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Abstract
This paper introduces a distributed and energy-aware algorithm, called Minimum Drone Placement (MDP) algorithm, to

determine the minimum number of base stations mounted on resource-rich Unmanned Aerial Vehicles (UAV-BS),

commonly referred to as drone-BS, and their possible locations to provide fault tolerance with high network connectivity in

heterogeneous wireless sensor networks. This heterogeneous model consists of resource-rich UAV-BSs, acting as gateways

of data, as well as ordinary sensor nodes that are supposed to be connected to the UAV-BSs via multi-hop paths. Previous

efforts on fault tolerance in heterogeneous wireless sensor networks attempt to determine transmission radii of the sensor

nodes based on the already deployed base station positions. They assume that the base stations are stationary and arbitrarily

deployed regardless of the position of the sensor nodes. Our proposed MDP algorithm takes into account the desired degree

of fault tolerance and the position of ordinary sensor nodes to determine the optimal number of UAV-BSs and their

locations. The MDP algorithm consists of two steps. In the first step, each sensor node chooses low-cost pairwise disjoint

paths to a subset of candidate UAV-BSs, using an optimization based on the well-known set-packing problem. In the last

step, depending on the desired degree of fault tolerance, MDP chooses a subset of these UAV-BS candidates using a novel

optimization based on the well-known set-cover problem. Through extensive simulations, we demonstrate that the MDP

achieves up to 40% improvement in UAV-connected lifetimes compared to a random and uniform distribution of UAV-

BSs.

Keywords Fault-tolerance � Energy efficiency � Heterogeneous wireless sensor networks � Unmanned aerial vehicles

(UAVs) � k-connectivity � Set cover problem

1 Introduction

Wireless sensor networks (WSNs) consist of many tiny,

low-cost sensor nodes that can perform detection, pro-

cessing, and transmission of data over wireless channels.

After deployment, sensor nodes collaborate in a distributed

and self-organized fashion to set up a network, typically in

an environment without any infrastructure. These networks

are used in numerous applications such as border surveil-

lance [7], underwater habitat monitoring [13] and health-

care applications [1]. Because the sensor nodes are battery-

powered and have limited energy, it is of very important to

prolong network lifetime in WSNs. One approach to extend

network lifetime is to form a heterogeneous WSN archi-

tecture with supernodes which act as alternative gateways

to the monitoring center of a WSN [6]. This means that it is

sufficient for the sensory data to reach one of these
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supernodes. A heterogeneous WSN with supernodes is

known to be more reliable and has a longer network life-

time than homogeneous counterparts without supernodes.

Yarvis et al. [32] reported that heterogeneity can triple the

average delivery rate and provide a five-fold increase in

network lifetime if supernodes are deployed carefully.

Another critical issue in WSNs is fault-tolerance. Due to

the error-prone nature of sensor nodes and wireless com-

munication, faults occur very frequently in WSN applica-

tions. Inhospitable and harsh environmental conditions,

where sensor nodes are usually deployed, and the multi-

hop communication also increase the risk of faulty inci-

dents. Therefore, for particularly mission critical applica-

tions that require high reliability, fault tolerance emerges as

a very critical issue.

In the literature there are some studies that address fault-

tolerance, connectivity and heterogeneity at the same time

[5, 9, 14]. These approaches mainly concentrate on the

transmission powers of the sensor nodes. Cardei et al. [9]

address fault-tolerant topology control in heterogeneous

WSNs that consists of a large number of ordinary sensor

nodes and a few resource-rich supernodes. They introduce

k-vertex supernode-connectivity where every sensor node

is connected to supernodes by at least k disjoint paths.

There, the goal is to minimize total transmission power of

the sensor nodes while maintaining k-vertex supernode-

connectivity. Bagci et al. [5] present a distributed algo-

rithm, called the Disjoint Path Vector (DPV) algorithm, for

the same problem with a superior performance. More

recently, in order to address the dynamic nature of WSNs,

Deniz et al. [14] improve the DPV algorithm where sensor

nodes dynamically change their transmission powers to

adapt the network topology to the node failures, and refer

their algorithm as the Adaptive Disjoint Path Vector

(ADPV) algorithm. All of these approaches share a com-

mon drawback, which they all assume that a certain

number of supernodes are initially deployed regardless of

where the sensor nodes are located.

In WSNs, sensor nodes can be carefully placed at

engineered positions or thrown in bulk at random positions

[20]. The placement of sensor nodes obviously has a sig-

nificant effect on the resource management of WSNs [15].

However, it is not always possible to place thousands of

tiny sensor nodes at known locations. Firstly, generally the

number of sensor nodes to be deployed is very large and

secondly, the application environment is usually not fully

accessible. For these reasons, especially for regular sensor

nodes, it is usually preferable to sacrifice a little more

resources than working on the placement issue. For

resource-rich supernodes, on the other hand, placement at

engineered positions is less expensive due to their smaller

numbers and adds huge advantage to the connectivity and

fault-tolerance properties of the network. In this study, we

assume that ordinary sensor nodes are launched in bulk at

random locations and we consider determining the mini-

mum number of supernodes required and possible locations

based on these randomly distributed sensor nodes. Most of

the existing studies on placement of sensor nodes aim to

minimize the number of sensor nodes required, while

preserving application-specific constraints such as cover-

age, connectivity or fault-tolerance [23, 42]. We also have

the constraints of preserving connectivity, fault-tolerance

factors and at the same time balance the relaying among

the sensor nodes.

For the placement of supernodes, we use drones (UAVs)

mounted on supernodes, which have recently been widely

studied [10, 21, 34]. Due to their inherent attributes such as

rapid deployment, mobility and flexibility, they can be

easily placed at predefined positions, recharged or replaced

as needed. It has been shown that correct placement of

UAV-BSs can effectively prolong the lifetime of mobile ad

hoc networks [3].

