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Hypothesis Testing Under Subjective Priors and
Costs as a Signaling Game

Serkan Saritag”, Member, IEEE, Sinan Gezici

Abstract—Many communication, sensor network, and net-
worked control problems involve agents (decision makers) which
have either misaligned objective functions or subjective proba-
bilistic models. In the context of such setups, we consider binary
signaling problems in which the decision makers (the transmitter
and the receiver) have subjective priors and/or misaligned objective
functions. Depending on the commitment nature of the transmitter
to his policies, we formulate the binary signaling problem as a
Bayesian game under either Nash or Stackelberg equilibrium con-
cepts and establish equilibrium solutions and their properties. We
show that there can be informative or non-informative equilibria
in the binary signaling game under the Stackelberg and Nash
assumptions, and derive the conditions under which an informative
equilibrium exists for the Stackelberg and Nash setups. For the cor-
responding team setup, however, an equilibrium typically always
exists and is always informative. Furthermore, we investigate the
effects of small perturbations in priors and costs on equilibrium
values around the team setup (with identical costs and priors), and
show that the Stackelberg equilibrium behavior is not robust to
small perturbations whereas the Nash equilibrium is.

Index Terms—Signal detection, hypothesis testing, signaling
games, Nash equilibrium, Stackelberg equilibrium, subjective
priors.

1. INTRODUCTION

N MANY decentralized and networked control problems,

decision makers have either misaligned criteria or have sub-
jective priors, which necessitates solution concepts from game
theory. For example, detecting attacks, anomalies, and malicious
behavior with regard to security in networked control systems
can be analyzed under a game theoretic perspective, see e.g.,
[2]-[13].

In this paper, we consider signaling games that refer to a
class of two-player games of incomplete information in which
an informed decision maker (transmitter or encoder) transmits
information to another decision maker (receiver or decoder) in
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the hypothesis testing context. In the following, we first provide
the preliminaries and introduce the problems considered in the
paper, and present the related literature briefly.

A. Notation

We denote random variables with capital letters, e.g., Y,
whereas possible realizations are shown by lower-case letters,
e.g., y. The absolute value of scalar y is denoted by |y|. The
vectors are denoted by bold-faced letters, e.g., y. For vector y,
y T denotes the transpose and ||y || denotes the Euclidean (L)
norm. 1;p, represents the indicator function of an event D,
@ stands for the exclusive-or operator, Q genotes the standard
Q.—functlon; ie., Q(x) = \/% [, exp{—% }dt, and the sign of
x is defined as

-1 ifz <0
sgn(z) =<0 ifzx=0.
1 ifz>0

B. Preliminaries

Consider a binary hypothesis-testing problem:
HO Y = SO + N,
Hi:Y =51+ N, ey

where Y is the observation (measurement) that belongs to the
observation set I' = R, Sy and S; denote the deterministic
signals under hypothesis Hy and hypothesis H1, respectively,
and N represents Gaussian noise; i.e., N ~ N (0,02). In the
Bayesian setup, it is assumed that the prior probabilities of
Ho and H; are available, which are denoted by 7y and 7,
respectively, with myp + 7 = 1.

In the conventional Bayesian framework, the aim of the re-
ceiver is to design the optimal decision rule (detector) based on
Y in order to minimize the Bayes risk, which is defined as [14]

r(d) = 7TOR0(5) —+ 7T1R1(5), (2)

where § is the decision rule, and R;(-) is the conditional risk

of the decision rule when hypothesis #,; is true for i € {0, 1}.

In general, a decision rule corresponds to a partition of the

observation set I into two subsets I'g and I'¢, and the decision

becomes H,; if the observation y belongs to I';, where i € {0, 1}.
The conditional risks in (2) can be calculated as

R;(0) = CoiPoi + C1iP1, 3)
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fori € {0, 1}, where Cj; > 01is the cost of deciding for ; when
M, is true, and P;; = Pr(y € I';|#,;) represents the conditional
probability of deciding for H; given that H; is true, where ¢, j €
{0,1} [14].

It is well-known that the optimal decision rule ¢ which
minimizes the Bayes risk is the following test, known as the
likelihood ratio test (LRT):

Ha

§: {M(Cm — Ci)p1(y) Z m0(Cro — Coo)po(y), (4
Ho

where p;(y) represents the probability density function (PDF)
of Y under #H, fori € {0,1} [14].

If the transmitter and the receiver have the same objective
function specified by (2) and (3), then the signals can be designed
to minimize the Bayes risk corresponding to the decision rule
in (4). This leads to a conventional formulation which has been
studied intensely in the literature [14], [15].

