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Hypothesis Testing Under Subjective Priors and
Costs as a Signaling Game
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Abstract—Many communication, sensor network, and net-
worked control problems involve agents (decision makers) which
have either misaligned objective functions or subjective proba-
bilistic models. In the context of such setups, we consider binary
signaling problems in which the decision makers (the transmitter
and the receiver) have subjective priors and/or misaligned objective
functions. Depending on the commitment nature of the transmitter
to his policies, we formulate the binary signaling problem as a
Bayesian game under either Nash or Stackelberg equilibrium con-
cepts and establish equilibrium solutions and their properties. We
show that there can be informative or non-informative equilibria
in the binary signaling game under the Stackelberg and Nash
assumptions, and derive the conditions under which an informative
equilibrium exists for the Stackelberg and Nash setups. For the cor-
responding team setup, however, an equilibrium typically always
exists and is always informative. Furthermore, we investigate the
effects of small perturbations in priors and costs on equilibrium
values around the team setup (with identical costs and priors), and
show that the Stackelberg equilibrium behavior is not robust to
small perturbations whereas the Nash equilibrium is.

Index Terms—Signal detection, hypothesis testing, signaling
games, Nash equilibrium, Stackelberg equilibrium, subjective
priors.

I. INTRODUCTION

IN MANY decentralized and networked control problems,
decision makers have either misaligned criteria or have sub-

jective priors, which necessitates solution concepts from game
theory. For example, detecting attacks, anomalies, and malicious
behavior with regard to security in networked control systems
can be analyzed under a game theoretic perspective, see e.g.,
[2]–[13].

In this paper, we consider signaling games that refer to a
class of two-player games of incomplete information in which
an informed decision maker (transmitter or encoder) transmits
information to another decision maker (receiver or decoder) in
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the hypothesis testing context. In the following, we first provide
the preliminaries and introduce the problems considered in the
paper, and present the related literature briefly.

A. Notation

We denote random variables with capital letters, e.g., Y ,
whereas possible realizations are shown by lower-case letters,
e.g., y. The absolute value of scalar y is denoted by |y|. The
vectors are denoted by bold-faced letters, e.g., y. For vector y,
yT denotes the transpose and ‖y‖ denotes the Euclidean (L2)
norm. 1{D} represents the indicator function of an event D,
⊕ stands for the exclusive-or operator, Q denotes the standard
Q-function; i.e., Q(x) = 1√

2π

∫∞
x exp{− t2

2 }dt, and the sign of
x is defined as

sgn(x) =

⎧
⎪⎨

⎪⎩

−1 if x < 0

0 if x = 0

1 if x > 0

.

B. Preliminaries

Consider a binary hypothesis-testing problem:

H0 : Y = S0 +N,

H1 : Y = S1 +N, (1)

where Y is the observation (measurement) that belongs to the
observation set Γ = R, S0 and S1 denote the deterministic
signals under hypothesis H0 and hypothesis H1, respectively,
and N represents Gaussian noise; i.e., N ∼ N (0, σ2). In the
Bayesian setup, it is assumed that the prior probabilities of
H0 and H1 are available, which are denoted by π0 and π1,
respectively, with π0 + π1 = 1.

In the conventional Bayesian framework, the aim of the re-
ceiver is to design the optimal decision rule (detector) based on
Y in order to minimize the Bayes risk, which is defined as [14]

r(δ) = π0R0(δ) + π1R1(δ), (2)

where δ is the decision rule, and Ri(·) is the conditional risk
of the decision rule when hypothesis Hi is true for i ∈ {0, 1}.
In general, a decision rule corresponds to a partition of the
observation set Γ into two subsets Γ0 and Γ1, and the decision
becomesHi if the observation y belongs toΓi, where i ∈ {0, 1}.

The conditional risks in (2) can be calculated as

Ri(δ) = C0iP0i + C1iP1i, (3)
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for i ∈ {0, 1}, whereCji ≥ 0 is the cost of deciding forHj when
Hi is true, and Pji = Pr(y ∈ Γj |Hi) represents the conditional
probability of deciding for Hj given that Hi is true, where i, j ∈
{0, 1} [14].

It is well-known that the optimal decision rule δ which
minimizes the Bayes risk is the following test, known as the
likelihood ratio test (LRT):

δ :

{

π1(C01 − C11)p1(y)
H1

�
H0

π0(C10 − C00)p0(y), (4)

where pi(y) represents the probability density function (PDF)
of Y under Hi for i ∈ {0, 1} [14].

If the transmitter and the receiver have the same objective
function specified by (2) and (3), then the signals can be designed
to minimize the Bayes risk corresponding to the decision rule
in (4). This leads to a conventional formulation which has been
studied intensely in the literature [14], [15].

On the other hand, it may be the case that the transmitter
and the receiver can have non-aligned Bayes risks. In particular,
the transmitter and the receiver may have different objective
functions or priors: Let Ct

ji and Cr
ji represent the costs from

the perspective of the transmitter and the receiver, respectively,
where i, j ∈ {0, 1}. Also let πt

i and πr
i for i ∈ {0, 1} denote the

priors from the perspective of the transmitter and the receiver,
respectively, with πj

0 + πj
1 = 1, where j ∈ {t, r}. Here, from

transmitter’s and receiver’s perspectives, the priors are assumed
to be mutually absolutely continuous with respect to each other;
i.e., πt

i = 0 ⇒ πr
i = 0 and πr

i = 0 ⇒ πt
i = 0 for i ∈ {0, 1}.

This condition assures that the impossibility of any hypothesis
holds for both the transmitter and the receiver simultaneously.
The aim of the transmitter is to perform the optimal design of
signals S = {S0, S1} to minimize his Bayes risk; whereas, the
aim of the receiver is to determine the optimal decision rule δ
over all possible decision rules Δ to minimize his Bayes risk.

The Bayes risks are defined as follows for the transmitter and
the receiver:

rj(S, δ) = πj
0(C

j
00P00 + Cj

10P10) + πj
1(C

j
01P01 + Cj

11P11),
(5)

for j ∈ {t, r}. Here, the transmitter performs the optimal signal
design problem under the power constraint below:

S � {S = {S0, S1} : |S0|2 ≤ P0 , |S1|2 ≤ P1},
where P0 and P1 denote the power limits [14, p. 62].

Although the transmitter and the receiver act sequentially in
the game as described above, how and when the decisions are
made and the nature of the commitments to the announced poli-
cies significantly affect the analysis of the equilibrium structure.
Here, two different types of equilibria are investigated:

1) Nash equilibrium: the transmitter and the receiver make
simultaneous decisions.

2) Stackelberg equilibrium : the transmitter and the receiver
make sequential decisions where the transmitter is the
leader and the receiver is the follower.

In this paper, the terms Nash game and the simultaneous-
move game will be used interchangeably, and similarly, the

Stackelberg game and the leader-follower game will be used
interchangeably.

In the simultaneous-move game, the transmitter and the re-
ceiver announce their policies at the same time, and a pair of
policies (S∗, δ∗) is said to be a Nash equilibrium [16] if

rt(S∗, δ∗) ≤ rt(S, δ∗) ∀S ∈ S,

rr(S∗, δ∗) ≤ rr(S∗, δ) ∀ δ ∈ Δ. (6)

As noted from the definition in (6), under the Nash equilibrium,
each individual player chooses an optimal strategy given the
strategies chosen by the other player.

However, in the leader-follower game, the leader (transmitter)
commits to and announces his optimal policy before the follower
(receiver) does, the follower observes what the leader is commit-
ted to before choosing and announcing his optimal policy, and a
pair of policies (S∗, δ∗S∗) is said to be a Stackelberg equilibrium
[16] if

rt(S∗, δ∗S∗) ≤ rt(S, δ∗S) ∀S ∈ S,

where δ∗S satisfies (7)

rr(S, δ∗S) ≤ rr(S, δS) ∀ δS ∈ Δ.

As observed from the definition in (7), the receiver takes his
optimal action δ∗S after observing the policy of the transmitter
S . Further, in the Stackelberg game (also often called Bayesian
persuasion games in the economics literature, see [17] for a de-
tailed review), the leader cannot backtrack on his commitment,
but he has a leadership role since he can manipulate the follower
by anticipating the actions of the follower.

If an equilibrium is achieved whenS∗ is non-informative (e.g.,
S∗
0 = S∗

1) and δ∗ uses only the priors (since the received message
is useless), then we call such an equilibrium a non-informative
(babbling) equilibrium [18, Theorem 1].

C. Two Motivating Setups

We present two different scenarios that fit into the binary sig-
naling context discussed here and revisit these setups throughout
the paper.1

1) Subjective Priors: In almost all practical applications,
there is some mismatch between the true and an assumed
probabilistic system/data model, which results in performance
degradation. This performance loss due to the presence of mis-
match has been studied extensively in various setups (see e.g.,
[19]–[21] and references therein). In this paper, we have a further
salient aspect due to decentralization, where the transmitter and
the receiver have a mismatch. We note that in decentralized deci-
sion making, there have been a number of studies on the presence
of a mismatch in the priors of decision makers [22]–[24]. In such
setups, even when the objective functions to be optimized are

1Besides the setups discussed here (and the throughout the paper), the
deception game can also be modeled as follows. In the deception game, the
transmitter aims to fool the receiver by sending deceiving messages, and this
goal can be realized by adjusting the transmitter costs as Ct

00 > Ct
10 and

Ct
11 > Ct

01; i.e, the transmitter is penalized if the receiver correctly decodes the
original hypothesis. Similar to the standard communication setups, the goal of
the receiver is to truly identify the hypothesis; i.e.,Cr

00 < Cr
10 andCr

11 < Cr
01.
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identical, the presence of subjective priors alters the formulation
from a team problem to a game problem (see [25, Section 12.2.3]
for a comprehensive literature review on subjective priors also
from a statistical decision making perspective).

With this motivation, we will consider a setup where the trans-
mitter and the receiver have different priors on the hypotheses
H0 and H1, and the costs of the transmitter and the receiver are
identical. In particular, from transmitter’s perspective, the priors
are πt

0 and πt
1, whereas the priors are πr

0 and πr
1 from receiver’s

perspective, and Cji = Ct
ji = Cr

ji for i, j ∈ {0, 1}. We will
investigate equilibrium solutions for this setup throughout the
paper.

