
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3066948, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Hybrid Boolean Networks as Physically
Unclonable Functions
NOELOIKEAU CHARLOT1, DANIEL CANADAY2, ANDREW POMERANCE3, AND DANIEL J.
GAUTHIER,4 (Member, IEEE)
1,4Ohio State University, Department of Physics, 191 West Woodruff Ave, Columbus, OH 43202, USA, (e-mail: charlot.5@osu.edu, gauthier.51@osu.edu)
2,3Potomac Research, LLC, 801 N Pitt St #117, Alexandria, VA 22314, USA (e-mail: daniel@potomacresear.ch, andrew@potomacresear.ch)

Corresponding author: Noeloikeau Charlot (e-mail: charlot.5@osu.edu).

This work was supported by the Department of the Army through award number W31P4Q-19-C-0014 and by (for NC and DJG)
Asymmetric Technologies, LLC through the project ‘Resilient and enhanced security UAS flight control’ supported by the Ohio Federal
Research Network. A patent was filed based on this work under PCT/US2020/027072 for Systems and methods using hybrid Boolean
networks as physically unclonable functions.

ABSTRACT We introduce a Physically Unclonable Function (PUF) based on an ultra-fast chaotic network
known as a Hybrid Boolean Network (HBN) implemented on a field programmable gate array. The network,
consisting of N coupled asynchronous logic gates displaying dynamics on the sub-nanosecond time scale,
acts as a ‘digital fingerprint’ by amplifying small manufacturing variations during a period of transient
chaos. In contrast to other PUF designs, we use bothN -bits per challenge and obtainN -bits per response by
considering challenges to be initial states of the N -node network and responses to be states captured during
the subsequent chaotic transient. We find that the presence of chaos amplifies the frozen-in randomness due
to manufacturing differences and that the extractable entropy is approximately 50% of the maximum of
N2N bits. We obtain PUF uniqueness and reliability metrics µinter = 0.40±0.01 and µintra = 0.05±0.00,
respectively, for anN = 256 network. These metrics correspond to an expected Hamming distance of 102.4
bits per response. Moreover, a simple cherry-picking scheme that discards noisy bits yields µintra < 0.01
while still retaining ∼ 200 bits/response (corresponding to a Hamming distance of ∼ 80 bits/response). In
addition to characterizing the uniqueness and reliability, we demonstrate super-exponential scaling in the
entropy up to N = 512 and demonstrate that PUFmeter, a recent PUF analysis tool, is unable to model our
PUF. Finally, we characterize the temperature variation of the HBN-PUF and propose future improvements.

INDEX TERMS Chaos, Physically Unclonable Function (PUF), Field Programmable Gate Array (FPGA),
Autonomous Boolean Network (ABN), Hybrid Boolean Network (HBN)

I. INTRODUCTION

PHYSICALLY unclonable functions (PUFs) are an
emerging technology that extract randomness, or en-

tropy, from uncontrollable manufacturing variations in the
physical structure of identically produced devices [1], [2].
PUFs use this entropy to reliably generate a ‘digital finger-
print’ - a unique sequence of 0’s and 1’s known as a bitstream
- that is produced by the device but never stored [3]. In
practice, PUFs are often circuits embedded in other devices
that reliably map an input (or challenge) to an output (or
response) in a way that is unique to a particular copy (or
instance) of the device.

For example, the start-up behavior of static random-access
memory (SRAM) produces an identifying bit pattern suitable
for use as a PUF [4]. Ideally, this identifying behavior cannot

be reproduced (or cloned), either because it is physically
impossible to recreate the same conditions in another device,
or because it is mathematically impossible to accurately
predict the PUF’s behavior. In summary, we highlight three
practical properties of PUFs:

• Uniqueness: Responses from different instances to the
same challenge are different enough to distinctly iden-
tify each instance;

• Reliability: Responses from an individual instance to
the same challenge are similar enough to consistently
identify that instance;

• Unclonability: The challenge-response pairs (CRPs) of
an individual instance cannot be: (1) physically repli-
cated by another instance, or (2) inferred from knowl-
edge of the device manufacturing process or previously

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3066948, IEEE Access

Noeloikeau Charlot et al.: Hybrid Boolean Networks as Physically Unclonable Functions

revealed CRPs.
In early work, PUFs were constructed using complex

optical scattering devices or custom fabricated silicon chips
[5]. More recently, there is an industry trend toward using
reprogrammable devices such as field-programmable gate
arrays (FPGAs) for PUF-based IP protection. For example,
IntrinsicID offers the commercially available ‘butterfly PUF,’
an SRAM-PUF embedded directly into some manufacturers
higher-end FPGAs [6].

However, SRAM-PUFs, such as the butterfly PUF, are
‘weak’ in the sense that there are relatively few CRPs ob-
tainable per device (in this case resulting from the static ini-
tialization of each memory cell at power-up) [2]. As a result,
their use for authentication purposes are limited because an
attacker can clone the device by obtaining the full set of
CRPs in a short amount of time. ‘Strong’ PUFs, on the other
hand, contain a relatively large number of independent CRPs,
making attempts to extract or predict all of them a difficult
or impossible task [7]. Moreover, the design and practical
implementation of strong FPGA-based PUFs remains an
open problem [1].

Modern PUF proposals have also started to explore chaotic
dynamics as an additional source of entropy [8]–[10]. Chaos
is characterized by a exponential divergence between initially
similar trajectories. As discussed in more detail below, this
behavior can be used by a PUF to amplify the entropy
available from the small physical variations inherent in any
manufacturing process. Moreover, we hypothesize that chaos
provides resilience to machine learning due to the existence
of ‘fractal basin boundaries’ [11], which is a phenomenon
in chaotic systems in which dividing lines between different
behaviors have a fractal structure. In the standard interpre-
tation, this means that an infinitesimal change in the initial
conditions of the system does not yield a smooth change in
the asymptotic behavior of the system; instead, the system
may evolve to a disjoint attracting set. We hypothesize that
a chaotic PUF has a similar behavior with respect to the
system parameters, such that an infinitesimal change does not
yield a smooth change in the measured response. Hence, even
marginal uncertainty in the system parameters changes the
entire class of possible outcomes, likely confusing attempts
at prediction.

