the
CNN outperforming the SOWE model. In-fact the CNN actually per-
forms better with the restricted training set for predicting the unseen test
colors, than it does for predicting those colors when they are included in
the full training set; though the difference is only marginal. Unlike for
distribution estimates, the unseen color point estimates are worse than
the overall results from the full task (Table 6.2), though the errors are
still small on an absolute scale.

Over all the performance of the SOWE and CNN remain strong on the
unseen combination tasks. The RNN models continue to perform poorly
on the unseen combination of terms task for both point and distribution
estimation. The SOWE and CNN perform sufficiently well on the unseen
combinations that the color estimates they produce would be practically
useful. The unseen combination results are comparable to the full dataset
results discussed (shown in Tables 6.1 and 6.2), and have very small errors
on an absolute scale.

Extracting the mean from the distribution estimates

In the point estimation results discussed so far have been from models
trained specifically for point estimation (as described by Section 6.3.5).
However, it is also possible to derive the mean from the distribution
estimation models. Those results are also presented in Tables 6.2, 6.4
and 6.6. In general these results perform marginally worse (using the
MSE metric) than their corresponding modules using the point estima-
tion output module. The only exception to this is the LSTM for both the
unseen combination tasks and the order task, for which it was notably
better to use the mean from the distribution rather than one directly

119

CHAPTER 6. LEARNING OF COLORS FROM COLOR NAMES:
DISTRIBUTION AND POINT ESTIMATION

Table 6.5: The results for the unseen combinations distribution estimation
task. Lower perplexity (PP) is better. This uses the unseen test set: a subset of the
full test set contain only rare word combinations. In the restricted training set results
these rare word combinations were removed from the training and development sets.
In the full training set results the whole training and development stet was used,
including the rare words that occur in the test set.

Method

Full
Training Set

PP
2563

Restricted
Training Set

PP
2563

Non-compositional Baseline 0.050 –
SOWE 0.050 0.055
CNN 0.052 0.065
GRU 0.117 0.182
LSTM 0.123 0.172

Table 6.6: The results for the unseen combinations point estimation task.
Lower mean squared error (MSE) is better. This uses the unseen test set: a subset
of the full test set contain only rare word combinations. In the restricted training set
results these rare word combinations were removed from the training and development
sets. In the full training set results the whole training and development stet was used,
including the rare words that occur in the test set.

Method

Full
Training Set

MSE

Restricted
Training Set

MSE

Non-compositional Baseline 0.062 –
SOWE 0.065 0.079
CNN 0.072 0.070
GRU 0.138 0.142
LSTM 0.138 0.141

Distribution Mean Non-compositional Baseline 0.062 –
Distribution Mean SOWE 0.073 0.076
Distribution Mean CNN 0.073 0.084
Distribution Mean GRU 0.105 0.152
Distribution Mean LSTM 0.105 0.112

120

CHAPTER 6. LEARNING OF COLORS FROM COLOR NAMES:
DISTRIBUTION AND POINT ESTIMATION

trained. We note that for the non-compositional baseline, the distribu-
tions mean is almost identical to the true mean of points, as expected.

On the differences between the distribution estimation and point estima-
tion training procedure

Beyond the output module there are a few key differences between the
point estimation modules and the distribution estimate modules. When
training distribution estimation models, all examples of a particular color
name is grouped into a single high information training observation using
the histogram as the output. Whereas when training for point estima-
tion, each example is processed individually (using minibatches). This
means that the distribution estimating models fit to all color names with
equal priority. Whereas for point estimates, more frequently used color
names have more examples, and so more frequent color names are fit
with priority over rarer ones. Another consequence of using training per
example using random minibatches, rather than aggregating and training
with full batch, is increased resilience to to local minima (LeCun et al.
2012). One of the upsides of the aggregated training used in distribution
estimation is that it trains much faster as only a small number of high-
information training examples are processed, rather than a much larger
number of individual observations.
It may be interesting in future work to consider training the distribution
estimates per example using one-hot output representations; thus mak-
ing the process similar to that used in the point estimate training. It is
possible that such a method may have trouble learning the smoothness
of the output space (as discussed in Section 6.6.1), as it would not see
demonstration of the partial activation of adjacent bins in the training
examples. However, this is not certain, much like the point estimation
trained on one-hot learns a representation that minimises mean squared
error outputting a point between all the training examples, it is rea-
sonable to expect that the distribution estimates will output a smooth
histogram as this is near to a minimum for the cross-entropy. With the
current model the presence of partial activation of adjacent bins in all
examples may be causing the smoothness to be learned primarily in the
output layer, and with little respect for the inputs. Such would explain
the difficulties in capturing subtler features of the output distribution,
such as the depth of the valley between the two peaks in the hue of
greenish shown in Figure 6.7. Using one-hot examples for training,
may help force encoding the knowledge of the nature of continuous dis-
tributions deeper into the network allowing the input color name to have
a more pronounce effect.

6.6.3 Training set results

To investigate our supposition that the SOWE, is a much easier function
to fit via gradient descent, as compared to the CNN or the RNNs, we
consider the error rate on the full training set during the training of the
models. These plots are shown in Figure 6.9 and Figure 6.10. These plots
seem to support the supposition, as the SOWE training error decreases
notably faster (it is a steeper curve) in both cases. This corresponds to

121

CHAPTER 6. LEARNING OF COLORS FROM COLOR NAMES:
DISTRIBUTION AND POINT ESTIMATION

0 100 200 300 400 500
0.000

0.200

0.400

0.600

0.800

1.000

Epoch

P
P

2
5
6
3

Distribution Estimators, Training Error

SOWE
CNN
GRU
LSTM Final Training

Performance
Method PP

2563

SOWE 0.057
CNN 0.070
GRU 0.081
LSTM 0.094

Figure 6.9: The training set error of the distribution estimation models, when trained
on the full dataset. Note that the plots stop when the model ceased training due to
the development set error rising (early stopping).

.

a easier error surface in network parameter (weights and biases) space,
with fewer points of low gradient, or near local minima. If we compare
the final loss of each method on the training set (before it was stopped
due to early stopping) against the test set results in Tables 6.1 and 6.2 we
find they are similar, particularly for distribution estimation (Table 6.1
and Figure 6.9). While for point estimation (Figure 6.10 and table 6.2),
on the test set CNN and SOWE perform similarly, while RNNs perform
much worse, despite the fact that in training the performance of CNN is
roughly midway between SOWE and the RNNs. In all cases, the absolute
error in training has become small relative the to the natural variation
in the training set by the time early stopping terminates training. Note
that perfect fit is not possible as the training data varies.

6.6.4 Completely Unseen Color Estimation From Embeddings

As an interesting demonstration of how the models function by learning
the transformation from the embedding space to the output, we briefly
consider the outputs for color-names that do not occur in the training or
testing data at all. This is even more extreme than the unseen combi-
nation task considered in Tables 6.5 and 6.6 where the terms appeared
in training, but not the combination of terms. In the examples shown
in Figures 6.11 and 6.12, where the terms never occurred in the training
data at all, our models exploit the fact that they work by transforming
the word-embedding space to predict the colors. There is no equivalent
for this in the direct models. While Grey and gray never occur in the
training data; grey does, and it is near-by in the word-embedding space.
Similar is true for the other colors that vary by capitalization. We only
present a few examples of single term colors here, and no quantitative
investigation, as this is merely a matter of interest.
It is particularly interesting to note that the all the models make similar
estimations for each color. This occurs both for point estimation and

122

CHAPTER 6. LEARNING OF COLORS FROM COLOR NAMES:
DISTRIBUTION AND POINT ESTIMATION

0 20 40 60 80 100

0.047

0.053

0.060

Epoch

M
SE

Point Estimators, Training Error

SOWE
CNN
GRU
LSTM Final Training

Performance
Method MSE
SOWE 0.132
CNN 0.135
GRU 0.149
LSTM 0.148

Figure 6.10: The training set error of the point estimation models, when trained on
the full dataset. Note that the plots stop when the model ceased training due to the
development set error rising (early stopping).

for distribution estimation. They do well on the same colors and make
similar mistakes on the colors they do poorly at. The saturation of Gray
is estimated too high, making it appear too blue/purple, this is also
true of grey though to a much lesser extent. Purple and Green produce
generally reasonable estimates. The hue for Brown is estimated as having
too much variance, allowing the color to swing into the red or yellowish-
green parts of the spectrum. This suggests that in general all models are
learning a more generally similar transformation of the space. In general
the overall quality of each model seems to be in line with that found in
the results for the full tests.

6.7 Conclusion

We have presented four input modules (SOWE, CNN, GRU and LSTM),
and two output modules (distribution estimate, and point estimate) that
are suitable for using machine learning to make estimates about color
based on the terms making up its name. We contrasted these to a non-
compositional baseline model for each task which bypassed the term-wise
natural language understanding component of the problem. We found
the results for SOWE, and CNN were strong, approaching this strong
baseline.

It is a note-worthy feature on the current state of short phrase modeling,
and the difficulty of compositional natural language understanding that
the term-based models are not able to out-perform the non-compositional
baseline where training data for the whole phrases was available. The
term-based models are effectively given additional information, in the
form of the tokenisation, but are unable to fully leverage it in the gen-
eral case. They are unable to outperform simply ignoring the common
sub-phase information when training instances for the whole phrase are
available.

123

CHAPTER 6. LEARNING OF COLORS FROM COLOR NAMES:
DISTRIBUTION AND POINT ESTIMATION

SOWESOWE

SOWE

CNNCNN

CNN

GRUGRU

GRU

LSTMLSTM

LSTM

Figure 6.11: Some example distribution estimations for colors names which are com-
pletely outside the training data. The terms: Brown, gray, Gray, Green, and Purple,
do not occur in any of the color data; however brown, grey green, and purple do
occur.

SOWE

SOWE

CNN

CNN

GRU

GRU

LSTM

LSTM

Figure 6.12: Some example point estimates for colors names which are completely
outside the training data. The terms: Brown, gray, Gray, Green, and Purple, do not
occur in any of the color data; however brown, grey green, and purple do occur.

124

CHAPTER 6. LEARNING OF COLORS FROM COLOR NAMES:
DISTRIBUTION AND POINT ESTIMATION

A key take away from our results is that using a SOWE should be pre-
ferred over an RNN for short phrase natural language understanding
tasks when order is not a very significant factor. It is also important to
evaluate if order is indeed a significant factor, since on the surface one
would expect it to be for color names. One way to evaluate this is to
include SOWE as a baseline model in other tasks. While RNNs are the
standard type of model for problems with sequential input, such as color
names made up of multiple words as we considered here. However, we
find both LSTM and GRU performance to be significantly exceeded by
SOWE and CNN. SOWE is an unordered model roughly corresponding
to a bag of words. CNN similarly roughly correspondents to a bag of
ngrams, in our case a bag of all 1,2,3,4 and 5-grams. This means that
the CNN can readily take advantage of both fully ordered information,
using the filters of length 5, down to unordered information using filters
of length 1. RNNs however must fully process the ordered nature of its
inputs, as its output comes only from the final node. Between the two
RNN models it seems the GRU performs marginally better. It would be
interesting to further compare with bidirectional variants of these RNNs.
In a broader context, we envisage the distribution learned for a color
name can be used as a prior probability, and when combining with addi-
tional context information, a likelihood can be estimated for particular
uses. This additional information could take the from of other words,
such as estimating the distribution for a brown dog, as compared to a
brown tree, or from other sources. A particularly interesting related av-
enue for investigation would condition the model not only on the words
used but also on the speaker. The original source of the data, Munroe
(2010), includes some demographic information which is not explored as
a model input in any published model (to the best of our knowledge). It
is expected that color-term usage may vary with subcultures.

125

CHAPTER 6. LEARNING OF COLORS FROM COLOR NAMES:
DISTRIBUTION AND POINT ESTIMATION

6.8 Appendix

6.8.1 On the Conditional Independence of Color Channels given
a Color Name

As discussed in the main text, we conducted a superficial investigation
into the truth of our assumption that given a color name, the distribu-
tions of the hue, value and saturation are statistically independent.
We note that this investigation is, by no means, conclusive though it
is suggestive. The investigation focusses around the use of the Spear-
man’s rank correlation. This correlation measures the monotonicity of
the relationship between the random variables. A key limitation is that
the relationship may exist but be non-monotonic. This is almost cer-
tainly true for any relationship involving channels, such as hue, which
wrap around. In the case of such relationships Spearman’s correlation
will underestimate the true strength of the relationship. Thus, this test
is of limited use in proving conditional independence. However, it is a
quick test to perform and does suggest that the conditional independence
assumption may not be so incorrect as one might assume.
In Monroe Color Dataset the training data given by V ⊂ R3×T , where R3

is the value in the color-space under consideration, and T is the natural
language space. The subset of the training data for the description t ∈ T
is given by V|t = {(ṽi, ti) ∈ V | ti = t}. Further let TV = {ti | (ṽ, ti) ∈ V
be the set of color names used in the training set. Let Vα|t be the α

channel component of V|t, i.e. Vα|t =
{
vα | ((v1, v2, v3), t) ∈ V|t

}
.

The set of absolute Spearman’s rank correlations between channels a and
b for each color name is given by Sab =

{∣∣ρ(Va|t, Vb|t)
∣∣ t ∈ TV

}
.

126

CHAPTER 6. LEARNING OF COLORS FROM COLOR NAMES:
DISTRIBUTION AND POINT ESTIMATION

Table 6.7: The third quartile for the pairwise Spearman’s correlation of the color
channels given the color name.

Color-Space Q3(S12) Q3(S13) Q3(S23) max
HSV 0.1861 0.1867 0.1628 0.1867
HSL 0.1655 0.2147 0.3113 0.3113

YCbCr 0.4005 0.4393 0.3377 0.4393
YIQ 0.4088 0.4975 0.4064 0.4975

LCHab 0.5258 0.411 0.3688 0.5258
DIN99d 0.5442 0.4426 0.4803 0.5442
DIN99 0.5449 0.4931 0.5235 0.5449
DIN99o 0.5608 0.4082 0.5211 0.5608
RGB 0.603 0.4472 0.5656 0.603
Luv 0.5598 0.6112 0.4379 0.6112

LCHuv 0.6124 0.4072 0.3416 0.6124
HSI 0.2446 0.2391 0.6302 0.6302

CIELab 0.573 0.4597 0.639 0.639
xyY 0.723 0.5024 0.4165 0.723
LMS 0.968 0.7458 0.779 0.968
XYZ 0.9726 0.8167 0.7844 0.9726

We consider the third quartile of that correlation as the indicative statis-
tic in Table 6.7. That is to say for 75% of all color names, for the given
color-space, the correlation is less than this value.
Of the 16 color-spaces considered, it can be seen that the HSV exhibits
the strongest signs of conditional independence – under this (mildly
flawed) metric. More properly put, it exhibits the weakest signs of non-
independence. This includes being significantly less correlated than other
spaces featuring circular channels such as HSL and HSI.
Our overall work makes the conditional independence assumption, much
like n-gram language models make the Markov assumption. The success
of the main work indicates that the assumption does not cause substantial
issues.

6.8.2 KDE based smoothing of Training Data

It can be seen that smoothing has very little effect on the performance
of any of the neural network based distribution estimation models. All
four term based models (SOWE, CNN, LSTM, GRU all perform very
similarly whether or not the training data is smoothed. This is seen
consistently in all the distribution estimation tasks. Contrast Tables 6.8
to 6.10 to the tables for the unsmoothed results Tables 6.1, 6.3 and 6.5.
If however, smoothing is not applied to the operational upper bound, it
works far worse. In Tables 6.8 to 6.10 the Direct result refers to using
the training histograms almost directly, without any smoothing or term-
based input processing. This is the same as the operational upper bound,
minus the KDE. It works very poorly (by comparison). This is because
the bins values are largely independent: a very high probability in one
bin does not affect the probability of the adjacent bin – which by chance
of sampling may be lower than would be given by the true distribution.
This is particularly notable in the case of the direct, full training set result
on the unseen combinations task reported in Table 6.10. As these were

127

CHAPTER 6. LEARNING OF COLORS FROM COLOR NAMES:
DISTRIBUTION AND POINT ESTIMATION

Table 6.8: The results for the full distribution estimation task using smoothed
training data. Lower perplexity (PP) is better. This corresponds to the main results
in Table 6.1.

Method PP
2563

Direct 0.164
Operational Upper Bound 0.071

SOWE-smoothed 0.075
CNN-smoothed 0.079
GRU-smoothed 0.088
LSTM-smoothed 0.090

Table 6.9: The results for the order distribution estimation task using smoothed
training data. Lower perplexity (PP) is better. This is a subset of the full test set
containing only tests where the order of the words matters. This corresponds to the
main results in Table 6.3.

Method PP
2563

Direct 0.244
Operational Upper Bound 0.053

SOWE-smoothed 0.055
CNN-smoothed 0.058
GRU-smoothed 0.122
LSTM-smoothed 0.120

some of the rarest terms in the training set, several did not coincide with
any bins for observations in testing set. This is because without smooth-
ing it results in estimating the probability based on bins unfilled by any
observation. We do cap that empty bin probability at ε64 u 2 × 10−16

to prevent undefined perplexity. We found capping the lower probability
for bins like this to be far more effective than add-on smoothing.
Conversely, on this dataset the neural network models do quite well,
with or without smoothing. As the network can effectively learn the
smoothness, not just from the observations of one color but from all of
the observations. It learns that increasing the value of one bin should
increase the adjacent ones. As such smoothing does not need to be
applied to the training data.

Table 6.10: The results for the unseen combinations distribution estimation
task using smoothed training data. Lower perplexity (PP) is better. This uses
the extrapolation subset of the full test set. In the extrapolating results certain
rare word combinations were removed from the training and development sets. In
the non-extrapolating results the full training and development stet was used. This
corresponds to the main results in Table 6.5.

Method

Full
Training Set

PP
2563

Restricted
Training Set

PP
2563

Direct 175.883 –
Operational Upper Bound 0.050 –

SOWE-smoothed 0.050 0.056
CNN-smoothed 0.053 0.063
GRU-smoothed 0.112 0.183
LSTM-smoothed 0.119 0.162

128

CHAPTER 7. FINDING WORD SENSE EMBEDDINGS OF KNOWN MEANING

Chapter 7

Finding Word Sense
Embeddings Of Known
Meaning

This paper was presented at the 19th Conference on Intelligent Text Processing and Computational

Linguistics, in 2018.

Abstract

Word sense embeddings are vector representations of polysemous words – words
with multiple meanings. These induced sense embeddings, however, do not nec-
essarily correspond to any dictionary senses of the word. To overcome this, we
propose a method to find new sense embeddings with known meaning. We term
this method refitting, as the new embedding is fitted to model the meaning of a
target word in an example sentence. The new lexically refitted embeddings are
learnt using the probabilities of the existing induced sense embeddings, as well
as their vector values. Our contributions are threefold: (1) The refitting method
to find the new sense embeddings; (2) a novel smoothing technique, for use with
the refitting method; and (3) a new similarity measure for words in context,
defined by using the refitted sense embeddings. We show how our techniques
improve the performance of the Adaptive Skip-Gram sense embeddings for word
similarly evaluation; and how they allow the embeddings to be used for lexical
word sense disambiguation.

7.1 Introduction

Popular word embedding vectors, such as Word2Vec, represent a word’s
semantic meaning and its syntactic role as a point in a vector space
(Mikolov et al. 2013b; Pennington, Socher, and Manning 2014). As
each word is only given one embedding, such methods are restricted
to the representation of only a single combined sense, or meaning, of
the word. Word sense embeddings generalise word embeddings to han-
dle polysemous and homonymous words. Often these sense embeddings
are learnt through unsupervised Word Sense Induction (WSI) (Reisinger
and Mooney 2010; Huang et al. 2012; Tian et al. 2014; Bartunov et al.
2015). The induced sense embeddings are unlikely to directly coincide
with any set of human defined meaning at all, i.e. they will not match
lexical senses such as those defined in a lexical dictionary, e.g. WordNet

129

CHAPTER 7. FINDING WORD SENSE EMBEDDINGS OF KNOWN MEANING

(Miller 1995). These induced senses may be more specific, more broad,
or include the meanings of jargon not in common use.

One may argue that WSI systems can capture better word senses than
human lexicographers do manually. However, this does not mean that
induced senses can replace standard lexical senses. It is important to
appreciate the vast wealth of existing knowledge defined around lexical
senses. Methods to link induced senses to lexical senses allow us to take
advantage of both worlds.

We propose a refitting method to generate a sense embedding vector that
matches with a labelled lexical sense. Given an example sentence with
the labelled lexical sense of a particular word, the refitting method al-
gorithmically combines the induced sense embeddings of the target word
such that the likelihood of the example sentence is maximised. We find
that in doing so, the sense of the word in that sentence is captured. With
the refitting, the induced sense embeddings are now able to be used in
more general situations where standard senses, or user defined senses are
desired.

Refitting word sense vectors to match a lexicographical sense inventory,
such as WordNet or a translator’s dictionary, is possible if the sense inven-
tory features at least one example of the target sense’s use. Our method
allows this to be done very rapidly, and from only the single example of
use this has with possible applications in low-resource languages.

Refitting can also be used to fit to a user provided example, giving a spe-
cific sense vector for that use. This has strong applications in information
retrieval. The user can provide an example of a use of the word they are
interested in. For example, searching for documents about “banks” as
in “the river banks were very muddy”. By generating an embedding for
that specific sense, and by comparing with the generated embeddings
in the indexed documents, we can not only pick up on suitable uses of
other-words for example “beach” and “shore”, but also exclude differ-
ent usages, for example of a financial bank. The method we propose,
using our refitted embeddings, has lower time complexity than AvgSimC
(Reisinger and Mooney 2010), the current standard method for evaluat-
ing the similarity of words in context. This is detailed in Section 7.5.1.

We noted during refitting, that a single induced sense would often dom-
inate the refitted representation. It is rare in natural language for the
meaning to be so unequivocal. Generally, a significant overlap exists be-
tween the meaning of different lexical senses, and there is often a high
level of disagreement when humans are asked to annotate a corpus (Véro-
nis 1998). We would expect that during refitting there would likewise be
contention over the most likely induced sense. Towards this end, we
develop a smoothing method, which we call geometric smoothing that
de-emphasises the sharp decisions made by the (unsmoothed) refitting
method. We found that this significantly improves the results. This sug-
gests that the sharpness of sense decisions is an issue with the language
model, which smoothing can correct. The geometric smoothing method
is presented in Section 7.3.2.

We demonstrate the refitting method on sense embedding vectors induced
using Adaptive Skip-Grams (AdaGram) (Bartunov et al. 2015), as well as

130

CHAPTER 7. FINDING WORD SENSE EMBEDDINGS OF KNOWN MEANING

our own simple greedy word sense embeddings. The method is applicable
to any skip-gram-like language model that can take a sense vector as its
input, and can output the probability of a word appearing in that sense’s
context.

The rest of the paper is organised as follows: Section 7.2 briefly discusses
two areas of related works. Section 7.3 presents our refitting method, as
well as our proposed geometric smoothing method. Section 7.4 describes
the WSI embedding models used in the evaluations. Section 7.5 defines
the RefittedSim measure for word similarity in context, and presents its
results. Section 7.6 shows how the refitted sense vectors can be used for
lexical WSD. Finally, the paper concludes in Section 7.7.

7.2 Related Works

7.2.1 Directly Learning Lexical Sense Embeddings

In this area of research, the induction of word sense embeddings is treated
as a supervised, or semi-supervised task, that requires sense labelled
corpora for training.

Iacobacci, Pilehvar, and Navigli (2015) use a Continuous Bag of Word
language model (Mikolov et al. 2013b), using word senses as the labels
rather than words. This is a direct application of word embedding tech-
niques. To overcome the lack of a large sense labelled corpus, Iacobacci
et al. use a 3rd party WSD tool, BabelFly (Moro, Raganato, and Navigli
2014), to add sense annotations to a previously unlabelled corpus.

Chen, Liu, and Sun (2014) use a supervised approach to train sense vec-
tors, with an unsupervised WSD labelling step. They partially disam-
biguate their training corpus, using word sense vectors based on Word-
Net; and use these labels to train their embeddings. This relabelled
data is then used as training data, for finding sense embeddings using
skip-grams.

Our refitting method learns a new sense embedding as a weighted sum of
existing induced sense embeddings of the target word. Refitting is a one-
shot learning solution, as compared to the approaches used in the works
discussed above. A notable advantage is the time taken to add a new
sense. Adding a new sense is practically instantaneous, and replacing
the entire sense inventory, of several hundred thousand senses, is only a
matter of a few hours. Whereas for the existing approaches this would
require repeating the training process, which will often take several days.
Refitting is a process done to word sense embeddings, rather than a
method for finding sense embeddings from a large corpus.

7.2.2 Mapping induced senses to lexical senses

By defining a stochastic map between the induced and lexical senses,
Agirre et al. (2006), propose a general method for allowing WSI sys-
tems to be used for WSD. Their work was used in SemEval-2007 Task
02 (Agirre and Soroa 2007) to evaluate all entries. Agirre et al. use a

131

CHAPTER 7. FINDING WORD SENSE EMBEDDINGS OF KNOWN MEANING

mapping corpus to find the probability of a lexical sense, given the in-
duced sense according to the WSI system. This is more general than the
approach we propose here, which only works for sense embedding based
WSI. By exploiting the particular properties of sense embedding based
WSI systems we propose a system that can better facilitate the use of
this subset of WSI systems for WSD.

7.3 Proposed Refitting Framework

The key contribution of this work is to provide a way to synthesise a
word sense embedding given only a single example sentence and a set of
pretrained sense embedding vectors. We termed this refitting the sense
vectors. By refitting the unsupervised vectors we define a new vector,
that lines up with the specific meaning of the word from the example
sentence.

This can be looked at as a one-shot learning problem, analogous to re-
gression. The training of the induced sense, and of the language model,
can be considered an unsupervised pre-training step. The new word sense
embedding should give a high value for the likelihood of the example sen-
tence, according to the language model. It should also generalise to give
a high likelihood of other contexts where this word sense occurs.

We initially attempted to directly optimise the sense vector to predict
the example. We applied the L-BFGS (Nocedal 1980) optimisation algo-
rithm with the sense vector being the parameter being optimised over,
and the objective being to maximise the probability of the example sen-
tence according to the language model. This was found to generalise
poorly, due to over-fitting, and to be very slow. Rather than a direct
approach, we instead take inspiration from the locally linear relationship
between meaning and vector position that has been demonstrated for
word embeddings (Mikolov et al. 2013b; Mikolov et al. 2013a; Mikolov,
Yih, and Zweig 2013).

To refit the induced sense embeddings to a particular meaning of a word,
we express that a new embedding as as a weighted combination of the
induced sense vectors. The weight is determined by the probability of
each induced sense given the context.

Given a collection of induced (unlabelled) embeddings u = u1, ..., unu ,
and an example sentence c = w1, ..., wnc we define a function l(u | c)
which determines the refitted sense vector, from the unsupervised vectors
and the context as:

l(u | c) =
∑
∀ui∈u

uiP (ui | c) (7.1)

Bayes’ Theorem can be used to estimate the posterior predictive distri-
bution P (ui | c).

Bengio et al. (2003) describe a similar method to Equation (7.1) for
finding (single sense) word embeddings for words not found in their vo-
cabulary. The formula they give is as per Equation (7.1), but summing
over the entire vocabulary of words (rather than just u).