2) Biased Transmitter Cost:2 A further application will be
for a setup where the transmitter and the receiver have mis-
aligned objective functions. Consider a binary signaling game
in which the transmitter encodes a random binary signalx = i as
Hi by choosing the corresponding signal level Si for i ∈ {0, 1},
and the receiver decodes the received signal y as u = δ(y).
Let the priors from the perspectives of the transmitter and the
receiver be the same; i.e., πi = πt

i = πr
i for i ∈ {0, 1}, and

the Bayes risks of the transmitter and the receiver be defined
as rt(S, δ) = E[1{1=(x⊕u⊕b)}] and rr(S, δ) = E[1{1=(x⊕u)}],
respectively, where b is a random variable with a Bernoulli
distribution; i.e., α � Pr(b = 0) = 1− Pr(b = 1), and α can
be translated as the probability that the Bayes risks (objective
functions) of the transmitter and the receiver are aligned. Then,
the following relations can be observed:

rt(S, δ) = E[1{1=(x⊕u⊕b)}]

= α(π0P10 + π1P01) + (1− α)(π0P00 + π1P11)

⇒ Ct
01 = Ct

10 = α and Ct
00 = Ct

11 = 1− α,

rr(S, δ) = E[1{1=(x⊕u)}] = π0P10 + π1P01

⇒ Cr
01 = Cr

10 = 1 and Cr
00 = Cr

11 = 0.

Note that, in the formulation above, the misalignment between
the Bayes risks of the transmitter and the receiver is due to the
presence of the bias term b (i.e., the discrepancy between the
Bayes risks of the transmitter and the receiver) in the Bayes risk
of the transmitter. This can be viewed as an analogous setup to
what was studied in a seminal work due to Crawford and Sobel
[18], who obtained the striking result that such a bias term in the
objective function of the transmitter may have a drastic effect
on the equilibrium characteristics; in particular, under regularity
conditions, all equilibrium policies under a Nash formulation
involve information hiding; for some extensions under quadratic
criteria please see [26] and [27].

D. Related Literature

In game theory, Nash and Stackelberg equilibria are dras-
tically different concepts. Both equilibrium concepts find ap-
plications depending on the assumptions on the leader, that is,
the transmitter, in view of the commitment conditions. Stack-
elberg games are commonly used to model attacker-defender

2Here, the cost refers to the objective function (Bayes risk), not the cost of a
particular decision, Cji. Note that, throughout the manuscript, the cost refers to
Cji except when it is used in the phrase Biased Transmitter Cost.

scenarios in security domains [28]. In many frameworks, the
defender (leader) acts first by committing to a strategy, and the
attacker (follower) chooses how and where to attack after ob-
serving defender’s choice. However, in some situations, security
measures may not be observable for the attacker; therefore, a
simultaneous-move game is preferred to model such situations;
i.e., the Nash equilibrium analysis is needed [29]. These two
concepts may have equilibria that are quite distinct: As dis-
cussed in [17], [26], in the Nash equilibrium case, building on
[18], equilibrium properties possess different characteristics as
compared to team problems; whereas for the Stackelberg case,
the leader agent is restricted to be committed to his announced
policy, which leads to similarities with team problem setups
[27], [30], [31]. However, in the context of binary signaling, we
will see that the distinction is not as sharp as it is in the case of
quadratic signaling games [17], [26].

Standard binary hypothesis testing has been extensively stud-
ied over several decades under different setups [14], [15], which
can also be viewed as a decentralized control/team problem
involving a transmitter and a receiver who wish to minimize a
common objective function. However, there exist many scenar-
ios in which the analysis falls within the scope of game theory;
either because the goals of the decision makers are misaligned,
or because the probabilistic model of the system is not common
knowledge among the decision makers.

A game theoretic perspective can be utilized for hypothesis
testing problem for a variety of setups. For example, detecting at-
tacks, anomalies, and malicious behavior in network security can
be analyzed under the game theoretic perspective [2]–[6]. In this
direction, the hypothesis testing and the game theory approaches
can be utilized together to investigate attacker-defender type
applications [7]–[13], multimedia source identification prob-
lems [32], inspection games [33]–[35], and deception games
[36]. In [8], a Nash equilibrium of a zero-sum game between
Byzantine (compromised) nodes and the fusion center (FC) is
investigated. The strategy of the FC is to set the local sensor
thresholds that are utilized in the likelihood-ratio tests, whereas
the strategy of Byzantines is to choose their flipping probability
of the bit to be transmitted. In [9], a zero-sum game of a binary
hypothesis testing problem is considered over finite alphabets.
The attacker has control over the channel, and the randomized
decision strategy is assumed for the defender. The dominant
strategies in Neyman-Pearson and Bayesian setups are inves-
tigated under the Nash assumption. The authors of [34], [35]
investigate both Nash and Stackelberg equilibria of a zero-sum
inspection game where an inspector (environmental agency) ver-
ifies, with the help of randomly sampled measurements, whether
the amount of pollutant released by the inspectee (management
of an industrial plant) is higher than the permitted ones. The
inspector chooses a false alarm probability α, and determines
his optimal strategy over the set of all statistical tests with false
alarm probability α to minimize the non-detection probability.
On the other side, the inspectee chooses the signal levels (vi-
olation strategies) to maximize the non-detection probability.
[10] considers a complete-information zero-sum game between
a centralized detection network and a jammer equipped with
multiple antennas and investigates pure strategy Nash equilibria
for this game. The fusion center (FC) chooses the optimal
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threshold of a single-threshold rule in order to minimize his error
probability based on the observations coming from multiple
sensors, whereas the jammer disrupts the channel in order to
maximize FC’s error probability under instantaneous power
constraints. However, unlike the setups described above, in this
work, we assume an additive Gaussian noise channel, and in the
game setup, a Bayesian hypothesis testing setup is considered in
which the transmitter chooses signal levels to be transmitted and
the receiver determines the optimal decision rule. Both players
aim to minimize their individual Bayes risks, which leads to
a nonzero-sum game. [36] investigates the perfect Bayesian
Nash equilibrium (PBNE) solution of a cyber-deception game
in which the strategically deceptive interaction between the
deceivee (privately-informed player, sender) and the deceiver
(uninformed player, receiver) are modeled by a signaling game
framework. It is shown that the hypothesis testing game ad-
mits no separating (pure, fully informative) equilibria, there
exist only pooling and partially-separating-pooling equilibria;
i.e., non-informative equilibria. Note that, in [36], the received
message is designed by the deceiver (transmitter), whereas we
assume a Gaussian channel between the players. Further, the
belief of the receiver (deceivee) about the priors is affected by
the design choices of the transmitter (deceiver), unlike this setup,
in which constant beliefs are assumed.

Within the scope of the discussions above, the binary signaling
problem investigated here can be motivated under different
application contexts: subjective priors and the presence of a bias
in the objective function of the transmitter compared to that of
the receiver. In the former setup, players have a common goal but
subjective prior information, which necessarily alters the setup
from a team problem to a game problem. The latter one is the
adaptation of the biased objective function of the transmitter in
[18] to the binary signaling problem considered here. We discuss
these further in the following.

E. Contributions

The main contributions of this paper can be summarized
as follows: (i) A game theoretic formulation of the binary
signaling problem is established under subjective priors and/or
subjective costs. (ii) The corresponding Stackelberg and Nash
equilibrium policies are obtained, and their properties (such as
uniqueness and informativeness) are investigated. It is proved
that an equilibrium is almost always informative for a team
setup, whereas in the case of subjective priors and/or costs, it
may cease to be informative. (iii) Furthermore, robustness of
equilibrium solutions to small perturbations in the priors or costs
are established. It is shown that, the game equilibrium behavior
around the team setup is robust under the Nash assumption,
whereas it is not robust under the Stackelberg assumption. (iv)
For each of the results, applications to two motivating setups
(involving subjective priors and the presence of a bias in the
objective function of the transmitter) are presented.

In the conference version of this study [1], some of the results
(in particular, the Nash and Stackelberg equilibrium solutions
and their robustness properties) appear without proofs. Here
we provide the full proofs of the main theorems and also

include the continuity analysis of the equilibrium. Furthermore,
the setup and analysis presented in [1] are extended to the
multi-dimensional case and partially to the case with an average
power constraint.

The remainder of the paper is organized as follows. The team
setup, the Stackelberg setup, and the Nash setup of the binary
signaling game are investigated in Sections II, Section III, and
Section IV, respectively. In Section V, the multi-dimensional
setup is studied, and in Section VI, the setup under an av-
erage power constraint is investigated. The paper ends with
Section VII, where some conclusions are drawn and directions
for future research highlighted.

II. TEAM THEORETIC ANALYSIS: CLASSICAL SETUP WITH

IDENTICAL COSTS AND PRIORS

Consider the team setup where the costs and the priors are
assumed to be the same and available for both the transmitter
and the receiver; i.e., Cji = Ct

ji = Cr
ji and πi = πt

i = πr
i for

i, j ∈ {0, 1}. Thus the common Bayes risk becomes
rt(S, δ) = rr(S, δ) = π0(C00P00 + C10P10) + π1(C01P01 +
C11P11). The arguments for the proof of the following result
follow from the standard analysis in the detection and estimation
literature [14], [15]. However, for completeness, and for the
relevance of the analysis in the following sections, a proof is
included.

Theorem 2.1: Let τ � π0(C10−C00)
π1(C01−C11)

. If τ ≤ 0 or τ = ∞, the
team solution of the binary signaling setup is non-informative.
Otherwise; i.e., if 0 < τ < ∞, the team solution is always
informative.

Proof: The players adjust S0, S1, and δ so that rt(S, δ) =
rr(S, δ) is minimized. The Bayes risk of the transmitter and the
receiver in (5) can be written as follows:3

rj(S, δ) = πj
0C

j
00 + πj

1C
j
11 + πj

0(C
j
10 − Cj

00)P10

+ πj
1(C

j
01 − Cj

11)P01, (8)

for j ∈ {t, r}.
Here, first the receiver chooses the optimal decision rule

δ∗S0,S1
for any given signal levels S0 and S1, and then the trans-

mitter chooses the optimal signal levels S∗
0 and S∗

1 depending
on the optimal receiver policy δ∗S0,S1

.
Assuming non-zero priors πt

0, π
r
0, π

t
1, and πr

1 , the different
cases for the optimal receiver decision rule can be investigated
by utilizing (4) as follows:

1) If Cr
01 > Cr

11,
a) if Cr

10 > Cr
00, the LRT in (4) must be applied to

determine the optimal decision.
b) if Cr

10 ≤ Cr
00, the left-hand side (LHS) of the in-

equality in (4) is always greater than the right-hand
side (RHS); thus, the receiver always chooses H1.