Finally, many PUFs incorporate asynchronous (unclocked
and analog-like) logic into their design [1], [2]. Asyn-
chronous logic can require fewer resources (time, area and
power) than conventional synchronous circuits governed by
a global clock. Morevoer, compared to synchronous designs,
asynchronous designs are much more sensitive to manu-
facturing variations. This is because clocked operations are
stabilized by waiting an entire clock period before the next
operation, so that any variations in, e.g., rise time or signal
propagation time are eliminated. On the other hand, dynam-
ical properties of even simple unclocked systems such as the
frequency of a ring oscillator depend sensitively on variations
in rise and fall times. In general, combinatorial loops can
be designed that operate at the maximum frequency allowed

by the hardware, where the dynamics are most sensitive
to manufacturing variations. Thus, asynchronous PUFs are
useful as compact, low-power cryptography primitives.

A. THIS WORK
In this paper, we propose a design for a strong, chaos-
enhanced, asynchronous PUF and demonstrate its implemen-
tation on an FPGA. Our PUF is based on a network of
coupled, unclocked logic gates known as an autonomous
Boolean network (ABN) combined with a clocked digital
control and readout layer, forming what we call a hybrid
Boolean network (HBN, HBN-PUF). The HBN-PUF can be
incorporated into existing FPGA designs without specialized
hardware, having a resource count proportional to the number
of nodes in the network N . The unique properties of the
HBN-PUF compared to existing strong PUF proposals are:
• The HBN-PUF produces N (or potentially more) re-

sponse bits per N -bit per challenge. Thus, extracting
secrets of a given length requires ∼ 1/N the number
of queries, which translates into time, storage and net-
work traffic efficiency. Moreover, the additional bits per
response can be used for error correction and improving
environmental resilience, and the multi-dimensional re-
sponse space and possible fractal basin boundaries will
likely frustrate machine learning attacks.

• Unlike many conventional PUFs, such as delay-line
PUFs [2], the HBN-PUF does not require carefully
constructed circuit paths with specified delay character-
istics; rather, automatic placement of circuit elements
by standard vendor-supplied compilation and synthesis
tools yield usable HBN-PUFs.

• The ABN part of the HBN-PUF exhibits picosecond-
scale asynchronous transient-chaotic dynamics. Be-
cause of these ultra-fast dynamics, response readout
occurs in less than 10 ns, which has important practical
applications because the number of CRPs required for
strong industrial-scale enrollment can be obtained in a
short time.

The paper is organized as follows. Our proposed HBN-
PUF design is described in Sec. II, with a discussion of
the circuit and data collection process in Sec. II.A and the
physical origins of PUF behavior in Sec. II.B. Section III
is devoted to experimentally characterizing the HBN-PUF
behavior by measuring its uniqueness and reliability (III.A),
entropy scaling (III.B), resilience to machine learning (III.C),
and temperature variation (III.D). Section IV concludes with
a brief discussion and future work. Supporting materials are
given in the Appendix, including the hardware description
language code that instantiates our design.

II. PROPOSED HBN-PUF DESIGN
Our proposed design is shown in Fig. 1, which consists
of a network of N coupled ‘nodes’ and a clocked digital
readout and control layer, forming an HBN. Each node is
a combinatorial logic circuit that takes as input the outputs
of other nodes in the network and a global reset signal; we

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3066948, IEEE Access

Noeloikeau Charlot et al.: Hybrid Boolean Networks as Physically Unclonable Functions

FIGURE 1. Proposed HBN-PUF design. The studied XOR-ABN topology is shown in the upper left, and the logic of an individual node in the upper right. Shown in
the bottom are the clocked logic used to apply the challenge and the tapped delay line used to select the response. The specific connections between nodes (i.e,
the identity of nodes f − l) are governed by the topology of the network; shown is an N = 32 regular random graph of degree 3.

refer to the output of this circuit as the ‘state’ of each node
in the network. When the reset signal is high, the state of the
node is the corresponding bit in the challenge string, and the
state of the entire network is exactly equal to the challenge
string C. When the reset signal is low, the state of the node
is given by the XOR of the states of its input nodes and
the entire network is a large recurrent combinatorial loop
that evolves in time without a clock (i.e., autonomously).
Typical clocked digital logic circuits constrain voltages to be
near logic high or low most of the time so that the output
voltages of a gate is near logic high or low. In contrast, the
individual semiconductor devices in an ABN act as highly
nonlinear input-output devices with analog (but Boolean-
like) dynamics, and the voltages take on a continuous range
of values between logic-high and -low. During this time, the
digital readout layer captures a Booleanized representation
of the true analog network state in discrete time intervals.
A single state at the optimal time of measurement is then
selected as the response R.

In contrast to other PUF designs, we stress that the chal-
lenge and response are both N -bit strings, specifying the
network’s initial condition and Booleanized state in a chaotic
transient, respectively. Thus, there are N response bits for
each of 2N challenges. Hence, the number of extractable bits
from the HBN-PUF may scale super-exponentially as N2N ,
yielding a strong PUF.

A. DESIGN SPECIFICS AND DATA COLLECTION
For the specific HBN considered in this work, each node
takes exactly 3 inputs, and the combinatorial function is the
3-input XOR, as shown in the upper right of Fig. 1. Both
of these design choices are flexible. The XOR function is
chosen because it is maximally sensitive to its inputs, and

the output is balanced between high and low; the overall
bias of the response can be controlled by replacing the
XOR with a Boolean function that has more or fewer high
outputs. Three inputs were chosen in order to fit within
a Cyclone V logic element; more or fewer inputs can be
used to match the layout to other FPGA architecture details.
Moreover, structure can be applied to the network (such as
ring topologies [12]) to fine tune statistical and performance
properties of the resulting response. These aspects will be
explored in follow up papers, but in this work each node’s
XOR gate takes the output of three nodes (f, g, h in Fig. 1),
randomly chosen without replacement from among theN−1
other nodes, and in turn its multiplexer feeds the XOR gate
of three other nodes (j, k, l in Fig. 1). When the clocked reset
signal is low, the multiplexer passes the node’s XOR gate.
When the reset signal is high, the node’s multiplexer holds
the initial condition, which is given by a corresponding bit
of the challenge. In this way, the analog state of all nodes
in the network x(t) = {xi(t)}Ni=1 ∈ [0, 1]N are initially
held fixed to the digital N -bit challenge string C, described
mathematically as

x(0) = C ∈ {0, 1}N . (1)

The HBN stabilizes to the initial condition nearly instanta-
neously, but we hold it there for several∼ 100 MHz clock cy-
cles of holding Reset high. The dynamics are then enabled by
setting the Reset signal low, causing each multiplexer to pass
the output of the autonomous XOR gate that feeds it. The
network then evolves continuously in time and each XOR
gate updates asynchronously based on the analog voltage of
its neighbors.