132

CHAPTER 7. FINDING WORD SENSE EMBEDDINGS OF KNOWN MEANING

7.3.1 A General WSD method

Using the language model and application of Bayes’ theorem, we define
a general word sense disambiguation method that can be used for re-
fitting (Equation (7.1)), and for lexical word sense disambiguation (see
Section 7.6). This is a standard approach of using Bayes’ theorem (Tian
et al. 2014; Bartunov et al. 2015). We present it here for completeness.
The context is used to determine which sense is the most suitable for
this use of the target word (the word being disambiguated). Let s =
(s1, ..., sn), be the collection of senses for the target word1.
Let c = (w1, ..., wnc) be a sequence of words making up the context of
the target word. For example for the target word kid, the context could
be c = (wow the wool from the, is, so, soft, and, fluffy), where kid is
the central word taken from between the and fluffy.
For any particular sense, si, the multiple sense skip-gram language model
can be used to find the probability of a word wj occurring in the context:
P (wj | si). By assuming the conditional independence of each word wj in
the context, given the sense embedding si, the probability of the context
can be calculated:

P (c | si) =
∏

∀wj∈c

P (wj | si) (7.2)

The correctness of the conditional independence assumption depends on
the quality of the representation – the ideal sense representation would
fully capture all information about the contexts it can appear in – thus
the other contexts elements would not present any additional informa-
tion, and so P (wa | wb, si) = P (wa | si). Given this, we have an estimate
of P (c | si) which can be used to find P (si | c). However, a false as-
sumption of independence contributes towards overly sharp estimates of
the posterior distribution Rosenfeld 2000, which we seek to address in
Section 7.3.2 with geometric smoothing.
Bayes’ Theorem is applied to this context likelihood function P (c | si)
and a prior for the sense P (si) to allow the posterior probability to be
found:

P (si | c) =
P (c | si)P (si)∑

sj∈s P (c | sj)P (sj)
(7.3)

This is the probability of the sense given the context.

7.3.2 Geometric Smoothing for General WSD

During refitting, we note that often one induced sense would be calculated
as having much higher probability of occurring than the others (according
to Equation (7.3)). This level of certainty is not expected to occur in
natural languages, ambiguity is almost always possible. To resolve such
dominance problems, we propose a new geometric smoothing method.
This is suitable for smoothing posterior probability estimates derived
from products of conditionally independent likelihoods. It smooths the

1As this part of our method is used with both the unsupervised senses and the lexical senses,
referred to as u and l respectively in other parts of the paper, here we use a general sense s to avoid
confusion.

133

CHAPTER 7. FINDING WORD SENSE EMBEDDINGS OF KNOWN MEANING

resulting distribution, by shifting all probabilities to be closer to the
uniform distribution.
We hypothesize that the sharpness of probability estimates from Equa-
tion (7.3) is a result of data sparsity, and of a false independence as-
sumption in Equation (7.2). This is well known to occur for n-gram
language models (Rosenfeld 2000). Word-embeddings language models
largely overcome the data sparsity problem due to weight sharing effects
(Bengio et al. 2003). We suggest that the problem remains for word
sense embeddings, where there are many more classes. Thus the training
data must be split further between each sense than it was when split
for each word. The power law distribution of word use (Zipf 1949) is
compounded by word senses within those used also following the a power
law distribution (Kilgarriff 2004). Rare senses are liable to over-fit to
the few contexts they do occur in, and so give disproportionately high
likelihoods to contexts that those are similar to. We propose to handle
these issues through additional smoothing.
We consider replacing the unnormalised posterior with its nc-th root,
where nc is the length of the context. We replace the likelihood of Equa-
tion (7.2) with PS(c | si) =

∏
∀wj∈c

nc
√
P (wj | si). Similarly, we replace

the prior with: PS(si) = nc
√

P (wj | si) When this is substituted into
Equation (7.3), it becomes a smoothed version of P (si | c).

PS(si | c) =
nc
√

P (c | si)P (si)∑
sj∈s

nc
√

P (c | sj)P (sj)
(7.4)

The motivation for taking the nc-th root comes from considering the
case of the uniform prior. In this case PS(c | si) is the geometric mean
of the individual word probabilities PS(wj | si). Consider, if one has two
context sentences, c = {w1, ..., wnc} and c′ = {w′

1, ..., w
′
nc′
}, such that

n′
c > n′

c then using Equation (7.2) to calculate P (c | si) and P (c′ | si)
will result in incomparable results as additional number of probability
terms will dominate – often significantly more than the relative values of
the probabilities themselves. The number of words that can occur in the
context of any given sense is very large – a large portion of the vocabulary.
We would expect, averaging across all words, that each addition word in
the context would decrease the probability by a factor of 1

V
, where V

is the vocabulary size. The expected probabilities for P (c | si) is 1
V nc

and for P (c′ | si) is 1
V nc′ . As nc′ > nc, thus we expect P (c′ | si) �

P (c | si). Taking the nc-th and nc′-th roots of P (c | si) and P (c | si)
normalises these probabilities so that they have the same expected value;
thus making a context-length independent comparison possible. When
this normalisation is applied to Equation (7.3), we get the smoothing
effect.

7.4 Experimental Sense Embedding Models

We trained two sense embedding models, AdaGram (Bartunov et al.
2015) and our own Greedy Sense Embedding method. During training
we use the Wikipedia dataset as used by Huang et al. (2012). However,
we do not perform the extensive preprocessing used in that work.

134

CHAPTER 7. FINDING WORD SENSE EMBEDDINGS OF KNOWN MEANING

Most of our evaluations are carried out on Adaptive SkipGrams (Ada-
Gram) (Bartunov et al. 2015). AdaGram is a non-parametric Bayesian
extension of Skip-gram. It learns a number of different word senses, as
are required to properly model the language.

We use the implementation2 provided by the authors with minor adjust-
ments for Julia (Bezanson et al. 2014) v0.5 compatibility.

The AdaGram model was configured to have up to 30 senses per word,
where each sense is represented by a 100 dimension vector. The sense
threshold was set to 10−10 to encourage many senses. Only words with at
least 20 occurrences are kept, this gives a total vocabulary size of 497,537
words.

To confirm that our techniques are not merely a quirk of the AdaGram
method or its implementation, we implemented a new simple baseline
word sense embedding method. This method starts with a fixed number
of randomly initialised embeddings, then greedily assigns each training
case to the sense which predicts it with the highest probability (using
Equation (7.3)). The task remains the same: using skip-grams with
hierarchical softmax to predict the context words for the input word
sense. This is similar to Neelakantan et al. 2015, however it is using
collocation probability, rather than distance in vector-space as the sense
assignment measure. Our implementation is based on a heavily modified
version of Word2Vec.jl3.

This method is intrinsically worse than AdaGram. Nothing in the model
encourages diversification and specialisation of the embeddings. Manual
inspection reveals that a variety of senses are captured, though with sig-
nificant repetition of common senses, and with rare senses being missed.
Regardless of its low quality, it is a fully independent method from Ada-
Gram, and so is suitable for our use in checking the generalisation of the
refitting techniques.

The vocabulary used is smaller than for the AdaGram model. Words
with at least 20,000 occurrences are allocated 20 senses. Words with at
least 250 occurrences are restricted to a single sense. The remaining rare
words are discarded. This results in a vocabulary size of 88,262, with
2,796 words having multiple senses. We always use a uniform prior, as
the model does not facilitate easy calculation of the prior.

7.5 Similarity of Words in Context

Estimating word similarity with context is the task of determining how
similar words are, when presented with the context they occur in. The
goal of this task is to match human judgements of word similarity. For
each of the target words and contexts; we use refitting on the target
word to create a word sense embedding specialised for the meaning in
the context provided. Then the similarity of the refitted vectors can be
measured using cosine distance (or similar). By measuring similarity this
way, we are defining a new similarity measure.

2https://github.com/sbos/AdaGram.jl
3https://github.com/tanmaykm/Word2Vec.jl/

135

https://github.com/sbos/AdaGram.jl
https://github.com/tanmaykm/Word2Vec.jl/

CHAPTER 7. FINDING WORD SENSE EMBEDDINGS OF KNOWN MEANING

Figure 7.1: Block diagram for RefittedSim similarity measure

Sentence containing
Word1 Word1 Word2 Sentence containing

Word2
Pretrained Unsupervised

Sense Embeddings

Refitting Refitting

Distance RefittedSim

u = {u1, ...} u′ = {u′
1, ...}

c c′

l(u | c) l(u′ | c′)

Reisinger and Mooney (2010) define a number of measures for word sim-
ilarity suitable for use with sense embeddings. The most successful was
AvgSimC, which has become the gold standard method for use on simi-
larity tasks. It has been used with great success in many works Huang
et al. 2012; Chen, Liu, and Sun 2014; Tian et al. 2014.
AvgSimC is defined using distance metric d (normally cosine distance)
as:

AvgSimC((u, c), (u′, c′)) =
1

n× n′

∑
ui∈u

∑
u′
j∈u′

P (ui | c)P (u′
j | c′) d(ui, u

′
j)

(7.5)
for contexts c and c′, the contexts of the two words to be compared, and
for u = {u1, ..., un} and u′ = {u′

1, ..., u′n′} the respective sets of induced
senses of the two words.

7.5.1 A New Similarity Measure: RefittedSim

We define a new similarity measure, RefittedSim, as the distance between
the refitted sense embeddings. As shown in Figure 7.1 the example con-
texts are used to refit the induced sense embeddings of each word. This
is a direct application of Equation (7.1).
Using the same definitions as in Equation (7.5), RefittedSim is defined
as:

RefittedSim((u, c), (u′, c′)) = d(l(u | c), l(u′ | c′) = d
(∑

ui∈u uiP (ui | c),
∑

u′
j∈u′ uiP (u′

j | c′)
)

(7.6)
AvgSimC is a probability weighted average of pairwise computed dis-
tances for each sense vector. Whereas RefittedSim is a single distance
measured between the two refitted vectors – which are the probability
weighted averages of the original unsupervised sense vectors.
There is a notable difference in time complexity between AvgSimC and
RefittedSim. AvgSimC has time complexity O(n ‖c‖+ n′ ‖c′‖+ n× n′),
while RefittedSim has O(n ‖c‖+ n′ ‖c′‖). The product of the number of
senses of each word n × n′, may be small for dictionary senses, but it
is often large for induced senses. Dictionaries tend to define only a few
senses per word – the average4 number of senses per word in WordNet
is less than three (Miller 1995). For induced senses, however, it is often

4It should be noted, though, that the number of meanings is not normally distributed (Zipf 1945).

136

CHAPTER 7. FINDING WORD SENSE EMBEDDINGS OF KNOWN MEANING

Table 7.1: Spearman rank correlation ρ× 100 when evaluated on the SCWS task, for
varying hyper-parameters.

Method Geometric
Smoothing

Use
Prior AvgSimC RefittedSim

AdaGram T T 53.8 64.8
AdaGram T F 36.1 65.0
AdaGram F T 43.8 47.8
AdaGram F F 20.7 24.1
Greedy T F 23.6 49.7
Greedy F F 22.2 40.7

Table 7.2: Spearman rank correlation ρ × 100 when evaluated on the SCWS task,
compared to other methods . RefittedSim-S is with smoothing, and RefittedSim-SU
is with uniform prior

Paper Embedding Similarity ρ× 100

This paper AdaGram AvgSimC 43.8
This paper AdaGram RefittedSim-S 64.8
This paper AdaGram RefittedSim-SU 65.0

Huang et al. 2012 Huang et al. AvgSimC 65.7
Huang et al. 2012 Pruned tf-idf AvgSimC 60.5

Chen, Liu, and Sun 2014 Chen et al. AvgSimC 68.9
Tian et al. 2014 Tian et al. AvgSimC 65.4
Tian et al. 2014 Tian et al. MaxSim 65.6

Iacobacci, Pilehvar, and Navigli 2015 SenseEmbed Min Tanimoto 58.9
Iacobacci, Pilehvar, and Navigli 2015 SenseEmbed Weighted Tanimoto 62.4

desirable to train many more senses, to get better results using the more
fine-grained information. Reisinger and Mooney (2010) found optimal
results in several evaluations near 50 senses. In such cases the O(n× n′)
is significant, avoiding it with RefittedSim makes the similarity measure
more useful for information retrieval.

7.5.2 Experimental Setup

We evaluate our refitting method using Stanford’s Contextual Word Sim-
ilarities (SCWS) dataset (Huang et al. 2012). During evaluation, each
context paragraph is limited to 5 words to either side of the target word,
as in the training.

7.5.3 Results

Table 7.1 shows the results of our evaluations on the SCWS similarity
task. A significant improvement can be seen by applying our techniques.

The RefittedSim method consistently outperforms AvgSimC across all
configurations. Similarly geometric smoothing consistently improves per-
formance both for AvgSimC and for RefittedSim. The improvement is
significantly more for RefittedSim than for AvgSimC results. In general
using the unsupervised sense prior estimate from the AdaGram model,
improves performance – particularly for AvgSimC. The exception to this
is with RefittedSim with smoothing, where it makes very little difference.
Unsurprisingly, given its low quality, the Greedy embeddings are always
outperformed by AdaGram. It is not clear if these improvements will

137

CHAPTER 7. FINDING WORD SENSE EMBEDDINGS OF KNOWN MEANING

Target
Lemma

Target
POS Tag

Target
Word

WordNet
Sense Inventory

Pretrained Unsupervised
Sense Embeddings

Refitting

Lexical WSD

Sentence

Disambiguated
Sense
l?

Synset Glosses
{c1, c2, ...}

Induced
Sense Embeddings
u = {u1, u2, ...}

Lexical
Sense Embeddings

l = {l1, l2, ..}

Lexical
Sense Priors

{P (l1), P (l2), ...}
cT

Figure 7.2: Block diagram for performing WSD using refitting.

transfer to clustering based methods due to the differences in how the
sense probability is estimated, compared to the language model based
method evaluated on in Table 7.1.

Table 7.2 compares our results with those reported in the literature us-
ing other methods. These results are not directly comparable, as each
method uses a different training corpus, with different preprocessing
steps, which can have significant effects on performance. It can been seen
that by applying our techniques we bring the results of our AdaGram
model from very poor (ρ × 100 = 43.8) when using normal AvgSimC
without smoothing, up to being competitive with other models, when
using RefittedSim with smoothing. The method of Chen, Liu, and Sun
(2014), has a significant lead on the other results presented. This can be
attributed to its very effective semi-supervised fine-tuning method. This
suggests a possible avenue for future development in using refitted sense
vectors to relabel a corpus, and then performing fine-tuning similar to
that done by Chen et al.

7.6 Word Sense Disambiguation

7.6.1 Refitting for Word Sense Disambiguation

Once refitting has been used to create sense vectors for lexical word
senses, an obvious used of them is to perform word sense disambiguation.
In this section we refer to the lexical word sense disambiguation problem,
i.e. to take a word and find its dictionary sense; whereas the methods
discussed in Equations (7.3) and (7.4) consider the more general problem,
as applicable to disambiguating lexical or induced word senses depending
on the inputs. Our overall process shown in Figure 7.2 uses both: first
disambiguating the induced senses as part of refitting, then using the
refitted sense vectors to find the most likely dictionary sense.

138

CHAPTER 7. FINDING WORD SENSE EMBEDDINGS OF KNOWN MEANING

First, refitting is used to transform the induced sense vectors into lexical
sense vectors. We use the targeted word’s lemma (i.e. base form), and
part of speech (POS) tag to retrieve all possible definitions of the word
(Glosses) from WordNet; there is one gloss per sense. These glosses are
used as the example sentence to perform refitting (see Section 7.3). We
find embeddings, l = {l1, ..., lnl

} for each of the lexical word senses using
Equation (7.1). These lexical word senses are still supported by the
language model, which means one can apply the general WSD method
to determine the posterior probability of a word sense, given an observed
context.
When given a sentence cT , containing a target word to be disambiguated,
the probability of each lexical word sense P (li | cT), can be found us-
ing Equation (7.3) (or the smoothed version Equation (7.4)), over the
lexically refitted sense embeddings. Then, selecting the correct sense is
simply selecting the most likely sense:

l?(l, cT) = argmax
∀li∈l

P (li|cT) = argmax
∀li∈l

P (cT | li)P (li)∑
∀lj∈l P (cT | lj)P (lj)

(7.7)

7.6.2 Lexical Sense Prior

WordNet includes frequency counts for each word sense based on Semcor
(Tengi 1998). These form a prior for P (li). The comparatively small size
of Semcor means that many word senses do not occur at all. We apply
add-one smoothing to remove any zero counts. This is in addition to using
our proposed geometric smoothing as an optional part of the general
WSD. Geometric smoothing serves a different (but related) purpose, of
decreasing the sharpness of the likelihood function – not of removing
impossibilities from the prior.

7.6.3 Experimental Setup

The WSD performance is evaluated on the SemEval 2007 Task 7.
We use the weighted mapping method of Agirre et al. (2006), (see Sec-
tion 7.2.2) as a baseline alternative method for using WSI senses for
WSD. We use Semcor as the mapping corpus, to derive the mapping
weights.
The second baseline we use is the Most Frequent Sense (MFS). This
method always disambiguates any word as having its most common
meaning. Due to the power law distribution of word senses, this is a
very effective heuristic (Kilgarriff 2004). We also consider the results
when using a backoff to MFS when a method is unable to determine the
word sense the method can report the MFS instead of returning no result
(a non-attempt).

7.6.4 Word Sense Disambiguation Results

The results of employing our method for WSD , are shown in Table 7.3.
Our results using smoothed refitting, both with AdaGram and Greed Em-
beddings with backoff, outperform the MFS baseline (Navigli, Litkowski,

139

CHAPTER 7. FINDING WORD SENSE EMBEDDINGS OF KNOWN MEANING

Method Attempted Precision Recall F1
Refitted-S AdaGram 99.91% 0.799 0.799 0.799
Refitted AdaGram 99.91% 0.774 0.773 0.774
Refitted-S Greedy 79.95% 0.797 0.637 0.708
Refitted-S Greedy ∗ 100.00% 0.793 0.793 0.793
Refitted Greedy 79.95% 0.725 0.580 0.645
Refitted Greedy ∗ 100.00% 0.793 0.793 0.793
Mapped AdaGram 84.31% 0.776 0.654 0.710
Mapped AdaGram ∗ 100.00% 0.736 0.736 0.736
MFS baseline 100.00% 0.789 0.789 0.789

Table 7.3: Results on SemEval 2007 Task 7 – course-all-words disambiguation. The
-S marks results using geometric smoothing. The ∗ marks results with MFS backoff.

and Hargraves 2007) – noted as a surprisingly hard baseline to beat
(Chen, Liu, and Sun 2014).

The mapping method (Agirre et al. 2006) was not up to the task of
mapping unsupervised senses to supervised senses, on this large scale
task. The Refitting method works better. Though refitting is only usable
for language-model embedding WSI, the mapping method is suitable for
all WSI systems.

While not directly comparable due to the difference in training data, we
note that our Refitted results, are similar in performance, as measured
by F1 score, to the results reported by Chen, Liu, and Sun (2014). Ada-
Gram with smoothing, and Greedy embeddings with backoff have close
to the same result as reported for L2R with backoff – with the AdaGram
slightly better and the Greedy embeddings slightly worse. They are ex-
ceeded by the best method reported in that paper: S2C method with
backoff. Comparison to non-embedding based methods is not discussed
here for brevity. Historically state of the art systems have functioned
very differently; normally by approaching the WSD task by more direct
means.

Our results are not strong enough for Refitted AdaGram to be used as
a WSD method on its own, but do demonstrate that the senses found
by refitting are capturing the information from lexical senses. It is now
evident that the refitted sense embeddings are able to perform WSD,
which was not possible with the unsupervised senses.

7.7 Conclusion

A new method is proposed for taking unsupervised word embeddings, and
adapting them to align to particular given lexical senses, or user provided
usage examples. This refitting method thus allows us to find word sense
embeddings with known meaning. This method can be seen as a one-
shot learning task, where only a single labelled example of each class is
available for training. We show how our method can be used to create
embeddings to evaluate the similarity of words, given their contexts.

This allows us to propose a new similarity measuring method, Refitted-
Sim. The performance of RefittedSim on AdaGram is comparable to the
results reported by the researchers of other sense embeddings techniques

140

CHAPTER 7. FINDING WORD SENSE EMBEDDINGS OF KNOWN MEANING

using AvgSimC, but its time complexity is significantly lower. We also
demonstrate how similar refitting principles can be used to create a set
of vectors that are aligned to the meanings in a sense inventory, such as
WordNet.
We show how this can be used for word sense disambiguation. On this
difficult task, it performs marginally better than the hard to beat MFS
baseline, and significantly better than a general mapping method used for
working with WSI senses on lexical WSD tasks. As part of our method
for refitting, we present a geometric smoothing to overcome the issues of
overly dominant senses probability estimates. We show that this signifi-
cantly improves the performance. Our refitting method provides effective
bridging between the vector space representation of meaning, and the tra-
ditional discrete lexical representation. More generally it allows a sense
embedding to be created to model the meaning of a word in any given
sentence. Significant applications of sense embeddings in tasks such as
more accurate information retrieval thus become possible.

141

CHAPTER 7. FINDING WORD SENSE EMBEDDINGS OF KNOWN MEANING

142

CHAPTER 8. NOVELPERSPECTIVE: IDENTIFYING POINT OF VIEW
CHARACTERS

Chapter 8

NovelPerspective: Identifying
Point of View Characters

This paper was presented at 56th Annual Meeting of the Association for Computational Linguistics (ACL)
in 2018, in the System Demonstrations track.

Abstract

We present NovelPerspective: a tool to allow consumers to subset their digital
literature, based on point of view (POV) character. Many novels have multiple
main characters each with their own storyline running in parallel. A well-known
example is George R. R. Martin’s novel: “A Game of Thrones”, and others from
that series. Our tool detects the main character that each section is from the
POV of, and allows the user to generate a new ebook with only those sections.
This gives consumers new options in how they consume their media; allowing
them to pursue the storylines sequentially, or skip chapters about characters
they find boring. We present two heuristic-based baselines, and two machine
learning based methods for the detection of the main character.

8.1 Introduction

Often each section of a novel is written from the perspective of a different
main character. The characters each take turns in the spot-light, with
their own parallel storylines being unfolded by the author. As readers,
we have often desired to read just one storyline at a time, particularly
when reading the book a second-time. In this paper, we present a tool,
NovelPerspective, to give the consumer this choice.

Our tool allows the consumer to select which characters of the book they
are interested in, and to generate a new ebook file containing just the
sections from that character’s point of view (POV). The critical part of
this system is the detection of the POV character. This is not an insur-
mountable task, building upon the well established field of named entity
recognition. However to our knowledge there is no software to do this.
Such a tool would have been useless, in decades past when booked were
distributed only on paper. But today, the surge in popularity of ebooks
has opened a new niche for consumer narrative processing. Methods
are being created to extract social relationships between characters (El-
son, Dames, and McKeown 2010; Wohlgenannt, Chernyak, and Ilvovsky
2016); to align scenes in movies with those from books (Zhu et al. 2015);

143

CHAPTER 8. NOVELPERSPECTIVE: IDENTIFYING POINT OF VIEW
CHARACTERS

and to otherwise augment the literature consumption experience. Tools
such as the one presented here, give the reader new freedoms in control-
ling how they consume their media.

Having a large cast of characters, in particular POV characters, is a
hallmark of the epic fantasy genre. Well known examples include: George
R.R. Martin’s “A Song of Ice and Fire”, Robert Jordan’s “Wheel of
Time”, Brandon Sanderson’s “Cosmere” universe, and Steven Erikson’s
“Malazan Book of the Fallen”, amongst thousands of others. Generally,
these books are written in limited third-person POV; that is to say the
reader has little or no more knowledge of the situation described than
the main character does.

We focus here on novels written in the limited third-person POV. In these
stories, the main character is, for our purposes, the POV character. Lim-
ited third-person POV is written in the third-person, that is to say the
character is referred to by name, but with the observations limited to
being from the perspective of that character. This is in-contrast to the
omniscient third-person POV, where events are described by an exter-
nal narrator. Limited third-person POV is extremely popular in modern
fiction. It preserves the advantages of first-person, in allowing the reader
to observe inside the head of the character, while also allowing the flexi-
bility to the perspective of another character (Booth 1961). This allows
for multiple concurrent storylines around different characters. Our tool
helps users un-entwine such storylines, giving the option to process them
sequentially.

The utility of dividing a book in this way varies with the book in question.
Some books will cease to make sense when the core storyline crosses over
different characters. Other novels, particularly in epic fantasy genre,
have parallel storylines which only rarely intersect. While we are unable
to find a formal study on this, anecdotally many readers speak of:

• “Skipping the chapters about the boring characters.”

• “Only reading the real main character’s sections.”

• “Reading ahead, past the side-stories, to get on with the main plot.”

Particularly if they have read the story before, and thus do not risk
confusion. Such opinions are a matter of the consumer’s personal taste.
The NovelPerspective tool gives the reader the option to customise the
book in this way, according to their personal preference.

We note that sub-setting the novel once does not prevent the reader
from going back and reading the intervening chapters if it ceases to make
sense, or from sub-setting again to get the chapters for another character
whose path intersects with the storyline they are currently reading. We
can personally attest for some books reading the chapters one character
at a time is indeed possible, and pleasant: the first author of this paper
read George R.R. Martin’s “A Song of Ice and Fire” series in exactly this
fashion.

The primary difficulty in segmenting ebooks this way is attributing each
section to its POV character. That is to say detecting who is the point
of view character. Very few books indicate this clearly, and the reader
is expected to infer it during reading. This is easy for most humans,

144

CHAPTER 8. NOVELPERSPECTIVE: IDENTIFYING POINT OF VIEW
CHARACTERS

1.
User

uploads
ebook

2.
File is

converted and
preprocessed

3.
Sections are

classifed by character
See Figure 8.2

4.
User selects

sections
to keep

5.
Subsetted

ebook
is created

6.
User

downloads
new ebook

original ebook
+ settings

section
content

section-character
list

section
selection

new
ebook

Figure 8.1: The full NovelPerspective pipeline. Note that step 5 uses the original
ebook to subset.

Tokenization
POS Tagging

Named Entity Tagging

Feature
Extraction

Character
Scoring

POV Character
Classification

raw
text

enriched
text

character-name
feature-vector

pairs
character-name

score pairs
character

name

Figure 8.2: The general structure of the character classification systems. This re-
peated for each section of the book during step 3 of the full pipeline shown in Fig-
ure 8.1.

but automating it is a challenge. To solve this, the core of our tool is
its character classification system. We investigated several options which
the main text of this paper will discuss.

8.2 Character Classification Systems

The full NovelPerspective pipeline is shown in Figure 8.1. The core
character classification step (step 3), is detailed in Figure 8.2. In this
step the raw text is first enriched with parts of speech, and named entity
tags. We do not perform co-reference resolution, working only with direct
entity mentions. From this, features are extracted for each named entity.
These feature vectors are used to score the entities for the most-likely
POV character. The highest scoring character is returned by the system.
The different systems presented modify the Feature Extraction and
Character Scoring steps. A broadly similar idea, for detecting the
focus location of news articles, was presented by Imani et al. (2017).

8.2.1 Baseline systems

To the best of our knowledge no systems have been developed for this
task before. As such, we have developed two deterministic baseline char-
acter classifiers. These are both potentially useful to the end-user in our
deployed system (Section 8.5), and used to gauge the performance of the
more complicated systems in the evaluations presented in Section 8.4.

It should be noted that the baseline systems, while not using machine
learning for the character classification steps, do make extensive use of
machine learning-based systems during the preprocessing stages.