2) If Cr
01 = Cr

11,

3Note that we are still keeping the parameters of the transmitter and the
receiver as distinct in order to be able to utilize the expressions for the game
formulations.
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TABLE I
OPTIMAL DECISION RULE ANALYSIS FOR THE RECEIVER

a) if Cr
10 > Cr

00, the LHS of the inequality in (4) is
always less than the RHS; thus, the receiver always
chooses H0.

b) if Cr
10 = Cr

00, the LHS and RHS of the inequality
in (4) are equal; hence, the receiver is indifferent of
deciding H0 or H1.

c) if Cr
10 < Cr

00, the LHS of the inequality in (4) is
always greater than the RHS; thus, the receiver
always chooses H1.

3) If Cr
01 < Cr

11,
a) if Cr

10 ≥ Cr
00, the LHS of the inequality in (4) is

always less than the RHS; thus, the receiver always
chooses H0.

b) if Cr
10 < Cr

00, the LRT in (4) must be applied to
determine the optimal decision.

The analysis above is summarized in Table I:
As it can be observed from Table I, the LRT is needed only

when τ � πr
0(C

r
10−Cr

00)
πr
1(C

r
01−Cr

11)
takes a finite positive value; i.e., 0 < τ <

∞. Otherwise; i.e., τ ≤ 0 or τ = ∞, since the receiver does not
consider any message sent by the transmitter, the equilibrium is
non-informative.

For 0 < τ < ∞, let ζ � sgn(Cr
01 − Cr

11) (notice that ζ =
sgn(Cr

01 − Cr
11) = sgn(Cr

10 − Cr
00) and ζ ∈ {−1, 1}). Then,

the optimal decision rule for the receiver in (4) becomes

δ :

{

ζ
p1(y)

p0(y)

H1

�
H0

ζ
πr
0(C

r
10 − Cr

00)

πr
1(C

r
01 − Cr

11)
= ζτ. (9)

Let the transmitter choose optimal signals S = {S0, S1}. Then
the measurements in (1) become Hi : Y ∼ N (Si, σ

2) for i ∈
{0, 1}, as N ∼ N (0, σ2), and the optimal decision rule for the
receiver is obtained by utilizing (9) as

δ∗S0,S1
:

{

ζy(S1 − S0)
H1

�
H0

ζ

(

σ2 ln(τ) +
S2
1 − S2

0

2

)

. (10)

Since ζY (S1 − S0) is distributed as N (ζ(S1 − S0)Si, (S1 −
S0)

2σ2) under Hi for i ∈ {0, 1}, the conditional probabilities
can be written based on (10) as follows:

P10 = Pr(y ∈ Γ1|H0) = Pr(δ(y) = 1|H0)

= 1− Pr(δ(y) = 0|H0) = 1− P00

= Q
(

ζ

(
σ ln(τ)

|S1 − S0| +
|S1 − S0|

2σ

))

, (11)

and similarly, P01 can be derived as P01 = Q(ζ(− σ ln(τ)
|S1−S0| +

|S1−S0|
2σ )).

By defining d � |S1−S0|
σ , P10 = Q(ζ( ln(τ)d + d

2 )) and P01 =

Q(ζ(− ln(τ)
d + d

2 )) can be obtained. Then, the optimum behavior

of the transmitter can be found by analyzing the derivative of
the Bayes risk of the transmitter in (8) with respect to d:

d rt(S, δ)
d d

= − 1√
2π

exp

{

− (ln τ)2

2d2

}

exp

{

−d2

8

}

×
(

πt
0ζ(C

t
10 − Ct

00)τ
− 1

2

(

− ln τ

d2
+

1

2

)

+ πt
1ζ(C

t
01 − Ct

11)τ
1
2

(
ln τ

d2
+

1

2

))

. (12)

In (12), if we utilizeCji = Ct
ji = Cr

ji, πi = πt
i = πr

i and τ =
π0(C10−C00)
π1(C01−C11)

, we obtain the following:

d rt(S, δ)
d d

= − 1√
2π

exp

{

− (ln τ)2

2d2

}

exp

{

−d2

8

}

×
√

π0π1(C10 − C00)(C01 − C11) < 0.

Thus, in order to minimize the Bayes risk, the transmitter always
prefers the maximum d, i.e., d∗ =

√
P0+

√
P1

σ , and the equilibrium
is informative. �

Remark 2.1:
i) Note that there are two informative equilibrium points

which satisfy d∗ =
√
P0+

√
P1

σ : (S∗
0, S

∗
1) = (−√

P0,
√
P1)

and (S∗
0, S

∗
1) = (

√
P0,−

√
P1), and the decision rule of

the receiver is chosen based on the rule in (10) accordingly.
Actually, these equilibrium points are essentially unique;
i.e., they result in the same Bayes risks for the transmitter
and the receiver.

ii) In the non-informative equilibrium, the receiver chooses
either H0 or H1 as depicted in Table I. Since the message
sent by the transmitter has no effect on the equilibrium,
there are infinitely many ways of signal selection, which
implies infinitely many equilibrium points. However, all
these points are essentially unique; i.e., they result in the
same Bayes risks for the transmitter and the receiver.
Actually, if the receiver always chooses Hi, the Bayes
risks of the players are rj(S, δ) = πj

0C
j
i0 + πj

1C
j
i1 for

i ∈ {0, 1} and j ∈ {t, r}.

III. STACKELBERG GAME ANALYSIS

Under the Stackelberg assumption, first the transmitter (the
leader agent) announces and commits to a particular policy,
and then the receiver (the follower agent) acts accordingly.
In this direction, first the transmitter chooses optimal signals
S = {S0, S1} to minimize his Bayes risk rt(S, δ), then the
receiver chooses an optimal decision rule δ accordingly to
minimize his Bayes risk rr(S, δ). Due to the sequential structure
of the Stackelberg game, besides his own priors and costs, the
transmitter also knows the priors and the costs of the receiver
so that he can adjust his optimal policy accordingly. On the
other hand, besides his own priors and costs, the receiver knows
only the policy and the action (signals S = {S0, S1}) of the
transmitter as he announces during the game-play; i.e., the costs
and priors of the transmitter are not available to the receiver.
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TABLE II
STACKELBERG EQUILIBRIUM ANALYSIS FOR 0 < τ < ∞

A. Equilibrium Solutions

Under the Stackelberg assumption, the equilibrium structure
of the binary signaling game can be characterized as follows:

Theorem 3.1: If τ � πr
0(C

r
10−Cr

00)
πr
1(C

r
01−Cr

11)
≤ 0 or τ = ∞, the

Stackelberg equilibrium of the binary signaling game is
non-informative. Otherwise; i.e., if 0 < τ < ∞, let d � |S1−S0|

σ ,

dmax �
√
P0+

√
P1

σ , ζ � sgn(Cr
01 − Cr

11), k0 � πt
0ζ(C

t
10 −

Ct
00)τ

− 1
2 , and k1 � πt

1ζ(C
t
01 − Ct

11)τ
1
2 . Then, the Stackelberg

equilibrium structure can be characterized as in Table II, where
d∗ = 0 stands for a non-informative equilibrium, and a nonzero
d∗ corresponds to an informative equilibrium.

Before proving Theorem 3.1, we make the following remark:
Remark 3.1: As we observed in Theorem 2.1, for a team

setup, an equilibrium is almost always informative (practically,
0 < τ < ∞), whereas in the case of subjective priors and/or
costs, it may cease to be informative.

Proof: By applying the same case analysis as in the proof
of Theorem 2.1, it can be deduced that the equilibrium is non-
informative if τ ≤ 0 or τ = ∞ (see Table I). Thus, 0 < τ < ∞
can be assumed. Then, from (12), rt(S, δ) is a monotone de-
creasing (increasing) function ofd ifk0(− ln τ

d2 + 1
2 ) + k1(

ln τ
d2 +

1
2 ), or equivalently d2(k0 + k1)− 2 ln τ (k0 − k1) is positive
(negative) ∀d, where k0 and k1 are as defined in the theorem
statement. Therefore, one of the following cases is applicable:

1) if ln τ (k0 − k1) < 0 and k0 + k1 ≥ 0, then d2(k0 +
k1) > 2 ln τ(k0 − k1) is satisfied ∀d, which means that
rt(S, δ) is a monotone decreasing function of d. There-
fore, the transmitter tries to maximize d; i.e., chooses the
maximum of |S1 − S0| under the constraints |S0|2 ≤ P0

and |S1|2 ≤ P1, hence d∗ = max |S1−S0|
σ =

√
P0+

√
P1

σ =
dmax, which entails an informative equilibrium.

2) if ln τ(k0−k1)<0, k0+k1<0, and d2max< | 2 ln τ(k0−k1)
(k0+k1)

|,
then rt(S, δ) is a monotone decreasing function of d.
Therefore, the transmitter maximizes d as in the previous
case.

3) if ln τ(k0−k1)<0, k0+k1<0, and d2max≥| 2 ln τ(k0−k1)
(k0+k1)

|,
since d2(k0 + k1)− 2 ln τ (k0 − k1) is initially positive
then negative, rt(S, δ) is first decreasing and then increas-
ing with respect to d. Therefore, the transmitter chooses
the optimal d∗ such that (d∗)2 = | 2 ln τ(k0−k1)

(k0+k1)
| which re-

sults in a minimal Bayes risk rt(S, δ) for the transmitter.
This is depicted in Fig. 1.

4) if ln τ (k0 − k1) ≥ 0 and k0 + k1 < 0, then d2(k0 +
k1) < 2 ln τ(k0 − k1) is satisfied ∀d, which means that
rt(S, δ) is a monotone increasing function of d. Therefore,
the transmitter tries to minimize d; i.e., chooses S0 = S1

Fig. 1. The Bayes risk of the transmitter versus d when Ct
00 = 0.6, Ct

10 =

0.4, Ct
01 = 0.4, Ct

11 = 0.6, Cr
00 = 0, Cr

10 = 0.9, Cr
01 = 0.4, Cr

11=0, πt
0 =

0.25, πr
0 = 0.25, P0 = 1, P1 = 1, and σ = 0.1. The optimal d∗ =√

| 2 lnτ(k0−k1)
(k0+k1)

| = 0.4704 < dmax = 20 and its corresponding Bayes

risk rt = 0.5379 are indicated by the star.

so thatd∗ = 0. In this case, the transmitter does not provide
any information to the receiver and the decision rule of

the receiver in (9) becomes δ : ζ
H1

�
H0

ζτ ; i.e., the receiver

uses only the prior information, thus the equilibrium is
non-informative.