On the other hand, it may be the case that the transmitter
and the receiver can have non-aligned Bayes risks. In particular,
the transmitter and the receiver may have different objective
functions or priors: Let C’;-Z- and C7; represent the costs from
the perspective of the transmitter and the receiver, respectively,
where i, j € {0,1}. Also let ! and 77 for i € {0, 1} denote the
priors from the perspective of the transmitter and the receiver,
respectively, with 7} 4+ 7] = 1, where j € {¢,r}. Here, from
transmitter’s and receiver’s perspectives, the priors are assumed
to be mutually absolutely continuous with respect to each other;
ie, mt=0=n=0and 7/ =0= 7 =0 for i € {0,1}.
This condition assures that the impossibility of any hypothesis
holds for both the transmitter and the receiver simultaneously.
The aim of the transmitter is to perform the optimal design of
signals S = {Sp, 51} to minimize his Bayes risk; whereas, the
aim of the receiver is to determine the optimal decision rule &
over all possible decision rules A to minimize his Bayes risk.

The Bayes risks are defined as follows for the transmitter and
the receiver:

(8,8) = 7 (ClyPoo + CloP10) + ) (C3,Po1 + CJ1P11),
%)

for j € {t,r}. Here, the transmitter performs the optimal signal
design problem under the power constraint below:

SE£{S = {50,851} : |So|* < Py, |S1]* < P21},

where Py and P; denote the power limits [14, p. 62].

Although the transmitter and the receiver act sequentially in
the game as described above, how and when the decisions are
made and the nature of the commitments to the announced poli-
cies significantly affect the analysis of the equilibrium structure.
Here, two different types of equilibria are investigated:

1) Nash equilibrium: the transmitter and the receiver make

simultaneous decisions.

2) Stackelberg equilibrium : the transmitter and the receiver
make sequential decisions where the transmitter is the
leader and the receiver is the follower.

In this paper, the terms Nash game and the simultaneous-

move game will be used interchangeably, and similarly, the
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Stackelberg game and the leader-follower game will be used
interchangeably.

In the simultaneous-move game, the transmitter and the re-
ceiver announce their policies at the same time, and a pair of
policies (S*, ") is said to be a Nash equilibrium [16] if

(8%, 6%) < rl(S,5%) VS €S,
(ST, 6%) < (S, 6) V6 € A. (6)

As noted from the definition in (6), under the Nash equilibrium,
each individual player chooses an optimal strategy given the
strategies chosen by the other player.

However, in the leader-follower game, the leader (transmitter)
commits to and announces his optimal policy before the follower
(receiver) does, the follower observes what the leader is commit-
ted to before choosing and announcing his optimal policy, and a
pair of policies (S*, §%.) is said to be a Stackelberg equilibrium
[16] if

r'(S*,05.) <r'(S,6%) VSES,
where J5 satisfies (7
r"(S,035) <r'(S,ds) Vis € A.

As observed from the definition in (7), the receiver takes his
optimal action 0% after observing the policy of the transmitter
S. Further, in the Stackelberg game (also often called Bayesian
persuasion games in the economics literature, see [17] for a de-
tailed review), the leader cannot backtrack on his commitment,
but he has a leadership role since he can manipulate the follower
by anticipating the actions of the follower.

If an equilibrium is achieved when S* is non-informative (e.g.,
S = S7)and §* uses only the priors (since the received message
is useless), then we call such an equilibrium a non-informative
(babbling) equilibrium [18, Theorem 1].

C. Two Motivating Setups

We present two different scenarios that fit into the binary sig-
naling context discussed here and revisit these setups throughout
the paper.'

1) Subjective Priors: In almost all practical applications,
there is some mismatch between the true and an assumed
probabilistic system/data model, which results in performance
degradation. This performance loss due to the presence of mis-
match has been studied extensively in various setups (see e.g.,
[19]-[21] and references therein). In this paper, we have a further
salient aspect due to decentralization, where the transmitter and
the receiver have a mismatch. We note that in decentralized deci-
sion making, there have been a number of studies on the presence
of a mismatch in the priors of decision makers [22]—[24]. In such
setups, even when the objective functions to be optimized are

Besides the setups discussed here (and the throughout the paper), the
deception game can also be modeled as follows. In the deception game, the
transmitter aims to fool the receiver by sending deceiving messages, and this
goal can be realized by adjusting the transmitter costs as Céo > C{O and
Cfl > Cél; i.e, the transmitter is penalized if the receiver correctly decodes the
original hypothesis. Similar to the standard communication setups, the goal of
the receiver is to truly identify the hypothesis; i.e., Cg, < C7jand CT; < Cfj;.
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identical, the presence of subjective priors alters the formulation
from a team problem to a game problem (see [25, Section 12.2.3]
for a comprehensive literature review on subjective priors also
from a statistical decision making perspective).

With this motivation, we will consider a setup where the trans-
mitter and the receiver have different priors on the hypotheses
Ho and H1, and the costs of the transmitter and the receiver are
identical. In particular, from transmitter’s perspective, the priors
are 74 and 7}, whereas the priors are 7y and 7 from receiver’s
perspective, and C}j; = C'Jt-i = Cj}; for 4,5 € {0,1}. We will
investigate equilibrium solutions for this setup throughout the
paper.