“First Mentioned” Entity

An obvious way to determine the main character of the section is to select
the first named entity. We use this to define the “First Mentioned” base-
line In this system, the Feature Extraction step is simply retrieving
the position of the first use of each name; and the Character Scoring
step assigns each a score such that earlier is higher. This works for many
examples: “One dark and stormy night, Bill heard a knock at the door.”;
however it fails for many others: “ ‘Is that Tom?’ called out Bill, after

145

CHAPTER 8. NOVELPERSPECTIVE: IDENTIFYING POINT OF VIEW
CHARACTERS

hearing a knock.’’. Sometimes a section may go several paragraphs de-
scribing events before it even mentions the character who is perceiving
them. This is a varying element of style.

“Most Mentioned” Entity

A more robust method to determine the main character, is to use the
occurrence counts. We call this the “Most Mentioned” baseline. The
Feature Extraction step is to count how often the name is used. The
Character Scoring step assigns each a score based what proportional
of all names used were for this entity. This works well for many books.
The more important a character is, the more often their name occurs.
However, it is fooled, for example, by book chapters that are about the
POV character’s relationship with a secondary character. In such cases
the secondary character may be mentioned more often.

8.2.2 Machine learning systems

One can see the determination of the main character as a multi-class
classification problem. From the set of all named entities in the section,
classify that section as to which one is the main character. Unlike typ-
ical multi-class classification problems the set of possible classes varies
per section being classified. Further, even the total set of possible named
characters, i.e. classes, varies from book to book. An information ex-
traction approach is required which can handle these varying classes. As
such, a machine learning model for this task can not incorporate direct
knowledge of the classes (i.e. character names).
We reconsider the problem as a series of binary predictions. The task
is to predict if a given named entity is the point of view character. For
each possible character (i.e. each named-entity that occurs), a feature
vector is extracted (see Section 8.2.2). This feature vector is the input
to a binary classifier, which determines the probability that it represents
the main character. The Character Scoring step is thus the running of
the binary classifier: the score is the output probability normalised over
all the named entities.

Feature Extraction for ML

We investigated two feature sets as inputs for our machine learning-based
solution. They correspond to different Feature Extraction steps in
Figure 8.2. A hand-engineered feature set, that we call the “Classical”
feature set; and a more modern “Word Embedding” feature set. Both
feature sets give information about how the each named entity token was
used in the text.
The “Classical” feature set uses features that are well established in NLP
related tasks. The features can be described as positional features, like in
the First Mentioned baseline; occurrence count features, like in the Most
Mentioned baseline and adjacent POS counts, to give usage context. The
positional features are the index (in the token counts) of the first and last
occurrence of the named entity. The occurrence count features are simply

146

CHAPTER 8. NOVELPERSPECTIVE: IDENTIFYING POINT OF VIEW
CHARACTERS

the number of occurrences of the named entity, supplemented with its
rank on that count compared to the others. The adjacent POS counts
are the occurrence counts of each of the 46 POS tags on the word prior
to the named entity, and on the word after. We theorised that this
POS information would be informative, as it seemed reasonable that the
POV character would be described as doing more things, so co-occurring
with more verbs. This gives 100 base features. To allow for text length
invariance we also provide each of the base features expressed as a portion
of its maximum possible value (e.g. for a given POS tag occurring before
a named entity, the potion of times this tag occurred). This gives a total
of 200 features.

The “Word Embedding” feature set uses FastText word vectors (Bo-
janowski et al. 2017). We use the pretrained 300 dimensional embeddings
trained on English Wikipedia 1. We concatenate the 300 dimensional
word embedding for the word immediately prior to, and immediately af-
ter each occurrence of a named entity; and take the element-wise mean
of this concatenated vector over all occurrences of the entity. Such aver-
ages of word embeddings have been shown to be a useful feature in many
tasks (White et al. 2015; Mikolov et al. 2013a). This has a total of 600
features.

Classifier

The binary classifier, that predicts if a named entity is the main char-
acter, is the key part of the Character Scoring step for the machine
learning systems. From each text in the training dataset we generated
a training example for every named entity that occurred. All but one
of these was a negative example. We then trained it as per normal for
a binary classifier. The score for a character is the classifier’s predicted
probability of its feature vector being for the main character.

Our approach of using a binary classifier to rate each possible class, may
seem similar to the one-vs-rest approach for multi-class classification.
However, there is an important difference. Our system only uses a single
binary classifier; not one classifier per class, as the classes in our case vary
with every item to be classified. The fundamental problem is information
extraction, and the classifier is a tool for the scoring which is the correct
information to report.

With the classical feature set we use logistic regression, with the features
being preprocessed with 0-1 scaling. During preliminary testing we found
that many classifiers had similar high degree of success, and so chose the
simplest. With the word embedding feature set we used a radial bias
support vector machine, with standardisation during preprocessing, as
has been commonly used with word embeddings on other tasks.

1https://fasttext.cc/docs/en/pretrained-vectors.html

147

https://fasttext.cc/docs/en/pretrained-vectors.html

CHAPTER 8. NOVELPERSPECTIVE: IDENTIFYING POINT OF VIEW
CHARACTERS

Dataset Chapters POV Characters
ASOIAF 256 15

SOC 91 9
WOT 432 52

combined 779 76

Table 8.1: The number of chapters and point of view characters for each dataset.

8.3 Experimental Setup

8.3.1 Datasets

We make use of three series of books selected from our own personal
collections. The first four books of George R. R. Martin’s “A Song of
Ice and Fire” series (hereafter referred to as ASOIAF); The two books of
Leigh Bardugo’s “Six of Crows” duology (hereafter referred to as SOC);
and the first 9 volumes of Robert Jordan’s “Wheel of Time” series (here-
after referred to as WOT). In Section 8.4 we consider the use of each as a
training and testing dataset. In the online demonstration (Section 8.5),
we deploy models trained on the combined total of all the datasets.

To use a book for the training and evaluation of our system, we require
a ground truth for each section’s POV character. ASOIAF and SOC
provide ground truth for the main character in the chapter names. Every
chapter only uses the POV of that named character. WOT’s ground truth
comes from an index created by readers.2 We do not have any datasets
with labelled sub-chapter sections, though the tool does support such
works.

The total counts of chapters and characters in the datasets, after pre-
processing, is shown in Table 8.1. Preprocessing consisted of discarding
chapters for which the POV character was not identified (e.g. prologues);
and of removing the character names from the chapter titles as required.

8.3.2 Evaluation Details

In the evaluation, the systems are given the body text and asked to
predict the character names. During evaluation, we sum the scores of the
characters alternative aliases/nick-names used in the books. For example
merging Ned into Eddard in ASOIAF. This roughly corresponds to the
case that a normal user can enter multiple aliases into our application
when selecting sections to keep. We do not use these aliases during
training, though that is an option that could be investigated in a future
work.

8.3.3 Implementation

The full source code is available on GitHub. 3 Scikit-Learn (Pedregosa
et al. 2011) is used for the machine learning and evaluations, and NLTK

2http://wot.wikia.com/wiki/List_of_Point_of_View_Characters
3https://github.com/oxinabox/NovelPerspective/

148

http://wot.wikia.com/wiki/List_of_Point_of_View_Characters
https://github.com/oxinabox/NovelPerspective/

CHAPTER 8. NOVELPERSPECTIVE: IDENTIFYING POINT OF VIEW
CHARACTERS

Test Set Method Train Set Acc
ASOIAF First Mentioned — 0.250
ASOIAF Most Mentioned — 0.914
ASOIAF ML Classical Features SOC 0.953
ASOIAF ML Classical Features WOT 0.984
ASOIAF ML Classical Features WOT+SOC 0.977
ASOIAF ML Word Emb. Features SOC 0.863
ASOIAF ML Word Emb. Features WOT 0.977
ASOIAF ML Word Emb. Features WOT+SOC 0.973

SOC First Mentioned — 0.429
SOC Most Mentioned — 0.791
SOC ML Classical Features WOT 0.923
SOC ML Classical Features ASOIAF 0.923
SOC ML Classical Features WOT+ASOIAF 0.934
SOC ML Word Emb. Features WOT 0.934
SOC ML Word Emb. Features ASOIAF 0.945
SOC ML Word Emb. Features WOT+ASOIAF 0.945

WOT First Mentioned — 0.044
WOT Most Mentioned — 0.660
WOT ML Classical Features SOC 0.701
WOT ML Classical Features ASOIAF 0.745
WOT ML Classical Features ASOIAF+SOC 0.736
WOT ML Word Emb. Features SOC 0.551
WOT ML Word Emb. Features ASOIAF 0.699
WOT ML Word Emb. Features ASOIAF+SOC 0.681

Table 8.2: The results of the character classifier systems. The best results are bolded.

(Bird and Loper 2004) is used for textual preprocessing. The text is to-
kenised, and tagged with POS and named entities using NLTK’s default
methods. Specifically, these are the Punkt sentence tokenizer, the regex-
based improved TreeBank word tokenizer, greedy averaged perceptron
POS tagger, and the max-entropy binary named entity chunker. The use
of a binary, rather than a multi-class, named entity chunker is signifi-
cant. Fantasy novels often use “exotic” names for characters, we found
that this often resulted in character named entities being misclassified as
organisations or places. Note that this is particularly disadvantageous to
the First Mentioned baseline, as any kind of named entity will steal the
place. Nevertheless, it is required to ensure that all character names are
a possibility to be selected.

8.4 Results and Discussion

Our evaluation results are shown in Table 8.2 for all methods. This
includes the two baseline methods, and the machine learning methods
with the different feature sets. We evaluate the machine learning methods
using each dataset as a test set, and using each of the other two and their
combination as the training set.

The First Mentioned baseline is very weak. The Most Mentioned baseline
is much stronger. In almost all cases machine learning methods outper-
form both baselines. The results of the machine learning method on the
ASOIAF and SOC are very strong. The results for WOT are weaker,
though they are still accurate enough to be useful when combined with

149

CHAPTER 8. NOVELPERSPECTIVE: IDENTIFYING POINT OF VIEW
CHARACTERS

Test Set Method Train Set Acc
ASOIAF ML Classical Features ASOIAF 0.980
ASOIAF ML Word Emb. Features ASOIAF 0.988

SOC ML Classical Features SOC 0.945
SOC ML Word Emb. Features SOC 0.956

WOT ML Classical Features WOT 0.785
WOT ML Word Emb. Features WOT 0.794

Table 8.3: The training set accuracy of the machine learning character classifier sys-
tems.

manual checking.

It is surprising that using the combination of two training sets does not
always out-perform each on their own. For many methods training on
just one dataset resulted in better results. We believe that the difference
between the top result for a method and the result using the combined
training sets is too small to be meaningful. It can, perhaps, be attributed
to a coincidental small similarity in writing style of one of the training
books to the testing book. To maximise the generalisability of the Nov-
elPerspective prototype (see Section 8.5), we deploy models trained on
all three datasets combined.

Almost all the machine learning models resulted in similarly high ac-
curacy. The exception to this is word embedding features based model
trained on SOC, which for both ASOIAF and WOT test sets performed
much worse. We attribute the poor performance of these models to the
small amount of training data. SOC has only 91 chapters to generate its
training cases from, and the word embedding feature set has 600 dimen-
sions. It is thus very easily to over-fit which causes these poor results.

Table 8.3 shows the training set accuracy of each machine learning model.
This is a rough upper bound for the possible performance of these models
on each test set, as imposed by the classifier and the feature set. The
WOT bound is much lower than the other two texts. This likely relates
to WOT being written in a style that closer to the line between third-
person omniscient, than the more clear third-person limited POV of the
other texts. We believe longer range features are required to improve the
results for WOT. However, as this achieves such high accuracy for the
other texts, further features would not improve accuracy significantly,
without additional more difficult training data (and may cause over-
fitting).

The results do not show a clear advantage to either machine learning
feature set. Both the classical features and the word embeddings work
well. Though, it seems that the classical feature are more robust; both
with smaller training sets (like SOC), and with more difficult test sets
(like WOT).

8.5 Demonstration System

The demonstration system is deployed online at https://white.ucc.asn.au/tools/np.
A video demonstrating its use can be found at https://youtu.be/

150

https://white.ucc.asn.au/tools/np
https://youtu.be/iu41pUF4wTY
https://youtu.be/iu41pUF4wTY
https://youtu.be/iu41pUF4wTY

CHAPTER 8. NOVELPERSPECTIVE: IDENTIFYING POINT OF VIEW
CHARACTERS

iu41pUF4wTY. This web-app, made using the CherryPy framework,4 al-
lows the user to apply any of the model discussed to their own novels.
The web-app functions as shown in Figure 8.1. The user uploads an
ebook, and selects one of the character classification systems that we
have discussed above. They are then presented with a page displaying
a list of sections, with the predicted main character(/s) paired with an
excerpt from the beginning of the section. The user can adjust to show
the top-k most-likely characters on this screen, to allow for additional
recall.
The user can select sections to retain. They can use a regular expression
to match the character names(/s) they are interested in. The sections
with matching predicted character names will be selected. As none of
the models is perfect, some mistakes are likely. The user can manually
correct the selection before downloading the book.

8.6 Conclusion

We have presented a tool to allow consumers to restructure their ebooks
around the characters they find most interesting. The system must dis-
cover the named entities that are present in each section of the book,
and then classify each section as to which character’s point of view the
section is narrated from. For named entity detection we make use of
standard tools. However, the classification is non-trivial. In this design
we implemented several systems. Simply selecting the most commonly
named character proved successful as a baseline approach. To improve
upon this, we developed several machine learning based approaches which
perform very well. While none of the classifiers are perfect, they achieve
high enough accuracy to be useful.
A future version of our application will allow the users to submit correc-
tions, giving us more training data. However, storing this information
poses copyright issues that are yet to be resolved.

Acknowledgements We would like to thank Dr Gerhard Wohlgenannt
(ITMO University, Saint Petersburg) for his feedback on this work just
prior to submission. This research was partially funded by Australian
Research Council grants DP150102405 and LP110100050.

4http://cherrypy.org/

151

https://youtu.be/iu41pUF4wTY
https://youtu.be/iu41pUF4wTY
https://youtu.be/iu41pUF4wTY
http://cherrypy.org/

CHAPTER 8. NOVELPERSPECTIVE: IDENTIFYING POINT OF VIEW
CHARACTERS

152

CHAPTER 9. GENERATING BAGS OF WORDS FROM THE SUMS OF
THEIR WORD EMBEDDINGS

Chapter 9

Generating Bags of Words
from the Sums of their Word
Embeddings

This paper was presented at the 17th Conference on Intelligent Text Processing and Computational
Linguistics, in 2016. Where it received the award for best student publication.

Abstract

Many methods have been proposed to generate sentence vector representations,
such as recursive neural networks, latent distributed memory models, and the
simple sum of word embeddings (SOWE). However, very few methods demon-
strate the ability to reverse the process – recovering sentences from sentence
embeddings. Amongst the many sentence embeddings, SOWE has been shown
to maintain semantic meaning, so in this paper we introduce a method for mov-
ing from the SOWE representations back to the bag of words (BOW) for the
original sentences. This is a part way step towards recovering the whole sen-
tence and has useful theoretical and practical applications of its own. This is
done using a greedy algorithm to convert the vector to a bag of words. To our
knowledge this is the first such work. It demonstrates qualitatively the ability
to recreate the words from a large corpus based on its sentence embeddings.

As well as practical applications for allowing classical information retrieval
methods to be combined with more recent methods using the sums of word em-
beddings, the success of this method has theoretical implications on the degree
of information maintained by the sum of embeddings representation. This lends
some credence to the consideration of the SOWE as a dimensionality reduced,
and meaning enhanced, data manifold for the bag of words.

9.1 Introduction

The task being tackled here is the resynthesis of bags of words (BOW)
from sentence embedding representations. In particular the generation of
BOW from vectors based on the sum of the sentence’s constituent words’
embeddings (SOWE). To the knowledge of the authors, this task has not
been attempted before.
The motivations for this task are the same as in the related area of sen-
tence generation. Dinu and Baroni (2014) observe that given a sentence
has a given meaning, and the vector encodes the same meaning, then
it must be possible to translate in both directions between the natural
language and the vector representation. A sub-step of this task is the

153

CHAPTER 9. GENERATING BAGS OF WORDS FROM THE SUMS OF
THEIR WORD EMBEDDINGS

Target SOWE
Sentence Vector

(s̃)
Vector

Selection

Vocabulary of Word Vectors
(V)

Bag of Words
(c̃)

Figure 9.1: The process for the regenerating BOW from SOWE sentence embeddings.

unordered case (BOW), rather than true sentences, which we tackle in
this paper. The success of the implementation does indicates the valid-
ity of this dual space theory, for the representations considered (where
order is neglected). There are also some potential practical applications
of such an implementation, often ranging around common vector space
representations.

Given suitable bidirectional methods for converting between sentence
embeddings and bags of words, the sentence embedding space can be
employed as a lingua franca for translation between various forms of
information – though with loss of word order information. The most
obvious of which is literal translation between different natural languages;
however the use extends beyond this.

Several approaches have been developed for representing images and sen-
tences in a common vector space. This is then used to select a suitable
caption from a list of candidates (Farhadi et al. 2010; Socher et al. 2014).
Similar methods, creating a common space between images and SOWE of
the keywords describing them, could be used to generate keyword descrip-
tions using BOW resynthesis – without any need for a list. This would
allows classical word-based information retrieval and indexing techniques
to be applied to images.

A similar use is the replacement of vector based extractive summarisation
(Kågebäck et al. 2014; Yogatama, Liu, and Smith 2015), with keyword
based abstractive summarisation, which is the generation of a keyword
summary from a document. The promising use of SOWE generation for
all these applications is to have a separate model trained to take the
source information (e.g. a picture for image description, or a cluster of
sentences for abstract summarisation) as its input and train it to output
a vector which is close to a target SOWE vector. This output can then
be used to generate the sentence.

The method proposed in this paper has an input of a sum of word em-
beddings (SOWE) as the sentence embedding, and outputs the bag of
word (BOW) which it corresponds to. The input is a vector for exam-
ple s̃ = [−0.79, 1.27, 0.28, ...,−1.29], which approximates a SOWE vector,
and outputs a BOW for example {,: 1, best:1, it:2, of:2, the:2,
times:2, was:2, worst:1} – the BOW for the opening line of Dickens’
Tale of Two Cities. Our method for BOW generation is shown in Fig-
ure 9.1, note that it takes as input only a word embedding vocabulary
(V) and the vector (s̃) to generate the BOW (c̃).

The rest of the paper is organized into the following sections. Section 9.2
introduces the area, discussing in general sentence models, and prior
work on generation. Section 9.3 explains the problem in detail and our
algorithm for solving it. Section 9.4 described the settings used for eval-
uation. Section 9.5 discusses the results of this evaluation. The paper

154

CHAPTER 9. GENERATING BAGS OF WORDS FROM THE SUMS OF
THEIR WORD EMBEDDINGS

presents its conclusions in Section 9.6, including a discussion of future
work.

9.2 Background

The current state of the art for full sentence generation from sentence
embeddings are the works of Iyyer, Boyd-Graber, and Daumé III 2014
and Bowman et al. 2016b. Both these advance beyond the earlier work
of Dinu and Baroni 2014 which is only theorised to extend beyond short
phrases. Iyyer et al. and Bowman et al. produce full sentences. These
sentences are shown by examples to be loosely similar in meaning and
structure to the original sentences. Neither works has produced quanti-
tative evaluations, making it hard to determine between them. However,
when applied to the various quantitative examples shown in both works
neither is able to consistently reproduce exact matches. This motivates
investigation on a simpler unordered task, converting a sum of word em-
beddings to bag of words, as investigated in this paper.

Bag of words is a classical natural language processing method for rep-
resenting a text, sentence or document, commonly used in information
retrieval. The text is represented as a multiset (or bag), this is an un-
ordered count of how often each word occurs.

Word embeddings are vector representations of words. They have been
shown to encode important syntactic and semantic properties. There are
many different types of word embeddings (Yin and Schütze 2015). Two
of the more notable are the SkipGrams of Mikolov et al. (2013b) and
Mikolov, Yih, and Zweig (2013) and the Global Vector word representa-
tions (GloVe) of Pennington, Socher, and Manning (2014). Beyond word
representations are sentence embeddings.

Sentence embeddings represent sentences, which are often derived from
word embeddings. Like word embeddings they can capture semantic and
syntactic features. Sentence vector creation methods include the works of
Le and Mikolov (2014) and Socher (2014). Far simpler than those meth-
ods, is the sum of word embeddings (SOWE). SOWE, like BOW, draws
significant criticism for not only disregarding sentence structure, but dis-
regarding word order entirely when producing the sentence embedding.
However, this weaknesses, may be offset by the improved discrimina-
tion allowed through words directly affecting the sentence embedding.
It avoids the potential information loss through the indirection of more
complex methods. Recent results suggest that this may allow it to be
comparable overall to the more linguistically consistent embeddings when
it comes to representing meaning.

White et al. (2015) found that when classifying real-world sentences into
groups of semantically equivalent paraphrases, that using SOWE as the
input resulted in very accurate classifications. In that work White et al.
partitioned the sentences into groups of paraphrases, then evaluated how
well a linear SVM could classify unseen sentences into the class given by
its meaning. They used this to evaluate a variety of different sentence
embeddings techniques. They found that the classification accuracy when
using SOWE as the input performed very similarly to the best performing

155

CHAPTER 9. GENERATING BAGS OF WORDS FROM THE SUMS OF
THEIR WORD EMBEDDINGS

methods – less than 0.6% worse on the harder task. From this they
concluded that the mapping from the space of sentence meaning to the
vector space of the SOWE, resulted in sentences with the same meaning
going to distinct areas of the vector space.
Ritter et al. (2015) presented a similar task on spacial-positional mean-
ing, which used carefully constructed artificial data, for which the mean-
ings of the words interacted non-simply – thus theoretically favouring
the more complex sentence embeddings. In their evaluation the task
was classification with a Naïve Bayes classifier into one of five categories
of different spatial relationships. The best of the SOWE models they
evaluated, outperformed the next best model by over 5%. These results
suggest this simple method is still worth consideration for many sentence
embedding representation based tasks. SOWE is therefore the basis of
the work presented in this paper.

9.3 The Vector Selection Problem

At the core of this problem is what we call the Vector Selection Problem,
to select word embedding vectors which sum to be closest to the target
SOWE (the input). The word embeddings come from a known vector
vocabulary, and are to be selected with potential repetition. Selecting
the vectors equates to selecting the words, because there is a one to one
correspondence between the word embedding vectors and their words.
This relies on no two words having exactly the same embeddings – which
is true for all current word embedding techniques.
The Vector Selection Problem is defined on (V , s̃, d)
for a finite vocabulary of vectors V , V ⊂ Rn, a target sentence embedding
s̃, s̃ ∈ Rn, and any distance metric d, by:

argmin{
∀c̃∈N|V|

0

} d(s̃,
∑
x̃j∈V

x̃j cj)

x̃j is the vector embedding for the jth word in the vocabulary x̃j ∈ V
and cj is the jth element of the count vector c̃ being optimised – it is
the count of how many times the xj occurs in approximation to the sum
being assessed; and correspondingly it is the count of how many times the
jth word from the vocabulary occurs in the bag of words. The selection
problem is thus finding the right words with the right multiplicity, such
that the sum of their vectors is as close to the input target vector, s̃, as
possible.

9.3.1 NP-Hard Proof

The vector selection problem is NP-Hard. It is possible to reduce from
any given instance of a subset sum problem to a vector selection problem.
The subset sum problem is NP-complete (Karp 1972). It is defined: for
some set of integers (S ⊂ Z), does there exist a subset (L ⊆ S) which
sums to zero (0 =

∑
li∈L li). A suitable metric, target vector and vo-

cabulary of vectors corresponding to the elements S can be defined by
a bijection; such that solving the vector selection problem will give the

156

CHAPTER 9. GENERATING BAGS OF WORDS FROM THE SUMS OF
THEIR WORD EMBEDDINGS

subset of vectors corresponding to a subset of S with the smallest sum;
which if zero indicates that the subset sum does exists, and if nonzero
indicates that no such subset (L) exists. A fully detailed proof of the
reduction from subset sum to the vector selection problem can be found
on the first author’s website. 1

9.3.2 Selection Algorithm

The algorithm proposed here to solve the selection problem is a greedy
iterative process. It is a fully deterministic method, requiring no train-
ing, beyond having the word embedding mapping provided. In each
iteration, first a greedy search (Greedy Addition) for a path to the tar-
geted sum point s̃ is done, followed by correction through substitution
(n-Substitution). This process is repeated until no change is made to the
path. The majority of the selection is done in the Greedy Addition step,
while the n-substitution handles fine tuning.

Greedy Addition

The greedy addition phase is characterised by adding the best vector to
the bag at each step (see the pseudo-code in Algorithm 1). At each step,
all the vectors in the current bag are summed, and then each vector in
the vocabulary is added in turn to evaluate the new distance the new
bag would have from the target, the bag which sums to be closest to
the target becomes the current solution. This continues until there is no
option to add any of the vectors without moving the sum away from the
target. There is no bound on the size of the bag of vector (i.e. the length
of the sentence) in this process, other than the greedy restriction against
adding more vectors that do not get closer to the solution.
Greedy Addition works surprisingly well on its own, but it is enhanced
with a fine tuning step, n-substitution, to decrease its greediness.

n-Substitution

We define a new substitution based method for fine tuning solutions
called n-substitution. It can be described as considering all subbags
containing up to n elements, consider replacing them with a new sub-
bag of up that size n from the vocabulary, including none at all, if that
would result in the overall bag getting closer to the target s̃.
The reasoning behind performing the n-substitution is to correct for
greedy mistakes. Consider the 1 dimensional case where V = 24, 25, 100
and s̃ = 148, d(x, y) = |x− y|. Greedy addition would give bagc =
[100, 25, 24] for a distance of 1, but a perfect solution is bagc = [100, 24, 24]
which is found using 1-substitution. This substitution method can be
considered as re-evaluating past decisions in light of the future decisions.
In this way it lessens the greed of the addition step.
The n-substitution phase has time complexity of O(

(
C
n

)
V n), for C =

∑
c̃

i.e. current cardinality of bagc. With large vocabularies it is only practical
1http://white.ucc.asn.au/publications/White2015BOWgen/

157

http://white.ucc.asn.au/publications/White2015BOWgen/

CHAPTER 9. GENERATING BAGS OF WORDS FROM THE SUMS OF
THEIR WORD EMBEDDINGS

Data: the metric d
the target sum s̃
the vocabulary of vectors V
the current best bag of vectors bagc: initially ∅
Result: the modified bagc which sum to be as close as greedy search can get to the

target s̃, under the metric d
begin

t̃←−
∑

xi∈bagc

xi

while true do
x̃∗ ←− argmin

xj∈V
d(s̃, t̃+ x̃j) /* exhaustive search of V */

if d(s̃, t̃+ x̃∗) < d(s̃, t̃) then
t̃←− t̃+ x̃∗ bagc ←− bagc ∪ {x̃∗}

else
return bagc /* No further improving step found */

end
end

end
Algorithm 1: Greedy Addition. In practical implementation, the bag of vectors can
be represented as list of indices into columns of the embedding vocabulary matrix,
and efficient matrix summation methods can be used.

to consider 1-substitution. With the Brown Corpus, where |V| u 40, 000,
it was found that 1-substitution provides a significant improvement over
greedy addition alone. On a smaller trial corpora, where |V| u 1, 000, 2-
substitution was used and found to give further improvement. In general
it is possible to initially use 1-substitution, and if the overall algorithm
converges to a poor solution (given the distance to the target is always
known), then the selection algorithm can be retried from the converged
solution, using 2-substitution and so forth. As n increases the greed
overall decreases; at the limit the selection is not greedy at all, but is
rather an exhaustive search.