During this time, the HBN dynamics are measured by
sending the Reset signal down M pairs of inverter gates (i.e.,

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3066948, IEEE Access

Noeloikeau Charlot et al.: Hybrid Boolean Networks as Physically Unclonable Functions

a delay line). An associated register is triggered after the
delayed Reset signal passes over a given pair of inverters.
Each register Booleanizes the analog state of the HBN at that
time and stores it digitally. This results in a sequence of N -
bit Boolean state vectors in memory recording the bitstream
produced by the network {x(2τ),x(4τ), ...,x(2Mτ)} ∈
{0, 1}NM .

Here, τ ∼ 0.25 ns is the mean delay time of a sin-
gle inverter-gate, which is similar to the timescale of the
XOR gate and multiplexer operations. Thus, the bitstream is
sampled at a similar rate as the HBN dynamics, in roughly
2τ ∼ 0.5 ns intervals. However, like all logic elements, each
delay is subject to manufacturing variation, and so the sam-
pling rate is not completely uniform. This also contributes to
the manufacturing variation that gives rise to PUF behavior.
Moreover, by using pairs of inverter gates rather than a
clock source, the delay through the delay line varies with
temperature and voltage in a similar way to the dynamical
timescale of the nodes in the network. Thus, the delay line
imparts some robustness to environmental variation.

The response R is selected from among this bitstream as a
single state of the network at an optimal point in time x(topt)
during the chaotic transient

R = θ(x(topt)) ∈ {0, 1}N , (2)

where θ : [0, 1]N → {0, 1}N is an element-wise thresholding
operation, corresponding to the Booleanization of the real-
valued x(t) performed by the registers. The details of deter-
mining topt are discussed in Sec. III.

B. HBN DYNAMICS AND PUF BEHAVIOR
If each logic gate in an HBN were synchronously updated
by a global clock, it would execute the digital Boolean XOR
function exactly, and node states would take on discrete
values 0 or 1 at each clock cycle. In this mode, the state
at each discrete time step would be exactly determined
by the N -bit Boolean state at the previous time step, and
the entire network would act as a pseudo-random number
generator. However, because the logic gates are unclocked,
their inputs can change at the same time that they are tran-
sitioning between logic high and low. As a result, nodes
have the potential to take on intermediate logic values (ana-
log voltages) [13]. Thus, the dynamics of nodes are better
described by continuous differential equations that model
the rise and fall times resulting from the finite capacitances
and resistances in the devices, and not by discrete Boolean
dynamics. Moreover, the state at a specific time is not given
by the states of its inputs at the current time, but rather
by time-delayed versions, due to the finite speed at which
signals propagate along interconnects. Taken together, this
causes the asynchronous XOR gate to behave as a highly
nonlinear input-output device that multiplies signal edges,
which quickly causes the dynamics to reach the maximum
switching frequency allowed by the hardware [14], [15].

Under these conditions, the network dynamics become
highly sensitive to amplitude fluctuations about the interme-

diate voltage value. Here, small perturbations to the voltage at
the XOR gate, such as those due to manufacturing variation,
noise, and differences in initial conditions, will cause the time
at which the node switches between logic high and low to
vary, resulting in previously similar waveforms diverging. As
a result, ABNs consisting of XOR gates can exhibit chaos
even in small networks [16]. When combined with a digital
readout and control layer to form an HBN, they have been
used as ultra-fast true-random-number generators (TRNGs)
capable of a 12.8 Gbit/s entropy rate [12].

Based on past research and the discussions above, we
identify three sources of entropy in XOR-HBNs related to
PUF behavior:

1) Frozen-in heterogeneity (manufacturing differences),
2) Thermal and charge fluctuations (noise), and
3) Deterministic chaos (unpredictability and nonlinear am-

plification of timing differences)
Each source of entropy produces variations in the bitstream
generated by the digital readout layer of the clocked portion
of the network. However, each source has a separate physical
origin as discussed in the rest of this section.

Frozen-in heterogeneity is due to small variations in the
physical properties of the wiring and logic elements and it
is this source of entropy that forms the primary basis of
PUF behavior. Slight physical differences between nodes and
wires - such as node input impedence, switching rate, and
signal propagation time - alter the time at which the analog
voltage of individual nodes cross the logic threshold for
nominally identical inputs. The effect of these manufacturing
variations are more pronounced at the ultra-fast time scale
of the dynamics, which become distinctly correlated with
the unique physical characteristics of an individual device.
Such correlations produce the identifying information used
to distinguish different FPGAs programmed with the same
HBN design. They are quantified by the uniqueness parame-
ter µinter (Appendix C, (9)).

Thermal and charge fluctuations are sources of time-
dependent stochastic behavior (often referred to as ‘noise’),
which reduce the reliability of the PUF. Noise perturbs the
amplitude of the logic gates in the asynchronous portion of
the network and changes the times at which nodes cross the
threshold separating logic high from logic low. If a transition
is near the time at which the readout logic registers the node
state, small variations in the threshold crossing time can
change a registered zero to a one or vice versa. This alters
the bitstream of a single device under repeated measurement,
introducing unreliability quantified by µintra (Appendix C,
(8)).

Chaotic systems have a positive entropy rate separate from
noise and manufacturing variations, which serves to amplify
both of these sources of entropy. The entropy attributed to
chaos is due to the finite precision of physical measurements
and the exponential sensitivity of chaotic systems to initial
conditions. Any physical measurement of initial conditions
has a necessarily limited precision, and so two trajectories
measured to have the same initial conditions will diverge due

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3066948, IEEE Access

Noeloikeau Charlot et al.: Hybrid Boolean Networks as Physically Unclonable Functions

1 2 3 4 5 6 7 8 9 10
Time (ns)

0.0

0.1

0.2

0.3

0.4

0.5

inter

intra

(a)

1 2 3 4 5 6 7 8 9 10
Time (ns)

topt

(b)

FIGURE 2. (a). µinter (blue) and µintra (red) vs time. Light lines correspond to the metrics calculated on a single PUF class (i.e., choice of random network and
placement on an FPGA) for an N = 256 node HBN-PUF, and the dark lines correspond to the average values calculated over all PUF classes (i.e., the average
expected behavior for an N = 256 random, 3-input HBN-PUF). (b) ∆µintra vs time, with same definitions for light and dark lines. The highlighted topt is the time
at which the average ∆µ is maximum. We note, however, that there is some variation in the specific topt for each PUF class.

to the unmeasurable differences in the true initial state of
each system. Chaos thereby magnifies any small differences
in the applied challenge over time, acting as a nonlinear
amplifier of the other sources of entropy and contributing to
the unclonability property.