In this paper, we propose a novel distributed and energy-

aware algorithm, namely the Minimum Drone Placement

(MDP) algorithm, to locate the minimum number of UAV-

BSs mounted supernodes in a network of sensor nodes

using an optimization based on the well-known set-cover

problem, so that the resulting topology becomes k-vertex

UAV-connected.

The remainder of the paper is organized as follows: In

Sect. 2, we discuss related studies and give some back-

ground information. We present our proposed UAV-BS

placement algorithm in Sect. 3. We present the results of

our experiments in Sect. 4 and finally, we give our con-

clusions in Sect. 5.

2 Related work

The deployment phase is an important aspect of WSNs. To

ensure certain levels of connectivity and fault tolerance for

sensor nodes, deployment solutions have been widely used.

In this section we provide a brief overview of some

prominent recent work on multiple sink, UAV-BS and

relay node placement strategies in WSNs.

2.1 Multiple sink placement

Due to the scarcity of energy supply of WSNs, there is a

need to design energy-efficient architectures and optimize

energy consumption. In small networks, sensors can send

their data directly to the sink node. In larger networks,

multi-hop communication is required and sensors are also

used for data relay. In particular, sensors within one-hop

distance from the sink have to relay data for other sensor

nodes and most of their energy is devoted to data relaying.
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Therefore, in order to utilize energy efficiently, it is

important to shorten number of hops a packet has to travel

until it reaches the sink and to balance the relaying job

between sensor nodes. Deploying multiple sinks is a

method to shorten these hop counts, balance relaying job

and prolong network lifetime [8, 16]. Multiple sink usage

also improves various network performance including

average data delivery latency [46] and system throughput

[38].

WSNs experience failure problems due to various fac-

tors such as power depletion, environmental impact, radio

interference, dislocation of sensor node and collision. The

problem of missing sensor node and communication link

errors are inevitable in WSNs. In addition to failures of

sensor nodes, sinks may also fail due to different reasons

such as hardware failure, software failure or intentional

attacks [26, 39]. Therefore, fault-tolerance is an important

design factor that should be considered during the

deployment of sink nodes. Deployment solutions are

mainly designed to ensure coverage and connectivity

requirements of WSNs. In multiple sink placement prob-

lem, the aim is to ensure network’s connectivity while

keeping the maximum hop-count constraint. Together with

fault-tolerance requirements, sinks are placed so that all the

sensor nodes are connected to multiple sinks or connected

to the set of sinks with fault-tolerant paths. In this way,

multiple sink placement solutions support fault-tolerance

by ensuring the existence of alternative routes to the sinks

when failure occurs.

In general, finding minimum number of required sink

nodes is NP-hard [40] and determining locations for these

sinks is NP-complete [8]. Since optimal sink placement has

proved to be NP-complete, several sub-optimal heuristics

were proposed with the objective of balancing energy

consumption [45], reducing packet delivery latency [46],

minimizing transmission radius of sensor nodes [25] and

meeting fault-tolerance requirements [43]. Xu and Liang

[45] and Oyman and Ersoy [35] aim to minimize number of

deployed sink nodes, while other mentioned approaches get

number of sink nodes as an input and deploy sinks into

precomputed locations. Sitanayah et al. [43] and Xu and

Liang [45] are the only two approaches that take maximum

hop-count into consideration and Sitanayah et al. [43] is the

only approach that considers fault-tolerance in the multiple

sink placement problem. None of the multiple sink place-

ment approaches take into account the residual energy

levels of the sensor nodes and none of the approaches

mentioned are distributed.

In [37], Poe and Schmitt discuss four different sink

placement strategies. These are: Random Sink Placement

(RSP), Geographic Sink Placement (GSP), Intelligent Sink

Placement (ISP) and Genetic Algorithm-based sink place-

ment (GASP). Among these, GSP and GASP are most

efficient strategies. More recently, Pardesi and Grover [36]

improve GSP and propose a new strategy, namely I-GSP,

which divides the network in concentric circular rings

around the central circular region. In [11], Dandekar and

Deshmukh propose an algorithm named Optimal Multiple

Sink Placement (OMSP) that divides the network into

clusters for the given number of sink nodes and calculates

locations for them using particle swarm optimization. Das

et al. [12] propose two algorithms, namely Candidate

Location with Minimum Hop (CLMH) and Centroid of the

Nodes in a Partition (CNP), and they also compare their

results with Geographic Sink Placement (GSP) strategy.

Das et al. assume a partitioned network, where partitions is

given as an input and try to find locations for the cluster

heads that will minimize transmission delay and extend

network lifetime.

In this study, we present an energy-aware and dis-

tributed solution to determine sink positions and form a

fault-tolerant network topology. In terms of the intended

network topology, our aim differs from all existing solu-

tions. Only one of the existing multiple sink placement

solutions addresses fault-tolerance. However, that study

only considers sink failures, but not sensor node failures,

which is obviously much more probable and aims to con-

nect each node to multiple sinks [43]. Greedy-MSP and

GRASP-MSP are the two approaches mentioned in [43] to

calculate multi-hop paths to multiple sinks. In this study,

we consider both sink and sensor node failures and also

take residual energy levels of the sensor nodes into account

to calculate number of required sink nodes and their

locations and achieve a more robust network topology.

The use of UAV-BSs has been realized as a promising

addition to the conventional WSNs [24, 34] and make a

valuable contribution to the deployment of sink nodes.

They can be used for data collection from the sensor nodes,

and also support connectivity and fault-tolerance properties

[47]. Owing to their inherent attributes like rapid deploy-

ment and flexibility, they can be placed to predefined

positions, recharged or replaced as needed. They can be

used to serve as assisting relays to improve the connectivity

of the WSNs [29]. When placement of the sink nodes is

static, it leads to performance instabilities and fortunately,

UAVs can provide an effective leverage to improve the

environment adaptation in WSNs. This paper provides a

UAV-BSs deployment plan, while minimizing number of

them, it also ensures certain levels of connectivity and

fault-tolerance.