2) Biased Transmitter Cost:*> A further application will be
for a setup where the transmitter and the receiver have mis-
aligned objective functions. Consider a binary signaling game
in which the transmitter encodes a random binary signal z = ¢ as
‘H; by choosing the corresponding signal level S; fori € {0, 1},
and the receiver decodes the received signal y as u = d(y).
Let the priors from the perspectives of the transmitter and the
receiver be the same; ie., m; = 7t =7} for i € {0,1}, and
the Bayes risks of the transmitter and the receiver be defined
as 7(S,0) = E[lj1—(zouapyy) and 77(S,0) = E[1{1—(zau)})»
respectively, where b is a random variable with a Bernoulli
distribution; i.e., « = Pr(b=10) = 1 — Pr(b = 1), and « can
be translated as the probability that the Bayes risks (objective
functions) of the transmitter and the receiver are aligned. Then,
the following relations can be observed:

r(8,6) = E[l{1=(zouan))]
= a(mP1o + m1Po1) + (1 — a)(moPoo + m1P11)
= Cl =Cly=aand Cl, = C}, =1 —q,
7"(S,0) = E[l{1—(zau)] = P10 + m1Po1
=Chp =Cly=1land Cj, = C{; =0.

Note that, in the formulation above, the misalignment between
the Bayes risks of the transmitter and the receiver is due to the
presence of the bias term b (i.e., the discrepancy between the
Bayes risks of the transmitter and the receiver) in the Bayes risk
of the transmitter. This can be viewed as an analogous setup to
what was studied in a seminal work due to Crawford and Sobel
[18], who obtained the striking result that such a bias term in the
objective function of the transmitter may have a drastic effect
on the equilibrium characteristics; in particular, under regularity
conditions, all equilibrium policies under a Nash formulation
involve information hiding; for some extensions under quadratic
criteria please see [26] and [27].

D. Related Literature

In game theory, Nash and Stackelberg equilibria are dras-
tically different concepts. Both equilibrium concepts find ap-
plications depending on the assumptions on the leader, that is,
the transmitter, in view of the commitment conditions. Stack-
elberg games are commonly used to model attacker-defender

2Here, the cost refers to the objective function (Bayes risk), not the cost of a
particular decision, C'j;. Note that, throughout the manuscript, the cost refers to
C'j; except when it is used in the phrase Biased Transmitter Cost.
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scenarios in security domains [28]. In many frameworks, the
defender (leader) acts first by committing to a strategy, and the
attacker (follower) chooses how and where to attack after ob-
serving defender’s choice. However, in some situations, security
measures may not be observable for the attacker; therefore, a
simultaneous-move game is preferred to model such situations;
i.e., the Nash equilibrium analysis is needed [29]. These two
concepts may have equilibria that are quite distinct: As dis-
cussed in [17], [26], in the Nash equilibrium case, building on
[18], equilibrium properties possess different characteristics as
compared to team problems; whereas for the Stackelberg case,
the leader agent is restricted to be committed to his announced
policy, which leads to similarities with team problem setups
[271, [30], [31]. However, in the context of binary signaling, we
will see that the distinction is not as sharp as it is in the case of
quadratic signaling games [17], [26].

Standard binary hypothesis testing has been extensively stud-
ied over several decades under different setups [14], [15], which
can also be viewed as a decentralized control/team problem
involving a transmitter and a receiver who wish to minimize a
common objective function. However, there exist many scenar-
ios in which the analysis falls within the scope of game theory;
either because the goals of the decision makers are misaligned,
or because the probabilistic model of the system is not common
knowledge among the decision makers.

A game theoretic perspective can be utilized for hypothesis
testing problem for a variety of setups. For example, detecting at-
tacks, anomalies, and malicious behavior in network security can
be analyzed under the game theoretic perspective [2]-[6]. In this
direction, the hypothesis testing and the game theory approaches
can be utilized together to investigate attacker-defender type
applications [7]-[13], multimedia source identification prob-
lems [32], inspection games [33]-[35], and deception games
[36]. In [8], a Nash equilibrium of a zero-sum game between
Byzantine (compromised) nodes and the fusion center (FC) is
investigated. The strategy of the FC is to set the local sensor
thresholds that are utilized in the likelihood-ratio tests, whereas
the strategy of Byzantines is to choose their flipping probability
of the bit to be transmitted. In [9], a zero-sum game of a binary
hypothesis testing problem is considered over finite alphabets.
The attacker has control over the channel, and the randomized
decision strategy is assumed for the defender. The dominant
strategies in Neyman-Pearson and Bayesian setups are inves-
tigated under the Nash assumption. The authors of [34], [35]
investigate both Nash and Stackelberg equilibria of a zero-sum
inspection game where an inspector (environmental agency) ver-
ifies, with the help of randomly sampled measurements, whether
the amount of pollutant released by the inspectee (management
of an industrial plant) is higher than the permitted ones. The
inspector chooses a false alarm probability «, and determines
his optimal strategy over the set of all statistical tests with false
alarm probability a to minimize the non-detection probability.
On the other side, the inspectee chooses the signal levels (vi-
olation strategies) to maximize the non-detection probability.
[10] considers a complete-information zero-sum game between
a centralized detection network and a jammer equipped with
multiple antennas and investigates pure strategy Nash equilibria
for this game. The fusion center (FC) chooses the optimal
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threshold of a single-threshold rule in order to minimize his error
probability based on the observations coming from multiple
sensors, whereas the jammer disrupts the channel in order to
maximize FC’s error probability under instantaneous power
constraints. However, unlike the setups described above, in this
work, we assume an additive Gaussian noise channel, and in the
game setup, a Bayesian hypothesis testing setup is considered in
which the transmitter chooses signal levels to be transmitted and
the receiver determines the optimal decision rule. Both players
aim to minimize their individual Bayes risks, which leads to
a nonzero-sum game. [36] investigates the perfect Bayesian
Nash equilibrium (PBNE) solution of a cyber-deception game
in which the strategically deceptive interaction between the
deceivee (privately-informed player, sender) and the deceiver
(uninformed player, receiver) are modeled by a signaling game
framework. It is shown that the hypothesis testing game ad-
mits no separating (pure, fully informative) equilibria, there
exist only pooling and partially-separating-pooling equilibria;
i.e., non-informative equilibria. Note that, in [36], the received
message is designed by the deceiver (transmitter), whereas we
assume a Gaussian channel between the players. Further, the
belief of the receiver (deceivee) about the priors is affected by
the design choices of the transmitter (deceiver), unlike this setup,
in which constant beliefs are assumed.