5) if ln τ(k0−k1)≥0, k0+k1≥0, and d2max< | 2 ln τ(k0−k1)
(k0+k1)

|,
then rt(S, δ) is a monotone increasing function of d.
Therefore, the transmitter choosesS0 = S1 so thatd∗ = 0.
Similar to the previous case, the equilibrium is non-
informative.

6) if ln τ(k0−k1)≥0, k0+k1≥0, and d2max≥| 2 ln τ(k0−k1)
(k0+k1)

|,
rt(S, δ) is first an increasing then a decreasing function of
d, which makes the transmitter choose either the minimum
d or the maximum d; i.e., he chooses the one that results in
a lower Bayes risk rt(S, δ) for the transmitter. If the min-
imum Bayes risk is achieved when d∗ = 0, then the equi-
librium is non-informative; otherwise (i.e., when the mini-
mum Bayes risk is achieved when d∗ = dmax), the equilib-
rium is an informative one. There are three possible cases:

a) ζ(1− τ) > 0

i) If d∗ = 0, since δ : ζ
H1

�
H0

ζτ , the receiver

always chooses H1, thus P10 = P11 = 1 and
P00 = P01 = 0. Then, from (8), rt(S, δ) =
πt
0C

t
00 + πt

1C
t
11 + πt

0(C
t
10 − Ct

00).
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ii) If d∗ = dmax, by utilizing (8) and (11),
rt(S, δ) = πt

0C
t
00 + πt

1C
t
11 + πt

0(C
t
10−Ct

00)

Q (ζ( ln(τ)dmax
+ dmax

2 )) + πt
1 (C

t
01 − Ct

11)Q(ζ

(− ln(τ)
dmax

+ dmax

2 )).
Then the decision of the transmitter is determined
by the following:

πt
0(C

t
10 − Ct

00)
d∗=dmax

�
d∗=0

πt
0(C

t
10 − Ct

00)Q
(

ζ

(
ln(τ)

dmax
+

dmax

2

))

+ πt
1(C

t
01 − Ct

11)Q
(

ζ

(

− ln(τ)

dmax
+

dmax

2

))

πt
0(C

t
10 − Ct

00)Q
(

ζ

(

− ln(τ)

dmax
− dmax

2

)) d∗=dmax

�
d∗=0

πt
1(C

t
01 − Ct

11)Q
(

ζ

(

− ln(τ)

dmax
+

dmax

2

))

ζk0τQ
(

ζ

(

− ln(τ)

dmax
− dmax

2

)) d∗=dmax

�
d∗=0

ζk1Q
(

ζ

(

− ln(τ)

dmax
+

dmax

2

))

. (13)

For (13), there are two possible cases:
i) ζ = 1 and 0 < τ < 1: Since ln τ(k0 − k1) ≥

0 ⇒ k0 − k1 ≤ 0 and k0 + k1 ≥ 0, k1 ≥ 0
always. Then, (13) becomes

k0τ

k1
Q
(

− ln(τ)

dmax
− dmax

2

)

−Q
(

− ln(τ)

dmax
+

dmax

2

) d∗=dmax

�
d∗=0

0.

ii) ζ = −1 and τ > 1: Since ln τ(k0 − k1) ≥
0 ⇒ k0 − k1 ≥ 0 and k0 + k1 ≥ 0, k0 ≥ 0
always. Then, (13) becomes

k1
k0τ

Q
(
ln(τ)

dmax
− dmax

2

)

−Q
(
ln(τ)

dmax
+

dmax

2

) d∗=dmax

�
d∗=0

0.

b) ζ(1− τ) = 0 ⇒ τ = 1: Since k0 + k1 ≥ 0 and
d2(k0 + k1)− 2 ln τ (k0 − k1) ≥ 0, rt(S, δ) is a
monotone decreasing function of d, which implies
d∗ = dmax and informative equilibrium.

c) ζ(1− τ) < 0:

i) If d∗ = 0, since δ : ζ
H1

�
H0

ζτ , the receiver

always chooses H0, thus P00 = P01 = 1 and
P10 = P11 = 0. Then, from (8), rt(S, δ) =
πt
0C

t
00 + πt

1C
t
11 + πt

1(C
t
01 − Ct

11).
ii) If d∗ = dmax, by utilizing (8) and (11),

rt(S, δ) = πt
0C

t
00 + πt

1C
t
11 + πt

0(C
t
10−Ct

00)

Q(ζ( ln(τ)dmax
+ dmax

2 )) + πt
1 (C

t
01 − Ct

11)Q (ζ

(− ln(τ)
dmax

+ dmax

2 )).
Then, similar to the analysis in case-a), the decision
of the transmitter is determined by the following:

ζk1Q
(

ζ

(
ln(τ)

dmax
− dmax

2

)) d∗=dmax

�
d∗=0

ζk0τQ
(

ζ

(
ln(τ)

dmax
+

dmax

2

))

. (14)

For (14), there are two possible cases:
i) ζ = −1 and 0 < τ < 1: Since ln τ(k0 − k1)

≥ 0 ⇒ k0 − k1 ≤ 0 andk0 + k1 ≥ 0,k1 ≥ 0
always. Then, (14) becomes

k0τ

k1
Q
(

− ln(τ)

dmax
− dmax

2

)

−Q
(

− ln(τ)

dmax
+

dmax

2

) d∗=dmax

�
d∗=0

0.

ii) ζ = 1 and τ > 1: Since ln τ(k0 − k1) ≥ 0 ⇒
k0 − k1 ≥ 0 and k0 + k1 ≥ 0, k0 ≥ 0
always. Then, (14) becomes

k1
k0τ

Q
(
ln(τ)

dmax
− dmax

2

)

−Q
(
ln(τ)

dmax
+

dmax

2

) d∗=dmax

�
d∗=0

0.

Thus, by combining all the cases, the comparison of the
transmitter Bayes risks for d∗ = 0 and d∗ = dmax reduces
to the following rule:

(
k1
k0τ

)sgn(ln(τ))

Q
( | ln(τ)|

dmax
− dmax

2

)

−Q
( | ln(τ)|

dmax
+

dmax

2

) d∗=dmax

�
d∗=0

0. (15)

�
The most interesting case is Case-3 in which ln τ (k0 − k1) <

0, k0 + k1 < 0, and d2max ≥ | 2 ln τ(k0−k1)
(k0+k1)

|, since in all other
cases, the transmitter chooses either the minimum or the max-
imum distance between the signal levels. Further, for classical
hypothesis-testing in the team setup, the optimal distance cor-
responds to the maximum separation [14]. However, in Case-3,

there is an optimal distance d∗ =
√

| 2 ln τ(k0−k1)
(k0+k1)

| < dmax that
makes the Bayes risk of the transmitter minimum as it can be
seen in Fig. 1.

Remark 3.2: Similar to the team setup analysis, for every
possible case in Table II, there are more than one equilibrium
points, and they are essentially unique since the Bayes risks of
the transmitter and the receiver depend on d. In particular,

i) for d∗ = dmax, the equilibrium is informative, (S∗
0, S

∗
1)

= (−√
P0,

√
P1) and (S∗

0, S
∗
1) = (

√
P0,−

√
P1) are the

only possible choices for the transmitter, which are
essentially unique, and the decision rule of the receiver
is chosen based on the rule in (10).
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TABLE III
STACKELBERG EQUILIBRIUM ANALYSIS OF SUBJECTIVE PRIORS CASE FOR 0 < τ < ∞

ii) for d∗ =
√

| 2 ln τ(k0−k1)
(k0+k1)

|, the equilibrium is informative,
there are infinitely many choices for the transmitter and
the receiver, and all of them are essentially unique; i.e.,
they result in the same Bayes risks for the transmitter and
the receiver.

iii) for d∗ = 0 or τ /∈ (0,∞), the equilibrium is non-
informative and there are infinitely many equilibrium
points which are essentially unique; see Remark 2.1-(ii).

B. Continuity and Robustness to Perturbations Around the
Team Setup

We now investigate the effects of small perturbations in priors
and costs on equilibrium values. In particular, we consider the
perturbations around the team setup; i.e., at the point of identical
priors and costs.

Define the perturbation around the team setup as ε = {επ0,
επ1, ε00, ε01, ε10, ε11} ∈ R6 such that πt

i = πr
i + επi and Ct

ji =
Cr

ji + εji for i, j ∈ {0, 1} (note that the transmitter parameters
are perturbed around the receiver parameters which are assumed
to be fixed). Then, for 0 < τ < ∞, at the point of identical priors
and costs, small perturbations in both priors and costs imply
k0 = (πr

0 + επ0)ζ(C
r
10 − Cr

00 + ε10 − ε00)τ
− 1

2 and k1 = (πr
1

+ επ1)ζ(C
r
01 − Cr

11 + ε01 − ε11)τ
1
2 . Since, for 0 < τ < ∞,

k0 = k1 =
√

πr
0π

r
1

√
(Cr

10−Cr
00)(C

r
01 − Cr

11)>0 at the point
of identical priors and costs, it is possible to obtain both positive
and negative (k0 − k1) by choosing the appropriate perturbation
ε around the team setup. Then, as it can be observed from
Table II, even the equilibrium may alter from an informative
one to a non-informative one; hence, under the Stackelberg
equilibrium, the policies are not continuous with respect to small
perturbations around the point of identical priors and costs, and
the equilibrium behavior is not robust to small perturbations in
both priors and costs.

C. Application to the Motivating Examples

1) Subjective Priors: Referring to Section I-C1, for 0 < τ <
∞, the related parameters can be found as follows (note that the
equilibrium is non-informative if τ ≤ 0 or τ = ∞):

τ =
πr
0(C10 − C00)

πr
1(C01 − C11)

,

k0 = πt
0

√
πr
1

πr
0

√
(C10 − C00)(C01 − C11) ,

k1 = πt
1

√
πr
0

πr
1

√
(C10 − C00)(C01 − C11).

Since k0 + k1 > 0, depending on the values of ln τ (k0 −
k1), d2max, and | 2 ln τ(k0−k1)

(k0+k1)
|, Case-1, Case-5 or Case-6 of

Theorem 3.1 may hold as depicted in Table III. Here, the decision
rule in Case-6 is the same as (15).