2.2 Relay node placement in WSNs

Another well-studied subject for the placement problem in

WSNs is the placement of relay nodes. Relay nodes in

WSNs are generally nodes with higher transmitting power.
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The goal in the relay node placement is to place minimum

number of relay nodes in a region where sensor nodes are

already deployed so that the resulting topology is con-

nected and/or fault-tolerant. In the literature there are

several such studies [31, 33]. There are also some recent

studies such as [17, 41] to determine the minimum number

of relay nodes to maintain multi-hop paths between every

pair of sensor nodes.

As stated by Liu et al [30], existing solutions to obtain

fault-tolerance aim to obtain k-vertex connectivity between

any two sensor nodes and achieve that using least number

of relay nodes. Although such optimization is a very

challenging work and proven to be NP-hard [28], it does

not conform with the general objective of WSN applica-

tions. For WSN applications, general objective is to send

the received data to the sink nodes. Therefore, it is more

convenient to have fault-tolerant paths from sensor nodes

to the sinks. Our aim differs from the existing solutions at

this point. We aim to provide fault-tolerant disjoint paths

between every sensor node to the set of supernode mounted

UAV-BSs, but not between every pair of sensor nodes. In

other words, we aim to place UAV-BSs, where the traffic is

destined to, so that network becomes k-vertex UAV-

connected.

Recently, Azharuddin and Jana [4] proposed a method to

place minimum number of additional relay nodes to

achieve fault-tolerance for heterogeneous WSNs. However,

they do not allow sensor-to-sensor communication and thus

locate relay nodes in such a way that there is at least k relay

nodes within the transmission range of each sensor node.

Our approach, on the other hand, allows sensor-to-sensor

communication and hence potentially decreases the

required number of UAV-BSs to be placed to achieve a

certain degree of fault-tolerance. More recently, Hanh et al.

[17] proposed two heuristics, namely PGA and SGA, that

focus on minimizing the number of sensor and relay nodes

in the existence of multiple sink nodes. GRASP-ARP [42]

is another relay node placement approach that aims to

deploy minimum number of relay nodes, so that in the

resulting network each sensor node is connected to the sink

nodes by at least k disjoint paths. In terms of the resulting

network topology, GRASP-ARP has similar intentions with

our approach, however being a centralized approach

restricts its usage in WSN applications.

3 Minimum drone placement algorithm

In this section, we present our novel distributed and

energy-aware algorithm, MDP, which aims to determine

the minimum number of UAV-BSs and their possible

locations to construct a k-vertex UAV-connected network

topology. In this section, we first discuss the associated

network model and define the problem, then describe our

algorithm in detail.

3.1 Network model and problem definition

Consider a mission critical border surveillance system that

is integrated with a two-tiered heterogeneous WSN. In this

network, sensor nodes are randomly and uniformly

deployed on the border line and initially there are no

supernode mounted UAV-BSs as shown in Fig. 1(a). After

MDP algorithm determines UAV-BS locations, UAV-BSs

are deployed as shown in Fig. 1(b). When sensor nodes

sense a potential intrusion activity, they inform the base

station by forwarding the data to the UAV-BSs and base

stations decide whether to take an action or not. Since it is

common to lose some sensor nodes because of energy

depletion, harsh environmental conditions or hostile

activities of intruders, it is desired for every sensor node to

have more than a certain number of independent paths to

(a) Initial network

(b) After UAV-BS deployment

Fig. 1 Sample scenario
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the set of UAV-BSs. In this scenario, fault-tolerance is

achieved by forwarding the sensed data to the set of UAV-

BSs using three disjoint paths as illustrated in Fig. 1(b).

This network model is first described in [9], and also

used by [5, 14]. In this model, network consists of M

supernodes and N sensor nodes that are randomly dis-

tributed in the 2D plane so that M\\N. In this network

model, a WSN is said to be k-vertex supernode-connected

if removal of any k � 1 sensor nodes does not disconnect

any sensor node from all the supernodes, that is, each

sensor node is still connected to some supernodes.

In the previous studies, number of supernodes was a

predefined constant and they were deployed at known

locations. In this study, our objective is to determine

minimum number of supernode mounted UAVs (M) and

their possible locations to maintain a k-vertex UAV con-

nected network topology.

More formally, we represent initial network topology

with an undirected weighted graph G ¼ ðV ;EÞ, where V is

the set of nodes and E ¼ fvi; vj | distðvi; vjÞ\Rmaxg is the

set of edges, where distðvi; vjÞ defines the distance between
nodes vi and vj and Rmax is the maximum transmission

range. Given that G ¼ ðV ;EÞ is k-vertex supernode-con-

nected with a set C � V of candidate supernode vertices

and a set N � V of sensor node vertices, such that C \ N ¼
; and C [ N ¼ E. Our aim in this study is to find a set of

vertices M � C such that GðV ;M [ NÞ is still k-vertex

supernode-connected and number of elements in M, Mj j, is
minimum.

3.2 Minimum drone placement (MDP) algorithm

The MDP algorithm involves two steps. In the first step, the

algorithm assumes all sensor nodes has the capabilities of

supernodes and treats them as candidate UAV-BSs and

computes paths from sensor nodes to the set of candidate

UAV-BSs. In this way, sensor nodes choose a set of other

sensor nodes that they prefer to be a UAV-BS. Later, the

second step chooses minimum number of sensor nodes to

be UAV-BSs, so that network gets k-vertex UAV

connected.

MDP is a distributed algorithm that determines possible

locations for the UAV-BSs by message transmissions

among sensor nodes and requires only one-hop neighbor-

hood information. MDP is also an energy-aware solution

that considers residual battery power levels of the sensor

nodes. The MDP algorithm consists of two main steps:

1. Collecting path information and determining preferred

paths,

2. Determining UAV-BS locations.

During the first step, MDP uses a modified version of

ADPV algorithm. Unlike ADPV, MDP’s aim is not to

determine transmission powers of the sensor nodes, but to

determine possible locations for the UAV-BSs. For this

aim, MDP has a simple, yet effective modification over

ADPV algorithm. During the first phase, MDP determines

preferred paths for each sensor node, which are used as

alternative paths for the aim of restoring connectivity in the

ADPV algorithm [14].