Within the scope of the discussions above, the binary signaling
problem investigated here can be motivated under different
application contexts: subjective priors and the presence of a bias
in the objective function of the transmitter compared to that of
the receiver. In the former setup, players have acommon goal but
subjective prior information, which necessarily alters the setup
from a team problem to a game problem. The latter one is the
adaptation of the biased objective function of the transmitter in
[18] to the binary signaling problem considered here. We discuss
these further in the following.

E. Contributions

The main contributions of this paper can be summarized
as follows: (i) A game theoretic formulation of the binary
signaling problem is established under subjective priors and/or
subjective costs. (ii) The corresponding Stackelberg and Nash
equilibrium policies are obtained, and their properties (such as
uniqueness and informativeness) are investigated. It is proved
that an equilibrium is almost always informative for a team
setup, whereas in the case of subjective priors and/or costs, it
may cease to be informative. (iii) Furthermore, robustness of
equilibrium solutions to small perturbations in the priors or costs
are established. It is shown that, the game equilibrium behavior
around the team setup is robust under the Nash assumption,
whereas it is not robust under the Stackelberg assumption. (iv)
For each of the results, applications to two motivating setups
(involving subjective priors and the presence of a bias in the
objective function of the transmitter) are presented.

In the conference version of this study [1], some of the results
(in particular, the Nash and Stackelberg equilibrium solutions
and their robustness properties) appear without proofs. Here
we provide the full proofs of the main theorems and also
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include the continuity analysis of the equilibrium. Furthermore,
the setup and analysis presented in [1] are extended to the
multi-dimensional case and partially to the case with an average
power constraint.

The remainder of the paper is organized as follows. The team
setup, the Stackelberg setup, and the Nash setup of the binary
signaling game are investigated in Sections II, Section III, and
Section IV, respectively. In Section V, the multi-dimensional
setup is studied, and in Section VI, the setup under an av-
erage power constraint is investigated. The paper ends with
Section VII, where some conclusions are drawn and directions
for future research highlighted.

II. TEAM THEORETIC ANALYSIS: CLASSICAL SETUP WITH
IDENTICAL COSTS AND PRIORS

Consider the team setup where the costs and the priors are
assumed to be the same and available for both the transmitter
and the receiver; ie., Cj; = C}; = Cf; and m; = 7 = m] for
i,7 € {0,1}. Thus the common Bayes risk becomes
rt(S,6) = r"(S,8) = mo(CooPoo + C10P10) + 71 (Co1Po1 +
C11P11). The arguments for the proof of the following result
follow from the standard analysis in the detection and estimation
literature [14], [15]. However, for completeness, and for the
relevance of the analysis in the following sections, a proof is
included.

Theorem 2.1: Let T £ % If 7 <0orT =00, the
team solution of the binary signaling setup is non-informative.
Otherwise; i.e., if 0 < 7 < oo, the team solution is always
informative.

Proof: The players adjust S, Si, and § so that (S, d) =
r" (S, d) is minimized. The Bayes risk of the transmitter and the
receiver in (5) can be written as follows:>

r(8,6) = Wgcgo + 7{0{1 + W%(C{O - Cgo)Plo

+ 7 (CJ, — )P, (8)

forj e {t,r}.

Here, first the receiver chooses the optimal decision rule
0%, s, for any given signal levels Sy and S, and then the trans-
mitter chooses the optimal signal levels S and S depending
on the optimal receiver policy dg, . -

Assuming non-zero priors 7, 7, i, and 77, the different
cases for the optimal receiver decision rule can be investigated
by utilizing (4) as follows:

1) It Cg, > Oy,

a) if Cy > Cfy, the LRT in (4) must be applied to
determine the optimal decision.

b) if C7, < Cyy, the left-hand side (LHS) of the in-
equality in (4) is always greater than the right-hand
side (RHS); thus, the receiver always chooses ;.