9.4 Experimental Setup and Evaluations

9.4.1 Word Embeddings

GloVe representations of words (Pennington, Socher, and Manning 2014)
are used in our evaluations. There are many varieties of word embed-
dings which work with our algorithm. GloVe was chosen simply because
of the availability of a large pre-trained vocabulary of vectors. The rep-
resentations used for evaluation were pretrained on 2014 Wikipedia and
Gigaword 52. Preliminary results with SkipGrams from Mikolov et al.
(2013b) suggested similar performance.

9.4.2 Corpora

The evaluation was performed on the Brown Corpus (Francis and Kucera
1979) and on a subset of the Books Corpus (Zhu et al. 2015). The
Brown Corpus was sourced with samples from a 500 fictional and non-
fictional works from 1961. The Books Corpus was sourced from 11,038

2Kindly made available online at http://nlp.stanford.edu/projects/glove/

158

http://nlp.stanford.edu/projects/glove/

CHAPTER 9. GENERATING BAGS OF WORDS FROM THE SUMS OF
THEIR WORD EMBEDDINGS

unpublished novels. The Books Corpus is extremely large, containing
roughly 74 million sentences. After preprocessing we randomly selected
0.1% of these for evaluation.
For simplicity of evaluation, sentences containing words not found in the
pretrained vector vocabulary are excluded. These were generally rare
mis-spellings and unique numbers (such as serial numbers). Similarly,
words which are not used in the corpus are excluded from the vector
vocabulary.
After the preprocessing the final corpora can be described as follows. The
Brown Corpus has 42,004 sentences and a vocabulary of 40,485 words.
Where-as, the Books Corpus has 66,464 sentences, and a vocabulary of
178,694 words. The vocabulary sizes are beyond what is suggested as
necessary for most uses (Nation 2006). These corpora remain sufficiently
large and complex to quantitatively evaluate the algorithm.

9.4.3 Vector Selection

The Euclidean metric was used to measure how close potential solutions
were to the target vector. The choice of distance metric controls the
ranking of each vector by how close (or not) it brings the the partial sum
to the target SOWE during the greedy selection process. Preliminary re-
sults on one-tenth of the Books Corpus used in the main evaluation found
the Manhattan distance performed marginally worse than the Euclidean
metric and took significantly longer to converge.
The commonly used cosine similarity, or the linked angular distance, have
an issue of zero distances between distinct points – making them not true
distance metrics. For example the SOWE of “a can can can a can” has
a zero distance under those measures to the SOWE for “a can can”.3
That example is a pathological, though valid sentence fragment. True
metrics such as the Euclidean metric do not have this problem. Further
investigation may find other better distance metrics for this step.
The Julia programming language (Bezanson et al. 2014), was used to cre-
ate the implementation of the method, and the evaluation scripts for the
results presented in the next section. This implementation, evaluation
scripts, and the raw results are available online.4. Evaluation was carried
out in parallel on a 12 core virtual machine, with 45Gb of RAM. Sufficient
RAM is required to load the entire vector vocabulary in memory.

9.5 Results and Discussion

Table 9.1 shows examples of the output. Eight sentences which were
used for demonstration of sentence generation in Iyyer, Boyd-Graber, and
Daumé III (2014) and Bowman et al. (2016b) have the BOW generation
results shown. All examples except (a) and (f) are perfect. Example (f)
is interesting as it seems that the contraction token ’re was substituted
for are, and do for doing. Inspections of the execution logs for running

3The same is true for any number of repetitions of the word buffalo – each of which forms a valid
sentence as noted in Tymoczko, Henle, and Henle (1995)

4http://www.cicling.org/2016/data/97

159

http://www.cicling.org/2016/data/97

CHAPTER 9. GENERATING BAGS OF WORDS FROM THE SUMS OF
THEIR WORD EMBEDDINGS

Table 9.1: Examples of the BOW Produced by our method using the Books Cor-
pus vocabulary, compared to the Correct BOW from the reference sentences. The P
and C columns show the the number of occurrences of each word in the Produced
and Correct bags of words, respectively. Bolded lines highlight mistakes. Exam-
ples a-e were sourced from Iyyer, Boyd-Graber, and Daumé III (2014), Examples f-h
from Bowman et al. (2016b). Note that in example a, the “__..._(n)” represents n
repeated underscores (without spaces).

(a) ralph waldo emerson dis-
missed this poet as the jingle
man and james russell lowell
called him three-fifths genius
and two-fifths sheer fudge

Word P C
2008 1 0
__..._(13) 1 0
__..._(34) 1 0
__..._(44) 1 0
“ 1 0
aldrick 1 0
and 2 2
as 0 1
both 1 0
called 0 1
dismissed 1 1
emerson 1 1
fudge 1 1
genius 1 1
hapless 1 0
him 1 1
hirsute 1 0
james 1 1
jingle 1 1
known 1 0
lowell 1 1
man 0 1
poet 1 1
ralph 1 1
russell 1 1
sheer 1 1
the 1 1
this 1 1
three-fifths 1 1
two-fifths 1 1
waldo 1 1
was 1 0

(b) thus she leaves her
husband and child for
aleksei vronsky but all
ends sadly when she leaps
in front of a train

Word P C
a 1 1
aleksei 1 1
all 1 1
and 1 1
but 1 1
child 1 1
ends 1 1
for 1 1
front 1 1
her 1 1
husband 1 1
in 1 1
leaps 1 1
leaves 1 1
of 1 1
sadly 1 1
she 2 2
thus 1 1
train 1 1
vronsky 1 1
when 1 1

(c) name this 1922 novel
about leopold bloom
written by james joyce

Word P C
1922 1 1
about 1 1
bloom 1 1
by 1 1
james 1 1
joyce 1 1
leopold 1 1
name 1 1
novel 1 1
this 1 1
written 1 1

(d) this is the basis of
a comedy of manners first
performed in 1892

Word P C
1892 1 1
a 1 1
basis 1 1
comedy 1 1
first 1 1
in 1 1
is 1 1
manners 1 1
of 2 2
performed 1 1
the 1 1
this 1 1

(e) in a third novel a sailor
abandons the patna and
meets marlow who in an-
other novel meets kurtz in
the congo

Word P C
a 2 2
abandons 1 1
and 1 1
another 1 1
congo 1 1
in 3 3
kurtz 1 1
marlow 1 1
meets 2 2
novel 2 2
patna 1 1
sailor 1 1
the 2 2
third 1 1
who 1 1

(f) how are you doing
?

Word P C
’re 1 0
? 1 1
are 0 1
do 1 0
doing 0 1
how 1 1
well 1 0
you 0 1

(g) we looked out at the
setting sun .

Word P C
. 1 1
at 1 1
looked 1 1
out 1 1
setting 1 1
sun 1 1
the 1 1
we 1 1

(h) i went to the kitchen
.

Word P C
. 1 1
i 1 1
kitchen 1 1
the 1 1
to 1 1
went 1 1

Table 9.2: The performance of the BOW generation method. Note the final line is
for the Books Corpus, where-as the preceding are or the Brown Corpus.

Corpus Embedding
Dimensions

Portion
Perfect

Mean
Jaccard
Score

Mean
Precision

Mean
Recall

Mean F1
Score

Brown 50 6.3% 0.175 0.242 0.274 0.265
Brown 100 19.4% 0.374 0.440 0.530 0.477
Brown 200 44.7% 0.639 0.695 0.753 0.720
Brown 300 70.4% 0.831 0.864 0.891 0.876
Books 300 75.6% 0.891 0.912 0.937 0.923

160

CHAPTER 9. GENERATING BAGS OF WORDS FROM THE SUMS OF
THEIR WORD EMBEDDINGS

0 20 40 60 80 100 120 140 160 180
0

0.5

1

Ground Truth Sentence Length

M
ea
n
Ja

cc
ar
d
In
de
x

50D Brown
100D Brown
200D Brown
300D Brown
300D Books

Figure 9.2: The mean Jaccard index achieved during the word selection step, shown
against the ground truth length of the sentence. Note that the vast majority of
sentences are in the far left end of the plot. The diminishing samples are also the
cause of the roughness, as the sentence length increases.

on the examples show that this was a greedy mistake that would be
corrected using 2-substitution. Example a has many more mistakes.

The mistakes in Example (a) seem to be related to unusual nonword
tokens, such as the three tokens with 13, 34, and 44 repetitions of the
underscore character. These tokens appear in the very large Books cor-
pus, and in the Wikipedia/Gigaword pretraining data used for word em-
beddings, but are generally devoid of meaning and are used as struc-
tural elements for formatting. We theorise that because of their rarity
in the pre-training data they are assigned an unusual word-embedding
by GloVE. There occurrence in this example suggests that better results
may be obtained by pruning the vocabulary. Either manually, or via a
minimum uni-gram frequency requirement. The examples overall high-
light the generally high performance of the method, and evaluations on
the full corpora confirm this.

Table 9.2 shows the quantitative performance of our method across both
corpora. Five measures are reported. The most clear is the portion of
exact matches – this is how often out of all the trials the method produced
the exact correct bag of words. The remaining measures are all means
across all the values of the measures in each trial. The Jaccard index is
the portion of overlap between the reference BOW, and the output BOW
– it is the cardinality of the intersection divided by that of the union.
The precision is the portion of the output words that were correct; and
the recall is the portion of all correct words which were output. For
precision and recall word repetitions were treated as distinct. The F1

score is the harmonic mean of precision and recall. The recall is higher
than the precision, indicating that the method is more prone to producing
additional incorrect words (lowering the precision), than to missing words
out (which would lower the recall).

Initial investigation focused on the relationship between the number of di-
mensions in the word embedding and the performance. This was carried
out on the smaller Brown corpus. Results confirmed the expectation that
higher dimensional embeddings allow for better generation of words. The
best performing embedding size (i.e. the largest) was then used to eval-

161

CHAPTER 9. GENERATING BAGS OF WORDS FROM THE SUMS OF
THEIR WORD EMBEDDINGS

uate success on the Books Corpus. The increased accuracy when using
higher dimensionality embeddings remains true at all sentence lengths.

As can be seen in Figure 9.2 sentence length is a very significant factor
in the performance of our method. As the sentences increase in length,
the number of mistakes increases. However, at higher embedding dimen-
sionality the accuracy for most sentences is high. This is because most
sentences are short. The third quartile on sentence length is 25 words for
Brown, and 17 for the Books Corpus. This distribution difference is also
responsible for the apparent better results on the Books Corpus, than on
the Brown corpus.

While the results shown in Table 9.2 suggest that on the Books corpus
the algorithm performs better, this is due to its much shorter average
sentence length. When taken as a function of the sentence length, as
shown in Figure 9.2, performance on the Books Corpus is worse than
on the Brown Corpus. It can be concluded from this observation that
increasing the size of the vocabulary does decrease success in BOW regen-
eration. Books Corpus vocabulary being over four times larger, while the
other factors remained the same, resulted in lower performance. However,
when taking all three factors into account, we note that increasing the
vocabulary size has significantly less impact than increasing the sentence
length or the embedding dimensionality on the performance.

9.6 Conclusion

A method was presented for how to regenerate a bag of words, from the
sum of a sentence’s word embeddings. This problem is NP-Hard. A
greedy algorithm was found to perform well at the task, particularly for
shorter sentences when high dimensional embeddings are used.

Resynthesis degraded as sentence length increased, but remained strong
with higher dimensional models up to reasonable length. It also de-
creased as the vocabulary size increased, but significantly less so. The
BOW generation method is functional with usefully large sentences and
vocabulary.

From a theoretical basis the resolvability of the selection problem shows
that adding up the word embeddings does preserve the information on
which words were used; particularly for higher dimensional embeddings.
This shows that collisions do not occur (at least not frequently) such that
two unrelated sentences do not end up with the same SOWE represen-
tation.

This work did not investigate the performance under noisy input SOWEs
– which occur in many potential applications. Noise may cause the input
to better align with an unusual sum of word embeddings, than with its
true value. For example it may be shifted to be very close a sentence
embedding that is the sum of several hundred word embeddings. Investi-
gating, and solving this may be required for applied uses of any technique
that solves the vector selection problem.

More generally, future work in this area would be to use a stochastic
language model to suggest suitable orderings for the bags of words. While

162

CHAPTER 9. GENERATING BAGS OF WORDS FROM THE SUMS OF
THEIR WORD EMBEDDINGS

this would not guarantee correct ordering every-time, we speculate that it
could be used to find reasonable approximations often. Thus allowing this
bag of words generation method to be used for full sentence generation,
opening up a much wider range of applications.

Acknowledgements This research is supported by the Australian Post-
graduate Award, and partially funded by Australian Research Council
grants DP150102405 and LP110100050. Computational resources were
provided by the National eResearch Collaboration Tools and Resources
project (Nectar).

163

CHAPTER 9. GENERATING BAGS OF WORDS FROM THE SUMS OF
THEIR WORD EMBEDDINGS

164

CHAPTER 10. MODELLING SENTENCE GENERATION FROM SOWE
VECTORS AS A MIP PROBLEM

Chapter 10

Modelling Sentence
Generation from Sum of
Word Embedding Vectors as
a Mixed Integer
Programming Problem

This paper was presented at the High Dimensional Data Mining Workshop at the IEEE International

Conference on Data Mining, in 2016.

Abstract

Converting a sentence to a meaningful vector representation has uses in many
NLP tasks, however very few methods allow that representation to be restored
to a human readable sentence. Being able to generate sentences from the vector
representations demonstrates the level of information maintained by the em-
bedding representation – in this case a simple sum of word embeddings. We
introduce such a method for moving from this vector representation back to the
original sentences. This is done using a two stage process; first a greedy algo-
rithm is utilised to convert the vector to a bag of words, and second a simple
probabilistic language model is used to order the words to get back the sentence.
To the best of our knowledge this is the first work to demonstrate quantitatively
the ability to reproduce text from a large corpus based directly on its sentence
embeddings.

10.1 Introduction

Generally sentence generation is the main task of the more broad natural
language generation field; here we use the term only in the context of sen-
tence generation from sentence vector representation. For our purposes,
a sentence generation method has as its input a sentence embedding, and
outputs the sentence which it corresponds to. The input is a vector, for
example s̃ = [0.11, 0.57,−0.21, ..., 1.29], and the output is a sentence, for
example “The boy was happy.”.

Dinu and Baroni (2014) motivates this work from a theoretical perspec-
tive given that a sentence encodes its meaning, and the vector encodes

165

CHAPTER 10. MODELLING SENTENCE GENERATION FROM SOWE
VECTORS AS A MIP PROBLEM

the same meaning, then it must be possible to translate in both direc-
tions between the natural language and the vector representation. In
this paper, we present an implementation that indicates to some extent
the equivalence between the natural language space and the sum of word
embeddings (SOWE) vector representation space. This equivalence is
shown by demonstrating a lower bound on the capacity of the vector
representation to be used for sentence generation.

The current state of the art methods for sentence generation produce
human readable sentences which are rough approximations of the in-
tended sentence. These existing works are those of Iyyer, Boyd-Graber,
and Daumé III (2014) and Bowman et al. (2016b). Both these have been
demonstrated to produce full sentences. These sentences are qualitatively
shown to be loosely similar in meaning to the original sentences. Neither
work has produced quantitative evaluations, making it hard to compare
their performance. Both are detailed further in Section 10.2. Both these
methods use encoder/decoder models trained through machine learning;
we present here a more deterministic algorithmic approach, but restrict
the input sentence vector to be the non-compositional sum of word em-
beddings representation.

Ritter et al. (2015) and White et al. (2015) found that when classifying
sentences into categories according to meaning, simple SOWE outper-
formed more complex sentence vector models. Both works used sentence
embeddings as the input to classifiers. Ritter et al. (2015) classified
challenging artificial sentences into categories based on the positional re-
lationship described using Naïve Bayes. White et al. (2015) classified
real-world sentences into groups of semantically equivalent paraphrases.
In the case of Ritter et al. (2015) this outperformed the next best rep-
resentation by over 5%. In the case of White et al. (2015) it was within
a margin of 1% from the very best performing method. These results
suggest that there is high consistency in the relationship between a point
in the SOWE space, and the meaning of the sentence.

Wieting et al. (2016) presented a sentence embedding based on the re-
lated average of word-embedding, showing excellent performance across
several competitive tasks. They compared their method’s performance
against several models, including recurrent neural networks, and long
short term memory (LSTM) architectures. It was found that their aver-
aging method outperformed the more complex LSTM system, on most
sentence similarity and entailment task. Thus these simple methods are
worth further consideration. SOWE is the basis of the work presented in
this paper.

Our method performs the sentence generation in two steps, as shown in
Figure 10.1. It combines the work of White et al. (2016a) on generating
bags of words (BOW) from sums of word embeddings (SOWE); with the
work of Horvat and Byrne (2014) on ordering BOW into sentences. The
overall approach, of word selection followed by word ordering, can be
used to generate proper sentences from SOWE vectors.

The rest of the paper is organized into the following sections. Section 10.2
discusses the prior work on sentence generation. Section 10.3 explains
the problem in detail and how our method is used to solve it. Section 10.4
describes the settings used for evaluation. Section 10.5 presents the re-

166

CHAPTER 10. MODELLING SENTENCE GENERATION FROM SOWE
VECTORS AS A MIP PROBLEM

SOWE
Sentence
Vector

Word
Selection

Word
Ordering

Vocabulary
of Word
Vectors

Stochastic
Language

Model

Natural
Language
Sentence

Bag of
Words

Figure 10.1: The Sel. BOW+Ord. process for the regenerating sentences from SOWE-
type sentence vectors.

sults of this evaluation. The paper concludes with Section 10.6 and a
discussion of future work on this problem.

10.2 Related Works

To the best of our knowledge only three prior works exist in the area of
sentence generation from embeddings. The first two (Dinu and Baroni
(2014), Iyyer, Boyd-Graber, and Daumé III (2014)) are based on the
recursive structures in language, while Bowman et al. (2016b), uses the
sequential structure.
Dinu and Baroni (2014) extends the models described by Zanzotto et
al. (2010) and Guevara (2010) for generation. The composition is de-
scribed as a linear transformation of the input word embeddings to get
an output vector, and another linear transformation to reverse the com-
position reconstructing the input. The linear transformation matrices
are solved using least squares regression. This method of composing, can
be applied recursively from words to phrases to clauses and so forth. It
theoretically generalises to whole sentences, by recursively applying the
composition or decomposition functions. However, Dinu and Baroni’s
work is quantitatively assessed only on direct reconstruction for decom-
posing Preposition-Noun and Adjective-Noun word phrases. In these
cases where the decomposition function was trained directly on vectors
generated using the dual composition function they were able to get per-
fect reconstruction on the word embedding based inputs.
Iyyer, Boyd-Graber, and Daumé III (2014) extends the work of Socher et
al. (2011a) defining an unfolding recursive dependency-tree recursive au-
toencoder (DT-RAE). Recursive neural networks are jointly trained for
both composing the sentence’s words into a vector, and for decomposing
that vector into words. This composition and decomposition is done by
reusing a composition neural network at each vertex of the dependency
tree structure, with different weight matrices for each dependency rela-
tion. The total network is trained based on the accuracy of reproducing
its input word embeddings. It can be used to generate sentences, if a
dependency tree structure for the output is provided. This method was
demonstrated quantitatively on five examples; the generated sentences
were shown to be loosely semantically similar to the originals.
Bowman et al. (2016b) uses a a modification of the variational autoen-
coder (VAE) (Kingma and Welling 2014) with natural language inputs
and outputs, to learn the sentence representations. These input and out-
put stages are performed using long short-term memory recurrent neural
networks (Hochreiter and Schmidhuber 1997). They demonstrate a num-
ber of uses of this technique, one of which is sentence generation, in the

167

CHAPTER 10. MODELLING SENTENCE GENERATION FROM SOWE
VECTORS AS A MIP PROBLEM

sense of this paper. While Bowman et al. do define a generative model,
they do not seek to recreate a sentence purely from its vector input, but
rather to produce a series of probability distributions on the words in
the sentence. These distributions can be evaluated greedily, which the
authors used to give three short examples of resynthesis. They found the
sentence embeddings created captured largely syntactic and loose topical
information.
We note that none of the aforementioned works present any quantitative
evaluations on a corpus of full sentences. We suggest that that is due to
difficulties in evaluation. As noted in Iyyer, Boyd-Graber, and Daumé
III (2014) and Bowman et al. (2016b), they tend to output lose para-
phrases, or roughly similar sentences. This itself is a separately useful
achievement to pure exact sentence generation; but it is not one that
allows ready interpretation of how much information is maintained by
the embeddings. Demonstration of our method at generating the exam-
ple sentences used in those work is available as supplementary material1.
As our method often can exactly recreate the original sentence from its
vector representation evaluation is simpler.
Unlike current sentence generation methods, the non-compositional BOW
generation method of White et al. (2016a) generally outputs a BOW very
close to the reference for that sentence – albeit at the cost of losing all
word order information. It is because of this accuracy that we base our
proposed sentence generation method on it (as detailed in Section 10.3.1).
The word selection step we used is directly based on their greedy BOW
generation method. We improve it for sentence generation by composing
with a word ordering step to create the sentence generation process.

10.3 General Framework

As discussed in Section 10.1, and shown in Figure 10.1, the approach
taken to generate the sentences from the vectors comes in two steps.
First selecting the words used – this is done deterministically, based
on a search of the embedding space. Second is to order them, which
we solve by finding the most likely sequence according to a stochastic
language model. Unlike the existing methods, this is a deterministic
approach, rather than a machine learn method. The two subproblems
which result from this split resemble more classical NP-Hard computer
science problems; thus variations on known techniques can be used to
solve them.

10.3.1 Word Selection

White et al. (2016a) approaches the BOW generation problem, as task
of selecting the vectors that sum to be closest to a given vector. This is
related to the knapsack and subset sum problems. They formally define
the vector selection problem as:

(s̃,V , d) 7→ argmin{
∀c̃∈N|V|

0

} d(s̃,
∑
x̃j∈V

x̃jcj)

1http://white.ucc.asn.au/publications/White2016SOWE2Sent/

168

http://white.ucc.asn.au/publications/White2016SOWE2Sent/

CHAPTER 10. MODELLING SENTENCE GENERATION FROM SOWE
VECTORS AS A MIP PROBLEM

to find the bag of vectors selected from the vocabulary set V which when
summed is closest to the target vector s̃. Closeness is assessed with
distance metric d. c̃ is the indicator function for that multi-set of vectors.
As there is a one to one correspondence between word embeddings and
their words, finding the vectors results in finding the words. White et al.
(2016a) propose a greedy solution to the problem2.
The key algorithm proposed by White et al. (2016a) is greedy addition.
The idea is to greedily add vectors to a partial solution building towards
a complete bag. This starts with an empty bag of word embeddings, and
at each step the embedding space is searched for the vector which when
added to the current partial solution results in the minimal distance to
the target – when compared to other vectors from the vocabulary. This
step is repeated until there are no vectors in the vocabulary that can be
added without moving away from the solution. Then a fine-tuning step,
n-substitution, is used to remove some simpler greedy mistakes.
The n-substitution step examines partial solutions (bags of vectors) and
evaluates if it is possible to find a better solution by removing n elements
and replacing them with up-to n different elements. The replacement
search is exhaustive over the n-ary Cartesian product of the vocabulary.
Only for n = 1 is it currently feasible for practical implementation outside
of highly restricted vocabularies. Never-the-less even 1-substitution can
be seen as lessening the greed of the algorithm, through allowing early
decisions to be reconsidered in the full context of the partial solution.
The algorithm does remain greedy, but many simple mistakes are avoided
by n-substitution. The greedy addition and n-substitution processes are
repeated until the solution converges.

10.3.2 The Ordering Problem

After the bag of words has been generated by the previous step, it must
be ordered (sometimes called linearized). For example “are how , today
hello ? you”, is to be ordered into the sentence: “hello , how are you today
?”. This problem cannot always be solved to a single correct solution.
Mitchell and Lapata (2008) gives the example of “It was not the sales
manager who hit the bottle that day, but the office worker with the
serious drinking problem.” which has the same word content (though not
punctuation) as “That day the office manager, who was drinking, hit the
problem sales worker with a bottle, but it was not serious.”. However,
while a unique ordering cannot be guaranteed, finding the most likely
word ordering is possible. There are several current methods for word
ordering
To order the words we use a method based on the work of Horvat and
Byrne (2014), which uses simple trigrams. More recent works, such
as beam-search and LSTM language model and proposed by Schmaltz,
Rush, and Shieber (2016); or a syntactic rules based method such as pre-
sented in Zhang and Clark (2015), could be used. These more powerful
ordering methods internalise significant information about the language.

2We also investigated beam search as a possible improvement over the greedy addition and n-
substitution used by White et al. (2016a), but did not find significant improvement. The additional
points considered by the beam tended to be words that would be chosen by the greedy addition in
the later steps – thus few alternatives where found.

169

CHAPTER 10. MODELLING SENTENCE GENERATION FROM SOWE
VECTORS AS A MIP PROBLEM

w.w.

w.w1

w.w2

w.w3

w.w4

w.w/

S(w.)

w1w.

w1w1

w1w2

w1w3

w1w4

w1w/

S(w1)

w2w.

w2w1

w2w2

w2w3

w2w4

w2w/

S(w2)

w3w.

w3w1

w3w2

w3w3

w3w4

w3w/

S(w3)

w4w.

w4w1

w4w2

w4w3

w4w4

w4w/

S(w4)

wIw.

S(wI)

w/wJ

S(w/)

Figure 10.2: A graph showing the legal transitions between states, when the word-
ordering problem is expressed similar to a GA-TSP. Each edge 〈wa, wb〉 → 〈wc, wd〉
has cost − log(P (wc |wawb). The nodes are grouped into districts (words). Nodes for
invalid states are greyed out.

The classical trigram language model we present is a clearer baseline
for the capacity to regenerate the sentences; which then be improved by
using such systems.
Horvat and Byrne (2014) formulated the word ordering problem as a
generalised asymmetrical travelling salesman problem (GA-TSP). Fig-
ure 10.2 shows an example of the connected graph for ordering five words.
We extend beyond the approach of Horvat and Byrne (2014) by refor-
mulating the problem as a linear mixed integer programming problem
(MIP). This allows us to take advantage of existing efficient solvers for
this problem. Beyond the GA-TSP approach, a direct MIP formulation
allows for increased descriptive flexibility and opens the way for further
enhancement. Some of the constraints of a GA-TSP can be removed, or
simplified in the direct MIP formulation for word ordering. For example,
word ordering does have distinct and known start and end nodes (as shall
be detailed in the next section). To formulate it as a GA-TSP it must be
a tour without beginning or end. Horvat and Byrne (2014) solve this by
simply connecting the start to the end with a zero cost link. This is not
needed if formulating this as a MIP problem, the start and end nodes
can be treated as special cases. Being able to special case them as nodes
known always to occur allows some simplification in the subtour elimi-
nation step. The formulation to mixed integer programming is otherwise
reasonably standard.

Notation

We will write wi to represent a word from the bag W (wi ∈ W), with
arbitrarily assigned unique subscripts. Where a word occurs with multi-
plicity greater than 1, it is assigned multiple subscripts, and is henceforth
treated as a distinct word.
Each vertex is a sequence of two words, 〈wi, wj〉 ∈ W2. This is a Markov

170

CHAPTER 10. MODELLING SENTENCE GENERATION FROM SOWE
VECTORS AS A MIP PROBLEM

state, consisting of a word wj and its predecessor word wi – a bigram.

Each edge between two vertices represents a transition from one state to
another which forms a trigram. The start vertex is given by 〈wI, w.〉, and
the end by 〈w/, wJ〉. The pseudowords wI, w., w/, wJ are added during
the trigram models’ training allowing knowledge about the beginning and
ending of sentences to be incorporated.