WSNs are characterized by their dynamic nature and

this requires them to be adaptive to the environmental and

topological changes. ADPV [14] is an adaptive approach

that adapts the network topology to the node failures by

dynamically adjusting the transmission powers of the

sensor nodes. The main objective of ADPV is to prolong

supernode-connected lifetime of the network.

ADPV consists of two phases: initialization and con-

nectivity restoration. During the initialization phase ADPV

determines alternative paths to be used during connectivity

restoration phases. Whenever a node failure breaks k-ver-

tex supernode connectivity, ADPV restores connectivity

using these alternative paths. Therefore, computing high-

quality alternative paths lies at the core of the ADPV

algorithm. For determining alternative paths efficiently,

ADPV proposes a novel optimization based on the well-

known set-packing problem. The set-packing problem asks

for the maximum number of pairwise disjoint sets among a

family of sets. ADPV first determines a large set of alter-

native paths with minimum cost and then chooses a diverse

subset, as being disjoint with others, using the maximum

set-packing procedure. ADPV utilizes alternative paths to

be pairwise disjoint, so that, a failed node can remove at

most one path from the alternative paths. Experimental

results indicate that using these alternative paths ADPV

can restore connectivity several times and significantly

prolong network lifetime.

For the first step of MDP, the method of initiating MDP

differs from the ADPV algorithm. The ADPV algorithm

starts with the ‘Init’ messages initiated by the supernodes,

and in the case of MDP the goal is to determine UAV-BS

locations and initially there is no UAV-BS. The MDP

algorithm is initiated by the ‘Init’ messages transmitted by

all ordinary sensor nodes. In this way, each sensor node

behaves like a UAV-BS and lets sensor nodes compute

disjoint paths intended for itself. Since ADPV determines

minimum cost disjoint paths to the set of supernodes, MDP

determines minimum cost disjoint paths to a subset of

sensor nodes. In this way, by ignoring the intermediate

sensor nodes and simply considering the destination nodes,

each sensor node chooses a subset of sensor nodes that it

prefers to be a UAV-BS. Algorithm 3.1 shows the details

of collecting path information and determining preferred

paths. The variables used in the pseudo code are defined in

Table 1.
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When a sensor node receives a ‘PathInfo’ message

containing a set of preferred paths, which are logical paths

that are used for informing neighbor nodes about which

paths they can use over the sender node, from one of its

neighbors, it first calculates the union of the current pre-

ferred path sets of the sender and receiver. It then executes

the maximum set packing procedure defined in [14] on this

union to eliminate paths that have too many sensor nodes in

common. This procedure is the optimization version of the

well-known set packing (SP) problem and requests the

maximum number of pairwise disjoint paths in a family of

paths. As a result of this procedure, we maintain a very

small set of preferred paths, but at the same time the

quantity of those paths is large and diverse enough to find

an adequate number of candidate UAV-BS locations for

each sensor node.

The procedure then determines a set of candidate pre-

ferred paths P0 as the first L minimum-cost paths. The cost

of a path is determined by its expected lifetime, which is

equal to the expected lifetime of the first node to die on the

path, and the altitude constraint of the destination node.

This is why the estimation of the lifetime of each sensor

node on a path is at the heart of this approach and the

lifetime of a path made up of nodes n0; n1; . . .; nl, in which

n0 is the starting sensor node and nl is the destination node

is calculated as min
0� i\l

fbi=Pf ðdiÞÞg, where bi denote the

residual energy level of sensor node ni, di denotes the

distance between ni and niþ1 for each 0� i\l and the

power consumption function Pf is defined in Sect. 4.2. In

order to apply the altitude constraint, we use the Pytha-

gorean theorem to calculate hypotenuse, using the distance

between nl�1 and nl, and the altitude constraint of nl.

The MDP algorithm chooses a set of preferred paths

such that the minimum lifetime of those paths is maxi-

mized. When a sensor node chooses a path, it means that it

prefers that a UAV-BS exists at the end of that path and it

prefers to send its collected data along that path. If there is

Table 1 MDP notations
N Set of sensor nodes

P Preferred paths of a sensor nodes

t Destination node, source node pairs of preferred paths

T Union of destination node, source node pairs of preferred paths

k Disjoint connectivity degree

M Set of chosen UAV-BSs

U List of uncovered sensor nodes

s Chosen sensor node

m, n, x, y Variables referencing sensor nodes

830 Wireless Networks (2021) 27:825–838
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an update in the preferred paths of a sensor node, it also

notifies its neighbors and the algorithm ends when there is

no more update and all sensor nodes determine their pre-

ferred path sets.

3.3 Determining UAV-BS locations

The second phase makes use of the preferred paths calcu-

lated by each sensor node during the first phase and

determine a subset of sensor nodes that will cover all of the

sensor nodes. Besides the preferred paths, this phase

requires two additional entries, which are the list of sensor

nodes and the expected level of fault tolerance (k). It has a

single output, which is the locations of UAV-BSs. Since

only the source and destination nodes used in the second

phase, as the first step, MDP ignores all intermediate nodes

in the preferred paths. Considering all the paths in the

preferred list are pairwise disjoint, selecting any k elements

from this set and choosing the destination nodes as UAV-

BSs will enable a k-vertex UAV connectivity.

Algorithm 3.2 shows the details of the second phase.