2) It Cg, = Oy,

3Note that we are still keeping the parameters of the transmitter and the
receiver as distinct in order to be able to utilize the expressions for the game
formulations.
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TABLE I
OPTIMAL DECISION RULE ANALYSIS FOR THE RECEIVER

CTo > Cho CTo = Coo CTo < Coo
Cy, > CT4 LRT always H1 always H1
Ci, =C7, always Ho indifferent (Hg or H1) always H1
Cy, < C7y always Ho always Ho LRT

a) if C7y > (Y, the LHS of the inequality in (4) is
always less than the RHS; thus, the receiver always
chooses H.

b) if C7y = C{y, the LHS and RHS of the inequality
in (4) are equal; hence, the receiver is indifferent of
deciding Hq or Hi.

c) if C7y < Cf, the LHS of the inequality in (4) is
always greater than the RHS; thus, the receiver
always chooses H.

3) It Cy;, < Oy,

a) if C7y > Yy, the LHS of the inequality in (4) is
always less than the RHS; thus, the receiver always
chooses Hg.

b) if C7y < Cfy, the LRT in (4) must be applied to
determine the optimal decision.

The analysis above is summarized in Table I:
As it can be observed from Table I, the LRT is needed only
w takes a finite positive value;i.e.,0 < 7 <
1 01 11

00. Otherwise; i.e., 7 < 0 or 7 = 00, since the receiver does not
consider any message sent by the transmitter, the equilibrium is
non-informative.

For 0 < 7 < 00, let ¢ £ sgn(Ch, — C7;) (notice that ¢ =
sgn(Chy, — C1y) = sen(Ciy — Cfy) and ¢ € {—1,1}). Then,
the optimal decision rule for the receiver in (4) becomes

5 Cpl(y) ? CW(T)(C{O — Cio)
po(y) vjo 71 (Cg — C11)

A
whenT =

= (T €))

Let the transmitter choose optimal signals S = {Sp, S1}. Then
the measurements in (1) become H; : Y ~ N (S;, 02) for ¢ €
{0,1}, as N ~ N(0,0?), and the optimal decision rule for the
receiver is obtained by utilizing (9) as

Hi Sz N 52
85,9, 1 4 Cy(S1—80) = ¢ (02 In(7) + 120> . (10

Ho

Since (Y (S — Sp) is distributed as N ({(S1 — So)S;, (S1 —
S0)?0?) under H,; for i € {0,1}, the conditional probabilities
can be written based on (10) as follows:

Pio = Pr(y € I'1[Ho) = Pr((y) = 1|Ho)
=1- Pr(§(y) = O|H0) =1- POO
oIn(7)

_ S
—o(o(FHg - BA) . an

and similarly, Py; can be derived as Po; = Q({(— ‘gllri(gg‘ +

S1—S
l 120 0‘))

By defining d £ @, Pig = Q(g(“‘f{) + g)) and Py; =
Q(¢(— l“g) + %)) can be obtained. Then, the optimum behavior
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of the transmitter can be found by analyzing the derivative of
the Bayes risk of the transmitter in (8) with respect to d:

dr’(8,0) 1 . _(In7)? . &
dd Vo P e [P

1 lnT 1
X (WSC(C% — Clo)7 2 <_d2 + 2)

1 (InT 1
+7m1¢(Cor — Ory)72 (d2+ 2) ) (12)

In (12),if we utilize Cj; = Cf; = C7;,
70(C10=Co0)
71(Co1—C11)°

dr'(8,0) 1 _(1n7’)2 _ﬁ
dd o P 22 [TP1TR

x /mom1(C1o — Coo)(Cor — C11) < 0.

mi=ml=nlandT =

we obtain the following:

Thus, in order to minimize the Bayes risk, the transmitter always
prefers the maximumd, i.e.,d* = @ , and the equilibrium
is informative. |

Remark 2.1:

i) Note that there are two informative equilibrium points
which satisfy d* = YPEVPL: (G5 §5) = (—\/Py, /1)
and (S5, S7) = (v/Po, —/P1), and the decision rule of
the receiver is chosen based on the rule in (10) accordingly.
Actually, these equilibrium points are essentially unique;
i.e., they result in the same Bayes risks for the transmitter
and the receiver.

ii) In the non-informative equilibrium, the receiver chooses
either Hy or H; as depicted in Table I. Since the message
sent by the transmitter has no effect on the equilibrium,
there are infinitely many ways of signal selection, which
implies infinitely many equilibrium points. However, all
these points are essentially unique; i.e., they result in the
same Bayes risks for the transmitter and the receiver.
Actually, if the receiver always chooses H;, the Bayes
risks of the players are r7(S,8) = m)CY, + m| CY; for
i€{0,1} and j € {¢t,r}.