The GA-TSP districts are given by the sets of all states that have a given
word in the first position. The district for word wi is given by S(wi) ⊆
W2, defined as S(wi) = {〈wi, wj〉 | ∀wj ∈ W}. It is required to visit
every district, thus it is required to use every word. With this description,
the problem can be formulated as a MIP optimisation problem.

Optimization Model

Every MIP problem has a set of variables to optimise, and a cost function
that assesses how optimal a given choice of values for that variable is.
The cost function for the word ordering problem must represent how
unlikely a particular order is. The variables must represent the order
taken. The variables are considered as a table (τ) which indicates if a
particular transition between states is taken. Note that for any pair of
Markov states 〈wa, wb〉, 〈wc, wd〉 is legal if and only if b = c, so we denote
legal transitions as 〈wi, wj〉 → 〈wj, wk〉. Such a transition has cost:

C[〈wi, wj〉, 〈wj, wk〉] = − log (P (wk|wi, wj〉)

The table of transitions to be optimized is:

τ [〈wi, wj〉, 〈wj, wk〉] =

1 if transition from

〈wi, wj〉 → 〈wj, wk〉 occurs
0 otherwise

The total cost to be minimized, is given by

Ctotal(τ) =
∑
∀wi,wj ,wk∈W3

τ [〈wi, wj〉, 〈wj, wk〉] · C[〈wi, wj〉, 〈wj, wk〉]

The probability of a particular path (i.e. of a particular ordering) is thus
given by P (τ) = e−Ctotal(τ)

The word order can be found by following the links. The function fτ (n)
gives the word that, according to τ occurs in the nth position.

fτ (1) = {wa | wa ∈ W ∧ τ [〈wI, w.〉, 〈w., wa〉] = 1}1

fτ (2) = {wb | wb ∈ W ∧ τ [〈w., fτ (1)〉, 〈fτ (1), wb〉] = 1}1

fτ (n) = {wc | wc ∈ W ∧ τ [〈fτ (n−2), fτ (n−1)〉, 〈fτ (n−1), wc〉] = 1}1
when n≥3

The notation {·}1 indicates taking a singleton set’s only element. The
constraints on τ ensure that each set is a singleton.

171

CHAPTER 10. MODELLING SENTENCE GENERATION FROM SOWE
VECTORS AS A MIP PROBLEM

Constraints

The requirements of the problem, place various constraints on to τ : The
Markov state must be maintained: ∀〈wa, wb〉, 〈wc, wd〉 ∈ W2:

wb 6= wc =⇒ τ [〈wa, wb〉, 〈wc, wd〉] = 0

Every node entered must also be exited – except those at the beginning
and end.
∀〈wi, wj〉 ∈ W2\{〈wI, w.〉, 〈w/, wJ〉}:∑

∀〈wa,wb〉∈W2

τ [〈wa, wb〉, 〈wi, wj〉] =
∑
∀〈wc,wd〉∈W2

τ [〈wi, wj〉, 〈wc, wd〉]

Every district must be entered exactly once. i.e. every word must be
placed in a single position in the sequence. ∀wi ∈ W\{wI, wJ}:∑

∀〈wi,wj〉∈S(wi〉

∑
∀〈wa,wb〉∈W2

τ [〈wa, wb〉, 〈wi, wj〉] = 1

To allow the feasibility checker to detect if ordering the words is impossi-
ble, transitions of zero probability are also forbidden. i.e. if P (wn|wn−2, wn−1) = 0
then τ [〈wn−2, wn−1〉, 〈wn−1, wn〉] = 0. These transitions, if not expressly
forbidden, would never occur in an optimal solution in any case, as they
have infinitely high cost.

Lazy Subtour Elimination Constraints The problem as formulated above
can be input into a MIPS solver. However, like similar formulations of
the travelling salesman problem, some solutions will have subtours. As
is usual callbacks are used to impose lazy constraints to forbid such solu-
tions at run-time. However, the actual formulation of those constraints
are different from a typical GA-TSP.
Given a potential solution τ meeting all other constraints, we proceed as
follows.
The core path – which starts at 〈wI, w.〉 and ends at 〈w/, wJ〉 can be
found. This is done by practically following the links from the start node,
and accumulating them into a set T ⊆ W2

From the core path, the set of words covered is given by WT = {wi |
∀〈wi, wj〉 ∈ T } ∪ {wJ}. If WT = W then there are no subtours and
the core path is the complete path. Otherwise, there is a subtour to be
eliminated.
If there is a subtour, then a constraint must be added to eliminate it.
The constraint we define is that there must be a connection from at least
one of the nodes in the district covered by the core path to one of the
nodes in the districts not covered.
The districts covered by the tour are given by ST =

⋃
wt∈WT

S(wt). The
subtour elimination constraint is given by∑

∀〈wt1,wt2〉∈ST

∑
∀〈wa,wb〉∈W2\ST

τ [〈wt1, wt2〉, 〈wa, wb〉] ≥ 1

172

CHAPTER 10. MODELLING SENTENCE GENERATION FROM SOWE
VECTORS AS A MIP PROBLEM

0 2 4 6 8 10 12 14 16 18
0

1,000

2,000

3,000

4,000

5,000

Ground Truth Sentence Length

N
um

be
r
of

Se
nt
en
ce
s

Figure 10.3: The distribution of the evaluation corpus after preprocessing.

i.e. there must be a transition from one of the states featuring a word
that is in the core path, to one of the states featuring a word not covered
by the core path.

This formulation around the notion of a core path that makes this dif-
ferent from typical subtour elimination in a GA-TSP. GA-TSP problems
are not generally guaranteed to have any nodes which must occur. How-
ever, every word ordering problem is guaranteed to have such a node
– the start and end nodes. Being able to identify the core path allows
for reasonably simple subtour elimination constraint definition. Other
subtour elimination constraints, however, also do exist.

10.4 Experimental Setup and Evaluations

This experimental data used in this evaluation was obtained from the
data released with White et al. (2016a).3

10.4.1 Word Embeddings

GloVe representations of words are used in our evaluations (Pennington,
Socher, and Manning 2014). GloVe was chosen because of the availability
of a large pre-trained vocabulary of vectors.4 The representations used for
evaluation were pretrained on the 2014 Wikipedia and Gigaword 5. Other
vector representations are presumed to function similarly. White et al.
(2016a) showed that their word selection method significantly improves
with higher dimensional embeddings. Due to their findings, we only
evaluated 300 dimensional embeddings.

173

CHAPTER 10. MODELLING SENTENCE GENERATION FROM SOWE
VECTORS AS A MIP PROBLEM

Process Perfect
Sentences

BLEU
Score

Portion
Feasible

Ref. BOW+Ord. 66.6% 0.806 99.6%
Sel. BOW+Ord. 62.2% 0.745 93.7%

Table 10.1: The overall performance of the Sel. BOW+Ord. sentence generation
process when evaluated on the Books corpus.

10.4.2 Corpus and Language Modelling

The evaluation was performed on a subset of the Books Corpus (Zhu
et al. 2015). The corpus was preprocessed as in the work of White et al.
(2016a). This meant removing any sentences which used words not found
in the embedding vocabulary.

After preprocessing, the base corpus, was split 90:10. 90% (59,694,016
sentences) of the corpus was used to fit a trigram model. This trigram
language model was smoothed using the Knesler-Ney back-off method
(Kneser and Ney 1995). The remaining 10% of the corpus was kept in re-
serve. From the 10%, 1% (66,464 sentences) were taken for testing. From
this any sentences with length over 18 words were discarded – the time
taken to evaluate longer sentences increases exponentially and becomes
infeasible. This left a final test set of 53,055 sentences. Figure 10.3 shows
the distribution of the evaluation corpus in terms of sentence length.

Note that the Books corpus contains many duplicate common sentences,
as well as many duplicate books: according to the distribution site5 only
7,087 out of 11,038 original books in the corpus are unique. We did not
remove any further duplicates, which means there is a strong chance of
a small overlap between the test set, and the set used to fit the trigrams.

10.4.3 Mixed Integer Programming

Gurobi version 6.5.0 was used to solve the MIP problems, invoked though
the JuMP library (Lubin and Dunning 2015). During preliminary testing
we found Gurobi to be significantly faster than the open source GLTK.
Particularly for longer sentences, we found two orders of magnitude dif-
ference in speed for sentences of length 18. This is inline with the more
extensive evaluations of Meindl and Templ (2012). Gurobi was run under
default settings, other than being restricted to a single thread. Restrict-
ing the solver to a single thread allowed for parallel processing.

Implementation was in the Julia programming language (Bezanson et al.
2014). The implementation, and non-summarised results are available
for download.6

174

CHAPTER 10. MODELLING SENTENCE GENERATION FROM SOWE
VECTORS AS A MIP PROBLEM

Process Perfect
BOWs

Mean
Precision

Mean
Jaccard
Index

Sel. BOW (only) 75.6% 0.912 0.891

Table 10.2: The performance of the word selection step, on the Books corpus. This
table shows a subset of the results reported by White et al. (2016a).

0 2 4 6 8 10 12 14 16 18

0.2

0.4

0.6

0.8

1

Ground Truth Sentence Length

Po
rt
io
n
Pe

rf
ec
t

Sel. BOW+Ord.
Ref. BOW+Ord.
Sel. BOW (only)

Figure 10.4: The portion of sentences reconstructed perfectly by the Sel. BOW+Ord.
process. Shown also is the results on ordering only (Ref. BOW+Ord.), which orders
the reference BOWS; and the portion of BOWs perfect from the word selection step
only (Sel. BOW (only)) i.e. the input to the ordering step.

175

CHAPTER 10. MODELLING SENTENCE GENERATION FROM SOWE
VECTORS AS A MIP PROBLEM

10.5 Results and Discussion

The overall results for our method (Sel. BOW+Ord.) sentence gener-
ation are shown in Table 10.1. Also shown are the results for just the
ordering step, when the reference bag of words provided as the input
(Ref. BOW+Ord.). The Perfect Sentences column shows the portion of
the output sentences which exactly reproduce the input. The more for-
giving BLEU Score Papineni et al. 2002 is shown to measure how close
the generated sentence is to the original. The portion of cases for which
there does exist a solution within the constraints of the MIP ordering
problem is showin in Portion Feasible. In the other cases, where the
MIP problem is unsolvable, for calculating the BLEU score, we order the
BOW based on the order resulting from the word selection step, or in
the reference case randomly.
Table 10.2 shows the results reported by White et al. 2016a for the Word
Selection step only (Sel. BOW (only)). The Perfect BOWs column re-
ports the portion of the generated BOWs which perfectly match the ref-
erence BOWs. We also show the Mean Precision, averaged across all
cases, this being the number of correct words generated, out of the total
number of words generated. Similarly, the Mean Jaccard Index is shown,
which is a measure of the similarities of the BOWs, being the size of the
intersection of the generated BOW with the reference BOW, divided by
the size of their union. We present these results to show how each step’s
performance impacts the overall system.
Both the Ref. BOW+Ord. and Sel. BOW (only) results place an upper
bound on the performance of the overall approach (Sel. BOW+Ord.).
The ordering only results (Ref. BOW+Ord.) show the best performance
that can be obtained in ordering with this language model, when no
mistakes are made in selection. Similarly, the selection only results
(Sel. BOW (only)) are bounding as no matter how good the word or-
dering method is, it cannot recreate perfectly accurate sentences using
incorrect words.
It can be noted that Ref. BOW+Ord. and Sel. BOW+Ord. were sig-
nificantly more accurate than the best results reported by Horvat and
Byrne (2014). We attribute this to Horvat and Byrne preprocessing the
evaluation corpora to remove the easier sentences with 4 or less words.
We did not remove short sentences from the corpus. The performance on
these sentences was particularly high, thus improving the overall results
on ordering.
The overall resynthesis (Sel. BOW+Ord.) degrades as the sentence
length increases as shown in Figure 10.4. It can be seen from the figure
that sentence length is a critical factor in the performance. The per-
formance drop is largely from the complexity in the ordering step when
faced with long sentences. This is evident in Figure 9.2, as performance
degrades at almost the same rate even when using the perfect BOW (com-
pare Ref. BOW+Ord. vs Sel. BOW+Ord.); rather than being degraded
by the failures in the word selection step (Sel. BOW (only)). We can

3Available online at http://white.ucc.asn.au/publications/White2016BOWgen/
4Available online at http://nlp.stanford.edu/projects/glove/
5http://www.cs.toronto.edu/~mbweb/
6http://white.ucc.asn.au/publications/White2016SOWE2Sent/

176

http://white.ucc.asn.au/publications/White2016BOWgen/
http://nlp.stanford.edu/projects/glove/
http://www.cs.toronto.edu/~mbweb/
http://white.ucc.asn.au/publications/White2016SOWE2Sent/

CHAPTER 10. MODELLING SENTENCE GENERATION FROM SOWE
VECTORS AS A MIP PROBLEM

conclude that sentences with word selection failures (Sel. BOW (only))
are also generally sentences which would have word ordering failures even
with perfect BOW (Ref. BOW+Ord.). Thus improving word selection,
without also improving ordering, would not have improved the overall
results significantly.

From observing examples of the output of method we note that normally
mistakes made in the word selection step result in an unorderable sen-
tence. Failures in selection are likely to result in a BOW that cannot be
grammatically combined e.g. missing conjunctions. This results in no
feasible solutions to the word ordering problem.

Our method considers the word selection and word ordering as separate
steps. This means that unorderable words can be selected if there is
an error in the first step. This is not a problem for the existing meth-
ods of Iyyer, Boyd-Graber, and Daumé III (2014) and of Bowman et al.
(2016b). Iyyer, Boyd-Graber, and Daumé III (2014) guarantees gram-
matical correctness, as the syntax tree must be provided as an input for
resynthesis – thus key ordering information is indirectly provided and it
is generated into. Bowman et al. (2016b) on the other hand integrates
the language model with the sentence embedding so that every point in
the vector space includes information about word order. In general, it
seems clear that incorporating knowledge about order, or at least co-
occurrence probabilities, should be certain to improve the selection step.
Even so the current simple approach has a strong capacity to get back
the input, without such enhancement.

10.6 Conclusion

A method was presented for regenerating sentences, from the sum of a
sentence’s word embeddings. It uses sums of existing word embeddings,
which are machine learnt to represent the sentences, and then generates
natural language output, using only the embeddings and a simple trigram
language model. Unlike existing methods, the generation method itself
is deterministic rather than being based on machine-learnt encoder/de-
coder models. The method involved two steps, word selection and word
ordering.

The first part is the word selection problem, of going from the sum of
embeddings to a bag of words. To solve this we utilised the method
presented in White et al. (2016a). Their greedy algorithm was found to
perform well at regenerating a BOW. The second part was word ordering.
This was done through a MIP bases reformulation of the work of the
graph-based work of Horvat and Byrne (2014). It was demonstrated
that a probabilistic language model can be used to order the bag of
words output to regenerate the original sentences. While it is certainly
impossible to do this perfectly in every case, for many sentences the most
likely ordering is correct.

From a theoretical basis the resolvability of the selection problem, pre-
sented by White et al. (2016a), shows that adding up the word embed-
dings does preserve the information on which words were used; partic-
ularly for higher dimensional embeddings. This shows clearly that col-

177

CHAPTER 10. MODELLING SENTENCE GENERATION FROM SOWE
VECTORS AS A MIP PROBLEM

lisions do not occur (at least with frequency) such that two unrelated
sentences do not end up with the same SOWE representation. This
work extends that by considering if the order can be recovered based
on simple corpus statistics. Its recoverability is dependent, in part, on
how frequent sentences with the same words in different order are in the
corpus language – if they were very frequent then non-order preserving,
non-compositional representations like SOWE would be poor at captur-
ing meaning, and the ordering task would generally fail. As the method
we presented generally does succeed, we can conclude that word order
ambiguity is not a dominating problem. This supports the use of simple
approaches like SOWE as a meaning representation for sentences – at
least for sufficiently short sentences.

The technique was only evaluated on sentences with up to 18 words
(inclusive), due to computational time limitations. Both accuracy and
running time worsens exponentially as sentence length increases. With
that said, short sentences are sufficient for many practical uses. For
longer sentences, it is questionable as to the extent the information used
is preserved by the SOWE representation – given they tend to have large
substructures (like this one) compositional models are expected to be
more useful. In evaluating such future representations, the method we
present here is a useful baseline.

10.6.1 Acknowledgements

This research is supported by the Australian Postgraduate Award, and
partially funded by Australian Research Council grants DP150102405
and LP110100050. Computational resources were provided by the Na-
tional eResearch Collaboration Tools and Resources project (Nectar).

10.7 Supplementary Materials to Modelling Sentence
Generation from Sum of Word Embedding Vec-
tors as a Mixed Integer Programming Problem

These supplementary materials show additional examples of the per-
formance of our method against the works of Iyyer, Boyd-Graber, and
Daumé III (2014) and Bowman et al. (2016b), as of our well as on sen-
tences with ambiguous order. Bare in mind, exact reproduction is not
the goal of either prior work; nor truly is it a goal of out work. Our
goal being the regeneration of sentences while preserving meaning – ex-
act reproduction does of course meet that goal. The examples that follow
should highlight the differences in the performance of the methods.

Tables 10.3 to 10.5 show quantitative examples; including comparison to
the existing works. In these tables 7 and 3 are used to show correctness
of the output in the selection (Sel.) and in the ordering (Ord.) steps.

The sentences shown in Table 10.3, are difficult. The table features long
complex sentences containing many proper nouns. These examples are
sourced from Iyyer, Boyd-Graber, and Daumé III (2014). The output

178

CHAPTER 10. MODELLING SENTENCE GENERATION FROM SOWE
VECTORS AS A MIP PROBLEM

from their DT-RAE method is also shown for contrast. Only 3C is com-
pleted perfectly by our method. Of the remainder the MIP word ordering
problem has no solutions, except in 3D, where it is wrong, but does pro-
duce an ordered sentence. In the others the language model constraints
does not return any feasible (P (τ) > 0) ordering solutions. This failure
may be attributed in a large part to the proper nouns. Proper nouns are
very sparse in any training corpus for language modelling. The Kneser-
Ney smoothed trigrams back-off only down to bigrams, so if the words
of the bigrams from the training corpus never appear adjacently in the
training corpus, ordering fails. This is largely the case for very rare
words. The other significant factor is the sentence length.
The sentences in Table 10.4, are short and use common words – they are
easy to resynthesis. These examples come from Bowman et al. (2016b).
The output of their VAE based approach can be compared to that from
our approach. Of the three there were two exact match’s, and one failure.
Normally mistakes made in the word selection step result in an unorder-
able sentence. Failures in selection are likely to result in a BOW that
cannot be grammatically combined e.g. missing conjunctions. This re-
sults in no feasible solutions to the word ordering problem.
The examples shown in Table 10.5 highlight sentences where the order is
ambiguous – where there are multiple reasonable solutions to the word
ordering problem. In both cases the word selection performs perfectly,
but the ordering is varied. In 5A, the Ref. BOW+Ord. sentence and the
overall Sel. BOW+Ord. sentence in word order but not in word content.
This is because under the trigram language model both sentences have
exactly identical probabilities, so it comes to which solution is found
first, which varies on the state of the MIP solver. In 5B the word order is
switched – “from Paris to London” vs “to London from Paris”, which has
the same meaning. But, it could also have switched the place names. In
cases like this where two orderings are reasonable, the ordering method is
certain to fail consistently for one of the orderings. Though it is possible
to output the second (and third etc.) most probable ordering, which
does ameliorate the failure somewhat. This is the key limitation which
prevents this method from direct practical applications.

179

CHAPTER 10. MODELLING SENTENCE GENERATION FROM SOWE
VECTORS AS A MIP PROBLEM

3A Reference name this 1922 novel about leopold bloom written by
james joyce .

Sel. Ord.

Ref. BOW+Ord.written by name this . novel about 1922 bloom leopold
james joyce

– 6

Sel. BOW+Ord. written novel by name james about leopold this bloom
1922 joyce .

3 6

DT-RAE Ref. name this 1906 novel about gottlieb_fecknoe inspired by
james_joyce

DT-RAE
Para.

what is this william golding novel by its written writer

3B Reference ralph waldo emerson dismissed this poet as the jingle man
and james russell lowell called him three-fifths genius and
two-fifths sheer fudge .

Sel. Ord.

Ref. BOW+Ord.sheer this as james two-fifths emerson fudge lowell poet
genius waldo called russell the and ralph and him . dis-
missed jingle three-fifths man

– 6

Sel. BOW+Ord. him “ james great as emerson genius ralph the low-
ell and sheer waldo three-fifths man fudge dismissed
jingle russell two-fifths and gwalchmai 2009 vice-versa
__
prominent called 21.25 explained

7 6

DT-RAE Ref. henry_david_thoreau rejected this author like the tsar
boat and imbalance created known good writing and his
own death

DT-RAE
Para.

henry_david_thoreau rejected him through their stories
to go money well inspired stories to write as her writing

3C Reference this is the basis of a comedy of manners first performed
in 1892 .

Sel. Ord.

Ref. BOW+Ord.this is the basis of a comedy of manners first performed
in 1892 .

– 3

Sel. BOW+Ord. this is the basis of a comedy of manners first performed
in 1892 .

3 3

DT-RAE Ref. another is the subject of this trilogy of romance most
performed in 1874

DT-RAE
Para.

subject of drama from him about romance

3D Reference in a third novel a sailor abandons the patna and meets
marlow who in another novel meets kurtz in the congo .

Sel. Ord.

Ref. BOW+Ord.kurtz and another meets sailor meets the marlow who
abandons a third novel in a novel in the congo in patna .

– 7

Sel. BOW+Ord. kurtz and another meets sailor meets the marlow who
abandons a third novel in a novel in the congo in patna .

3 7

DT-RAE Ref. during the short book the lady seduces the family and
meets cousin he in a novel dies sister from the mr.

DT-RAE
Para.

during book of its author young lady seduces the family
to marry old suicide while i marries himself in marriage

3E Reference thus she leaves her husband and child for aleksei vronsky
but all ends sadly when she leaps in front of a train .

Sel. Ord.

Ref. BOW+Ord.train front of child vronsky but and for leaps thus sadly
all her she she in when aleksei husband ends a . leaves

– 6

Sel. BOW+Ord. she her all when child for leaves front but and train ends
husband aleksei leaps of vronsky in a sadly micro-history
thus , she the

7 6

DT-RAE Ref. however she leaves her sister and daughter from former
fiancé and she ends unfortunately when narrator drives
into life of a house

DT-RAE
Para.

leaves the sister of man in this novel

Table 10.3: A comparison our method, to the example sentences generated by the
DT-RAE method of Iyyer, Boyd-Graber, and Daumé III (2014). Ref. BOW+Ord.
shows the word ordering step on the reference BOW. the Sel. and Ord. columns
indicate if the output had the correct words selected, and ordered respectively. With
3 indicating correct and 7 indicating incorrect. 6 indicates not only that ordering was
not correct, but that the MIP problem had no feasible solutions at all. DT-RAE Ref.
shows the result of the method of Iyyer, Boyd-Graber, and Daumé III (2014), when
the dependency tree of the output is provided to the generating process, whereas in
DT-RAE Para. an arbitrary dependency tree is provided to the generating process.
Note that the reference used as input to Sel. BOW+Ord. and Ref. BOW+Ord.
sentence was varied slightly from that used in Iyyer, Boyd-Graber, and Daumé III
(2014) and White et al. (2016a), in that terminating punctuation was not removed,
and nor were multiword entity references grouped into single tokens.

180

CHAPTER 10. MODELLING SENTENCE GENERATION FROM SOWE
VECTORS AS A MIP PROBLEM

4A Reference we looked out at the
setting sun .

Sel. Ord.

Ref. BOW+Ord.we looked out at the
setting sun .

– 3

Sel. BOW+Ord. we looked out at the
setting sun .

3 3

VAE Mean they were laughing at
the same time .

VAE Sample1 ill see you in the early
morning .

VAE Sample2 i looked up at the
blue sky .

VAE Sample3 it was down on the
dance floor .

4B Reference i went to the kitchen
.

Sel. Ord.

Ref. BOW+Ord.i went to the kitchen
.

– 3

Sel. BOW+Ord. i went to the kitchen
.

3 3

VAE Mean i went to the kitchen
.

VAE Sample1 i went to my apart-
ment .

VAE Sample2 i looked around the
room .

VAE Sample3 i turned back to the
table .

4C Reference how are you doing ? Sel. Ord.
Ref. BOW+Ord.how are you doing ? – 3

Sel. BOW+Ord. how ’re do well ? 7 7

VAE Mean what are you doing ?
VAE Sample1 “ are you sure ?
VAE Sample2 what are you doing, ?
VAE Sample3 what are you doing ?

Table 10.4: A comparison of the output of the Two Step process proposed in this
paper, to the example sentences generated by the VAE method of Bowman et al.
(2016b).

5A Reference it was the worst of
times , it was the best
of times .

Sel. Ord.

Ref. BOW+Ord.it was the worst of
times , it was the best
of times .

– 3

Sel. BOW+Ord. it was the best of
times , it was the
worst of times .

3 7

5B Reference please give me direc-
tions from Paris to
London .

Sel. Ord.

Ref. BOW+Ord.please give me direc-
tions to London from
Paris .

– 7

Sel. BOW+Ord. please give me direc-
tions to London from
Paris .

3 7

Table 10.5: A pair of example sentences, where the correct order is particularly
ambiguous.

181

CHAPTER 10. MODELLING SENTENCE GENERATION FROM SOWE
VECTORS AS A MIP PROBLEM

182

CHAPTER 11. CONCLUSION

Chapter 11

Conclusion

Current research in natural language understanding relies on the creation
of representations of natural language that can be readily manipulated by
computer algorithms for purposes of making inferences about meaning.
This thesis has focused on one particular type of representation: linear
combinations of embeddings. This is a very simple representation, closely
related to a bag of words. There is a machine learning adage: that given
enough data and a model with sufficiently high representational capacity
any problem can be solved. However, we seem to have found a sweet
spot, where a model seemingly without sufficiently high representational
capacity, never-the-less performs excellently on tasks with the amount
of data that we have. It seems clear that there will always exist low-
medium resource settings where linear combinations of embeddings will
remain an ideal method for many practical problems.

The research presented here on linear combinations of embeddings has
shown that this simple input representation technique is surprisingly
powerful. This power is related to the fact that surface level informa-
tion plays a significant role in practically giving human understandable
meaning to a natural language utterance. Word content is the most ob-
vious surface level information, and is effectively captured by a LCOWE.
The LCOWE represented this in a dense, but informative vector. While
the LCOWE loses word order information, it preserves the aggregated
content very well, making it very useful for the tasks considered in this
research.

We considered a number of tasks to identify the utility of this repre-
sentation. Chapter 5 investigated classifying paraphrases as a means to
investigate the quality of SOWE as a sentence embedding method. Chap-
ter 6 defined models for color estimation from short phrases. Chapter 7
considered if we could use weighted combinations of sense embeddings to
better capture the sense used in a particular example. Chapter 8 consid-
ered taking the mean of the embeddings adjacent to named entity tokens
across a fictional text as a feature to characterize how the named entity
token was being used. We followed up these practical demonstrations
of capacity, with further investigations into what can be recovered from
the SOWE in the important area of sentence representations. Chapter 9
demonstrated a method that could partially recover bags of words from
a given SOWE. Chapter 10 extended this work by attempting to order
those bags of words into sentences. This demonstrated that a surpris-

183

CHAPTER 11. CONCLUSION

ing amount of information is still available in the summed embeddings;
which helps to explain why they work so well.