The variables used in the pseudo code are defined in

Table 1. Since MDP aims to determine a set of destination

nodes that will cover all the sensor nodes at least for

k times, MDP uses a list of uncovered elements that ini-

tially contains every node for k times. To determine the

smallest subset of the sensor nodes that will cover all

sensor nodes, MDP uses an optimization based on the well-

known set-cover problem. The set-cover problem is one of

the Karp’s 21 NP-complete problems [22] and the opti-

mization version of this problem, which we use in our case,

is an NP-hard problem [27]. Therefore, we use a well-

known greedy heuristic to determine the smallest subset

that covers all the sensor nodes. This heuristic works in

iterations and in each iteration it asks for the node that

contains the greatest number of uncovered elements. It

adds the chosen node to the result and removes all the

nodes it covers from the uncovered nodes list. Iterations

terminate when no item remains in the uncovered list. This

greedy approach guarantees coverage of all nodes and also

approximately guarantees the minimum number of UAV-

BSs [44]. In the case of set-packing heuristic, which is used

for constructing preferred paths, there was no guarantee for

the optimality of the result, but for the set-cover heuristic

there is.

For example, consider the universe U ¼ f1; 2; 3; 4;
5; 6; 7; 8; 9; 10g and a family S ¼ fSa; Sb; Sc; Sdg, consist-

ing of the subsets: Sa ¼ f1; 2; 3; 4g, Sb ¼ f4; 5; 6g, Sc ¼
f5; 6; 7; 8g, Sd ¼ f9; 10g. When all the elements are nee-

ded to be covered once, first iteration of maximum set

cover heuristic chooses one of the subsets Sa or Sc, because

they have the most elements. Since Sa and Sc has the same

number of elements, maximum set cover heuristic ran-

domly chooses one of them. Let the chosen subset be Sa.

Wireless Networks (2021) 27:825–838 831
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After choosing Sa, the algorithm removes the elements the

chosen subset covers from the other subsets. Since Sa
intersects with only Sb, the intersection is removed from Sb
and after the first iteration Sb has two remaining elements,

which are f5; 6g. During the second iteration, since Sc has

the most uncovered elements, the algorithm chooses Sc and

removes the elements it covers from other subsets. As a

result of the second iteration, subset Sb has no elements.

During the third iteration, the algorithm chooses Sd and as a

result, no elements remain uncovered and the algorithm

terminates with the chosen subsets Sa, Sc and Sd.

For our case, consider the sample topology given in

Fig. 2(a) with the desired connectivity degree (k) value of

two. In this topology there are five sensor nodes, so that all of

them are initially pairwise connected. During the first step all

the sensor nodes behave like they also have UAV-BS capa-

bilities and asks sensor nodes to calculate disjoint paths

destined to themselves. Sensor nodes compute their pre-

ferred paths to other sensors using the initialization phase of

MDP algorithm, described in Sect. 3.2. According to these

paths, ignoring the intermediate nodes and denoting number

of occurrences with exponents, destination nodes of node a

are c2, e and d; destination nodes of node b are c2 and d2;

destination nodes of node c are a,b,d3 and e; destination

nodes of node d are b, c3 and e; finally destination nodes of

node e are c2 and d2. During the second step, using the set-

cover algorithm that chooses the node that covers most ele-

ments in each iteration, MDP algorithm chooses node c to be

a UAV. In this way, all the sensor nodes in the uncovered

node list are covered twice and uncovered node list becomes

empty. Therefore one UAV-BS is adequate for this sample

topology when k ¼ 2. The final topology, where a UAV-BS

is located at the location of node c, is shown in Fig. 2(b).

With the increasing k value, the additional load on the

MDP algorithm does not significantly increase and the

MDP algorithm works very efficiently. Continuing from

the example above, when k ¼ 3, there will be no change in

the first step, but the uncovered node list, in the second

step, will initially have three copies of each node. During

the first iteration, node c will be chosen and there will

remain one copies of node a, b and e in the uncovered node

list. In the second iteration, node d will be chosen and the

algorithm will terminate with the decision of placing two

UAV-BSs to the locations of node c and d.

4 Experimental results

In this section we report our measurements regarding the

minimum number of UAV-BSs required to maintain k-

vertex UAV connectivity. We also discuss the contribution

of placement of UAV-BSs at known locations to the

network lifetime compared to random distribution of UAV-

BSs. We also consider the number of message transmis-

sions required during execution of our algorithm to mea-

sure its efficiency. In more detail, the metrics we mainly

focus on to evaluate our algorithms are:

– Number of required UAV-BSs For each randomly

generated network topology our first aim is to deter-

mine the minimum number of UAV-BSs required to

maintain k-vertex UAV connectivity for different

k values and network topologies. Since the aim of this

study is to minimize the number of required UAV-BSs,

this is an important metric for the evaluation of our

algorithm.

– Lifetime We compare UAV-connected and k-vertex

UAV connected lifetimes of the randomly generated

topologies. For this evaluation we consider the first

time UAV-connectivity and k-vertex UAV connectivity

is broken. This metric shows the effect of how well our

algorithm places the UAV-BSs and its effect to the

overall lifetime of the network; hence this is also an

important performance metric.

a
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e
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b

S

(a) Initial topology

a

e
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d

c
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Fig. 2 Example UAV-BS location determination for k ¼ 2
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– Number of message transmissions This is the sum of the

number of messages transmitted during the execution of

our algorithm. This metric depicts the transmission

power cost of generating the k-vertex UAV-BS con-

nected topology. Since it directly affects the remaining

energy levels of the sensor nodes in the network, we

also monitored this metric.

We have implemented MDP using an extended version of a

custom evaluation framework, which can generate random

network topologies, execute the algorithms on the gener-

ated topologies, calculate the desired metrics, and visualize

the outputs of the experiments. This framework has also

been used for evaluating DPV and ADPV algorithms. This

framework has the ability to measure UAV-connected and

k-vertex UAV-connected lifetimes of the given heteroge-

neous WSNs. In order to measure the lifetime with random

and uniform distribution of UAV-BSs, we use the ADPV

algorithm with random UAV-BS locations and represent it

as ADPV with random UAV-BS locations (ADPVR)

throughout this section. The simulator and simulation

models were developed using C# programming language

and all experiments have been conducted on an eight-core

Intel Xeon processor server running the Windows Server

2012 operating system with 16 GB of RAM.