III. STACKELBERG GAME ANALYSIS

Under the Stackelberg assumption, first the transmitter (the
leader agent) announces and commits to a particular policy,
and then the receiver (the follower agent) acts accordingly.
In this direction, first the transmitter chooses optimal signals
S = {So, 51} to minimize his Bayes risk r/(S, ), then the
receiver chooses an optimal decision rule § accordingly to
minimize his Bayes risk 7" (S, d). Due to the sequential structure
of the Stackelberg game, besides his own priors and costs, the
transmitter also knows the priors and the costs of the receiver
so that he can adjust his optimal policy accordingly. On the
other hand, besides his own priors and costs, the receiver knows
only the policy and the action (signals S = {Sp, S1}) of the
transmitter as he announces during the game-play; i.e., the costs
and priors of the transmitter are not available to the receiver.
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TABLE II
STACKELBERG EQUILIBRIUM ANALYSIS FOR 0 < 7 < 00
lnr(ko—k1)<0 ln‘r(ko—kl)zo
ko + k1 <0 | d* =min {dm ax, \/| 2 hél;fi[;clfl) d* = 0, non-informative
21 —

ﬁmx |7HT(’CO k1) ‘ = d* = 0, non-informative

ko + k1 >0 d* =d (ko 1)

0 12 = Gmax 2 ‘21n7(k0 _ kl)‘ ~ ko )Sgn(ln(T)) o (\ln(‘r)\ dmax o |1n(7-)\ dmax> d*:gmax

T (ko + k1) kot dmax 2 dmax 2 o

A. Equilibrium Solutions

Under the Stackelberg assumption, the equilibrium structure
of the binary signaling game can be characterized as follows:

Theorem 3.1: If 72 Z?Eg 0 Cﬁ; <0 or 7=o00, the
Stackelberg equilibrium of the binary signaling game is

non-informative. Otherwise; i.e.,if 0 < 7 < oo, letd £ ‘Sloso‘,

dmax £ @v C £ SgH(Cgl - C{l)’ ]{30 £ WSC(C{O
Cly)r 2, and ky 2 7t ¢(CL, — C!,)72. Then, the Stackelberg
equilibrium structure can be characterized as in Table II, where
d* = 0 stands for a non-informative equilibrium, and a nonzero
d* corresponds to an informative equilibrium.

Before proving Theorem 3.1, we make the following remark:

Remark 3.1: As we observed in Theorem 2.1, for a team
setup, an equilibrium is almost always informative (practically,
0 < 7 < 00), whereas in the case of subjective priors and/or
costs, it may cease to be informative.

Proof: By applying the same case analysis as in the proof
of Theorem 2.1, it can be deduced that the equilibrium is non-
informative if 7 < 0 or 7 = oo (see Table I). Thus, 0 < 7 < oo
can be assumed. Then, from (12), r¢(S,§) is a monotone de-
creasing (increasing) function of dif ko(— 27 + ) + k1 (57 +
%), or equivalently d*(ko + k1) — 2In7 (ko — k1) is positive
(negative) Vd, where kg and k; are as defined in the theorem
statement. Therefore, one of the following cases is applicable:

1) if In7 (ko — k1) <0 and ko + k; >0, then d?(ko +

k1) > 2In7(ko — k1) is satisfied Vd, which means that
r*(8S,d) is a monotone decreasing function of d. There-
fore, the transmitter tries to maximize d; i.e., chooses the
maximum of |S; — Sp| under the constraints |Sp|? < P
and |S;|? < P, hence d* = max |S1;S"‘ = Vﬁojm —
dmax, Which entails an informative equilibrium.

ifIn7(ko—k1) <0, ko+k1 <0, and d2 |%koklkl)‘

then 7!(S,d) is a monotone decreasing function of d.
Therefore, the transmitter maximizes d as in the previous

case.
if In7(ko—k1) <0, ko+k1 <0, and d Aoty

since d?(ko + k1) — 2InT (ko — k1) is initially positive
then negative, r* (S, §) is first decreasing and then increas-
ing with respect to d. Therefore, the transmitter chooses
the optimal d* such that (d*)? = |2h(1,: _]f_(;c ;c 1) | which re-
sults in a minimal Bayes risk (S, d) for the transmitter.
This is depicted in Fig. 1.

if Int (k‘o - ]{,‘1) >0 and kg + k1 <0, then d2(k‘0 +
k1) <2In7(ko — k1) is satisfied Vd, which means that
(8, §) is amonotone increasing function of d. Therefore,
the transmitter tries to minimize d; i.e., chooses Sy = S;

2)

m ax

3) 1)),

max—|

4)

0.52

05

048

044 1

05 1 15 25 35
d

Fig. 1. The Bayes risk of the transmitter versus d when C{, = 0.6, C},,

0.4,Cty =04,Cy = 0.6,Cf, =0,Cfy = 0.9,Cf, = 0.4, CY, =0, 7§

0.25,7; =025, =1,P1 =1, and o =0.1. The optimal d~

‘21117'(1907191)
(ko+k1)

risk 7t = 0.5379 are indicated by the star.