2) Biased Transmitter Cost: Based on the arguments in
Section I-C2, the related parameters can be found as follows:

τ =
π0

π1
, k0 =

√
π0π1(2α− 1) , k1 =

√
π0π1(2α− 1).

Then, ln τ (k0 − k1) = 0 and k0 + k1 = 2
√
π0π1(2α− 1);

hence, either Case-4 or Case-6 of Theorem 3.1 applies. Namely,
if α < 1/2 (Case-4 of Theorem 3.1 applies), the transmitter
chooses S0 = S1 to minimize d and the equilibrium is non-
informative; i.e., he does not send any meaningful information
to the transmitter and the receiver considers only the priors. If
α = 1/2, the transmitter has no control on his Bayes risk, hence
the equilibrium is non-informative. Otherwise; i.e., if α > 1/2
(Case-6 of Theorem 3.1 applies), the equilibrium is always
informative. In other words, if α > 1/2, the players act like a
team. As it can be seen, the informativeness of the equilibrium
depends on α = Pr(b = 0), the probability that the Bayes risks
of the transmitter and the receiver are aligned.

IV. NASH GAME ANALYSIS

Under the Nash assumption, the transmitter chooses optimal
signals S = {S0, S1} to minimize rt(S, δ), and the receiver
chooses optimal decision rule δ to minimize rr(S, δ) simultane-
ously. In this Nash setup, the transmitter and the receiver do not
need to know the priors and the costs of each other; they need to
know only their own priors and costs while calculating the best
response to a given action of other player. Further, there is no
commitment between the transmitter and the receiver. Due to this
difference, the equilibrium structure and robustness properties
of the Nash equilibrium show significant differences from the
ones in the Stackelberg equilibrium, as stated in the following.

In the analysis, we assume deterministic policies for the
transmitter and receiver, and we restrict the receiver to use only
the single-threshold rules. Although a single-threshold rule is
sub-optimal for the receiver in general, it is always optimal for
Gaussian densities, and always optimal for uni-modal densities
under the maximum likelihood decision rule [14], [37].

A. Equilibrium Solutions

Under the Nash assumption, the equilibrium structure of the
binary signaling game can be characterized as follows:
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TABLE IV
NASH EQUILIBRIUM ANALYSIS FOR 0 < τ < ∞

Theorem 4.1: Let τ � πr
0(C

r
10−Cr

00)
πr
1(C

r
01−Cr

11)
and ζ � sgn(Cr

01 −
Cr

11), ξ0 � Ct
10−Ct

00

Cr
10−Cr

00
, and ξ1 � Ct

01−Ct
11

Cr
01−Cr

11
. If τ ≤ 0 or τ = ∞,

then the Nash equilibrium of the binary signaling game is
non-informative. Otherwise; i.e., if 0 < τ < ∞, the Nash equi-
librium structure is as depicted in Table IV.

Proof: Let the transmitter choose any signals S = {S0, S1}.
Assuming nonzero priorsπt

0, π
r
0, π

t
1 andπr

1 , the optimal decision
for the receiver is given by (10). By applying the same extreme
case analysis as in the proof of Theorem 2.1, the equilibrium is
non-informative if τ ≤ 0 or τ = ∞ (see Table I); thus, 0 < τ <
∞ can be assumed.

Now assume that the receiver applies a single-threshold rule;

i.e., δ :

{

ay
H1

�
H0

η where a ∈ R and η ∈ R.

Remark 4.1: Note that for a = 0, the receiver chooses ei-
ther always H0 or always H1 without considering the value
of y, which implies a non-informative equilibrium. Therefore,
S∗
0 = S∗

1, a∗ = 0, and η∗ = ζ(τ − 1) (i.e., the decision rule of

the receiver is δ∗ : ζ
H1

�
H0

ζτ ) constitute a non-informative equi-

librium regardless of the values of the priors and costs of the
players.

Thus, due to the remark above, it can be assumed that a = 0
holds. Since aY ∼ N (aSi, a

2σ2) under Hi for i ∈ {0, 1}, the
conditional probabilities are P10 = Q(η−aS0

|a|σ ) and P01 = Q
(−η−aS1

|a|σ ). Then, the Bayes risk of the transmitter becomes

rt(S, δ) = πt
0C

t
00 + πt

1C
t
11 + πt

0(C
t
10 − Ct

00)Q
(
η − aS0

|a|σ
)

+ πt
1(C

t
01 − Ct

11)Q
(

−η − aS1

|a|σ
)

. (16)

Since the power constraints are |S0|2 ≤ P0 and |S1|2 ≤ P1,
the signals S0 and S1 can be regarded as independent, and the
optimum signals S = {S0, S1} can be found by analyzing the
derivative of the Bayes risk of the transmitter with respect to the
signals:

∂ rt(S, δ)
∂ Si

=
sgn(a)√
2πσ

πt
i(C

t
1i − Ct

0i) exp

{

−1

2

(
η − aSi

|a|σ
)2
}

.

Then, for i ∈ {0, 1}, the following cases hold:
1) Ct

1i = Ct
0i ⇒ Si has no effect on the Bayes risk of the

transmitter.
2) Ct

1i = Ct
0i ⇒ rt(S, δ) is a decreasing (increasing) func-

tion of Si if a(Ct
1i − Ct

0i) is negative (positive); thus

the transmitter chooses the optimal signal levels as S0 =
−sgn(a)sgn(Ct

10 − Ct
00)

√
P0 and S1 = sgn(a)sgn(Ct

01

− Ct
11)

√
P1.

By using the expressions above, the cases can be listed as
follows:

1) τ ≤ 0 or τ = ∞ ⇒ The equilibrium is non-informative.
2) Ct

10 = Ct
00 (and/or Ct

01 = Ct
11) ⇒ S0 (and/or S1) has no

effect on the Bayes risk of the transmitter; thus it can
arbitrarily be chosen by the transmitter. In this case, if
the transmitter chooses S0 = S1; i.e., he does not send
anything useful to the receiver, and the receiver applies

the decision rule δ : ζ
H1

�
H0

ζτ ; i.e., he only considers the

prior information (totally discards the information sent by
the transmitter). Therefore, there exists a non-informative
equilibrium.

3) Notice that, since 0 < τ < ∞ is assumed, ζ = sgn(Cr
01 −

Cr
11) = sgn(Cr

10 − Cr
00) is obtained. Now, assume that the

decision rule of the receiver is δ :

{

ay
H1

�
H0

η. Then, the

transmitter selects S0 = −sgn(a)sgn(Ct
10 − Ct

00)
√
P0

and S1 = sgn(a)sgn(Ct
01 − Ct

11)
√
P1 as optimal signals,

and the decision rule becomes (10). By combining the best
responses of the transmitter and the receiver,

a = ζ(S1 − S0) = ζsgn(a)

×
(

sgn(Ct
01 − Ct

11)
√
P1 + sgn(Ct

10 − Ct
00)
√

P0

)

⇒ sgn(a) = ζsgn(a)

× sgn
(
sgn(Ct

01 − Ct
11)
√
P1 + sgn(Ct

10 − Ct
00)
√
P0

)

⇒ sgn(Ct
01 − Ct

11)

sgn(Cr
01 − Cr

11)︸ ︷︷ ︸
=sgn(ξ1)

√
P1 +

sgn(Ct
10 − Ct

00)

sgn(Cr
10 − Cr

00)︸ ︷︷ ︸
=sgn(ξ0)

√
P0 > 0

(17)

is obtained. Here, unless (17) is satisfied, the best re-
sponses of the transmitter and the receiver cannot match
each other. Then, there are four possible cases:

1) ξ0 < 0 and ξ1 < 0⇒ (17) cannot be satisfied; thus,
the best responses of the transmitter and the receiver
do not match each other, which results in the ab-
sence of a Nash equilibrium for a = 0. However,
as discussed in Remark 4.1, S∗

0 = S∗
1, a∗ = 0, and
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η∗ = ζ(τ − 1) always constitute a non-informative
equilibrium.

2) ξ0 < 0 and ξ1 > 0 ⇒ (17) is satisfied only when√
P1 >

√
P0. If

√
P1 <

√
P0, (17) cannot be sat-

isfied and the best responses of the transmitter and
the receiver do not match each other, which results
in the absence of a Nash equilibrium for a = 0.
However, due to Remark 4.1, fora = 0, there always
exist non-informative equilibria. If

√
P1 =

√
P0

(which implies S0 = S1), then the receiver applies

δ :

{

ζ
H1

�
H0

ζτ as in Case-2, and the receiver chooses

either always H0 or always H1. Hence, there exists
a non-informative equilibrium; i.e., the transmit-
ter sends dummy signals, and the receiver makes
a decision without considering the transmitted
signals.

3) ξ0 > 0 and ξ1 < 0 ⇒ (17) is satisfied only when√
P0 >

√
P1. If

√
P0 <

√
P1, (17) cannot be sat-

isfied and the best responses of the transmitter and
the receiver do not match each other, which results
in the absence of a Nash equilibrium for a = 0.
However, due to Remark 4.1, fora = 0, there always
exist non-informative equilibria. If

√
P0 =

√
P1

(which implies S0 = S1), then the receiver applies

δ :

{

ζ
H1

�
H0

ζτ as in Case-2, and the equilibrium is

non-informative.
4) ξ0 > 0 and ξ1 > 0⇒ (17) is always satisfied; thus,

the consistency is established, and there exists an
informative equilibrium. �

As it can be deduced from Table IV, as the costs related
to both hypotheses are aligned4 for the transmitter and the
receiver, the Nash equilibrium is informative. If the power limit
corresponding to the hypothesis that has aligned costs for the
transmitter and receiver is greater than the power limit of the
other hypothesis, again, there exists an informative equilibrium.
For the other cases, there may exist non-informative equilibrium.

Remark 4.2:
i) We emphasize that, under the Nash formulation, while cal-

culating the best responses, the transmitter and the receiver
do not need to know the priors and the costs of each other.
In particular,

– for a given decision rule of the receiver δ :

{

ay
H1

�
H0

η, the

best response of the transmitter is SBR
0 = −sgn(a)sgn

(Ct
10 − Ct

00)
√
P0 and SBR

1 = sgn(a)sgn(Ct
01 − Ct

11)√
P1.

4ξi is the indicator that the transmitter and the receiver have similar pref-
erences about hypothesis Hi; i.e., if ξi > 0, then both the transmitter and the
receiver aim to transmit and decode the hypothesis Hi correctly (or incorrectly).
If ξi < 0, then the transmitter and the receiver have conflicting goals over
hypothesis Hi; i.e., one of them tries to achieve the correct transmission and
decoding, whereas the goal of the other player is the opposite.