4.1 Experimental setup

In our experiments, we vary the number of sensor nodes in

the network between 100 and 500, and assume that they are

deployed uniformly and randomly in a 600 m� 600 m

area. They can be either evenly or unevenly distributed on

the ground due to operational requirements or terrain lim-

itations. We assumed that the maximum communication

range of the sensor nodes is 100 m. For the degree of

disjoint connectivity, we executed the simulations for both

k ¼ 2 and k ¼ 3, which are typical values seen in k-con-

nectivity studies [2, 5, 9]. For each message transmission,

we assumed a packet loss rate of 10% and path loss

exponent of 2. We assumed that the path length was

bounded by a constant, say l ¼ 6, following previous

studies [5, 9, 14]. We also assumed initial power levels of

the sensor nodes randomly vary from 80 to 100%. We also

assumed that nodes can predict link length using the

strength of the received signal. We did not target a specific

sensor node technology in the simulations, but it can be

considered as any sensor node platform capable of

adjusting transmit power with a maximum attainable range

Rmax of 100 m. Finally, we repeated our experiments for at

least 20 times to obtain more reliable and stable results and

to report the average values at confidence intervals of 95%.

Confidence intervals for reported values are shown on the

corresponding charts.

Our simulation parameters are summarized in Table 2.

For the purpose of comparing the algorithms, the power

consumption model we used for sensor nodes is described

in Sect. 4.2. For each set of scenarios, we first determine

the minimum number of UAV-BSs and their locations

using the MDP algorithm. Then, by randomly relocating

the UAV-BSs, we generate another network topology and

measure lifetimes of both topologies. We assume that the

supernodes are mounted on rotary-wing UAVs, such as

quadrotor drones, which can hover and remain stationary

over a given area at a specified altitude. We assume each

point has an altitude constraint that shows the minimum

altitude at which UAVs can hover and we assume UAV-

BSs fly at a fixed altitude, say 10 m, and assume that there

is a line-of-sight communication link with sensor nodes in

the range.

4.2 Power consumption model

For the purpose of comparing the algorithms we use a well-

known power consumption model proposed by Heinzelman

et al. [18, 19]. This approach is based on the observation

that the main factor in WSN power consumption is data

communication, which consists of two factors: data trans-

mission and data reception. In this model, the energy

consumption for data reception is a constant value per bit.

We represent this constant with b and assume that it is

equal to 50 nJ/bit. For data transmission, the power to

transmit a bit to a distance of d is a1 þ a2 � dn, where a1
and a2 are parameters that depend on the transmitter cir-

cuitry, and n is the path loss exponent for the environment,

which often has a value between 2 and 4. In our power

consumption model, maximum initial energy, a1, a2, and n

are assumed to be 5J, 50 nJ/bit, 100 pJ/bit/m2 and 2,

respectively.

For our experiments, we assume all sensor nodes sense

the environment and generate traffic at a fixed data rate of

250 kbps. We also assume that data aggregation is applied

and that all nodes on a path carry the same load. Therefore,

the total power consumption for receiving a bit and

Table 2 Simulation parameters

Number of sensor nodes: N ½100. . .500�
Deployment area 600 m � 600 m

Initial transmission range of sensor nodes: Rmax 100 m

Degree of disjoint connectivity: k 2 and 3

Packet loss rate 10%

Maximum path length 6

Power attenuation exponent 2

Confidence level 95%
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transferring it to the next hop is equal to

Pf ðdÞ ¼ bþ a1 þ a2 � dn:

4.3 Results

In Fig. 3, we present the results of MDP algorithm

regarding the minimum number of UAV-BSs required to

maintain a two- and three-vertex UAV connected network

topology, respectively. According to the results, our first

observation is that as k value increases, the number of

required UAV-BSs also increases. Since higher k values

require more disjoint paths between the sensor nodes and

the set of UAV-BSs, this is the expected behavior.

Our second observation is that number of sensor nodes

is inversely proportional to the required number of UAV-

BSs. With the increasing number of sensor nodes, the

number of UAV-BSs required to maintain k-vertex UAV

connectivity decreases for both k ¼ 2 and k ¼ 3. With the

increasing number of sensor nodes, it becomes easier to

find alternative routes, and so this is also an expected

behavior and the MDP results align with the expected

behavior. For dense networks, we can observe that the

number of required UAV-BSs is quite low. For instance, in

one extreme, when we look at the results of a 500-node

network, for k ¼ 2, MDP determines the number of

required UAV-BSs to be around 5. Even though this

number may not be the minimum, it shows MDP is quite

successful in determining almost the minimum number of

UAV-BSs and their locations.

In previous studies [5, 9, 14], with the increasing

number of sensor nodes, they also increased the number of

supernodes. For the evaluation, they used a ratio of 5% and

10% supernodes, and they initially deployed supernodes

randomly, regardless of where the sensor nodes were

located. For example, for a network topology of 500 sensor

nodes and for k ¼ 2, they executed their simulations for 25

and 50 supernodes. Our study, on the other hand, reveals

that far fewer supernodes might be sufficient (mean 5.6

UAV-BSs within the 95% confidence interval [5.29,5.91])

to maintain the same level of fault-tolerance for the same

network topologies. For k ¼ 3, they do not change the

number of supernodes for their experiments, but our anal-

ysis shows that on average 1.73 (within the 95% confidence

interval [1.68,1.80]) times more supernodes are needed

compared to k ¼ 2.