These three sources of entropy are visible in Fig. 2(a),
which is a plot of µinter and µintra vs. measurement time.
Frozen-in heterogeneity is illustrated by the separation be-
tween µinter and µintra at very short measurement times,
noise is illustrated by the fact that µintra is non-zero, and the
effect of chaos is illustrated by the fact that both measures
grow exponentially until saturating at 0.5. In the next section,
we discuss finding topt that balances these competing effects.

III. ABN-PUF PERFORMANCE STATISTICS
To be an effective PUF, the entropy rate due to the frozen-
in heterogeneity of the HBN must be greater than the noise-
induced entropy rate. This is captured by the metric

∆µ(t) := µinter(t)− µintra(t), (3)

which is plotted vs. time for N = 256 in Fig. 2(b). There is
an optimal time of measurement topt for which the network
has coupled sufficiently to manufacturing variations to act
as a unique identifier (µinter ∼ 1/2), while remaining
unperturbed enough by noise to be reliable (µintra ∼ 0),
defined by

topt := arg max
t∈[2τ,2Mτ]

∆µ(t). (4)

All future statistics are calculated from the network state at
this time. In practice, we find topt ∼ 2−8 ns for the networks
studied, with slowly increasing topt with network size N .
Note that topt is calculated exactly once over an entire PUF
class and represents a characteristic timescale of the HBN
dynamics. Further, we do not observe significant variation in
topt or ∆µ due to differences in the layout of the network
or delay line, as demonstrated in Fig. 2 and described in
Appendix A.

In the remainder of this section, we study the perfor-
mance statistics of the proposed HBN-PUF, including its
reliability and uniqueness (III.A), entropy (III.B), resilience
to machine learning (III.C), and temperature variation (III.D).
Corresponding definitions and experimental procedures are
elaborated in Appendices A-G.

A. RELIABILITY AND UNIQUENESS
Reliability and uniqueness are standard means of gauging
PUF performance [1]. The average fraction of dissimilar bits
between responses of different PUFs to a given challenge
is ideally 0.5 (random). It is known as ‘uniqueness’ and
described by µinter. Likewise, the average fraction of dis-
similar bits between responses of a fixed PUF to a given
challenge, known as ‘reliability’ (µintra), is ideally 0 (no
error). To gauge these measures, we study the pairwise dif-
ference between HBN-PUF responses to various challenges;
see Appendix C for details.

Figure 3 shows the number of unique challenge bitstrings
yielding response pairs differing on average by the given
fraction (bottom axis) or number of bits (top axis) for three
different PUF sizes,N = 64, 256, and 1024. Two histograms
are plotted, where the differences are calculated with respect
to the same chip (red) and with respect to other chips (blue).
Eight different chips were used to estimate µinter. There ap-
pears clear separation of intra- and inter-device distributions,
indicating vanishing false-positive rate for authentication us-
ing both network sizes, especially asN increases. This means
that our PUF is well-suited to authentication. Furthermore,
fewer challenges (∼ 1/N) are required for authentication
than with single-bit PUFs since the HBN-PUF produces N -
bit responses.

In practice, we find that µintra is driven by a relatively
small, fixed subset of nodes (where the subset depends on the
chip and the response). We hypothesize that these nodes are
in a metastable state at the measurement time topt, and that
a cherry picking error correction scheme [17] that removes

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3066948, IEEE Access

Noeloikeau Charlot et al.: Hybrid Boolean Networks as Physically Unclonable Functions

0 16 32
Difference (bits)

0.1 0.2 0.3 0.4 0.5
Difference (%)

0

100

200

C
ha

lle
ng

es

inter
intra

 = 0.37±0.03
 = 0.04±0.01

(a)

0 64 128
Difference (bits)

0.1 0.2 0.3 0.4 0.5
Difference (%)

inter
intra

 = 0.40±0.01
 = 0.05±0.00

(b)

0 256 512
Difference (bits)

0.1 0.2 0.3 0.4 0.5
Difference [%]

inter
intra

 = 0.43±0.00
 = 0.06±0.00

(c)

FIGURE 3. Challenge-response histograms for network sizes (a) N = 64, (b) N = 256, (c) N = 1024. We plot (8) and (9) (see Appendix C), the means of which
are µintra and µinter , respectively.

these error-prone bits from the response can be highly ef-
fective. This is illustrated in III.D and will be studied more
extensively in future work.

B. EXPONENTIAL SCALING OF ENTROPY WITH
NETWORK SIZE

Entropy is of central importance in determining the crypto-
graphic and security properties of a PUF [18]. The HBN-
PUF, with its multiple bits per response, presents unique
challenges to entropy estimation that will be discussed in
future work, but in this section we apply previously reported
entropy estimation techniques adapted to the HBN-PUF. A
PUF can be idealized as a table that gives the response
corresponding to a given challenge (called the ‘CRP table’
below). For most strong PUFs, the number of challenges (i.e.,
the number of rows in the CRP table) grows as 2N , and each
response is a single bit so the CRP table for a given PUF
realization can be described by a binary string of length 2N .
For the HBN-PUF, on the other hand, each row in the CRP
table is itself an N -bit string so the entire CRP table is de-
scribed by an N2N -bit string. Estimating the distribution of
binary strings of length N2N is infeasible even for relatively
small N ; however, we can apply entropy estimates from the
PUF literature that make assumptions about this distribution–
Hmin, Hjoint, and HCTW (see Appendices D-F). We do not
report the values of HCTW below because in nearly all cases
it produces full entropy and is never below Hmin or Hjoint.