– similarly, for a given signal design S0 and S1 of the
transmitter, the best response of the receiver is aBR =

ζ(S1 − S0) and ηBR = ζ(σ2 ln(τ) + (S1)
2−(S0)

2

2 ).
ii) As shown in Theorem 4.1, at the informative Nash equi-

librium, the transmitter selects S∗
0 = −sgn(a∗)sgn(Ct

10 −
Ct

00)
√
P0 and S∗

1 = sgn(a∗)sgn(Ct
01 − Ct

11)
√
P1, and the

decision rule of the receiver is δ∗ :

{

a∗y
H1

�
H0

η∗, wherea∗ =

ζ(S∗
1 − S∗

0) and η∗ = ζ(σ2 ln(τ) +
(S∗

1)
2−(S∗

0)
2

2 ). Similar
to the team and Stackelberg setup analyses, the informa-
tive equilibrium is essentially unique in the Nash case,
too; i.e., if (S∗

0, S
∗
1, a

∗, η∗) is an equilibrium point, then
(−S∗

0,−S∗
1,−a∗, η∗) is another equilibrium point, and they

both result in the same Bayes risks for the transmitter and
the receiver.

iii) For the non-informative equilibrium, as discussed in Re-
mark 4.1, the optimal strategies of the transmitter and the
receiver are determined by S∗

0 = S∗
1, a∗ = 0, and η∗ =

ζ(τ − 1); which results in essentially unique equilibria (see
Remark 2.1-(ii)).

Even though the transmitter and the receiver do not know the
private parameters of each other, they can achieve (converge) to
an equilibrium. Note that, due to Remark 4.2-(i), for any arbitrary
receiver strategy (a, η), the best response of the transmitter
(SBR

0 , SBR
1 ) is one of the four possibilities: (

√
P0,

√
P1),

(−√
P0,

√
P1), (

√
P0,−

√
P1), or (−√

P0,−
√
P1). Then, the

corresponding best responses of the receiver are characterized
by (aBR

1 , ηBR), (aBR
2 , ηBR), (−aBR

2 , ηBR), or (−aBR
1 , ηBR),

respectively, where aBR
1 � ζ(

√
P1 −

√
P0), aBR

2 � ζ(
√
P1 +√

P0), and ηBR = ζ(σ2 ln(τ) + P1−P0

2 ). By continuing these
iterations, the best responses of the transmitter and the receiver
can be combined and (17) is obtained. If their private parameters
(priors and costs) satisfy the condition of the unique informative
equilibrium in Table IV, their best responses match each other,
so the best-response dynamics converges to an equilibrium (e.g.,
(a, η) → (

√
P0,

√
P1) → (aBR

1 , ηBR)→(
√
P0,

√
P1) → · · · ).

Otherwise, the optimal strategies (best responses) of the trans-
mitter and the receiver oscillate between two best responses;
e.g., (a, η) → (

√
P0,

√
P1) → (aBR

1 , ηBR) → (−√
P0,−

√
P1)

→ (−aBR
1 , ηBR) → (

√
P0,

√
P1) → · · · . Then, they deduce

that there exist only non-informative equilibria, in which S∗
0 =

S∗
1, a∗ = 0, and η∗ = ζ(τ − 1) (see Remark 4.2-(iii)).
Note that, when a = 0, the misalignment between the costs

can even induce a scenario, in which there exists no equilibrium.
For a = 0, the main reason for the absence of a non-informative
(babbling) equilibrium under the Nash assumption is that in the
binary signaling game setup, the receiver is forced to make a
decision. Using only the prior information, the receiver always
chooses one of the hypothesis. By knowing this, the transmitter
can manipulate his signaling strategy for his own benefit. How-
ever, after this manipulation, the receiver no longer keeps his
decision rule the same; namely, the best response of the receiver
alters based on the signaling strategy of the transmitter, which
entails another change of the best response of the transmitter.
Due to such an infinite recursion, the optimal policies of the
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transmitter and the receiver keep changing, and thus, there does
not exist a pure Nash equilibrium unless a = 0; i.e., due to
Remark 4.1, there always exist non-informative equilibria with
S∗
0 = S∗

1, a∗ = 0, and η∗ = ζ(τ − 1).

B. Continuity and Robustness to Perturbations Around the
Team Setup

Similar to that in Section III-B for the Stackelberg setup, the
effects of small perturbations in priors and costs on equilibrium
values around the team setup are investigated for the Nash setup
as follows:

Define the perturbation around the team setup as ε = {επ0,
επ1, ε00, ε01, ε10, ε11} ∈ R6 such that πt

i = πr
i + επi and Ct

ji =
Cr

ji + εji for i, j ∈ {0, 1} (note that the transmitter parameters
are perturbed around the receiver parameters which are assumed
to be fixed). Then, for 0 < τ < ∞, at the point of identical priors
and costs, small perturbations in priors and costs imply ξ0 =
Cr

10−Cr
00+ε10−ε00

Cr
10−Cr

00
and ξ1 =

Cr
01−Cr

11+ε01−ε11
Cr

01−Cr
11

. As it can be seen,
the Nash equilibrium is not affected by small perturbations in
priors. Further, since ξ0 = ξ1 = 1 at the point of identical priors
and costs for 0 < τ < ∞, as long as the perturbation ε is chosen
such that | ε10−ε00

Cr
10−Cr

00
| < 1 and | ε01−ε11

Cr
01−Cr

11
| < 1, we always obtain

positive ξ0 and ξ1 in Table IV. Thus, under the Nash assumption,
the equilibrium behavior is robust to small perturbations in both
priors and costs.

For the continuity analysis, first consider a non-informative
equilibrium; i.e., the policies are S∗

0 = S∗
1, a∗ = 0, and η∗ = ζ

(τ − 1), which are independent of the values of the priors and
costs of the players. Thus, consider when a = 0; i.e., an informa-
tive equilibrium: if the priors and costs are perturbed around the
team setup,S0 = −sgn(a)sgn(Cr

10 − Cr
00 + ε10−ε00)

√
P0 and

S1 = sgn(a)sgn(Cr
01 − Cr

11 + ε01 − ε11)
√
P1 are obtained. As

long as the perturbation ε is chosen such that | ε10−ε00
Cr

10−Cr
00
| < 1 and

| ε01−ε11
Cr

01−Cr
11
| < 1, the changes in η, S0 and S1 are continuous with

respect to perturbations; actually, the values of the equilibrium
parameters remain constant; i.e., either (S∗

0, S
∗
1, a

∗, η∗) = (−ζ√
P0, ζ

√
P1, (

√
P0 +

√
P1), ζ(σ

2 ln(τ) +
S2
1−S2

0

2 )) or the es-
sentially equivalent one (S∗

0, S
∗
1, a

∗, η∗) = (ζ
√
P0,−ζ

√
P1,

−(
√
P0 +

√
P1), ζ(σ

2 ln(τ) +
S2
1−S2

0

2 )) holds. Thus, the poli-
cies are continuous with respect to small perturbations around
the point of identical priors and costs.

C. Application to the Motivating Examples

1) Subjective Priors: The related parameters are τ =
πr
0(C10−C00)

πr
1(C01−C11)

, ξ0 = 1, and ξ1 = 1. Thus, if τ < 0 or τ = ∞, the
equilibrium is non-informative; otherwise, there always exists a
unique informative equilibrium.

2) Biased Transmitter Cost: Based on the arguments in
Section I-C2, the related parameters can be found as
follows:

Ct
01 = Ct

10 = α and Ct
00 = Ct

11 = 1− α ,

Cr
01 = Cr

10 = 1 and Cr
00 = Cr

11 = 0 ,

τ =
π0(C

r
10 − Cr

00)

π1(Cr
01 − Cr

11)
=

π0

π1
,

ξ0 =
Ct

10 − Ct
00

Cr
10 − Cr

00

= 2α− 1 ,

ξ1 =
Ct

01 − Ct
11

Cr
01 − Cr

11

= 2α− 1.

If α > 1/2 (Case-3-d of Theorem 4.1 applies), the players act
like a team and the equilibrium is informative. If α = 1/2
(Case-2 of Theorem 4.1 applies), the equilibrium is non-
informative. Otherwise; i.e., if α < 1/2 (Case-3-a of Theo-
rem 4.1 applies), there exist non-informative equilibria. As it
can be seen, the existence of the equilibrium depends on α =
Pr(b = 0), the probability that the Bayes risks of the transmitter
and the receiver are aligned.

V. EXTENSION TO THE MULTI-DIMENSIONAL CASE

When the transmitter sends a multi-dimensional signal over a
multi-dimensional channel, or the receiver takes multiple sam-
ples from the observed waveform, the scalar analysis considered
heretofore is not applicable anymore; thus, the vector case can
be investigated. In this direction, the binary hypothesis-testing
problem aforementioned can be modified as

H0 : Y = S0 +N,

H1 : Y = S1 +N,

where Y is the observation (measurement) vector that belongs
to the observation set Γ = Rn, S0 and S1 denote the deter-
ministic signals under hypothesis H0 and hypothesis H1, such
that S � {S : ‖S0‖2 ≤ P0 , ‖S1‖2 ≤ P1}, respectively, and N
represents a zero-mean Gaussian noise vector with the positive
definite covariance matrix Σ; i.e., N ∼ N (0,Σ). All the other
parameters (πk

i and Ck
ji for i, j ∈ {0, 1} and k ∈ {t, r}) and

their definitions remain unchanged.

A. Team Setup Analysis

Theorem 5.1: Theorem 2.1 also holds for the vector case: if
0 < τ < ∞, the team solution is always informative; otherwise,
there exist only non-informative equilibria.