| =0.4704 < dyax =20 and its corresponding Bayes

sothatd* = 0. Inthis case, the transmitter does not provide

any information to the receiver and the decision rule of
Hi
the receiver in (9) becomes ¢ : z (T; i.e., the receiver

H

uses only the prior information, t}fus the equilibrium is
non-informative.

if In (ko —ky) >0, ko+k1 > < |Hrle—)
then 7/(S,d) is a monotone increasing function of d.
Therefore, the transmitter chooses Sy = 57 sothatd* = 0.
Similar to the previous case, the equilibrium is non-
informative.

ifIn7(ko—ky1) >0, ko+k1 >0, and d2 A o],

0

r(8, ) is first an increasing then a decreasing functlon of
d, which makes the transmitter choose either the minimum
d or the maximum d; i.e., he chooses the one that results in
a lower Bayes risk (S, §) for the transmitter. If the min-
imum Bayes risk is achieved when d* = 0, then the equi-
librium is non-informative; otherwise (i.e., when the mini-
mum Bayes risk is achieved when d* = d ), the equilib-
rium is an informative one. There are three possible cases:

>0, and d?

max

5)

| b

0)

1ax—|

a) ((1—-7)>0
Hi
i) If d*=0, since J:( ; (T, the receiver
Ho

always chooses H1, thus P19 = P11 = 1 and
POO = P01 =0. Then, from (8), ’/‘t(S,CS) =
76Coo + m1C1y + 76(Clo — Coo)-
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ii) If d* = dyax, by utilizing (8) and (11),
r'(S,9) = 7r()C()o + 7T1011 + 15(Co—Cho)

Q (L 4 daes)) 4+t (CFy — CH)Q(C
In(7T
(Y g,
Then the decision of the transmitter is determined
by the following:
d'= max
>
Wé(cfo - C(tJO) =
d*=0

dmax
(Cho - o (¢ (G2 + 2=

+ 71 (Chy —

T (Clo — Clo)Q (c

(Gl — Ch)Q (c

In(7T)  diax ) ¢ e
7@ <€ (‘dmax_ 2 )> =,

ki Q (C (_111(7-)

dIIlaX
dmax * 2 )) .

For (13), there are two possible cases:
i) (=1and 0 < 7 < 1: Since In7(ko — k1)
O:>/€0—k'1 <0 and kjo+/€1 >0, ki >
always. Then, (13) becomes

o IV

kot n(7)  dmax
el %)
IH(T) dmax d*zgmax
-Q (— + ) Z 0.
Amax 2 d*<:0

ii) (=—1 and 7> 1: Since InT(ko — k1)
0=ky—ky >0 and ko+ k1 >0, kg >
always. Then, (13) becomes

EQ In(7) 7dmax
koT dmax 2
In(7) | dmax | ¢ I
(Ut} " E
dmax 2 d*<:O

b) (1—7)=0=7=1: Since ko+k; >0 and
dQ(ko + k‘l) —2InT (ko — k‘l) >0, T’t(S,(S) is a
monotone decreasing function of d, which implies
d* = dpyax and informative equilibrium.

©) ((1—7)<0:

>
0

Ha
since ¢ : C z (T, the receiver
Ho
always chooses H, thus Pgg = Pg; = 1 and
P19 = P11 = 0. Then, from (8), r*(S,d) =
m6Cho + w1 Oy + 7 (Chy — Cfy).
ii) If d* = dmax, by utilizing (8) and (11),
(S, 0) = m5Cho + 7 Cty + 76(Clo—Cho)

i) If d* =0,
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Q(C(M + "'dx)) + 71 (C6y —

dmax

In(7) | dmax
(= q T 55)).
Then, similar to the analysis in case-a), the decision
of the transmitter is determined by the following:

(¢ (0 - )" 2
max =0

croro (¢ (T2 4+ %)),

For (14), there are two possible cases:
i) (=—1and 0 <7 < 1: Since In7(ky — k1)
>0=kyo—ki <0Oandkg+ k1 >0,k; >0
always. Then, (14) becomes

kOT (T) dmax
Q( dmax ; 2 )
e

IN(7T)  dpay | & "dmex
)
d=
ii) (=1land7 > 1:Sinceln7(kg — k1) > 0 =

C1)e(¢

(14)

dmax 2 *=()

k‘o—k‘lzo and k0+k120, k‘oZO
always. Then, (14) becomes
EQ In(7) B dmax
koT dmax 2
I(7) | dinax | ¢ e
a Q (dlnax * 2 > d*Z:O 0

Thus, by combining all the cases, the comparison of the
transmitter Bayes risks for d* = 0 and d* = d .« reduces
to the following rule:

ﬂ sgn(In(7)) Q M %
]{307' dmax 2

! dnax | T2
—Q('n( )|+ ) = 0. (15)
dmax 2 d*=0
|
The most interesting case is Case-3 in which Int (kg — k1) <
0,ko + k; <0, and d2,, > |21n,z0_’f_[}c 1|, since in all other

cases, the transmitter chooses either the minimum or the max-
imum distance between the signal levels. Further, for classical
hypothesis-testing in the team setup, the optimal distance cor-
responds to the maximum separation [14]. However, in Case-3,

21 ko—k1)
%| < dpax that

makes the Bayes risk of the transmitter minimum as it can be
seen in Fig. 1.