In Fig. 4, we compare the UAV-connected and k-vertex

UAV connected lifetimes of the topologies generated by

the MDP and ADPVR algorithms and observe the most

striking result. Note that, for this evaluation, we consider

the first time UAV-connectivity and k-vertex UAV con-

nectivity has been discontinued. We observe that, simply

by changing the locations of the UAV-BSs, MDP can

improve both UAV-connected and k-vertex UAV con-

nected lifetimes of the networks. For k ¼ 2, MDP shows

29% improvement and for k ¼ 3 and 22% improvement, on

average, in UAV-connected lifetimes of the network

compared to random deployment of UAV-BSs. Moreover,

for the same experimental scenarios, the MDP provides

respectively 35% and 19% longer two-vertex and three-

vertex UAV-connected lifetimes, on average, than the

random deployment of UAV-BSs. This result can be

attributed to the fact that the MDP becomes more efficient

in finding better positions for UAV-BSs.

In Fig. 5, we compare network UAV-connected and

2-vertex UAV connected lifetimes for different UAV-BS

counts and also observe the effect of UAV-BS counts ton

the lifetime of the network. For example, for this scenario,

for 200 sensor nodes and for a UAV ratio of 10%, 20 UAV-

BSs and for 200 sensor nodes and for a UAV ratio of 5%,

10 UAV-BSs are randomly deployed on the network and

lifetime measurements are compared with the MDP algo-

rithm, which uses a minimum number of UAV-BSs. For

these settings, ADPVR shows a 75% and 25% improve-

ment in the UAV-connected lifetimes compared to MDP

using four-fold and two-fold more UAV-BSs on average,

respectively. According to the results, as discussed in [14],

with the increasing number of UAV-BSs, lifetime also

increases. However, the relationship between the increase

in the number of UAV-BSs and the increase in lifetime is

sublinear, and therefore, the increase in lifetime becomes

insignificant as the number of UAV-BSs increases.

Since sensor nodes consume most of their battery power

for the transmission of messages, another important metric

we need to take into account is the number of required

message transmissions. This metric represents the cost of

the transmission power to generate the k-vertex UAV-BS

connected topology. If the power consumption to deter-

mine UAV locations is too high, the efficiency of our

algorithm no longer makes sense.
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In Fig. 6, we can observe the total number of required

message transmissions to execute the MDP and ADPVR

algorithms. Since ADPVR algorithm only uses message

transmissions to determine transmission ranges of sensor

nodes and randomly determines UAV-BS locations without

making any message transmissions, as expected, the

number of message transmissions of ADPVR algorithm is

lower than that of MDP algorithm. As shown in Fig. 6(a)

and (b), for k ¼ 2 and k ¼ 3, MDP incurs a 100% and 50%

increase on the required number of message transmissions

compared to ADPVR, respectively. As seen from the fig-

ures, the number of message transmissions of both algo-

rithms increases almost linearly with the number of sensor

nodes, and the ratio of these message transmission counts

does not change significantly. Considering that in the MDP

algorithm, every sensor node behaves like a UAV-BS and

lets sensor nodes compute disjoint paths destined for itself,

this is also understandable.
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5 Conclusion

In this study, we present the MDP algorithm, a distributed

and energy-efficient approach to locate minimum number

of UAV-BSs to maintain k-vertex UAV connectivity. The

motivation of this algorithm is to optimize the use of UAV-

BS in heterogeneous WSNs and also to prolong UAV-

connected network lifetime. MDP places UAV-BSs with

respect to the positions of already-deployed sensor nodes

using an optimization that is based on the set-cover prob-

lem. The experimental results for the MDP algorithm

validate our theoretical expectations. The number of UAV-

BSs required to make the topology k-vertex UAV con-

nected decreases as the sensor node density increases. Also,

with the increasing fault-tolerance degree, the number of

required UAV-BSs also increases. With the extensive

simulations, we demonstrate that MDP can significantly

prolong UAV-connected lifetime of the network up to 40%

compared to uniform distribution of UAV-BSs. The solu-

tion we propose in this paper is distributed and localized,

so it is scalable to large networks and therefore suitable for

use in real applications.

As part of future work, we plan to perform our simu-

lations with a practical platform comprising real UAV-BSs

and relevant devices. Additionally, in order to achieve a

more robust network topology, we want to extend our

approach by changing UAV-BS positions dynamically and

relocating additional ones whenever necessary. In this way,

instead of being stationary, the UAV-BSs can be mobile

and could therefore be repositioned to further increase

network lifetime.

References

1. Alemdar, H., & Ersoy, C. (2010). Wireless sensor networks for

healthcare: A survey. Computer Networks, 54(15), 2688–2710.
https://doi.org/10.1016/j.comnet.2010.05.003.

2. Almasaeid, H.M., & Kamal, A.E. (2009). On the minimum

k-connectivity repair in wireless sensor networks. In 2009 IEEE
International Conference on Communications (pp. 1–5).

3. Alzenad, M., El-Keyi, A., Lagum, F., & Yanikomeroglu, H.

(2017). 3-d placement of an unmanned aerial vehicle base station

(UAV-BS) for energy-efficient maximal coverage. IEEE Wireless
Communications Letters, 6(4), 434–437.

4. Azharuddin, M., & Jana, P.K. (2015). A ga-based approach for

fault tolerant relay node placement in wireless sensor networks.

In Computer, Communication, Control and Information Tech-
nology (C3IT), 2015 3rd International Conference on (pp. 1–6).

https://doi.org/10.1109/C3IT.2015.7060111.

5. Bagci, H., Korpeoglu, I., & Yazıcı, A. (2014). A distributed fault-

tolerant topology control algorithm for heterogeneous wireless

sensor networks. IEEE Transactions on Parallel and Distributed
Systems, 26(4), 914–923.

6. Bari, A., Jaekel, A., Jiang, J., & Xu, Y. (2012). Design of fault

tolerant wireless sensor networks satisfying survivability and

lifetime requirements. Computer Communications, 35(3),
320–333. https://doi.org/10.1016/j.comcom.2011.10.006.

7. Bellazreg, R., Boudriga, N., & An, S. (2013). Border surveillance

using sensor based thick-lines. In Information Networking
(ICOIN), 2013 International Conference on (pp. 221–226).

https://doi.org/10.1109/ICOIN.2013.6496380.