Proof: Let the transmitter choose optimal signals S =
{S0,S1}. Then the measurements become Hi : Y ∼ N (Si,Σ)
for i ∈ {0, 1}. As in the scalar case in Theorem 2.1, the equilib-
rium is non-informative for τ ≤ 0 or τ = ∞; hence, 0 < τ < ∞
can be assumed. Similar to (10), the optimal decision rule for
the receiver is obtained by utilizing (9) as

δ∗S0,S1
:

{

ζ
p1(y)

p0(y)

H1

�
H0

ζ
πr
0(C

r
10 − Cr

00)

πr
1(C

r
01 − Cr

11)
� ζτ

:

⎧
⎨

⎩
ζ

1√
(2π)n|Σ| exp{−

1
2 (y − S1)

TΣ−1(y − S1)}
1√

(2π)n|Σ| exp{−
1
2 (y − S0)TΣ−1(y − S0)}

H1

�
H0

ζτ
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:

{

ζ(S1 − S0)
TΣ−1y

H1

�
H0

ζ

(

ln(τ) +
1

2
(S1 − S0)

TΣ−1(S1 + S0)

)

. (18)

Since, under hypothesis Hi, ζ(S1 − S0)
TΣ−1Y ∼ N (ζ(S1 −

S0)
TΣ−1Si, (S1 − S0)

TΣ−1(S1 − S0)) for i ∈ {0, 1}, by
defining d2 � (S1 − S0)

TΣ−1(S1 − S0), the conditional prob-
abilities can be written as follows:

P10 = Q
(

ζ
ln(τ) + 1

2 (S1 − S0)
TΣ−1(S1 + S0 − 2S0)

√
(S1 − S0)TΣ−1(S1 − S0)

)

= Q
(

ζ

(
ln(τ)

d
+

d

2

))

,

P01 = 1−Q
(

ζ
ln(τ) + 1

2 (S1 − S0)
TΣ−1(S1 + S0 − 2S1)√

(S1 − S0)TΣ−1(S1 − S0)

)

= 1−Q
(

ζ

(
ln(τ)

d
− d

2

))

= Q
(

ζ

(

− ln(τ)

d
+

d

2

))

.

(19)

Notice that the conditional probabilities are the same in (11)
and (19); therefore, in the vector case, the equilibrium is always
informative, and the transmitter always prefers the maximum
distance similar to the scalar case. However, selecting optimal
vector signals is not as trivial as in the scalar case; see [14, pp.
61–63] for details. Since the eigenvector with the largest (small-
est) eigenvalue of Σ corresponds to the direction, along which
the noise is most (least) powerful, signaling in the least noisy
direction results in the highest signal-to-noise power ratio for
the system. Accordingly, the optimum signals are S0 = ±√

P0
νmin

‖νmin‖ and S1 = ∓√
P1

νmin

‖νmin‖ , which corresponds to d2max =
(
√
P0+

√
P1)

2

λmin
, where λmin is the minimum eigenvalue of Σ and

νmin is the eigenvector corresponding to λmin [14, pp. 61–63].
�

B. Stackelberg Game Analysis

Theorem 5.2: Let d �
√
(S1 − S0)TΣ−1(S1 − S0) and

d2max � (
√
P0+

√
P1)

2

λmin
, where λmin is the minimum eigenvalue

of Σ. Then Theorem 3.1 also holds for the vector case.
Proof: The proof of Theorem 3.1 can be applied by modify-

ing the definitions of d and dmax as in the statement. For d∗ =
dmax, the method described in the proof of Theorem 5.1 can
be applied for the optimal signal selection, whereas, for d∗ = 0,
by choosing S0 = S1, the non-informative equilibrium can be
achieved. Further, for Case-3 of Theorem 3.1, in order to achieve
(d∗)2 = | 2 ln τ(k0−k1)

(k0+k1)
| < d2max, the signals can be chosen in the

direction of νmin, that is, the eigenvector corresponding to λmin.
Accordingly, S0 = (−√

P0 + t) νmin

‖νmin‖ and S1 = (−√
P0 +

d∗ + t) νmin

‖νmin‖ for t ∈ [0,
√
P1 +

√
P0 − d∗] are possible opti-

mal signal pairs. Similarly, S0 = (
√
P0 − t) νmin

‖νmin‖ and S1 =

(
√
P0 − d∗ − t) νmin

‖νmin‖ for t ∈ [0,
√
P1 +

√
P0 − d∗] consist of

another set of possible optimal signal pairs. Note that it may be
possible to find optimal signal pairs {S0,S1} ∈ S that satisfy

(S1 − S0)
TΣ−1(S1 − S0) = | 2 ln τ(k0−k1)

(k0+k1)
| in any other direc-

tion rather than the direction of νmin; however, finding a single
pair that corresponds to an equilibrium would be sufficient. �

C. Nash Game Analysis

Theorem 5.3: Theorem 4.1 also holds for the vector case.
Proof: Let the transmitter choose any signals S = {S0,S1}.

Assuming nonzero priorsπt
0, π

r
0, π

t
1 andπr

1 , the optimal decision
rule for the receiver is given by (18). Similar to the team case
analysis in Section V-A, the equilibrium is non-informative if
τ ≤ 0 or τ = ∞; thus, 0 < τ < ∞ can be assumed.

Now assume that the receiver applies a single-threshold rule;

i.e., δ :

{

aTy
H1

�
H0

η where a ∈ Rn and η ∈ R.

Remark 5.1: Note that for a = 0, the receiver chooses ei-
ther always H0 or always H1 without considering the value
of y, which implies a non-informative equilibrium. Therefore,
S∗
0 = S∗

1, a∗ = 0, and η∗ = ζ(τ − 1) (i.e., the decision rule

of the receiver is δ∗ : ζ
H1

�
H0

ζτ ) constitute a non-informative

equilibrium regardless of the values of the priors and costs of
the players.

Thus, due to the remark above, it can be assumed that a = 0
holds. Since aTY ∼ N (aTSi,a

TΣa) under Hi for i ∈ {0, 1},
the conditional probabilities are P10 = Q(η−aTS0√

aTΣa
) and P01 =

Q(−η−aTS1√
aTΣa

). Then, the Bayes risk of the transmitter becomes

rt(S, δ) = πt
0C

t
00 + πt

1C
t
11 + πt

0(C
t
10 − Ct

00)Q
(
η − aTS0√

aTΣa

)

+ πt
1(C

t
01 − Ct

11)Q
(

−η − aTS1√
aTΣa

)

.

Since the power constraints are ‖S0‖2 ≤ P0 and ‖S1‖2 ≤ P1,
the signals S0 and S1 can be regarded as independent. Since Q
function is a monotone decreasing, the following cases hold for
i ∈ {0, 1}:

1) Ct
1i < Ct

0i ⇒ Then, rt(S, δ) is a decreasing function
of aTSi, thus the transmitter always chooses aTSi as
maximum subject to ‖Si‖2 ≤ Pi; i.e., Si =

√
Pi

a
‖a‖ .

2) Ct
1i = Ct

0i ⇒ Then Si has no effect on the Bayes risk of
the transmitter.

3) Ct
1i > Ct

0i ⇒ Then, rt(S, δ) is an increasing function
of aTSi, thus the transmitter always chooses aTSi as
minimum subject to ‖Si‖2 ≤ Pi; i.e., Si = −√

Pi
a

‖a‖ .
Thus, the the optimal signals can be characterized as S0 =

−sgn(Ct
10 − Ct

00)
√
P0

a
‖a‖ and S1 = sgn(Ct

01 − Ct
11)

√
P1

a
‖a‖ .

By using the expressions above, the cases can be listed as
follows:

1) τ ≤ 0 or τ = ∞ ⇒ The equilibrium is non-informative.
2) Ct

10 = Ct
00 (and/or Ct

01 = Ct
11) ⇒ S0 (and/or S1) has no

effect on the Bayes risk of the transmitter, thus it can
arbitrarily be chosen by the transmitter. In this case, if
the transmitter chooses S0 = S1; i.e., he does not send
anything useful to the receiver, and the receiver applies
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the decision rule δ : ζ
H1

�
H0

ζτ ; i.e., he only considers the

prior information (totally discards the information sent
by the transmitter). Then there exists a non-informative
equilibrium.

3) Notice that, since 0 < τ < ∞ is assumed, ζ = sgn(Cr
01 −

Cr
11) = sgn(Cr

10 − Cr
00) is obtained. Now, assume that the

decision rule of the receiver is δ :

{

aTy
H1

�
H0

η. Then, the

transmitter selects S0 = −sgn(Ct
10 − Ct

00)
√
P0

a
‖a‖ and

S1 = sgn(Ct
01 − Ct

11)
√
P1

a
‖a‖ as optimal signals, and the

decision rule becomes (18). By combining the best re-
sponses of the transmitter and the receiver,

aT = ζ(S1 − S0)
TΣ−1 = ζ

aT

‖a‖

×
(

sgn(Ct
01 − Ct

11)
√
P1 + sgn(Ct

10 − Ct
00)
√
P0

)
Σ−1

⇒ aTa =
aTΣ−1a

‖a‖

× ζ
(

sgn(Ct
01 − Ct

11)
√

P1 + sgn(Ct
10 − Ct

00)
√

P0

)

⇒ sgn(Ct
01 − Ct

11)

sgn(Cr
01 − Cr

11)︸ ︷︷ ︸
=sgn(ξ1)

√
P1 +

sgn(Ct
10 − Ct

00)

sgn(Cr
10 − Cr

00)︸ ︷︷ ︸
=sgn(ξ0)

√
P0 > 0.

(20)

Notice that the expressions in (20) and (17) of Theorem 4.1
are the same, and Remark 4.1 and Remark 5.1 are equiva-
lent; hence, the Nash equilibrium solution of Theorem 4.1
also holds for the vector case. �

VI. EXTENSION TO A SCENARIO WITH AN AVERAGE

POWER CONSTRAINT

Besides the peak power constraint considered in the previous
sections, the average power constraint can be assumed at the
transmitter side. Before presenting the technical results, we
provide the following lemma which will be utilized in the
equilibrium analyses of the team and Stackelberg setups.

Lemma 6.1: The optimal solutions to the optimization
problem

sup
S0,S1

(S1 − S0)
2 s.t. β0S

2
0 + β1S

2
1 ≤ P, β0, β1 ∈ R>0 (21)

are (S∗
0, S

∗
1)=(−

√
β1

β0(β0+β1)
P ,
√

β0

β1(β0+β1)
P ) and (S∗

0, S
∗
1)=

(
√

β1

β0(β0+β1)
P ,−

√
β0

β1(β0+β1)
P ).