Remark 3.2: Similar to the team setup analysis, for every
possible case in Table II, there are more than one equilibrium
points, and they are essentially unique since the Bayes risks of
the transmitter and the receiver depend on d. In particular,

i) for d* = dpax, the equilibrium is informative, (S, S7)
— (—v/Py,V/P1) and (83, 55) = (VPy, —/P) are the
only possible choices for the transmitter, which are
essentially unique, and the decision rule of the receiver
is chosen based on the rule in (10).

there is an optimal distance d* = /|
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TABLE III
STACKELBERG EQUILIBRIUM ANALYSIS OF SUBJECTIVE PRIORS CASE FOR 0 < 7 < 00

0<T<1 1<71< o0
2In7(ko — k
. dZ.. < ‘%‘ = Case-5 applies, d* = 0, non-informative
% < % 21n7'0(k —1k ) Case-1 applies, d* = dmax
' a2, > ‘$‘ = Case-6 applies
(ko + k1)
21 ko — k
dfmx < |M‘ = Case-5 applies, d* = 0, non-informative
™ > 7 P (ko + k1)
pa > o Case-1 applies, d* = dmax
1 1 2 21n T(k‘[) — k‘l) .
diax > |W‘ = Case-6 applies
. 2In 7 (ko—k de . in nding on th 1 f In —
ii) ford" = |I(1,:0%kl)l) |, the equilibrium is informative, Since ko +ky >0, depending on the values of InT (ko

there are infinitely many choices for the transmitter and
the receiver, and all of them are essentially unique; i.e.,
they result in the same Bayes risks for the transmitter and
the receiver.

iii) for d* =0 or 7 ¢ (0,00), the equilibrium is non-
informative and there are infinitely many equilibrium
points which are essentially unique; see Remark 2.1-(ii).

B. Continuity and Robustness to Perturbations Around the
Team Setup

‘We now investigate the effects of small perturbations in priors
and costs on equilibrium values. In particular, we consider the
perturbations around the team setup; i.e., at the point of identical
priors and costs.

Define the perturbation around the team setup as € = {eq,
€x1, €005 €015 €10, 611} € RO such that 7Tf = 7T77; + €,; and Cjtz =
C7; +¢€ji for i, j € {0,1} (note that the transmitter parameters
are perturbed around the receiver parameters which are assumed
to be fixed). Then, for 0 < 7 < o0, at the point of identical priors
and costs, small perturbations in both priors and costs imply
ko = (5 + €0)C(CTy — Chy + €10 — €00)7 2 and ki = (a7
+ €:1)C(Ch — C7, + €01 — €11)72. Since, for 0 < 7 < o0,
ko = k1 = /7y \/(Cyy—Co)(Chy — C7y) >0 at the point
of identical priors and costs, it is possible to obtain both positive
and negative (ko — k1) by choosing the appropriate perturbation
€ around the team setup. Then, as it can be observed from
Table II, even the equilibrium may alter from an informative
one to a non-informative one; hence, under the Stackelberg
equilibrium, the policies are not continuous with respect to small
perturbations around the point of identical priors and costs, and
the equilibrium behavior is not robust to small perturbations in
both priors and costs.

C. Application to the Motivating Examples

1) Subjective Priors: Referring to Section I-C1, for0 < 7 <
00, the related parameters can be found as follows (note that the
equilibrium is non-informative if 7 < 0 or 7 = 00):

_ 76(C10 — Coo)
7 (Co1 — C11)’

7.[-7’
;i\/(010 — Co0)(Co1 — C11) s
0

r

k1= 7T7{ %\/(Cm — Coo)(Co1 — C11).

1

ki), d2,.., and \%L Case-1, Case-5 or Case-6 of
Theorem 3.1 may hold as depicted in Table III. Here, the decision
rule in Case-6 is the same as (15).

2) Biased Transmitter Cost: Based on the arguments in

Section I-C2, the related parameters can be found as follows:

T:?, ko = /momi (20 — 1), ky = /momi(2a — 1).

1

Then, InT (ko — ]ﬁ) =0 and k() + kl = 2%(2& — 1);
hence, either Case-4 or Case-6 of Theorem 3.1 applies. Namely,
if & < 1/2 (Case-4 of Theorem 3.1 applies), the transmitter
chooses Sy = S7 to minimize d and the equilibrium is non-
informative; i.e., he does not send any meaningful information
to the transmitter and the receiver considers only the priors. If
a = 1/2, the transmitter has no control on his Bayes risk, hence
the equilibrium is non-informative. Otherwise; i.e., if a > 1/2
(Case-6 of Theorem 3.1 applies), the equilibrium is always
informative. In other words, if o > 1/2, the players act like a
team. As it can be seen, the informativeness of the equilibrium
depends on o = Pr(b = 0), the probability that the Bayes risks
of the transmitter and the recei