Linear combinations of embedding are not perfect for representing all
meaning, as they do not encode any information about word order. It
is thus clear that there exists sentences and phrases that are ambiguous
when represented this way. However, we note that such sentences are
rare: often there is only one likely ordering, particularly in any given text
with a restricted domain. Most sentences are relatively short; multiple
similarly likely word ordering occur more often in longer sentences. Many
reorderings are paraphrases, or near paraphrases, particularly when done
at the clause level. Though some orderings, such as noun swaps of nouns
with similar ontological classification (e.g. Agents, Objects) do exist
at almost all lengths: many are paraphrases The banana is next to
the orange vs. The orange is next to the banana; and others are
similar in meaning: The banana is to the left of the orange vs.
The orange is to the left of the banana. It is desirable that such
sentences are nearby in a representational of the semantic space.

11.1 Future work

11.1.1 Adversarial Test cases

A limitation of the LCOWE representations is that they have no ability
to represent word order. This is in-contrast to RNNs and other com-
monly used neural network based representations of multi-word natural
language input. It is possibly to construct adversarial test cases, that no
LCOWE can succeed on. This can be done by selecting sentences with
multiple reasonable word orders with very different meanings. It is worth
consideration, that such adversarial test cases allow advancement of the
state of the art to increase the capacity of models to represent all possi-
ble inputs. However, they do not necessarily advance the practical state
of the art in representing real inputs that occur in a particular domain.
Thus it is is essential to understand how common such adversarial test
cases are in practice.

Future work in this area requires not just the construction of adversarial
examples; but of the determination of how common they are in prac-
tice. Adversarial examples are not ubiquitous in real world tasks. It is
important not to succeed on only these cases, while failing on the more
common simple cases.

It is also important to consider how challenging an adversarial test case is.
In Chapter 6, the ordered task which was to make predictions for colors
for which the different words in the name could appear in different orders
to describe different colors. For example bluish green and greenish
blue are different colors. However, they are very similar colors. As such
the error from discarding word order, is less than the error from using a
more complicated model such as an RNN. Such a more complex model is
harder to train, and those practical difficulties can dominate over a small
amount of theoretical lack of capacity.

184

CHAPTER 11. CONCLUSION

SOWE Enhanced
RNN Encoder-Decoder
Variable n inputs: x̃t

Variable m outputs ŷt
Prompts: r̃t (often yt−1)

RUE

Emb.

x̃1

RUE

Emb.

x̃2

…

Emb.

…

RUE

Emb.

x̃n

state state state

Concat

∑

RUD

[z̃; r̃1]

ŷ1

z̃

RUD

[z̃; r̃2]

ŷ2

z̃

…

…

…

z̃

RUD

[z̃; r̃m]

ŷm

z̃

state state state

Figure 11.1: An encoder-decoder model with a SOWE encoder bypass layer added
(shown in red).

11.1.2 Language Models and Orderless Representations

There is a complementary aspect to LCOWE and language models.
LCOWE have no capacity to handle word order, but they have an ex-
cellent ability to capture word content; whereas pure language models
have no ability to capture word content, but have an excellent ability to
capture word order. Language modelling based models incorporating a
representation stage, such as encoder-decoders (Cho et al. 2014a), do not
capture word content as well as LCOWE (Conneau et al. 2018). They
do, however, have state of the art order representation.

An interesting combination of the two, would be an encoder model, where
the coding layer, is augmented by concatenating the final RNN output,
with a sum of word embeddings, for all the input words to the encoder.
An example of this for a encoder-decoder is shown in Figure 11.1. This
would effectively allow a bypass of the encoder RNN. A similar bypass
of intermediate layers has been used in feed-forward networks including
the notable neural probabilistic language model (Bengio et al. 2003).
The significant advantage of bypassing the RNN encoder is that it allows
the model to weight the value of the orderful representation of the RNN
output, against the unordered representation of the SOWE and learn use
which ever is better for the task. Further, having explicit access to the
surface level features in the SOWE, should help encourage the orderful
encoder to learn more important deeper features.

185

CHAPTER 11. CONCLUSION

A coding layer featuring components from a encoder capturing order-
features, and a SOWE capturing surface features can be expected to
perform better at both representations than either alone. This expec-
tation is due to the fact that during training the weighting above the
shared layer, will learn to to weight each feature for what it is better at.
Thus during gradient decent the weights for the encoder would be de-
creased for surface information that is better obtained from the SOWE.
This would allow each part of the network to focus on what it is best at,
thus creating better representations. This thesis has shown that SOWE
can excel at surface level tasks (which is a surprising number of prac-
tical tasks). On deeper tasks where structure becomes more important
ordered representations perform better (Conneau et al. 2018). By com-
bining the two we expect to get the best of both worlds, and produce
truly excellent models for natural language understanding.

11.2 Final Words

This dissertation investigated how representation of multiple natural lan-
guage components could be combined to produce one representation to be
used in further natural language understanding tasks. Examples of this
kind of problem abound, due to the hierarchical structure of language,
and to how we consider meaning as being based on context and usage.
Given a sentence or phrase made up of words, how to combine the word
representation for a sentence or phrase embedding that captures the over-
all meaning. Given a collection of possible word sense embeddings, how
to combine these for a word sense embedding to mean exactly what is in-
tended; Given a collection of co-occurring words around a named entity,
how to create a representation for the way the named entity was referred
to that can be used to find key information about that entity’s role in
the text. The general need to combine information made up of parts
which we individually have a good representation of is a core feature of
natural language understanding. In most natural language understand-
ing tasks, the number of realistic higher level structures made up of such
components is combinatorially large. As such, determining how best to
combine them is an essential task.

The striking finding early in this research was that simple linear combi-
nations, such as sums, is very effective at creating a practical represen-
tation of the greater structure. These, like most component embeddings
themselves, boil down to particular forms of dimensionality reductions
of bags of words (or of other components); with an implicit objective to
maximise the capture of meaning according to Firth’s criterion. They
thus very effectively capture surface information, such as word content
in sentences.

The key take away from this thesis are: linear combinations of embed-
dings are an effective representation of natural language constructs; be-
cause surface information is more useful than expected for natural lan-
guage understanding tasks, and order and structural information is less
useful than expected. We give the recommendation that a sum of word
embeddings, or similar, should be used as a baseline for all natural lan-
guage understanding tasks. We suggest that future model architectures

186

CHAPTER 11. CONCLUSION

should ensure that the implicit latent representations has access both to
structural (RvNN) or order sensitive (RNN) representations of the input,
as well as order ignorant representations such as SOWE. Maximising ac-
cess both to deeper compositional information, and simple surface form
information.

187

CHAPTER 11. CONCLUSION

188

Bibliography

Abadi, Martín, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia,
Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané,
Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Van-
houcke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng (2015). TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems. Software available from
tensorflow.org.

Abadi, Martín, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng (2016). “TensorFlow: A System for Large-scale Machine
Learning”. In: Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation. OSDI’16. Savannah, GA, USA: USENIX Association,
pp. 265–283. isbn: 978-1-931971-33-1.

Adi, Yossi, Einat Kermany, Yonatan Belinkov, Ofer Lavi, and Yoav Goldberg (2017).
“Fine-grained analysis of sentence embeddings using auxiliary prediction tasks”. In:
Proceedings of ICLR Conference Track.

Agirre, Eneko and Aitor Soroa (2007). “Semeval-2007 Task 02: Evaluating Word Sense
Induction and Discrimination Systems”. In: Proceedings of the 4th International
Workshop on Semantic Evaluations. SemEval ’07. Stroudsburg, PA, USA: Associ-
ation for Computational Linguistics, pp. 7–12.

Agirre, Eneko, David Martínez, Oier López De Lacalle, and Aitor Soroa (2006). “Eval-
uating and optimizing the parameters of an unsupervised graph-based WSD algo-
rithm”. In: Proceedings of the first workshop on graph based methods for natural
language processing. Association for Computational Linguistics, pp. 89–96.

Arora, Sanjeev, Yingyu Liang, and Tengyu Ma (2017). “A simple but tough-to-beat
baseline for sentence embeddings”. In: Proceedings of ICLR Conference Track.

Atzmon, Yuval, Jonathan Berant, Vahid Kezami, Amir Globerson, and Gal Chechik
(2016). “Learning to generalize to new compositions in image understanding”. In:
CoRR abs/1608.07639.

Bartunov, Sergey, Dmitry Kondrashkin, Anton Osokin, and Dmitry P. Vetrov (2015).
“Breaking Sticks and Ambiguities with Adaptive Skip-gram”. In: CoRR abs/1502.07257.

Bengio, Yoshua, Patrice Simard, and Paolo Frasconi (1994). “Learning long-term de-
pendencies with gradient descent is difficult”. In: IEEE transactions on neural net-
works 5.2, pp. 157–166.

Bengio, Yoshua, Réjean Ducharme, Pascal Vincent, and Christian Janvin (2003). “A
Neural Probabilistic Language Model”. In: The Journal of Machine Learning Re-
search, pp. 137–186.

Berk, Toby, Arie Kaufman, and Lee Brownston (1982). “A Human Factors Study of
Color Notation Systems for Computer Graphics”. In: Commun. ACM 25.8, pp. 547–
550. issn: 0001-0782. doi: 10.1145/358589.358606.

Berlin, Brent and Paul Kay (1969). Basic color terms: Their university and evolution.
California UP.

189

https://doi.org/10.1145/358589.358606

BIBLIOGRAPHY

Bezanson, Jeff, Alan Edelman, Stefan Karpinski, and Viral B. Shah (2014). “Julia: A
Fresh Approach to Numerical Computing”. In: SIAM Review 59.1, pp. 65–98. doi:
10.1137/141000671.

Bird, Steven and Edward Loper (2004). “NLTK: the natural language toolkit”. In:
Proceedings of the ACL 2004 on Interactive poster and demonstration sessions.
Association for Computational Linguistics, p. 31.

Blei, David M, Andrew Y Ng, and Michael I Jordan (2003). “Latent dirichlet alloca-
tion”. In: the Journal of machine Learning research 3, pp. 993–1022.

Bojanowski, Piotr, Edouard Grave, Armand Joulin, and Tomas Mikolov (2017). “En-
riching Word Vectors with Subword Information”. In: Transactions of the Associa-
tion for Computational Linguistics 5, pp. 135–146.

Booth, Wayne C (1961). The rhetoric of fiction. University of Chicago Press.
Borko, Harold and Myrna Bernick (1963). “Automatic document classification”. In:

Journal of the ACM (JACM) 10.2, pp. 151–162.
Bowman, Samuel R, Jon Gauthier, Abhinav Rastogi, Raghav Gupta, Christopher D
Manning, and Christopher Potts (2016a). “A fast unified model for parsing and
sentence understanding”. In: arXiv preprint arXiv:1603.06021.

Bowman, Samuel R, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz,
and Samy Bengio (2016b). “Generating Sentences from a Continuous Space”. In:
International Conference on Learning Representations (ICLR) Workshop.

Brown, Peter F, Peter V Desouza, Robert L Mercer, Vincent J Della Pietra, and
Jenifer C Lai (1992). “Class-based n-gram models of natural language”. In: Com-
putational linguistics 18.4, pp. 467–479.

Chen, Tianqi, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao,
Bing Xu, Chiyuan Zhang, and Zheng Zhang (2015). “Mxnet: A flexible and efficient
machine learning library for heterogeneous distributed systems”. In: arXiv preprint
arXiv:1512.01274.

Chen, Xinxiong, Zhiyuan Liu, and Maosong Sun (2014). “A Unified Model for Word
Sense Representation and Disambiguation.” In: EMNLP. Citeseer, pp. 1025–1035.

Cho, Kyunghyun, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio (2014a). “Learning Phrase Repre-
sentations using RNN Encoder–Decoder for Statistical Machine Translation”. In:
Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Doha, Qatar: Association for Computational Linguistics,
pp. 1724–1734.

Cho, Kyunghyun, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio
(2014b). “On the properties of neural machine translation: Encoder-decoder ap-
proaches”. In: Eighth Workshop on Syntax, Semantics and Structure in Statistical
Translation (SSST-8).

Chung, Junyoung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio (2014).
“Empirical evaluation of gated recurrent neural networks on sequence modeling”.
In: arXiv preprint arXiv:1412.3555.

Collobert, Ronan and Jason Weston (2008). “A unified architecture for natural lan-
guage processing: Deep neural networks with multitask learning”. In: Proceedings
of the 25th international conference on Machine learning. ACM, pp. 160–167.

Conneau, Alexis, Germán Kruszewski, Guillaume Lample, Loïc Barrault, and Marco
Baroni (2018). “What you can cram into a single $&!#* vector: Probing sentence
embeddings for linguistic properties”. In: Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers). Melbourne,
Australia: Association for Computational Linguistics, pp. 2126–2136.

Conway, Damian (1992). “An experimental comparison of three natural language
colour naming models”. In: Proc. east-west int. conf. on human-computer interac-
tion, pp. 328–339.

Cotterell, Ryan, Adam Poliak, Benjamin Van Durme, and Jason Eisner (2017). “Ex-
plaining and Generalizing Skip-Gram through Exponential Family Principal Com-
ponent Analysis”. In: EACL 2017 175.

Cífka, Ondřej and Ondřej Bojar (2018). “Are BLEU and Meaning Representation
in Opposition?” In: Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). Melbourne, Australia:
Association for Computational Linguistics, pp. 1362–1371.

190

https://doi.org/10.1137/141000671

BIBLIOGRAPHY

Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei (2009). “ImageNet: A
Large-Scale Hierarchical Image Database”. In: CVPR09.

Dhillon, Paramveer, Dean P Foster, and Lyle H Ungar (2011). “Multi-view learning of
word embeddings via cca”. In: Advances in Neural Information Processing Systems,
pp. 199–207.

Dinu, Georgiana and Marco Baroni (2014). “How to make words with vectors: Phrase
generation in distributional semantics”. In: Proceedings of ACL, pp. 624–633.

Dolan, William B. and Chris Brockett (2005). “Automatically Constructing a Cor-
pus of Sentential Paraphrases”. In: Third International Workshop on Paraphrasing
(IWP2005). Asia Federation of Natural Language Processing.

Drummond, Chris (2009). “Replicability is not reproducibility: nor is it good science”.
In: Proceedings of the Evaluation Methods for Machine Learning Workshop at the
26th ICML.

Dumais, Susan T, George W Furnas, Thomas K Landauer, Scott Deerwester, and
Richard Harshman (1988). “Using latent semantic analysis to improve access to
textual information”. In: Proceedings of the SIGCHI conference on Human factors
in computing systems. Acm, pp. 281–285.

Elson, David K., Nicholas Dames, and Kathleen R. McKeown (2010). “Extracting
Social Networks from Literary Fiction”. In: Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistics. ACL ’10. Uppsala, Sweden:
Association for Computational Linguistics, pp. 138–147.

Fan, Rong-En, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin
(2008). “LIBLINEAR: A Library for Large Linear Classification”. In: Journal of
Machine Learning Research 9, pp. 1871–1874.

Farhadi, Ali, Mohsen Hejrati, Mohammad Amin Sadeghi, Peter Young, Cyrus Rashtchian,
Julia Hockenmaier, and David Forsyth (2010). “Every picture tells a story: Gener-
ating sentences from images”. In: Computer Vision–ECCV 2010. Springer, pp. 15–
29.

Faruqui, Manaal and Chris Dyer (2014). “Improving vector space word representations
using multilingual correlation”. In: Association for Computational Linguistics.

Finkelstein, Lev, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi
Wolfman, and Eytan Ruppin (2001). “Placing search in context: The concept re-
visited”. In: Proceedings of the 10th international conference on World Wide Web.
ACM, pp. 406–414.

Francis, W Nelson and Henry Kucera (1979). “Brown corpus manual”. In: Brown
University.

Fu, X., K. Huang, E. E. Papalexakis, H. A. Song, P. P. Talukdar, N. D. Sidiropou-
los, C. Faloutsos, and T. Mitchell (2016). “Efficient and Distributed Algorithms
for Large-Scale Generalized Canonical Correlations Analysis”. In: 2016 IEEE 16th
International Conference on Data Mining (ICDM), pp. 871–876. doi: 10.1109/
ICDM.2016.0105.

Ganesan, Kavita, ChengXiang Zhai, and Jiawei Han (2010). “Opinosis: a graph-based
approach to abstractive summarization of highly redundant opinions”. In: Proceed-
ings of the 23rd International Conference on Computational Linguistics. Association
for Computational Linguistics, pp. 340–348.

Gers, Felix A, Jürgen Schmidhuber, and Fred Cummins (1999). “Learning to forget:
Continual prediction with LSTM”. In:

Gershman, Samuel J and Joshua B Tenenbaum (2015). “Phrase similarity in humans
and machines”. In: Proceedings of the 37th Annual Conference of the Cognitive
Science Society.

Gladkova, Anna, Aleksandr Drozd, and Satoshi Matsuoka (2016). “Analogy-based
detection of morphological and semantic relations with word embeddings: what
works and what doesn’t.” In: SRW@ HLT-NAACL, pp. 8–15.

Goller, Christoph and Andreas Kuchler (1996). “Learning task-dependent distributed
representations by backpropagation through structure”. In: Neural Networks, 1996.,
IEEE International Conference on. Vol. 1. IEEE, pp. 347–352.

Goodman, Alyssa, Alberto Pepe, Alexander W. Blocker, Christine L. Borgman, Kyle
Cranmer, Merce Crosas, Rosanne Di Stefano, Yolanda Gil, Paul Groth, Margaret
Hedstrom, David W. Hogg, Vinay Kashyap, Ashish Mahabal, Aneta Siemiginowska,
and Aleksandra Slavkovic (2014). “Ten Simple Rules for the Care and Feeding of

191

https://doi.org/10.1109/ICDM.2016.0105
https://doi.org/10.1109/ICDM.2016.0105

BIBLIOGRAPHY

Scientific Data”. In: PLOS Computational Biology 10.4, pp. 1–5. doi: 10.1371/
journal.pcbi.1003542.

Grave, Edouard, Piotr Bojanowski, Prakhar Gupta, Armand Joulin, and Tomas Mikolov
(2018). “Learning Word Vectors for 157 Languages”. In: Proceedings of the Inter-
national Conference on Language Resources and Evaluation (LREC 2018).

Grice, H Paul (1975). “Logic and conversation”. In: Speech Acts 3, pp. 41–58.
Guevara, Emiliano (2010). “A regression model of adjective-noun compositionality
in distributional semantics”. In: Proceedings of the 2010 Workshop on Geometrical
Models of Natural Language Semantics. Association for Computational Linguistics,
pp. 33–37.

Gujral, Biman, Huda Khayrallah, and Philipp Koehn (2016). “Translation of Un-
known Words in Low Resource Languages”. In: Proceedings of the Conference of
the Association for Machine Translation in the Americas (AMTA).

Gutmann, Michael U and Aapo Hyvärinen (2012). “Noise-contrastive estimation of
unnormalized statistical models, with applications to natural image statistics”. In:
Journal of Machine Learning Research 13.Feb, pp. 307–361.

Ha, Le Quan, Philip Hanna, Ji Ming, and F Jack Smith (2009). “Extending Zipf’s law
to n-grams for large corpora”. In: Artificial Intelligence Review 32.1, pp. 101–113.

Heider, Eleanor R (1972). “Universals in color naming and memory.” In: Journal of
experimental psychology 93.1, p. 10.

Heider, Eleanor Rosch and Donald C. Olivier (1972). “The structure of the color space
in naming and memory for two languages”. In: Cognitive Psychology 3.2, pp. 337 –
354. issn: 0010-0285. doi: http://dx.doi.org/10.1016/0010-0285(72)90011-4.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long short-term memory”. In:
Neural computation 9.8, pp. 1735–1780.

Hofmann, Thomas (2000). “Learning the similarity of documents: An information-
geometric approach to document retrieval and categorization”. In: Advances in
neural information processing systems, pp. 914–920.

Horvat, Matic and William Byrne (2014). “A Graph-Based Approach to String Re-
generation.” In: EACL, pp. 85–95.

Huang, Eric H, Richard Socher, Christopher D Manning, and Andrew Y Ng (2012).
“Improving word representations via global context and multiple word prototypes”.
In: Proceedings of the 50th Annual Meeting of the Association for Computational
Linguistics: Long Papers-Volume 1. Association for Computational Linguistics,
pp. 873–882.

Huffman, David A (1952). “A method for the construction of minimum-redundancy
codes”. In: Proceedings of the IRE 40.9, pp. 1098–1101.

Iacobacci, Ignacio, Mohammad Taher Pilehvar, and Roberto Navigli (2015). “SensEm-
bed: learning sense embeddings for word and relational similarity”. In: Proceedings
of ACL, pp. 95–105.

Imani, M. B., S. Chandra, S. Ma, L. Khan, and B. Thuraisingham (2017). “Focus
location extraction from political news reports with bias correction”. In: 2017 IEEE
International Conference on Big Data (Big Data), pp. 1956–1964. doi: 10.1109/
BigData.2017.8258141.

Innes, Mike (2018). “Flux: Elegant Machine Learning with Julia”. In: Journal of Open
Source Software. doi: 10.21105/joss.00602.

Innes, Mike, David Barber, Tim Besard, James Bradbury, Valentin Churavy, Simon
Danisch, Alan Edelman, Stefan Karpinski, Jon Malmaud, Jarrett Revels, Viral
Shah, Pontus Stenetorp, and Deniz Yuret (2017). “On Machine Learning and Pro-
gramming Languages”. In: SysML Conference.

Iyyer, Mohit, Jordan Boyd-Graber, and Hal Daumé III (2014). “Generating Sentences
from Semantic Vector Space Representations”. In: NIPS Workshop on Learning
Semantics.

Iyyer, Mohit, Jordan Boyd-Graber, Leonardo Claudino, Richard Socher, and Hal
Daumé III (2014). “A neural network for factoid question answering over para-
graphs”. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 633–644.

Jones, MC and HW Lotwick (1984). “Remark AS R50: a remark on algorithm AS
176. Kernal density estimation using the fast Fourier transform”. In: Journal of the
Royal Statistical Society. Series C (Applied Statistics) 33.1, pp. 120–122.

192

https://doi.org/10.1371/journal.pcbi.1003542
https://doi.org/10.1371/journal.pcbi.1003542
https://doi.org/http://dx.doi.org/10.1016/0010-0285(72)90011-4
https://doi.org/10.1109/BigData.2017.8258141
https://doi.org/10.1109/BigData.2017.8258141
https://doi.org/10.21105/joss.00602

BIBLIOGRAPHY

Jozefowicz, Rafal, Wojciech Zaremba, and Ilya Sutskever (2015). “An empirical explo-
ration of recurrent network architectures”. In: Proceedings of the 32nd International
Conference on Machine Learning (ICML-15), pp. 2342–2350.

Jurgens, David A, Peter D Turney, Saif M Mohammad, and Keith J Holyoak (2012).
“Semeval-2012 task 2: Measuring degrees of relational similarity”. In: Proceedings
of the Sixth International Workshop on Semantic Evaluation. Association for Com-
putational Linguistics, pp. 356–364.

Kågebäck, Mikael, Olof Mogren, Nina Tahmasebi, and Devdatt Dubhashi (2014).
“Extractive summarization using continuous vector space models”. In: Proceedings
of the 2nd Workshop on Continuous Vector Space Models and their Compositionality
(CVSC)@ EACL, pp. 31–39.

Kågebäck, Mikael, Fredrik Johansson, Richard Johansson, and Devdatt Dubhashi
(2015). “Neural context embeddings for automatic discovery of word senses”. In:
Proceedings of NAACL-HLT, pp. 25–32.

Karp, Richard M (1972). Reducibility among combinatorial problems. Springer.
Katz, Slava M (1987). “Estimation of probabilities from sparse data for the language
model component of a speech recognizer”. In: Acoustics, Speech and Signal Process-
ing, IEEE Transactions on 35.3, pp. 400–401.

Kawakami, Kazuya, Chris Dyer, Bryan R. Routledge, and Noah A. Smith (2016).
“Character Sequence Models for ColorfulWords”. In: CoRR abs/1609.08777.

Kelly, Kenneth Low et al. (1955). “ISCC-NBS method of designating colors and a
dictionary of color names”. In:

Kilgarriff, Adam (2004). “How Dominant Is the Commonest Sense of a Word?” In:
Text, Speech and Dialogue: 7th International Conference, TSD 2004, Brno, Czech
Republic, September 8-11, 2004. Proceedings. Ed. by Petr Sojka, Ivan Kopecek,
Karel Pala, Petr Sojka, Ivan Kopecek, and Karel Pala. Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 103–111. isbn: 978-3-540-30120-2. doi: 10.1007/978-3-
540-30120-2_14.

Kingma, D. P and M. Welling (2014). “Auto-Encoding Variational Bayes”. In: The
International Conference on Learning Representations (ICLR). arXiv: 1312.6114
[stat.ML].

Kingma, Diederik and Jimmy Ba (2014). “Adam: A method for stochastic optimiza-
tion”. In: arXiv preprint arXiv:1412.6980.

Kiros, Ryan, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel, Antonio Tor-
ralba, Raquel Urtasun, and Sanja Fidler (2015). “Skip-Thought Vectors”. In: CoRR
abs/1506.06726.

Klein, Benjamin, Guy Lev, Gil Sadeh, and Lior Wolf (2015). “Associating neural word
embeddings with deep image representations using fisher vectors”. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4437–
4446.

Kneser, Reinhard and Hermann Ney (1995). “Improved backing-off for m-gram lan-
guage modeling”. In: Acoustics, Speech, and Signal Processing, 1995. ICASSP-95.,
1995 International Conference on. Vol. 1. IEEE, pp. 181–184.

Lammens, Johan Maurice Gisele (1994). “A Computational Model of Color Perception
and Color Naming”. PhD thesis. State University of New York.

Landgraf, Andrew J. and Jeremy Bellay (2017). “word2vec Skip-Gram with Negative
Sampling is a Weighted Logistic PCA”. In: CoRR abs/1705.09755.

Lau, Jey Han and Timothy Baldwin (2016). “An Empirical Evaluation of doc2vec with
Practical Insights into Document Embedding Generation”. In: ACL 2016, p. 78.

Le, Quoc and Tomas Mikolov (2014). “Distributed Representations of Sentences and
Documents”. In: Proceedings of the 31st International Conference on Machine
Learning (ICML-14), pp. 1188–1196.

LeCun, Yann A, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller (2012).
“Efficient backprop”. In: Neural networks: Tricks of the trade. Springer, pp. 9–48.

Leshno, Moshe, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken (1993). “Mul-
tilayer feedforward networks with a nonpolynomial activation function can approx-
imate any function”. In: Neural networks 6.6, pp. 861–867.

Levy, Omer and Yoav Goldberg (2014). “Neural word embedding as implicit matrix
factorization”. In: Advances in neural information processing systems, pp. 2177–
2185.

193

https://doi.org/10.1007/978-3-540-30120-2_14
https://doi.org/10.1007/978-3-540-30120-2_14
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114

BIBLIOGRAPHY

Levy, Omer, Yoav Goldberg, and Ido Dagan (2015). “Improving Distributional Sim-
ilarity with Lessons Learned from Word Embeddings”. In: Transactions of the As-
sociation for Computational Linguistics 3, pp. 211–225. issn: 2307-387X.

Li, Bofang, Tao Liu, Zhe Zhao, Puwei Wang, and Xiaoyong Du (2017). “Neural Bag-
of-Ngrams.” In: AAAI, pp. 3067–3074.

Li, Yitan, Linli Xu, Fei Tian, Liang Jiang, Xiaowei Zhong, and Enhong Chen (2015).
“Word Embedding Revisited: A New Representation Learning and Explicit Matrix
Factorization Perspective.” In: IJCAI, pp. 3650–3656.

Lubin, Miles and Iain Dunning (2015). “Computing in operations research using Ju-
lia”. In: INFORMS Journal on Computing 27.2, pp. 238–248.