The most basic measure is the minimum entropy Hmin,
which assumes no correlations between bits and responses
and serves as a median. The joint entropy Hjoint does not
assume independence, but does assume that all correlations
are pairwise and that no other higher-order correlations exist.
Finally, the context-tree weighted entropy HCTW serves as
an upper bound by generating a minimum-length compressed
binary string encoding the CRP behavior. We plot the first
two of these quantities as a function of N in Fig. 4 and Table
1, observing thatHjoint ≤ Hmin, which is true by definition.

Table 1 records the entropy and entropy density, ρmin or

TABLE 1. Entropies Hjoint ≤ Hmin and entropy densities
ρi ∼ Hi/(N2N) for N = 4− 512. Only Hmin is estimated for N > 8.

N Hmin ρmin Hjoint ρjoint

4 17.74± 0.27 0.32 8.04± 0.59 0.14
5 80.69± 0.89 0.54 25.63± 1.74 0.17
6 197.26± 1.78 0.53 58.10± 3.70 0.16
7 479.40± 3.88 0.54 154.53± 9.01 0.18
8 1155.88± 9.29 0.57 398.78± 14.22 0.20

16 (6.17± 0.12)× 105 0.59
32 (8.18± 0.08)× 1010 0.60
64 (6.95± 0.09)× 1020 0.59
128 (2.56± 0.02)× 1040 0.59
256 (1.77± 0.01)× 1079 0.60
512 (4.06± 0.00)× 10156 0.59

ρjoint, defined as the fraction of the observed entropy to the
maximum possible entropy N2N . We see that the entropy
density for our median estimate Hmin hovers around 0.6,
suggesting that the number of extractable bits is roughly
N2N/2 and hence that the min entropy scales super-
exponentially with network size. Note however that there
are theoretical bounds to the maximum entropy of PUFs and
indeed any physical system, with arguments to be made that
the entropy must be bounded polynomially by its size, such
as the number of atoms [7]. What our measurements show is
that in the range N = 4− 8, for which entropy measures are
calculated exactly over all possible CRPs, we observe super-
exponential scaling with N . Outside this region, the entropy
is computationally infeasible to calculate, and the reported
values are extrapolations from limited measurements - which
may not reflect the true entropy bounds of the system.

The inset to Fig. 4 illustrates the distribution of these en-
tropy measures over 80 PUF classes for the exactly calculable
network sizes N = 4 − 8 (see Appendix A). We observe
that there is significant variation in the entropy estimates at
very small PUF sizes, and that the joint entropy estimate in
this region is approximately 15− 20% of full entropy. Note,
however, that the joint entropy density increases and tightens
as N increases. We expect it to approach ρmin for larger

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3066948, IEEE Access

Noeloikeau Charlot et al.: Hybrid Boolean Networks as Physically Unclonable Functions

4 5 678 16 32 64 128 256 512
N (# nodes)

1021

1050

1079

10108

10137

En
tro

py
 (b

its
)

Hmin

Hjoint

(a)

101

103

4 5 6 7 8 16 32 64 128 256 512
N (# nodes)

0.0

0.2

0.4

0.6

En
tro

py
 D

en
si

ty

min

joint

(b)

FIGURE 4. Entropy (a) measures and (b) densities of HBN-PUF classes as a function of network size N . Violin plots are over the distribution of classes, and solid
lines indicate an average over classes.

networks.
We expect ρjoint to approach ρmin for two reasons. Firstly,

larger networks (N > 16) consistently exhibit chaos, while
small ABNs (N ≤ 8) may enter non-chaotic periodic
regimes [13] that induce pair-wise correlations. Secondly,
there exist certain challenge strings that are steady-state fixed
points. For the odd-input XOR functions used in this work,
the all-zero and all-one challenge strings are fixed points; this
can be seen since the output of the 3-XOR is zero or one if all
its inputs are zero or one. (In the case of an even number of
inputs, the all-one challenge is not a fixed point.) These trivial
fixed points are filtered by our analysis, but there may exist
other fixed points based on the details of the network wiring
diagram that would need to be searched for via Boolean
satisfiability algorithms which is not done in this work. We
expect the density of these fixed points to go to zero as
N → inf , but a non-negligible fraction of the challenge space
at the industrially-irrelevant network sizes shown in the inset
may be steady-state fixed points that reduces the entropy. We
see some evidence of this in the observed tightening of both
entropy distributions with increasing N , and by the super-
exponential growth of the extrapolated Hmin curve at larger
sizes (see Appendix D).

Investigating these hypotheses and developing other means
of estimating the entropy from limited samples for large
networks is the subject of future work, as the exponential
growth of the challenge space prevents full exploration even
in principle.

C. MACHINE LEARNING ATTACK WITH PUFMETER
PUFmeter [19] is a recently designed machine learning
platform used to assess the security of a PUF. It attempts
to learn the challenge-response behavior of a given PUF
using probably-approximately-correct learning, and indicates
whether a PUF’s behavior can be learned and hence is suscep-
tible to various attacks without actually performing specific
attacks. The theory behind PUFmeter is based upon single-

bit responses. For this reason, we use PUFmeter to assess the
security of an individual bit of our responses to an attack, as
well as the XOR of our entire response string. These results
are presented in Table 2.

TABLE 2. PUFmeter machine-learning attack on an N=16 node HBN-PUF
with responses taken after 6 pairs of inverter gates, using PUFmeter
parameters δ = 0.01 and ε = 0.05 governing the probability thresholds for
the analysis. Abbreviations Noise Upper Bound (UB), Average Sensitivity (AS),
and Noise Sensitivity (NS). The result κ = 0 indicates a failure of PUFmeter to
model our PUF.

Response Bit UB AS NS κ

XOR 0.468 0.298 0.249 0
0th 0.469 0.316 0.246 0

In Table 2, κ is the minimum number of Boolean vari-
ables usable by PUFmeter to predict the response to a given
challenge. Because κ = 0, PUFmeter is unable to model the
behavior of the HBN-PUF. The noise upper bound, average
sensitivity, and noise sensitivity are used to gauge the theo-
retical bounds for the types of attacks that are expected to
be possible. From these results, PUFmeter indicates that an
N = 16 HBN-PUF may be susceptible to a Fourier-based
attack.

Summarizing, the observed super-exponential entropy
scaling, the presence of chaotic nonlinear dynamics, and
the failure of PUFmeter to model our PUF suggests that
the behavior of the HBN-PUF may be resilient to machine
learning attack. We have attempted machine learning attacks,
including deep learning-based methods and model-based at-
tacks, which have also failed and will be described in future
publications. Further study is required to explicitly rule out
any given attack, such as Fourier-based attacks and side-
channel attacks. In such cases, instantiating multiple HBN-
PUFs on the chip may obscure the power supply draw or the
EM radiation emitted due to the chaotic transients of nearby
networks.