8. Bogdanov, A., Maneva, E., & Riesenfeld, S. (2004). Power-aware

base station positioning for sensor networks. In INFOCOM 2004.
Twenty-third Annual Joint Conference of the IEEE Computer and
Communications Societies (Vol. 1, p. 585).

9. Cardei, M., Yang, S., & Wu, J. (2008). Algorithms for fault-

tolerant topology in heterogeneous wireless sensor networks.

Parallel and Distributed Systems, IEEE Transactions on, 19(4),
545–558. https://doi.org/10.1109/TPDS.2007.70768.

10. Cicek, C.T., Gultekin, H., Tavli, B., & Yanikomeroglu, H.

(2019). Uav base station location optimization for next generation

wireless networks: Overview and future research directions. In

2019 1st International Conference on Unmanned Vehicle Sys-
tems-Oman (UVS) (pp. 1–6).

11. Dandekar, D.R., & Deshmukh, P.R. (2013). Energy balancing

multiple sink optimal deployment in multi-hop wireless sensor

networks. In Advance Computing Conference (IACC), 2013 IEEE
3rd International (pp. 408–412).

12. Das, D., Rehena, Z., Roy, S., & Mukherjee, N. (2013). Multiple-

sink placement strategies in wireless sensor networks. In 2013 5th
International Conference on Communication Systems and Net-
works (COMSNETS) (pp. 1–7).

13. Davis, A., & Chang, H. (2012). Underwater wireless sensor

networks. Oceans, 2012, 1–5. https://doi.org/10.1109/OCEANS.
2012.6405141.

14. Deniz, F., Bagci, H., Korpeoglu, I., & Yazıcı, A. (2016). An
adaptive, energy-aware and distributed fault-tolerant topology-

control algorithm for heterogeneous wireless sensor networks. Ad
Hoc Networks, 44, 104–117.

15. Dhillon, S. S., & Chakrabarty, K. (2003). Sensor placement for

effective coverage and surveillance in distributed sensor net-

works. IEEE Wireless Communications and Networking, 3,
1609–1614.

16. Haeyong, K., Taekyoung, K., & Pyeongsoo, M. (2008). Multiple

sink positioning and routing to maximize the lifetime of sensor

networks. IEICE Transactions on Communications, 91(11),
3499–3506.

17. Hanh, N.T., Le Nguyen, P., Tuyen, P.T., Binh, H.T.T., Kurni-

awan, E., & Ji, Y. (2018). Node placement for target coverage

and network connectivity in wsns with multiple sinks. In 2018
15th IEEE Annual Consumer Communications and Networking
Conference (CCNC) (pp. 1–6).

18. Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. (2000).

Energy-efficient communication protocol for wireless microsen-

sor networks. In System Sciences, 2000. Proceedings of the 33rd
Annual Hawaii International Conference on (Vol. 2, p. 10).

https://doi.org/10.1109/HICSS.2000.926982.

19. Heinzelman, W., Chandrakasan, A., & Smith, A. (2002). An

application-specific protocol architecture for wireless microsen-

sor networks. IEEE Transactions on Wireless Communications,
1, 660–670.

20. Akyildiz, I. F., & Kasimoglu, I. H. (2004). Wireless sensor and

actor networks: Research challenges. Ad Hoc Networks, 2(4),
351–367.

21. Kalantari, E., Yanikomeroglu, H., & Yongacoglu, A. (2016). On

the number and 3d placement of drone base stations in wireless

cellular networks. In 2016 IEEE 84th Vehicular Technology
Conference (VTC-Fall) (pp. 1–6).

22. Karp, R. (1972). Reducibility among combinatorial problems. In:

R. Miller, J. Thatcher, & J. Bohlinger (Eds.), Complexity of

836 Wireless Networks (2021) 27:825–838

123

https://doi.org/10.1016/j.comnet.2010.05.003
https://doi.org/10.1109/C3IT.2015.7060111
https://doi.org/10.1016/j.comcom.2011.10.006
https://doi.org/10.1109/ICOIN.2013.6496380
https://doi.org/10.1109/TPDS.2007.70768
https://doi.org/10.1109/OCEANS.2012.6405141
https://doi.org/10.1109/OCEANS.2012.6405141
https://doi.org/10.1109/HICSS.2000.926982


Computer Computations, The IBM Research Symposia Series (pp.
85–103). US: Springer.

23. Kashyap, A., Khuller, S., & Shayman, M. (2006). Relay place-

ment for higher order connectivity in wireless sensor networks. In

INFOCOM 2006. Twenty Fifth IEEE International Conference on
Computer Communications. Proceedings (pp. 1–12).

24. Kim, H., Ben-Othman, J., & Bellavista, P. (2017). Collision-free

reinforced barriers in UAV networks. Journal of Computational
Science, 22, 289–300.

25. Kim, H., & Cobb, J. A. (2015). Optimization algorithms for

transmission range and actor movement in wireless sensor and

actor networks. Computer Networks, 92, 116–133.
26. Kim, S., Ko, J.G., Yoon, J., & Lee, H. (2007). Multiple-objective

metric for placing multiple base stations in wireless sensor net-

works. In 2007 2nd International Symposium on Wireless Per-
vasive Computing (pp. 627–631).

27. Korte, B., & Vygen, J. (2012). Combinatorial optimization:
theory and algorithms (5th ed.). Berlin: Springer.

28. Lin, G. H., & Xue, G. (1999). Steiner tree problem with minimum

number of Steiner points and bounded edge-length. Information
Processing Letters, 69(2), 53–57.

29. Liu, B., Zhu, Q., & Zhu, H. (2020). Trajectory optimization and

resource allocation for UAV-assisted relaying communications.

Wireless Networks, 26(1), 739–749.
30. Liu, H., Nayak, A., & Stojmenović, I. (2009). Fault-tolerant
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