Maaten, Laurens van der and Geoffrey Hinton (2008). “Visualizing data using t-SNE”.
In: Journal of Machine Learning Research 9.Nov, pp. 2579–2605.

Malmaud, Jonathan and Lyndon White (2018). “TensorFlow.jl: An Idiomatic Julia
Front End for TensorFlow”. In: Journal of Open Source Software. doi: 10.21105/
joss.01002.

Mansimov, E., E. Parisotto, J. Lei Ba, and R. Salakhutdinov (2015). “Generating
Images from Captions with Attention”. In: ArXiv e-prints. arXiv: 1511 . 02793
[cs.LG].

Maron, Melvin Earl (1961). “Automatic indexing: an experimental inquiry”. In: Jour-
nal of the ACM (JACM) 8.3, pp. 404–417.

McMahan, Brian and Matthew Stone (2015). “A Bayesian model of grounded color
semantics”. In: Transactions of the Association for Computational Linguistics 3,
pp. 103–115.

Meindl, Bernhard and Matthias Templ (2012). “Analysis of commercial and free and
open source solvers for linear optimization problems”. In: Eurostat and Statistics
Netherlands.

Menegaz, Gloria, Arnaud Le Troter, Jean Sequeira, and Jean-Marc Boi (2007). “A dis-
crete model for color naming”. In: EURASIP Journal on Applied Signal Processing
2007.1, pp. 113–113. doi: 10.1155/2007/29125.

Meo, T., B. McMahan, and M. Stone (2014). “Generating and Resolving Vague Color
Reference”. In: Proc. 18th Workshop Semantics and Pragmatics of Dialogue (Sem-
Dial).

Mesnil, Grégoire, Tomas Mikolov, Marc’Aurelio Ranzato, and Yoshua Bengio (2014).
“Ensemble of generative and discriminative techniques for sentiment analysis of
movie reviews”. In: arXiv preprint arXiv:1412.5335.

Mikolov, Tomas, Wen-tau Yih, and Geoffrey Zweig (2013). “Linguistic Regularities in
Continuous Space Word Representations.” In: HLT-NAACL, pp. 746–751.

Mikolov, Tomas, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khu-
danpur (2010). “Recurrent neural network based language model.” In: Interspeech.
Vol. 2, p. 3.

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean (2013a).
“Distributed representations of words and phrases and their compositionality”. In:
Advances in Neural Information Processing Systems, pp. 3111–3119.

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean (2013b). “Efficient esti-
mation of word representations in vector space”. In: arXiv:1301.3781.

Miller, George A (1995). “WordNet: a lexical database for English”. In: Communica-
tions of the ACM 38.11, pp. 39–41.

Mitchell, Jeff and Mirella Lapata (2008). “Vector-based Models of Semantic Compo-
sition.” In: ACL, pp. 236–244.

Mojsilovic, Aleksandra (2005). “A computational model for color naming and describ-
ing color composition of images”. In: IEEE Transactions on Image Processing 14.5,
pp. 690–699. doi: 10.1109/TIP.2004.841201.

Monroe, W., N. D. Goodman, and C. Potts (2016). “Learning to Generate Composi-
tional Color Descriptions”. In: ArXiv e-prints. arXiv: 1606.03821 [cs.CL].

Monroe, Will, Robert X. D. Hawkins, Noah D. Goodman, and Christopher Potts
(2017). “Colors in Context: A Pragmatic Neural Model for Grounded Language
Understanding”. In: CoRR abs/1703.10186.

Morin, Frederic and Yoshua Bengio (2005). “Hierarchical probabilistic neural net-
work language model”. In: Proceedings of the international workshop on artificial
intelligence and statistics. Citeseer, pp. 246–252.

194

https://doi.org/10.21105/joss.01002
https://doi.org/10.21105/joss.01002
https://arxiv.org/abs/1511.02793
https://arxiv.org/abs/1511.02793
https://doi.org/10.1155/2007/29125
https://doi.org/10.1109/TIP.2004.841201
https://arxiv.org/abs/1606.03821

BIBLIOGRAPHY

Moro, Andrea and Roberto Navigli (2015). “SemEval-2015 Task 13: Multilingual All-
Words Sense Disambiguation and Entity Linking”. In: Proceedings of SemEval-2015.

Moro, Andrea, Alessandro Raganato, and Roberto Navigli (2014). “Entity Linking
meets Word Sense Disambiguation: a Unified Approach”. In: Transactions of the
Association for Computational Linguistics (TACL) 2, pp. 231–244.

Munroe, Randall (2010). “XKCD: Color Survey Results”. In:
Mylonas, Dimitris, Matthew Purver, Mehrnoosh Sadrzadeh, Lindsay MacDonald, and
Lewis Griffin (2015). “The Use of English Colour Terms in Big Data”. In: The Color
Science Association of Japan.

Nation, I (2006). “How large a vocabulary is needed for reading and listening?” In:
Canadian Modern Language Review 63.1, pp. 59–82.

Navigli, Roberto, Kenneth C. Litkowski, and Orin Hargraves (2007). “SemEval-2007
Task 07: Coarse-grained English All-words Task”. In: Proceedings of the 4th Inter-
national Workshop on Semantic Evaluations. SemEval ’07. Stroudsburg, PA, USA:
Association for Computational Linguistics, pp. 30–35.

Navigli, Roberto and Simone Paolo Ponzetto (2010). “BabelNet: Building a very large
multilingual semantic network”. In: Proceedings of the 48th annual meeting of the
association for computational linguistics. Association for Computational Linguis-
tics, pp. 216–225.

Neelakantan, Arvind, Jeevan Shankar, Alexandre Passos, and Andrew McCallum
(2015). “Efficient non-parametric estimation of multiple embeddings per word in
vector space”. In: arXiv preprint arXiv:1504.06654.

Nocedal, Jorge (1980). “Updating quasi-Newton matrices with limited storage”. In:
Mathematics of computation 35.151, pp. 773–782.

Oord, Aäron van den, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,
Alex Graves, Nal Kalchbrenner, AndrewW. Senior, and Koray Kavukcuoglu (2016).
“WaveNet: A Generative Model for Raw Audio”. In: CoRR abs/1609.03499.

Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu (2016). “Pixel re-
current neural networks”. In: arXiv preprint arXiv:1601.06759.

Pantel, Patrick and Dekang Lin (2002). “Discovering word senses from text”. In:
Proceedings of the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, pp. 613–619.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu (2002). “BLEU: a
method for automatic evaluation of machine translation”. In: Proceedings of the
40th annual meeting on association for computational linguistics. Association for
Computational Linguistics, pp. 311–318.

Pearse, William D and Scott A Chamberlain (2018). “Suppdata: Downloading Sup-
plementary Data from Published Manuscripts”. In: Journal of Open Source Software
3.25, p. 721. doi: 10.21105/joss.00721.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay (2011). “Scikit-learn: Machine
Learning in Python”. In: Journal of Machine Learning Research 12, pp. 2825–2830.

Pennington, Jeffrey, Richard Socher, and Christopher D. Manning (2014). “GloVe:
Global Vectors for Word Representation”. In: Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP 2014), pp. 1532–
1543.

Pollack, Jordan B. (1990). “Recursive distributed representations”. In: Artificial In-
telligence 46.1, pp. 77 –105. issn: 0004-3702. doi: http://dx.doi.org/10.1016/
0004-3702(90)90005-K.

Reed, Scott, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and
Honglak Lee (2016). “Generative adversarial text to image synthesis”. In: Proceed-
ings of The 33rd International Conference on Machine Learning. Vol. 3.

Rehůrek, Radim and Petr Sojka (2010). “Software Framework for Topic Modelling
with Large Corpora”. English. In: Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks. http://is.muni.cz/publication/884893/en.
Valletta, Malta: ELRA, pp. 45–50.

Reisinger, Joseph and Raymond J Mooney (2010). “Multi-prototype vector-space
models of word meaning”. In: Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the Association for Computational
Linguistics. Association for Computational Linguistics, pp. 109–117.

195

https://doi.org/10.21105/joss.00721
https://doi.org/http://dx.doi.org/10.1016/0004-3702(90)90005-K
https://doi.org/http://dx.doi.org/10.1016/0004-3702(90)90005-K
http://is.muni.cz/publication/884893/en

BIBLIOGRAPHY

Ritter, Samuel, Cotie Long, Denis Paperno, Marco Baroni, Matthew Botvinick, and
Adele Goldberg (2015). “Leveraging Preposition Ambiguity to Assess Composi-
tional Distributional Models of Semantics”. In: The Fourth Joint Conference on
Lexical and Computational Semantics.

Rosenfeld, Ronald (2000). “Two decades of statistical language modeling: Where do
we go from here?” In: Proceedings of the IEEE 88.8, pp. 1270–1278. doi: 10.1109/
5.880083.

Ruder, Sebastian (2017). “A survey of cross-lingual embedding models”. In: CoRR
abs/1706.04902.

Schmaltz, A., A. M. Rush, and S. M. Shieber (2016). “Word Ordering Without Syn-
tax”. In: ArXiv e-prints. arXiv: 1604.08633 [cs.CL].

Schuster, Mike and Kuldip K Paliwal (1997). “Bidirectional recurrent neural net-
works”. In: IEEE Transactions on Signal Processing 45.11, pp. 2673–2681.

Schütze, Hinrich (1998). “Automatic Word Sense Discrimination”. In: Comput. Lin-
guist. 24.1, pp. 97–123. issn: 0891-2017.

Schwenk, Holger (2004). “Efficient training of large neural networks for language mod-
eling”. In: Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Con-
ference on. Vol. 4. IEEE, pp. 3059–3064.

Shi, Tianze, Zhiyuan Liu, Yang Liu, and Maosong Sun (2015). “Learning Cross-lingual
Word Embeddings via Matrix Co-factorization.” In: ACL (2), pp. 567–572.

Silverman, BW (1982). “Algorithm AS 176: Kernel density estimation using the fast
Fourier transform”. In: Journal of the Royal Statistical Society. Series C (Applied
Statistics) 31.1, pp. 93–99.

Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis. Chap-
man & Hall/CRC Monographs on Statistics & Applied Probability. Taylor & Fran-
cis. isbn: 9780412246203.

Smith, Alvy Ray (1978). “Color gamut transform pairs”. In: ACM Siggraph Computer
Graphics 12.3, pp. 12–19.

Socher, Richard (2014). “Recursive Deep Learning for Natural Language Processing
and Computer Vision”. PhD thesis. Stanford University.

Socher, Richard, Christopher D Manning, and Andrew Y Ng (2010). “Learning contin-
uous phrase representations and syntactic parsing with recursive neural networks”.
In: Proceedings of the NIPS-2010 Deep Learning and Unsupervised Feature Learning
Workshop, pp. 1–9.

Socher, Richard, Eric H. Huang, Jeffrey Pennington, Andrew Y. Ng, and Christopher
D. Manning (2011a). “Dynamic Pooling and Unfolding Recursive Autoencoders for
Paraphrase Detection”. In: Advances in Neural Information Processing Systems 24.

Socher, Richard, Cliff C Lin, Chris Manning, and Andrew Y Ng (2011b). “Parsing
natural scenes and natural language with recursive neural networks”. In: Proceedings
of the 28th international conference on machine learning (ICML-11), pp. 129–136.

Socher, Richard, Jeffrey Pennington, Eric H. Huang, Andrew Y. Ng, and Christopher
D. Manning (2011c). “Semi-Supervised Recursive Autoencoders for Predicting Sen-
timent Distributions”. In: Proceedings of the 2011 Conference on Empirical Methods
in Natural Language Processing (EMNLP).

Socher, Richard, Brody Huval, Christopher D Manning, and Andrew Y Ng (2012).
“Semantic compositionality through recursive matrix-vector spaces”. In: Proceedings
of the 2012 Joint Conference on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning. Association for Computational
Linguistics, pp. 1201–1211.

Socher, Richard, John Bauer, Christopher D. Manning, and Andrew Y. Ng (2013a).
“Parsing With Compositional Vector Grammars”. In: ACL.

Socher, Richard, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Manning,
Andrew Y Ng, and Christopher Potts (2013b). “Recursive deep models for semantic
compositionality over a sentiment treebank”. In: Proceedings of the conference on
empirical methods in natural language processing (EMNLP). Vol. 1631. Citeseer,
p. 1642.

Socher, Richard, Andrej Karpathy, Quoc V Le, Christopher D Manning, and Andrew
Y Ng (2014). “Grounded compositional semantics for finding and describing images
with sentences”. In: Transactions of the Association for Computational Linguistics
2, pp. 207–218.

196

https://doi.org/10.1109/5.880083
https://doi.org/10.1109/5.880083
https://arxiv.org/abs/1604.08633

BIBLIOGRAPHY

Sonoda, Sho and Noboru Murata (2017). “Neural network with unbounded activa-
tion functions is universal approximator”. In: Applied and Computational Harmonic
Analysis 43.2, pp. 233 –268. issn: 1063-5203. doi: https://doi.org/10.1016/j.
acha.2015.12.005.

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov (2014). “Dropout: A simple way to prevent neural networks from
overfitting”. In: The Journal of Machine Learning Research 15.1, pp. 1929–1958.

Stenetorp, Pontus (2013). “Transition-based Dependency Parsing Using Recursive
Neural Networks”. In: Deep Learning Workshop at the 2013 Conference on Neural
Information Processing Systems (NIPS). Lake Tahoe, Nevada, USA.

Sundermeyer, Martin, Ralf Schlüter, and Hermann Ney (2012). “LSTM neural net-
works for language modeling”. In: Thirteenth Annual Conference of the International
Speech Communication Association.

Tengi, Randee I (1998). “WordNet: an electronic lexical database, The MIT Press,
Cambridge, Massachusetts”. In: ed. by Christiane (réd.) Fellbaum. Chap. Design
and implementation of the WordNet lexical database and searching software, p. 105.

Tian, Fei, Hanjun Dai, Jiang Bian, Bin Gao, Rui Zhang, Enhong Chen, and Tie-Yan
Liu (2014). “A Probabilistic Model for Learning Multi-Prototype Word Embed-
dings.” In: COLING, pp. 151–160.

Turian, Joseph, Lev Ratinov, and Yoshua Bengio (2010). “Word representations: a
simple and general method for semi-supervised learning”. In: Proceedings of the
48th annual meeting of the association for computational linguistics. Association
for Computational Linguistics, pp. 384–394.

Tymoczko, T., J. Henle, and J.M. Henle (1995). Sweet Reason: A Field Guide to Mod-
ern Logic. Textbooks in Mathematical Sciences. Key College. isbn: 9780387989303.

Van De Weijer, Joost, Cordelia Schmid, Jakob Verbeek, and Diane Larlus (2009).
“Learning color names for real-world applications”. In: IEEE Transactions on Image
Processing 18.7, pp. 1512–1523.

Vandewalle, P., J. Kovacevic, and M. Vetterli (2009). “Reproducible research in signal
processing”. In: IEEE Signal Processing Magazine 26.3, pp. 37–47. issn: 1053-5888.
doi: 10.1109/MSP.2009.932122.

Véronis, Jean (1998). “A study of polysemy judgements and inter-annotator agree-
ment”. In: Programme and advanced papers of the Senseval workshop, pp. 2–4.

Wang, Rui, Wei Liu, and Chris McDonald (2017). “A Matrix-Vector Recurrent Unit
Model for Capturing Compositional Semantics in Phrase Embeddings”. In: Inter-
national Conference on Information and Knowledge Management.

Wang, Sida and Christopher D Manning (2012). “Baselines and bigrams: Simple, good
sentiment and topic classification”. In: Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics: Short Papers-Volume 2. Association
for Computational Linguistics, pp. 90–94.

Webster, W.F. (1900). English: Composition and Literature. Houghton Mifflin Com-
pany.

White, L., R. Togneri, W. Liu, and M. Bennamoun (2017). “Learning Distributions
of Meant Color”. In: ArXiv e-prints. arXiv: 1709.09360 [cs.CL].

White, L., R. Togneri, W. Liu, and M. Bennamoun (2018). “DataDeps.jl: Repeatable
Data Setup for Replicable Data Science”. In: ArXiv e-prints. arXiv: 1808.01091
[cs.SE].

White, Lyndon (2016). Encoding Angle Data for Neural Networks. Cross Validated
Stack Exchange. eprint: https://math.stackexchange.com/q/2369786.

White, Lyndon and David Ellison (2018). “Embeddings.jl: easy access to pretrained
word embeddings from Julia”. In: Journal of Open Source Software.

White, Lyndon and Sebastin Santy (2018). “DataDepsGenerators.jl: making reusing
data easy by automatically generating DataDeps.jl registration code”. In: Journal
of Open Source Software.

White, Lyndon, Roberto Togneri, Wei Liu, and Mohammed Bennamoun (2015). “How
Well Sentence Embeddings Capture Meaning”. In: Proceedings of the 20th Aus-
tralasian Document Computing Symposium. ADCS ’15. Parramatta, NSW, Aus-
tralia: ACM, 9:1–9:8. isbn: 978-1-4503-4040-3. doi: 10.1145/2838931.2838932.

White, Lyndon, Roberto Togneri, Wei Liu, and Mohammed Bennamoun (2016a).
“Generating Bags of Words from the Sums of their Word Embeddings”. In: 17th

197

https://doi.org/https://doi.org/10.1016/j.acha.2015.12.005
https://doi.org/https://doi.org/10.1016/j.acha.2015.12.005
https://doi.org/10.1109/MSP.2009.932122
https://arxiv.org/abs/1709.09360
https://arxiv.org/abs/1808.01091
https://arxiv.org/abs/1808.01091
https://math.stackexchange.com/q/2369786
https://doi.org/10.1145/2838931.2838932

BIBLIOGRAPHY

International Conference on Intelligent Text Processing and Computational Lin-
guistics (CICLing).

White, Lyndon, Roberto Togneri, Wei Liu, and Mohammed Bennamoun (2016b).
“Modelling Sentence Generation from Sum of Word Embedding Vectors as a Mixed
Integer Programming Problem”. In: IEEE International Conference on Data Min-
ing: High Dimensional Data Mining Workshop (ICDM: HDM). doi: 10.1109/
ICDMW.2016.0113.

White, Lyndon, Roberto Togneri, Wei Liu, and Mohammed Bennamoun (2018a).
“DataDeps.jl: Repeatable Data Setup for Reproducible Data Science”. In: Journal
of Open Research Software (Under Review).

White, Lyndon, Roberto Togneri, Wei Liu, and Mohammed Bennamoun (2018b).
“Finding Word Sense Embeddings Of Known Meaning”. In: 19th International Con-
ference on Intelligent Text Processing and Computational Linguistics (CICLing).

White, Lyndon., Roberto. Togneri, Wei. Liu, and Mohammed Bennamoun (2018).
“Learning of Colors from Color Names: Distribution and Point Estimation”. In:
Computational Lingustics (Under Review).

White, Lyndon, Roberto Togneri, Wei Liu, and Mohammed Bennamoun (2018a).
Neural Representations of Natural Language. Studies in Computational Intelligence
(Book). Springer Singapore. isbn: 9789811300615.

White, Lyndon, Roberto Togneri, Wei Liu, and Mohammed Bennamoun (2018b).
“NovelPerspective: Identifying Point of View Characters”. In: Proceedings of ACL
2018, System Demonstrations. Association for Computational Linguistics.

Wieting, John, Mohit Bansal, Kevin Gimpel, and Karen Livescu (2016). “Towards
Universal Paraphrastic Sentence Embeddings”. In: International Conference on
Learning Representations (ICLR).

Wilson, Greg, D. A. Aruliah, C. Titus Brown, Neil P. Chue Hong, Matt Davis, Richard
T. Guy, Steven H. D. Haddock, Kathryn D. Huff, Ian M. Mitchell, Mark D. Plumb-
ley, Ben Waugh, Ethan P. White, and Paul Wilson (2014). “Best Practices for
Scientific Computing”. In: PLOS Biology 12.1, pp. 1–7. doi: 10.1371/journal.
pbio.1001745.

Winn, Olivia and Smaranda Muresan (2018). “’Lighter’ Can Still Be Dark: Modeling
Comparative Color Descriptions”. In: Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers). Melbourne,
Australia: Association for Computational Linguistics, pp. 790–795.

Wohlgenannt, Gerhard, Ekaterina Chernyak, and Dmitry Ilvovsky (2016). “Extract-
ing social networks from literary text with word embedding tools”. In: Proceedings of
the Workshop on Language Technology Resources and Tools for Digital Humanities
(LT4DH), pp. 18–25.

Wren, Jonathan D (2008). “URL decay in MEDLINE: a 4-year follow-up study”. In:
Bioinformatics 24.11, pp. 1381–1385.

Yin, Wenpeng and Hinrich Schütze (2015). “Learning Word Meta-Embeddings by
Using Ensembles of Embedding Sets”. In: eprint: 1508.04257.

Yogatama, Dani, Fei Liu, and Noah A Smith (2015). “Extractive Summarization by
Maximizing Semantic Volume”. In: Conference on Empirical Methods in Natural
Language Processing.

Yuret, Deniz (2016). “Knet: beginning deep learning with 100 lines of Julia”. In:
Machine Learning Systems Workshop at NIPS 2016.

Zanzotto, Fabio Massimo, Ioannis Korkontzelos, Francesca Fallucchi, and Suresh Man-
andhar (2010). “Estimating linear models for compositional distributional seman-
tics”. In: Proceedings of the 23rd International Conference on Computational Lin-
guistics. Association for Computational Linguistics, pp. 1263–1271.

Zhang, Chiyuan (2014). Mocha.jl: Deep Learning framework for Julia. url: https:
//github.com/pluskid/Mocha.jl.

Zhang, Jiajun, Shujie Liu, Mu Li, Ming Zhou, and Chengqing Zong (2014). “Bilingually-
constrained Phrase Embeddings for Machine Translation”. In: ACL.

Zhang, Xiang and Yann LeCun (2015). “Text Understanding from Scratch”. In: CoRR
Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics.

Zhang, Yue and Stephen Clark (2015). “Discriminative Syntax-based Word Ordering
for Text Generation”. In: Comput. Linguist. 41.3, pp. 503–538. issn: 0891-2017. doi:
10.1162/COLI_a_00229.

198

https://doi.org/10.1109/ICDMW.2016.0113
https://doi.org/10.1109/ICDMW.2016.0113
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1371/journal.pbio.1001745
1508.04257
https://github.com/pluskid/Mocha.jl
https://github.com/pluskid/Mocha.jl
https://doi.org/10.1162/COLI_a_00229

BIBLIOGRAPHY

Zhu, Yukun, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio
Torralba, and Sanja Fidler (2015). “Aligning books and movies: Towards story-like
visual explanations by watching movies and reading books”. In: Proceedings of the
IEEE international conference on computer vision, pp. 19–27.

Zipf, George Kingsley (1945). “The meaning-frequency relationship of words”. In: The
Journal of general psychology 33.2, pp. 251–256.

Zipf, G.K. (1949). Human behavior and the principle of least effort: an introduction
to human ecology. Addison-Wesley Press.

Zou, Will Y, Richard Socher, Daniel M Cer, and Christopher D Manning (2013).
“Bilingual Word Embeddings for Phrase-Based Machine Translation.” In: EMNLP,
pp. 1393–1398.

199

BIBLIOGRAPHY

200

Part III

Appendix: Tooling

201

APPENDIX A. DATADEPS.JL: REPEATABLE DATA SETUP FOR
REPLICABLE DATA SCIENCE

Appendix A

DataDeps.jl: Repeatable Data
Setup for Replicable Data
Science

This paper is currently under review for the Journal of Open Research Software.

Abstract

We present DataDeps.jl: a julia package for the reproducible handling of static
datasets to enhance the repeatability of scripts used in the data and computa-
tional sciences. It is used to automate the data setup part of running software
which accompanies a paper to replicate a result. This step is commonly done
manually, which expends time and allows for confusion. This functionality is
also useful for other packages which require data to function (e.g. a trained ma-
chine learning based model). DataDeps.jl simplifies extending research software
by automatically managing the dependencies and makes it easier to run another
author’s code, thus enhancing the reproducibility of data science research.

A.1 Introduction

In the movement for reproducible sciences there have been two key re-
quests upon authors: 1. Make your research code public, 2. Make your
data public (Goodman et al. 2014). In practice this alone is not enough
to ensure that results can be replicated. To get another author’s code
running on a your own computing environment is often non-trivial. One
aspect of this is data setup: how to acquire the data, and how to connect
it to the code.

DataDeps.jl simplifies the data setup step for software written in Julia
(Bezanson et al. 2014). DataDeps.jl follows the unix philosophy of do-
ing one job well. It allows the code to depend on data, and have that
data automatically downloaded as required. It increases replicability of
any scientific code that uses static data (e.g. benchmark datasets). It
provides simple methods to orchestrate the data setup: making it easy
to create software that works on a new system without any user effort.
While it has been argued that the direct replicability of executing the
author’s code is a poor substitute for independent reproduction (Drum-
mond 2009), we maintain that being able to run the original code is

203

APPENDIX A. DATADEPS.JL: REPEATABLE DATA SETUP FOR
REPLICABLE DATA SCIENCE

important for checking, for understanding, for extension, and for future
comparisons.
Vandewalle, Kovacevic, and Vetterli (2009) distinguishes six degrees of
replicability for scientific code. The two highest levels require that “The
results can be easily reproduced by an independent researcher with at
most 15 min of user effort”. One can expend much of that time just on
setting up the data. This involves reading the instructions, locating the
download link, transferring it to the right location, extracting an archive,
and identifying how to inform the script as to where the data is located.
These tasks are automatable and therefore should be automated, as per
the practice “Let the computer do the work” (Wilson et al. 2014).
DataDeps.jl handles the data dependencies, while Pkg1 and BinDeps.jl,2
(etc.) handle the software dependencies. This makes automated testing
possible, e.g., using services such as TravisCI3 or AppVeyor.4 Automated
testing is already ubiquitous amongst julia users, but rarely for parts
where data is involved. A particular advantage over manual data setup, is
that automation allow scheduled tests for URL decay (Wren 2008). If the
full deployment process can be automated, given resources, research can
be fully and automatically replicated on a clean continuous integration
environment.

A.1.1 Three common issues about research data

DataDeps.jl is designed around solving common issues researchers have
with their file-based data. The three key problems that it is particularly
intended to address are:
Storage location: Where do I put it? Should it be on the local disk

(small) or the network file-store (slow)? If I move it, am I going to
have to reconfigure things?

Redistribution: I don’t own this data, am I allowed to redistribute it?
How will I give credit, and ensure the users know who the original

creator was?
Replication: How can I be sure that someone running my code has the

same data? What if they download the wrong data, or extract it
incorrectly? What if it gets corrupted or has been modified and I
am unaware?

A.2 DataDeps.jl

A.2.1 Ecosystem

DataDeps.jl is part of a package ecosystem as shown in Figure A.1. It
can be used directly by research software, to access the data they de-
pend upon for e.g. evaluations. Packages such as MLDatasets.jl5 pro-

1https://github.com/JuliaLang/Pkg.jl
2https://github.com/JuliaLang/BinDeps.jl
3https://travis-ci.org/
4https://ci.appveyor.com/
5https://github.com/JuliaML/MLDatasets.jl

204

https://github.com/JuliaLang/Pkg.jl
https://github.com/JuliaLang/BinDeps.jl
https://travis-ci.org/
https://ci.appveyor.com/
https://github.com/JuliaML/MLDatasets.jl

APPENDIX A. DATADEPS.JL: REPEATABLE DATA SETUP FOR
REPLICABLE DATA SCIENCE

DataDeps.jl

Dataset packages

MLDatasets.jl

CorpusLoaders.jl

etc.