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3066948, IEEE Access

Noeloikeau Charlot et al.: Hybrid Boolean Networks as Physically Unclonable Functions

D. CHERRY PICKING AND TEMPERATURE VARIATION
A simple method of reducing errors is to mask out unreliable
bits on a per challenge and per device basis, an approach
known as cherry picking [17]. That is, at enrollment, each
PUF is queried multiple times (100 in this case) and any bits
that vary are discarded; the bit mask used to discard bits is
stored as helper data for reconstructing the PUF response
at query time. Fig. 5(a) shows the number of bits retained
by this procedure (termed ‘stable bits’) as a function of
measurement time. As can be seen, for measurement times
up to about 7 ns, more than half of the 256 bits are stable at
an error rate of less than 1%.

We illustrate the usefulness of this cherry picking approach
when querying the HBN-PUF at different temperatures,
which is an important practical concern when comparing
PUFs in different environmental conditions or over long
operating times [20]. A single N = 256 HBN-PUF on
a single chip was enrolled at room temperature (20 °C),
and µintra was calculated with respect to this enrollment at
three additional temperatures (-20 °C, 0 °C, and 40 °C, see
Appendix G). This µintra;20 °C is plotted vs. measurement
time in Fig. 5(b) in dashed lines, and compared to a control
of a second collection at 20 °C (black). We see that indeed
there is an increased error rate compared to the control. It
is significant in the case of raw data; however, the cherry
picking procedure (solid lines) does significantly reduce the
error due to temperature variation.

The HBN-PUF has some degree of environmental stability
due to the use of the delay line for triggering the capture of
the network state. Because the delay line is based on the same
digital logic building blocks as the rest of the ABN, it is likely
affected by temperature and voltage effects (e.g., changing
rise, fall, and signal propagation times) in a way similar to
the rest of the ABN. Thus, if the entire network sped up or
slowed down, the delay line would speed up or slow down
in a commensurate way. Contrast this with, e.g., an external,
temperature-stabilized clock signal. Early designs using a
clock signal rather than delayed reset showed µintra close to
50% for small temperature changes, but the delay line design
is much more robust.

Strategies to reduce environmental variation, as well as
experiments to test voltage sensitivity and aging effects, are
future work for the HBN-PUF. Referring to Fig. 5, we see
that there is a trade-space between entropy/response (i.e.,
shorter measurement time corresponds to less entropy), error
rate, bits/response, and effect temperature range that can be
optimized over for specific applications. This observation
suggests that we can trade some of those bits for error
correction ability to reduce errors to a level needed for key
exchange because of the large number of bits available per re-
sponse. Moreover, the temperature effects do not appreciably
change the overall behavior of the PUF. That is, there exists
a topt (that is constant for a PUF class over temperature)
corresponding to ∆µ ∼ 0.35 at any given temperature;
it is changes to the specific bitstream, not differences in
qualitative behavior, that drives these errors. As a result, a

temperature-aware enrollment protocol, in which the HBN-
PUF is enrolled at multiple temperatures may be applicable
[21].

IV. CONCLUSIONS AND FUTURE WORK
In summary, we present a novel HBN-PUF design that maps
the challenge-response mechanism of the PUF onto the full
state-space of a chaotic dynamical system (the HBN). The
HBN-PUF represents an improvement in the state-of-the-art
for strong PUFs several ways. First, to our knowledge, the
HBN-PUF is the only strong PUF proposal that produces
multiple bits per response, thus reducing time, network,
and storage resources for authentication and key exchange.
This will also likely frustrate machine learning attacks, as
illustrated by our tests with PUFmeter, because the attacker
will need to guess an N -dimensional Boolean vector instead
of a one-dimensional one. Second, the HBN-PUF is fast:
response readout occurs in less than 10ns, which combined
with the multiple bits per response, means that Gbps key
generation rates are easily achievable. Finally, the HBN-
PUF is relatively insensitive to placement on the FPGA chip
and resource usage scales linearly with the size of the PUF.
As a result, N = 1024 or larger HBN-PUFs are easily
realizable within resource constraints on modern low-end
FPGAs (Cyclone V), but could produce upwards of 21024

independent cryptographic keys at a rate of 100 Gbps. This
is fast enough so that, for instance, modern communications
networks could be one-time pad encrypted with HBN-PUF
output, but with such a large CRP space that it would take
many lifetimes of the universe to exhaust the entropy.

The HBN-PUF has many attractive properties that suggest
that it could be a true, machine-learning resistant and practi-
cal strong PUF. However, there remain substantial questions
to be addressed in future work. The most obvious is further
environmental testing and development of error mitigation
strategies that are applicable to the HBN-PUF. On a more
theoretical level, the multiple bits per response stress existing
entropy estimation methods and will require new techniques
to more accurately lower-bound the actual extractable en-
tropy. Moreover, we need to test and confirm the hypothesis
that HBN-PUFs are in fact chaotic to prove the security
properties of the HBN-PUF. We have developed models of
HBN-PUFs that can reproduce the behavior described here,
which will appear in a follow up study, and we will use
these models to execute model-based attacks to demonstrate
machine learning resistance. In addition to this theoretical
work, a study of the effects of the network layout (e.g,
random vs. ring vs. other possible topologies) and detailed
placement of the HBN-PUF elements in terms of the optimal
measurement time and entropy per response will also appear
in follow up work.

APPENDIX.
A. EXPERIMENTAL PROCEDURE
The HBN-PUF is created by coding our design using the
hardware description language Verilog (code in Appendix

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3066948, IEEE Access

Noeloikeau Charlot et al.: Hybrid Boolean Networks as Physically Unclonable Functions

1 2 3 4 5 6 7 8 9 10
Time (ns)

0

64

128

192

256

St
ab

le
 B

its

(a)

1 2 3 4 5 6 7 8 9 10
Time (ns)

0.0

0.1

0.2

0.3

0.4

0.5

in
tr

a;
20

C

 40 C
 20 C
 0 C
-20 C

Raw Data

Picked

(b)

FIGURE 5. (a) The number of cherry picked stable bits vs. time for an N = 256 network. Stable bits are those that have less than 1% error rate. (b) µintra

calculated with respect to a room temperature enrollment (20 °C) vs. measurement time for the same network when queried at different temperatures. Dashed lines
correspond to µintra calculated without cherry picking, and solid lines are with cherry picking.