Proof: Observe the following inequalities:

β0β1(S1 − S0)
2 = β0β1

(
S2
1 − 2S1S0 + S2

0

)

(a)

≤ β0β1

(
S2
1 + 2|S1||S0|+ S2

0

)

= β0β1

(
S2
1 + S2

0

)
+ 2|β0S0||β1S1|

(b)

≤ β0β1

(
S2
1 + S2

0

)
+ β2

0S
2
0 + β2

1S
2
1

= β0

(
β0S

2
0 + β1S

2
1

)
+ β1

(
β0S

2
0 + β1S

2
1

)

(c)

≤ (β0 + β1)P. (22)

Here, (b) follows from the inequality for the arithmetic and
geometric mean, and the equality holds iff β2

1S
2
1 = β2

0S
2
0 . For

(a), the equality holds iff S1S0 ≤ 0; and for (c), the equality
holds iff β0S

2
0 + β1S

2
1 = P . Thus, the upper bound of (S1 −

S0)
2 can be achieved with optimal solutions (S∗

0, S
∗
1) =

(−
√

β1

β0(β0+β1)
P ,
√

β0

β1(β0+β1)
P )or (S∗

0, S
∗
1)=(

√
β1

β0(β0+β1)
P ,

−
√

β0

β1(β0+β1)
P ) so that (S∗

1 − S∗
0)

2 = β0+β1

β0β1
P. �

Consider a transmitter with an average power constraint; i.e.,
the transmitter performs the optimal signal design problem under
the power constraint below:

S � {S = {S0, S1} : πt
0|S0|2 + πt

1|S1|2 ≤ Pavg},
where Pavg denotes the average power limit.

1) Team Theoretic Analysis: In order to minimize the Bayes
risk, the transmitter always prefers the maximum d = |S1−S0|

σ .
Thus, by Lemma 6.1, the optimal signal levels are chosen

as either (S∗
0, S

∗
1) = (−

√
πt
1

πt
0(π

t
0+πt

1)
Pavg,

√
πt
0

πt
1(π

t
0+πt

1)
Pavg) or

(S∗
0, S

∗
1) = (

√
πt
1

πt
0(π

t
0+πt

1)
Pavg,−

√
πt
0

πt
1(π

t
0+πt

1)
Pavg). The corre-

sponding optimal decision rule of the receiver is chosen based
on the rule in (10) accordingly. Actually, the equilibrium points
are essentially unique; i.e., they result in the same Bayes risks
for the transmitter and the receiver.

2) Stackelberg Game Analysis: Similar to the team setup
analysis, for every possible case in Table II, there are more than
one equilibrium points, and they are essentially unique since
the Bayes risks of the transmitter and the receiver depend on d.

For example, for d∗ = dmax �
√

πt
0+πt

1

πt
0π

t
1
Pavg

/
σ , (S∗

0, S
∗
1) =

(−
√

πt
1

πt
0(π

t
0+πt

1)
Pavg,

√
πt
0

πt
1(π

t
0+πt

1)
Pavg

)
and (S∗

0, S
∗
1) =

(√ πt
1

πt
0(π

t
0+πt

1)
Pavg,−

√
πt
0

πt
1(π

t
0+πt

1)
Pavg

)
are the only possible

choices for the transmitter, and the decision rule of the receiver
is chosen based on the rule in (10). However, for d∗ = 0,
there are infinitely many choices for the transmitter and the
receiver, and all of them are essentially unique; i.e., they result
in the same Bayes risks for the transmitter and the receiver. A

similar argument holds for d∗ =
√

| 2 ln τ(k0−k1)
(k0+k1)

|; i.e., there are
infinitely many choices for the transmitter and the receiver, and
all of them are essentially unique.

3) Nash Game Analysis: For 0 < τ < ∞, if the receiver

applies a single-threshold rule;5 i.e., δ :

{

ay
H1

�
H0

η where a ∈
R − {0}, and η ∈ R, after analyzing the derivative of the Bayes
risk of the transmitter in (16) with respect to the signals, the
following can be obtained:

5Due to Remark 4.1,S∗
0 = S∗

1, a∗ = 0, and η∗ = ζ(τ − 1) always constitute
a non-informative equilibrium regardless of the values of the priors and costs of
the players.
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1) Ct
1i = Ct

0i ⇒ Si has no effect on the Bayes risk of the
transmitter.

2) Ct
1i < Ct

0i or Ct
1i > Ct

0i ⇒ rt(S, δ) is a decreasing (in-
creasing) function of Si if a(Ct

1i − Ct
0i) is negative (posi-

tive); thus the transmitter chooses the optimal signal level
Si as large as possible in absolute value. Therefore, the
transmitter prefers to utilize the maximum possible total
power; i.e., the power constraint can be considered as
πt
1S

2
1 + πt

0S
2
0 = Pavg rather than πt

1S
2
1 + πt

0S
2
0 ≤ Pavg.

By using the analysis above, the cases can be listed as follows:
1) Ct

1i = Ct
0i ⇒ If Ct

1j = Ct
0j also holds for j = i, then

neitherS0 norS1 changes the Bayes risk of the transmitter;
thus, there exists a non-informative equilibrium. Other-
wise; i.e.,Ct

1j = Ct
0j for j = i, the transmitter chooses the

optimal signal levels as Si = 0 and Sj = −sgn(a(Ct
1j −

Ct
0j))

√
Pavg

πt
j

, and the equilibrium is informative.

2) Ct
10 = Ct

00 andCt
11 = Ct

01 ⇒ Since the transmitter adjust
the signal levels such that πt

1S
2
1 + πt

0S
2
0 = P , the opti-

mal signals must be in the form of S0 = −sgn
(
a(Ct

10 −
Ct

00)
)
x and S1 = sgn

(
a(Ct

01 − Ct
11)
)√Pavg−πt

0x
2

πt
1

for

x ∈ [0,
√

Pavg

πt
0
]. Then, the Bayes risk of the transmitter

in (16) can be expressed as

rt(S, δ) = πt
0C

t
00 + πt

1C
t
11

+ πt
0(C

t
10 − Ct

00)Q
(
η + |a|sgn (Ct

10 − Ct
00)x

|a|σ
)

+ πt
1(C

t
01 − Ct

11)

×Q
⎛

⎝−
η − |a|sgn (Ct

01 − Ct
11)
√

Pavg−πt
0x

2

πt
1

|a|σ

⎞

⎠ .

(23)

Note that the convexity of rt(S, δ) in (23) with respect
to x changes depending on the other parameters (i.e.,
priors, costs and the receiver policy); hence, the optimal
x cannot be expressed in a closed form. Let x∗ be an opti-
mal solution to (23); i.e., x∗ = argmin

x∈[0,
√

Pavg

πt
0

]
rt(S,

δ), which implies that the optimal signal levels are S0 =
−sgn(a(Ct

10 − Ct
00))x

∗ and S1 = sgn(a(Ct
01 − Ct

11))√
Pavg−πt

0(x
∗)2

πt
1

. Then, similar to (17), the following con-
dition on the existence of an equilibrium can be obtained:

sgn(Ct
01 − Ct

11)

sgn(Cr
01 − Cr

11)︸ ︷︷ ︸
=sgn(ξ1)

√
Pavg − πt

0(x
∗)2

πt
1

+
sgn(Ct

10 − Ct
00)

sgn(Cr
10 − Cr

00)︸ ︷︷ ︸
=sgn(ξ0)

x∗ > 0. (24)

Here, similar to the analysis under the individual power
constraint in Theorem 4.1, unless (24) is satisfied, the best

responses of the transmitter and the receiver cannot match
each other. In particular,

a) ξ0 < 0 and ξ1 < 0 ⇒ There does not exist a Nash
equilibrium for a = 0; however, due to Remark 4.1,
for a = 0, there always exist non-informative
equilibria.

b) ξ0 < 0 and ξ1 > 0 ⇒ If
√

Pavg−πt
0(x

∗)2

πt
1

> x∗ ⇒
x∗ <

√
Pavg, then the Nash equilibrium is informa-

tive. If x∗ =
√

Pavg, there exists a non-informative
equilibrium. Otherwise; i.e., if x∗ >

√
Pavg, there

does not exist a Nash equilibrium for a = 0; how-
ever, due to Remark 4.1, for a = 0, there always
exist non-informative equilibria.

c) ξ0 > 0 and ξ1 < 0⇒ If x∗ >
√

Pavg, then the Nash
equilibrium is informative. If x∗ =

√
Pavg, there

exists a non-informative equilibrium. Otherwise;
i.e., if x∗ <

√
Pavg, there does not exist a Nash

equilibrium for a = 0; however, due to Remark 4.1,
for a = 0, there always exist non-informative equi-
libria.

d) ξ0 > 0 and ξ1 > 0 ⇒ There exists an informative
Nash equilibrium.

VII. CONCLUDING REMARKS

In this paper, we considered binary signaling problems in
which the decision makers (the transmitter and the receiver) have
subjective priors and/or misaligned objective functions. Depend-
ing on the commitment nature of the transmitter to his policies,
we formulated the binary signaling problem as a Bayesian
game under either Nash or Stackelberg equilibrium concepts
and established equilibrium solutions and their properties.

We showed that there can be informative or non-informative
equilibria in the binary signaling game under the Stackelberg
and Nash assumptions, and derived the conditions under which
an informative equilibrium exists. We also studied the effects
of small perturbations around the team setup (with identical
priors and costs) and showed that the game equilibrium behavior
around the team setup is robust under the Nash assumption,
whereas it is not robust under the Stackelberg assumption.

The binary setup considered here can be extended to the
M -ary hypothesis testing setup, and the corresponding signal-
ing game structure can be formed in order to model a game
between players with a multiple-bit communication channel.
The extension to more general noise distributions is possible:
the Nash equilibrium analysis holds identically when the noise
distribution leads to a single-threshold test. Finally, in addition to
the Bayesian approach considered here, different cost structures
and parameters can be introduced by investigating the game
under Neyman-Pearson and mini-max criteria.
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[17] S. Sarıtaş, S. Yüksel, and S. Gezici, “Dynamic signaling games with
quadratic criteria under Nash and Stackelberg equilibria,” Automatica,
arXiv:1704.03816.

[18] V. P. Crawford and J. Sobel, “Strategic information transmission,” Econo-
metrica, vol. 50, pp. 1431–1451, 1982.

[19] C. D. Richmond and L. L. Horowitz, “Parameter bounds on estimation
accuracy under model misspecification,” IEEE Trans. Signal Process.,
vol. 63, no. 9, pp. 2263–2278, May 2015.

[20] R. M. Dufour and E. L. Miller, “Statistical estimation with 1/f-type prior
models: robustness to mismatch and efficient model determination,” in
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., May 1996, vol. 5,
pp. 2491–2494.

[21] S. Fortunati, F. Gini, M. S. Greco, and C. D. Richmond, “Performance
bounds for parameter estimation under misspecified models: Fundamental
findings and applications,” IEEE Signal Process. Mag., vol. 34, no. 6,
pp. 142–157, Nov. 2017.
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