Packages
needing data

WordNet.jl

Embeddings.jl

etc.

Research Scripts/Software

raw data

functionality

raw data

processed/loaded data

raw
data

Figure A.1: The current package ecosystem depending on DataDeps.jl.

vide more convenient accesses with suitable preprocessing for commonly
used datasets. These packages currently use DataDeps.jl as a back-end.
Research code also might use DataDeps.jl indirectly by making use of
packages, such as WordNet.jl6 which currently uses DataDeps.jl to en-
sure it has the data it depends on to function (see Appendix A.4.1); or
Embeddings.jl which uses it to load pretrained machine-learning models.
Packages and research code alike depend on data, and DataDeps.jl exists
to fill that need.

A.2.2 Functionality

Once the dependency is declared, data can accessed by name using a
datadep string written datadep"Name". This can treated just like a
filepath string, however it is actually a string macro. At compile time it
is replaced with a block of code which performs the operation shown in
Figure A.2. This operation always returns an absolute path string to the
data, even that means the data must be download and placed at that
path first.

DataDeps.jl solves the issues in Appendix A.1.1 as follows:

Storage location: A data dependency is referred to by name, which is
resolved to a path on disk by searching a number of locations. The
locations search is configurable.

Redistribution: DataDeps.jl downloads the package from its original
source so it is not redistributed. A prompt is shown to the user
before download, which can be set to display information such as
the orignal author and any papers to cite etc.

Replication: when a dependency is declared, the creator specified the
URL to fetch from and post fetch processing to be done (e.g. ex-
traction). This removed the chance for human error. To ensure the
data is exactly as it was originally checksum is used.

DataDeps.jl is primarily focused on public, static data. For researchers
who are using private data, or collecting that data while developing the
scripts, a manual option is provided; which only includes the Storage
Location functionality. They can still refer to it using the datadep"Name",
but it will not be automatically downloaded. During publication the re-

6https://github.com/JuliaText/WordNet.jl

205

https://github.com/JuliaText/WordNet.jl

APPENDIX A. DATADEPS.JL: REPEATABLE DATA SETUP FOR
REPLICABLE DATA SCIENCE

datadep"Name"
Evaluated

0.
Search

Load Path

1.
Display
message

2.
Perform

fetch method
(download)

3.
Validate

using
checksum

4.
Perform

post fetch method
e.g. unpack

Local Path
Returned

da
tad

ep
Not

Fou
nd

remote paths

Accept

local paths local paths

Succeeded
/Ignored

Found
local path

Failed-Retry

Abort

Decline

Abort

Failed

Figure A.2: The process that is executed when a data dependency is accessed by
name.

searcher can upload their data to an archival repository and update the
registration.

A.2.3 Similar Tools

Package managers and build tools can be used to create adhoc solutions,
but these solution will often be harder to use and fail to address one or
more of the concerns in Appendix A.1.1. Data warehousing tools, and
live data APIs; work well with continuous streams of data; but they are
not suitable for simple static datasets that available as a collection of
files.

Quilt7 is a more similar tool. In contrast to DataDeps.jl, Quilt uses
one centralised data-store, to which users upload the data, and they can
then download and use the data as a software package. It does not
directly attempt to handle any Storage Location, or Redistribution
issues. Quilt does offer some advantages over DataDeps.jl: excellent
convenience methods for some (currently only tabular) file formats, and
also handling data versioning. At present DataDeps.jl does not handle
versioning, being focused on static data.

A.2.4 Quality Control

Using AppVeyor and Travis CI testing is automatically performed using
the latest stable release of Julia, for the Linux, Windows, and Mac envi-
ronments. The DataDeps.jl tests include unit tests of key components,
as well as comprehensive system/integration tests of different configu-
rations of data dependencies. These latter tests also form high quality
examples to supplement the documentation for users to looking to see
how to use the package. The user can trigger these tests to ensure every-
thing is working on their local machine by the standard julia mechanism:
running Pkg.test(``DataDeps'') respectively.

The primary mechanism for user feedback is via Github issues on the
repository. Bugs and feature requests, even purely by the author, are
tracked using the Github issues.

7https://github.com/quiltdata/quilt

206

https://github.com/quiltdata/quilt

APPENDIX A. DATADEPS.JL: REPEATABLE DATA SETUP FOR
REPLICABLE DATA SCIENCE

A.3 Availability

A.3.1 Operating system

DataDeps.jl is verified to work on Windows 7+, Linux, Mac OSX.

A.3.2 Programming language

Julia v0.6, and v0.7 (1.0 support forthcoming).

A.3.3 Dependencies

DataDeps.jl’s dependencies are managed by the julia package manager.
It depends on SHA.jl for the default generation and checking of check-
sums; on Reexport.jl to reexport SHA.jl’s methods; and on HTTP.jl for
determining filenames based on the HTTP header information.

List of contributors

• Lyndon White (The University of Western Australia) Primary Au-
thor

• Christof Stocker (Unaffiliated), Contributor, significant design dis-
cussions.

• Sebastin Santy (Birla Institute of Technology and Science), Google
Summer of Code Student working on DataDepsGenerators.jl

A.3.4 Software location:

Name: oxinabox/DataDeps.jl
Persistent identifier: https://github.com/oxinabox/DataDeps.jl/
Licence: MIT
Date published: 28/11/2017
Documentation Language English
Programming Language Julia
Code repository GitHub

A.4 Reuse potential

DataDeps.jl exists only to be reused, it is a “backend” library. The cases
in which is should be reused are well discussed above. It is of benefit to
any application, research tool, or scientific script that has a dependency
on data for it’s functioning or for generation of its result.
DataDeps.jl is extendible via the normal julia methods of subtyping,
and composition. Additional kinds of AbstractDataDep can be created,
for example to add an additional validation step, while still reusing the
behaviour defined. Such new types can be created in their own packages,
or contributed to the open source DataDeps.jl package.

207

https://github.com/oxinabox/DataDeps.jl/

APPENDIX A. DATADEPS.JL: REPEATABLE DATA SETUP FOR
REPLICABLE DATA SCIENCE

Julia is a relatively new language with a rapidly growing ecosystem of
packages. It is seeing a lot of up take in many fields of computation
sciences, data science and other technical computing. By establishing
tools like DataDeps.jl now, which support the easy reuse of code, we hope
to promote greater resolvability of packages being created later. Thus in
turn leading to more reproducible data and computational science in the
future.

A.4.1 Case Studies

Research Paper: White et al. (2016a) We criticize our own prior work
here, so as to avoid casting aspersions on others. We consider it’s limita-
tions and how it would have been improved had it used DataDeps.jl. Two
version of the script were provided8 one with just the source code, and
the other also including 3GB of data. It’s license goes to pains to explain
which files it covers and which it does not (the data), and to explain
the ownership of the data. DataDeps.jl would avoid the need to include
the data, and would make the ownership clear during setup. Further
sharing the source code alone would have been enough, the data would
have been downloaded when (and only if) it is required. The scripts
themselves have relative paths hard-coded. If the data is moved (e.g. to
a larger disk) they will break. Using DataDeps.jl to refer to the data by
name would solve this.

Research Tool: WordNet.jl WordNet.jl is the Julia binding for the Word-
Net tool (Miller 1995). As of PR #89 it now uses DataDeps.jl. It depends
on having the WordNet database. Previously, after installing the soft-
ware using the package manager, the user had to manually download
and set this up. The WordNet.jl author previously had concerns about
handling the data. Including it would inflate the repository size, and
result in the data being installed to an unreasonable location. They were
also worried that redistributing would violate the copyright. The manual
instructions for downloading and extracting the data included multiple
points of possible confusion. The gzipped tarball must be correctly ex-
tracted. The user must know to pass in the grand-parent directory of the
database files. Using DataDeps.jl all these issues have now been solved.

Acknowledgements

Thank particularly to Christof Stocker, the creator of MLDatasets.jl (and
numerous other packages), in particular for his bug reports, feature re-
quests and code reviews; and for the initial discussion leading to the
creation of this tool.

Competing interests

The authors declare that they have no competing interests.
8Source code and data provided at http://white.ucc.asn.au/publications/White2016BOWgen/
9https://github.com/JuliaText/WordNet.jl/pull/8

208

http://white.ucc.asn.au/publications/White2016BOWgen/
https://github.com/JuliaText/WordNet.jl/pull/8

APPENDIX A. DATADEPS.JL: REPEATABLE DATA SETUP FOR
REPLICABLE DATA SCIENCE

A.5 Concluding Remarks

DataDeps.jl aims to help solve reproducibility issues in data driven re-
search by automating the data setup step. It is hoped that by supporting
good practices, with tools like DataDeps.jl, now for the still young Julia
programming language better scientific code can be written in the future
.

209

APPENDIX A. DATADEPS.JL: REPEATABLE DATA SETUP FOR
REPLICABLE DATA SCIENCE

210

APPENDIX B. DATADEPSGENERATORS.JL: MAKING REUSING DATA
EASY BY GENERATING DATADEPS.JL REGISTRATION CODE

Appendix B

DataDepsGenerators.jl:
Making Reusing Data Easy
by Automatically Generating
DataDeps.jl Registration
Code

This paper was originally published in the Journal of Open Source Software.

B.1 Summary

DataDepsGenerators.jl is a tool written to help users of the Julia pro-
gramming language (Bezanson et al. 2014), to observe best practices
when making use of published datasets. Using the metadata present in
published datasets, it generates the code for the data dependency regis-
tration blocks required by DataDeps.jl (White et al. 2018). These regis-
tration blocks are effectively executable metadata, which can be resolved
by DataDeps.jl to download the dataset. They include a message that is
displayed to the user whenever the data set is automatically downloaded.
This message should include provenance information on the dataset, so
that downstream users know its original source and details on its pro-
cessing.

DataDepsGenerators.jl attempts to use the metadata available for a dataset
to capture and record:

• The dataset name.

• A URL for a website about the dataset.

• The names of the authors and maintainers.

• The creation date, publication date, and the date of the most recent
modification.

• The license that the dataset is released under.

211

APPENDIX B. DATADEPSGENERATORS.JL: MAKING REUSING DATA
EASY BY GENERATING DATADEPS.JL REGISTRATION CODE

• The formatted bibliographic details of any paper about or relating
to the dataset.

• The formatted bibliographic details of how to cite the dataset itself.
• A list of URLs where the files making up the dataset can be down-

loaded.
• A corresponding list of file hashes, such as MD5 or SHA256, to

validate the files after download.
• A description of the dataset.

Depending on the APIs supported by the repository some of this infor-
mation may not be available. DataDepsGenerators.jl makes a best-effort
attempt to acquire as much provenance information as possible. Where
multiple APIs are supported, it makes use of all APIs possible, merging
their responses to fill any gaps. It thus often produces higher quality
and more comprehensive dataset metadata than is available from any
one source.
DataDepsGenerators.jl leverages many different APIs to support a very
large number of repositories. By current estimates tens of millions of
datasets are supported, from hundreds of repositories. The APIs sup-
ported include:

• DataCite / CrossRef
– This is valid for the majority of all dataset with a DOI.

• DataOne
– This supports a number of data repositories used in the earth

sciences.
• FigShare

– A popular general purpose data repository.
• Dryad

– A data repository particularly popular with evolutionary biol-
ogy and ecology.

• UCI ML repository
– A data repository commonly used for small-medium machine

learning benchmark datasets.
• GitHub

– Most well known for hosting code; but is fairly regularly used
to host versioned datasets.

• CKAN
– This is the system behind a large number of government open

data initiatives such as Data.Gov, data.gov.au, and the Euro-
pean Data Portal.

• Embedded JSON-LD fragments in HTML pages.
– This is commonly used on many websites to describe their datasets.

Including some of those listed above; as well as Zenodo, Kaggle
Datasets, all DataVerse sites and many others.

212

https://datacite.org/
https://www.crossref.org/
https://www.dataone.org/
http://figshare.com/
http://datadryad.org/
https://archive.ics.uci.edu/ml/
https://github.com
http://ckan.org/
https://data.gov
https://data.gov.au/
https://www.europeandataportal.eu/
https://www.europeandataportal.eu/
https://zenodo.org/
https://www.kaggle.com/datasets
https://www.kaggle.com/datasets
https://dataverse.org/

APPENDIX B. DATADEPSGENERATORS.JL: MAKING REUSING DATA
EASY BY GENERATING DATADEPS.JL REGISTRATION CODE

DataDepsGenerators.jl as the name suggests, generates static code which
the user can add into their project’s Julia source code to make use of with
DataDeps.jl. There are a number of reasons why static code generation
is preferred over directly using the APIs.

• On occasion the information reported by the APIs is wrong, incom-
plete or overly detailed. The user may tweak the details as required
by editing the generated code.

• The process of accessing the APIs requires a number of heavy de-
pendencies, such as HTML and JSON parsers. If these APIs were
to be accessed directly by a project, it would require adding this
large dependency tree to the project.

• It is important to know if a dataset has changed. As such retrieving
the file hash and last modification date would be pointless if they
are updated automatically.

Finally: having the provenance information recorded in plain text, makes
the dataset metadata readily accessible to anyone reading the source
code; without having to run the project’s application.

The automatic downloading of data is important to allow for robustly
replicable scientific code. The inclusion of provenance information is
required to give proper credit and to allow for good understanding of the
dataset’s real world context. DataDepsGenerators.jl makes this easy by
automating most of the work.

B.1.1 Other similar packages

In the R software ecosystem there is the suppdata (Pearse and Cham-
berlain 2018) package. suppdata is a package for easily downloading
supplementary data files attached to journal articles. It is thus very sim-
ilar in purpose: to make research data more accessible. It is a direct
download tool, rather than DataDepsGenerators.jl’s approach of gener-
ating metadata that is evaluated to preform the download. While there
is some overlap, in that both support FigShare and Dryad, suppdata
primarily supports journals rather than data repositories.

When it comes to accessing data repositories, there exists several R pack-
ages which only support a single provider of data. These vary in their
support for different functionality. They often support features beyond
the scope of DataDepsGenerators.jl, to search, or upload data to the
supported repository. Examples include:

• rdryad for DataDryad

• rfigshare for FigShare

• ckanr for CKAN

• rdatacite for DataCite

• rdataone for DataOne

To the best of our knowledge at present there does not exist a unifying
R package that supports anywhere near the range of data repositories

213

https://github.com/ropensci/suppdata
https://github.com/ropensci/rdryad
https://github.com/ropensci/rfigshare
https://github.com/ropensci/ckanr
https://github.com/ropensci/rdatacite
https://github.com/DataONEorg/rdataone

APPENDIX B. DATADEPSGENERATORS.JL: MAKING REUSING DATA
EASY BY GENERATING DATADEPS.JL REGISTRATION CODE

supported by DataDepsGenerators.jl. Contemporaneously, with the cre-
ation of DataDepsGenerator.jl, there was a proposal for another related
R package (doidata) which would access data based on a DOI. While
this has yet to eventuate into usable software, several of the discussions
relating to it were insightful, and contributed to the functionality of
DataDepsGenerators.jl.

B.1.2 Acknowledgments

This work was largely carried out as a Google Summer of Code project, as
part of the NumFocus organisation. It also benefited from funding from
Australian Research Council Grants DP150102405 and LP110100050.
We also wish to thank the support teams behind the APIs and repos-
itories listed above. In the course of creating this tool we thoroughly
exercised a number of APIs. In doing so we encountered a number of
bugs and issues; almost all of which have now been fixed, by the atten-
tive support and operation staff of the providers.

214

https://github.com/ropenscilabs/doidata
https://medium.com/@sebastinsanty/google-summer-of-code-2018-julia-computing-report-8d3f553d7050

APPENDIX C. EMBEDDINGS.JL: EASY ACCESS TO PRETRAINED WORD
EMBEDDINGS FROM JULIA

Appendix C

Embeddings.jl: Easy Access
to Pretrained Word
Embeddings from Julia

This paper was originally published in the Journal of Open Source Software.

C.1 Summary

Embeddings.jl is a tool to help users of the Julia programming language
(Bezanson et al. 2014) make use of pretrained word embeddings for natu-
ral language processing. Word embeddings are a very important feature
representation in natural language processing. The use of embeddings
pretrained on very large corpora can be seen as a form of transfer learn-
ing. It allows knowledge of lexical semantics derived from the distribu-
tional hypothesis– that words occurring in similar contexts have simi-
lar meaning– to be injected into models which may have only limited
amounts of supervised, task oriented training data.
Many creators of word embedding methods have generously made sets
of pretrained word representations publicly available. Embeddings.jl ex-
poses these as a standard matrix of numbers and a corresponding array
of strings. This lets Julia programs use word embeddings easily, either
on their own or alongside machine learning packages such as Flux (Innes
2018). In such deep learning packages, it is common to use word embed-
dings as an input layer of a LSTM (long short term memory) network
or other machine learning model, where they may be kept invariant or
used as initialization for fine-tuning on the supervised task. They can
be summed to represent a bag of words, concatenated to form a matrix
representation of a sentence or document, or used otherwise in a wide
variety of natural language processing tasks.
Embeddings.jl makes use of DataDeps.jl (White et al. 2018), to allow for
convenient automatic downloading of the data when and if required. It
also uses the DataDeps.jl prompt to ensure the user of the embeddings
has full knowledge of the original source of the data, and which papers
to cite etc.

215

APPENDIX C. EMBEDDINGS.JL: EASY ACCESS TO PRETRAINED WORD
EMBEDDINGS FROM JULIA

It currently provides access to:
• multiple sets of word2vec embeddings (Mikolov et al. 2013b) for

English
• multiple sets of GloVe embeddings (Pennington, Socher, and Man-

ning 2014) for English
• multiple sets of FastText embeddings (Bojanowski et al. 2017; Grave

et al. 2018) for several hundred languages
It is anticipated that as more pretrained embeddings are made available
for more languages and using newer methods, the Embeddings.jl package
will be updated to support them.

216

APPENDIX D. TENSORFLOW.JL: AN IDIOMATIC JULIA FRONT END FOR
TENSORFLOW

Appendix D

TensorFlow.jl: An Idiomatic
Julia Front End for
TensorFlow

This paper was originally published in the Journal of Open Source Software.

D.1 Summary

TensorFlow.jl is a Julia (Bezanson et al. 2014) client library for the Ten-
sorFlow deep-learning framework (Abadi et al. 2015; Abadi et al. 2016).
It allows users to define TensorFlow graphs using Julia syntax, which are
interchangable with the graphs produced by Google’s first-party Python
TensorFlow client and can be used to perform training or inference on
machine-learning models.

Graphs are primarily defined by overloading native Julia functions to
operate on a TensorFlow.jl Tensor type, which represents a node in a
TensorFlow computational graph. This overloading is powered by Julia’s
powerful multiple-dispatch system, which in turn allows allows the vast
majority of Julia’s existing array-processing functionality to work as well
on the new Tensor type as they do on native Julia arrays. User code is
often unaware and thereby reusable with respect to whether its inputs
are TensorFlow tensors or native Julia arrays by utilizing duck-typing.

TensorFlow.jl has an elegant, idiomatic Julia syntax. It allows all the
usual infix operators such as +, -, * etc. It works seamlessly with Julia’s
broadcast syntax as well, such as the .* operator. Thus * can cor-
respond to matrix multiplication while .* corresponds to element-wise
multiplication, while Python clients needs distinct @ (or matmul) and *
(or multiply) functions. It also allows Julia-style indexing (e.g. x[:, ii
+ end÷2]), and concatenation (e.g. [A B], [x; y; 1]). Its goal is to be
idiomatic for Julia users while still preserving all the power and maturity
of the TensorFlow computational engine.

TensorFlow.jl aims to carefully balance between matching the Python
TensorFlow API and Julia conventions. In turn, the Python TensorFlow

217

APPENDIX D. TENSORFLOW.JL: AN IDIOMATIC JULIA FRONT END FOR
TENSORFLOW

client is itself designed to closely mirror numpy. Some examples are
shown in the table below.

Julia Python Tensor-
Flow

TensorFlow.jl

1-based indexing 0-based indexing 1-based indexing

Column Major Row Major Row Major

Explicit broadcasting Implicit broadcasting Implicit or explicit
broadcasting

Last index at end,
2nd last in end-1

Last index at -1, sec-
ond last in -2

last index at end, 2nd
last in end-1

Operations in Julia
ecosystem names-
paces. (SVD in
LinearAlgebra,
erfc in
SpecialFunctions,
cos in Base)

All operations Ten-
sorFlow’s namespaces
(SVD in tf.linalg,
erfc in tf.math, cos
in tf.math, and all
reexported from tf)

All hand imported
Operations in the
Julia ecosystems
namespaces. (SVD in
LinearAlgebra,
erfc in
SpecialFunctions,
cos in Base) Ops that
have no other place
are in TensorFlow.
Automatically gen-
erated ops are in
Ops

Container types are
parametrized by
number of dimensions
and element type

N/A: does not have a
parametric type sys-
tem

Tensors are
parametrized by ele-
ment type, enabling
easy specialization
of algorithms for
different types.

Defining TensorFlow graphs in the Python TensorFlow client can be
viewed as metaprogramming, in the sense that a host language (Python)
is being used to generate code in a different embedded language (the Ten-
sorFlow computational graph) (Innes et al. 2017). This often comes with
some awkwardness, as the syntax and the semantics of the embedded lan-
guage by definition do not match the host language or there would be no
need for two languages to begin with. Using TensorFlow.jl is similarly a
form of meta-programming for the same reason. However, the flexibility
and meta-programming facilities offered by Julia’s macro system makes
Julia especially well-suited as a host language, as macros implemented in
TensorFlow.jl can syntactically transform idiomatic Julia code into Julia
code that constructs TensorFlow graphs. This permits users to reuse
their knowledge of Julia, while users of the Python TensorFlow client
essentially need to learn both Python and TensorFlow.

One example of our ability to leverage the increased expressiveness of
Julia is using @tf macro blocks implemented in TensorFlow.jl to auto-
matically name nodes in the TensorFlow computational graph. Nodes

218

APPENDIX D. TENSORFLOW.JL: AN IDIOMATIC JULIA FRONT END FOR
TENSORFLOW

in a TensorFlow graph have names; these correspond to variable names
in a traditional programming language. Thus every operation, variable
and placeholder takes a name parameter. In most TensorFlow bind-
ings, these must be specified manually resulting in a lot of code that in-
cludes duplicate information such as x = tf.placeholder(tf.float32,
name="x") or they are defaulted to an uninformative value such as Placeholder_1.
In TensorFlow.jl, prefixing a lexical block (such as a function or a begin
block) with the @tf macro will cause the name parameter on all operations
occurring on the right-hand side of an assignment to be filled in using the
left-hand side. For example, the TensorFlow.jl equivalent of the above
example is @tf x = placeholder(Float32). Note how x is named only
once instead of twice, as is redundantly required in the Python example.
Since all nodes in the computational graph can automatically be assigned
the same name as the corresponding Julia variable with no additional la-
bor from TensorFlow.jl users, users get for free more intuitive debugging
and graph visualisation.

Another example of the use of Julia’s metaprogramming is in the auto-
matic generation of Julia code for each operation defined by the official
TensorFlow C implementation (for example, convolutions of two Tensor-
Flow tensors). The C API can be queried to return definitions of all
operations as protocol buffer descriptions, which includes the expected
TensorFlow type and arity of its inputs and outputs, as well as docu-
mentation. This described the operations at a sufficient level to generate
the Julia code to bind to the functions in the C API and automatically
generate a useful docstring for the function,. One challenge in this is that
such generated code must correct the indices to be 1-based instead of 0-
based to accord with Julia convention. Various heuristics are employed
by TensorFlow.jl to guess which input arguments represent indices and
so should be converted.

TensorFlow.jl ships by default with bindings for most operations, but
any operation can be dynamically imported at runtime using @tfimport
OperationName, which will generate the binding and load it immediately.
Additionally, for operations that correspond to native Julia operations
(for example, sin), we overload the native Julia operation to call the
proper binding.

We also use Julia’s advanced parametric type system to enable elegant
implementations of array operations not easily possible in other client li-
braries. TensorFlow.jl represents all nodes in the computational graph as
parametric Tensor types which are parameterized by their element type,
e.g. Tensor{Int}, Tensor{Float64} or Tensor{Bool}. This allows Ju-
lia’s dispatch system to be used to simplify defining some bindings. For
example, indexing a Tensor with an Int-like Tensor will ultimately create
a node corresponding to a TensorFlow “gather” operation, and indexing
with a Bool-like Tensor will correspond to a “boolean_mask” operation.
It is also used to cast inputs in various functions to compatible shapes.

D.1.1 Challenges

The TensorFlow 1.0 C API primarily exposes low-level functionality for
manually managing nodes in the computation graph. Gradient descent

219

APPENDIX D. TENSORFLOW.JL: AN IDIOMATIC JULIA FRONT END FOR
TENSORFLOW

optimizers, RNNs functionality, and (until recently) shape-inference all
required reimplementation on the Julia side. Most challengingly, the
symbolic differentiation implemented in the gradients function is not
available from the C API for all operations. To work around this, we cur-
rently use Julia’s Python interop library to generate the gradient nodes
using the Python client for those operations not supported by the C API.
This requires serializing and deserializing TensorFlow graphs on both the
Julia and Python side.
This has been improving over time, both due to Google moving more
functionality from the Python TensorFlow client to the C API which
can reused by Julia, and with more reimplementations of other aspects
of the Python client from our own volunteer efforts. There neverthe-
less remains a large number of components from the upstream contrib
submodule that remain unimplemented, including various efforts around
probabilistic programming.

D.1.2 Other deep learning frameworks in Julia

Julia also has bespoke neural network packages such as Mocha (Zhang
2014), Knet (Yuret 2016) and Flux (Innes 2018), as well as bindings to
other frameworks such as MxNet (Chen et al. 2015). While not having
the full-capacity to directly leverage some of the benefits of the language
and its ecosystem present in the pure Julia frameworks such as Flux,
TensorFlow.jl provides an interface to one of the most mature and widely
deployed deep learning environments. It naturally therefore supports
TensorFlow visualization libraries like TensorBoard. It also gains the
benefits from any optimisations made in the graph execution engine of
the underlying TensorFlow C library, which includes extensive support
for automatically distributing computations over multiple host machines
which each have multiple GPUs.

220

https://github.com/JuliaPy/PyCall.jl

APPENDIX D. TENSORFLOW.JL: AN IDIOMATIC JULIA FRONT END FOR
TENSORFLOW

D.1.3 Acknowledgements

• We gratefully acknowledge the 30 contributors to the TensorFlow.jl
GitHub repository.

• We especially thank Katie Hyatt for contributing tests and docu-
mentation.

• We thank members of Julia Computing and the broader Julia Com-
munity for various discussions, especially Mike Innes and Keno Fis-
cher.

221

	Introduction
	I Literature Review
	Word Representations
	Word Sense Representations
	Sentence Representations and Beyond

	II Publications
	How Well Sentence Embeddings Capture Meaning
	Learning of Colors from Color Names: Distribution and Point Estimation
	Finding Word Sense Embeddings Of Known Meaning
	NovelPerspective: Identifying Point of View Characters
	Generating Bags of Words from the Sums of their Word Embeddings
	Modelling Sentence Generation from Sum of Word Embedding Vectors as a Mixed Integer Programming Problem

	Conclusion
	Bibliography
	III Appendix: Tooling
	DataDeps.jl: Repeatable Data Setup for Replicable Data Science
	DataDepsGenerators.jl: Making Reusing Data Easy by Automatically Generating DataDeps.jl Registration Code
	Embeddings.jl: Easy Access to Pretrained Word Embeddings from Julia
	TensorFlow.jl: An Idiomatic Julia Front End for TensorFlow