H) using the Quartus CAD software, which compiles our
code with automatic placement and routing chosen by its
optimization procedure. We then program Nchips = 8 sep-
arate DE10-Nano SOCs hosting Cyclone V 5CSEBA6U23I7
FPGAs with the same .sof file. This ensures each FPGA
instantiates an identical copy of our PUF in both layout and
design, meaning the only variations of instances within a
PUF class are due to variations in the manufacturing of the
FPGAs.

For each network size N , we instantiate Nclasses =
NgraphNloc different HBN-PUF classes, where each class
corresponds to a particular network topology randomly
drawn from the set of possible regular graphs of degree 3
(Ngraph draws) and/or a particular location of the PUF on
the chip (Nloc PUFs per random graph). These draws are per-
formed using custom Python scripts and the numpy.random
module and written to the indicated positions in the Verilog
file in Appendix H.

In order to reduce the dependence on random seeds in
the CAD’s optimization procedures for the experiments pre-
sented here, we fix the locations of the nodes in the network
to specific logic elements on the chip (which are randomly
chosen from within a grid) but nothing about the HBN-
PUF’s behavior requires detailed control of node placement.
For N ≤ 16, Nloc = 16; else, Nloc = 3. For all sizes,
Ngraph = 5. We create one .sof file per random graph and
place Nloc PUFs at different locations (each with the same
graph layout) on the chip in order to populate the distribution
of HBN-PUFs. We find that the variation due to location is
comparable to the variation due to graph layout, and so treat
these on an equal footing; this yields a total of Nclasses = 80
different HBN-PUF classes for N ≤ 16 and 15 HBN-PUF
classes for N > 16.

The Cyclone V chips that we use have an integrated hard
processor running Linux. We therefore use Altera’s Avalon
interface to make the PUF accessible to the Linux system and
collect CRPs using custom C code that presents Nchallenges

to each PUF via this interface to set the initial state of a
given HBN. The HBN is held at a challenge for several
200 MHz clock cycles due to synchronous controller logic
and to stabilize the dynamics of the autonomous nodes. The
network is then released and evolves for a short time during
the transient phase, and the state is registered at a given
delay time by choosing the length of the delay line via a
multiplexer. The response is transferred and and the PUF is
reset to the same challenge. The entire process is repeated
Nrepeats = 100 times before moving to the next challenge,
so that the total number of applied challenges to each HBN
is equal to Nchallenges ×Nrepeats.

Peculiar to the XOR function, there are two steady-state
fixed points corresponding to when the network is all 0 or
all 1. These fixed points are discarded from the challenge
space as they have no entropy, however they can be used to
identify ‘glitchy’ PUF classes. That is, since the HBN-PUF
violates most commonly accepted design rules (in particular
the guidance against large combinatorial loops), occasionally
the Quartus software produces glitchy designs. If a given
PUF class does not produce all-ones or all-zeros as the
response to an all-one or all-zero challenge, we discard the
PUF class from consideration. This occurs approximately
10% of the time. All metrics are calculated using the valid
challenges, Nvc = 2N − 2. For N < 16, Nchallenges = Nvc.
For N ≥ 16, Nchallenges = 1000 unique and randomly
selected valid challenges. In all cases, Nrepeats = 100.

These parameters are used for all experimental data collec-
tion unless otherwise noted.

B. FORMAL CHALLENGE-RESPONSE DEFINITIONS
Let P ∈ P be a particular PUF instance P belonging to
the set of all PUF instances P of a particular PUF class.
The response R is a random variable R : SP → {0, 1}N
mapping from the set of all possible physical states SP of
PUF instance P to the set of all binary strings of length N ,
denoted {0, 1}N . Specifically, the response takes as input a

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3066948, IEEE Access

Noeloikeau Charlot et al.: Hybrid Boolean Networks as Physically Unclonable Functions

particular state SP,C ∈ SP of PUF instance P resulting from
challenge C ∈ {0, 1}N .

We characterize the reliability and uniqueness of P by
studying the distributions of R for various P and C. That
is, we study how our design performs as a PUF by com-
paring responses from individual and different instances on
a per-challenge basis using the metrics defined in the next
appendix.

C. INTRA- AND INTER-DEVICE STATISTICS
DEFINITIONS
The degree to which two binary strings are different is given
by the Hamming distance:

D(A,B) =
N∑
i=1

A(i)⊕B(i), (5)

where A and B are the two binary strings to compare, of
length N , A(i) and B(i) refer to the i-th bits of A and
B, respectively, and ⊕ is the XOR function. For random
strings, the Hamming distance is on average N/2. Moreover,
it is convenient to normalize the Hamming distance by N :
d(A,B) = D(A,B)/N . For random strings A and B,
d(A,B) = 1/2.

Consider two different responses from the same challenge
string Cc. These responses may result from applying the
same challenge string to the same PUF instance (indexed
by p) two different times (indexed by r for repetition), Rp,r

c

and Rp,r′

c , or they may result from applying the challenge
exactly once to two different PUF instances, Rp,r

c and Rp′,r
c .

Repeated application used to gauge reliability: a single PUF
instance should ideally produce identical responses when
presented with the same challenge (i.e., d(Rp,r

i ,Rp,r′

i) = 0
for all p, r, and r′). Applying the same challenge to different
PUF instances is used to gauge uniqueness: two different
PUF instances should give responses to the same challenge
which, when compared, appear random and uncorrelated.
In terms of Hamming distances, d(Rp,r

i ,Rp′,r
i) ≈ 1/2

(although this does not capture correlations in bits).
For clarity we summarize these indices:
• c ∈ [0, Nchallenges): Distinct challenge;
• r, r′ ∈ [0, Nrepeats): Separate applications of distinct

challenge;
• p, p′ ∈ [0, Nchips): Separate PUF instances.

If we take each response to be an N -bit string, then the frac-
tion of dissimilar bits between the two responses is denoted
as

R(c, p, r, r′) = d(Rp,r
c ,Rp,r′

c), (6)

U(c, p, p′, r) = d(Rp,r
c ,Rp′,r

c). (7)

Above, R (mnemonic ‘reliability’) is the intra-device frac-
tional Hamming distance between responses for the fixed
PUF instance p resulting from applications r and r′ of chal-
lenge c. Likewise, U (mnemonic ‘uniqueness’) is the inter-
device fractional Hamming distance between responses of

PUF instances p and p′ resulting from the fixed application
r of challenge c.

To obtain distributions of these distances on a per-
challenge basis, we average over the pairwise combinations
used to construct them, and then further average over the
remaining indices to obtain mean measures of reliability
µintra and uniqueness µinter. Specifically, if we let 〈·〉a,b
indicate the average of a quantity over indices a, b, then

r(c) = 〈R(c, p, r, r′)〉r,r′,p, (8)

u(c) = 〈U(c, p, p′, r)〉p,p′,r. (9)

We record a time series of N -bit strings representing the
time evolution of the network, so that the metrics introduced
above exist at every measurement time. If we wish to measure
the reliability on a per-chip basis, we simply do not average
over p in (8).

Fig. 3 shows the histograms of (8) and (9) at time topt.
We further summarize the reliability and uniqueness as single
numbers by averaging (8) and (9) over challenges, i.e.,

µintra = 〈r(c)〉c, (10)

µinter = 〈u(c)〉c. (11)

D. MINIMUM ENTROPY
The min-entropy of a random variable X is defined as

Hmin(X) = − log(pmax(X)), (12)

where pmax(X) is the probability of the most likely outcome.
If X = (x1, x2, ..., xn) is a vector of n independent random
variables, then the min-entropy is

Hmin =
n∑
i=1

− log(pmax(xi)). (13)

In the case of a strong PUF with multiple challenges and a
large response space, we need an ordering of the response
bits in order to make sense of entropy calculations. A natural
ordering is to define the response of the i-th node to the
j-th challenge as xjN+i, where the challenges are ordered
lexicographically. This is illustrated in Table 3 for the simple
case of N = 3. Here, there are only 6 challenges because we
omit the all-0 and all-1 challenges as discussed in Appendix
A.

TABLE 3. An illustration of response-bit ordering for N = 3, where there are
3× 6 = 18 total bits.

Challenge Node 1 Node 2 Node 3
001 x1 x2 x3
010 x4 x5 x6
011 x7 x8 x9
100 x10 x11 x12
101 x13 x14 x15
110 x16 x17 x18

Assuming independence of xi, the min-entropy for the
HBN-PUF can be readily calculated with (13) from empirical

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3066948, IEEE Access

Noeloikeau Charlot et al.: Hybrid Boolean Networks as Physically Unclonable Functions

estimates of pmax(xi) [4], [22]. For each xi, the estimate of
pmax(xi) is simply the observed frequency of 0 or 1, which
ever is larger. To put the entropy calculations into context, we
also present them as a fraction of the optimal case. If all of
the xi were independent and completely unbiased, i.e., each
xi were equally likely to be 0 or 1 (i.e., p(xi) = 1/2), then
the min-entropy would be equal to N times the number of
valid challenges Nvc. We therefore define the min-entropy
density as

ρmin = Hmin/(NNvc). (14)

Due to the exponential scaling of the challenge space, we
do not measure these values using all of the possible valid
challenges for N > 8. This is because of the computing
time required in both calculating the entropy measures and
obtaining the full CRP space. For N > 8, we randomly
choose challenges from a representative sample and multiply
by the fraction of the unused space to obtain Hmin. In the
next appendix, we study the full challenge space for low N .

E. JOINT ENTROPY
In the previous appendix, we assume hat xi are independent,
though this need not be the case. It is possible that some
bits reveal information about others, reducing the entropy.
Here we study these correlations between bit pairs, first by
calculating the mutual information defined as

I(xi, xj) =
∑
xi,xj

p(xi, xj) log[
p(xi, xj)

p(xi)p(xj)
] (15)

between all pairs of xi, xj . Unlike min-entropy, the mutual
information is difficult to calculate for higher N , so we will
restrict our attention to N = 4 − 8 and use the full valid
challenge space.

An adversary can use knowledge of any structure in the
mutual information to more effectively guess response bits,
thereby reducing the available entropy. In particular, the
entropy is reduced to [18]

Hjoint = Hmin −
n−1∑
i=0

I(xi, xi+1), (16)

where the ordering of the bits is such that the penalty is
as large as possible. Calculating the ordering of the bits
to maximize the joint information penalty is effectively a
traveling salesman problem, which we solve approximately
with a 2-opt algorithm [23].

F. CONTEXT-TREE WEIGHTING TEST
In this appendix, we estimate the entropy through a string
compression test. The results here should be understood as
an upper-bound for the true entropy, especially for larger N .
In particular, we consider the context tree weighting (CTW)
algorithm [24].

The CTW algorithm takes a binary string called the context
and forms an ensemble of models that predict subsequent bits
in the string. It then losslessly compresses subsequent strings

into a codeword using the prediction model. The size of the
codeword is defined as the number of additional bits required
to encode the PUF instance’s challenge-response behavior. If
the context contains information about a subsequent string,
then the codeword will be of reduced size.

In the case of PUFs, the codeword length approaches
the true entropy of the generating source in the limit of
unbounded tree depth [25]. However, the required memory
scales exponentially with tree depth, so it is not computa-
tionally feasible to consider an arbitrarily deep tree in the
CTW algorithm. Instead, we vary the tree depth up to 20 to
optimize the compression.

We perform a CTW compression as follows:
• We collect data for N = 4 − 8 HBN-PUFs with
Nrepeats = 1.

• We concatenate the resulting measurements for all but
one PUF instances into a 1D string of length (Nchips −
1)NvcN to be used as context.

• We apply the CTW algorithm to compress the measure-
ments from the last PUF with the context, using various
tree depths to optimize the result.

• We repeat steps 2-3, omitting measurements from a
different PUF instance, until all PUFs have been com-
pressed.

The final entropy estimate is the average codeword length
from all of the compression tests described above. If the
behavior of the Nchips − 1 PUF instance can be used to
predict the behavior of the unseen instance, then the PUFs
do not have full entropy.

G. TEMPERATURE VARIATION
We calculate at each temperature the deviation of an HBN-
PUF with respect to itself at 20 °C, a quantity which we
denote µintra;20 °C. This measure is equivalent to considering
an individual chip as consisting of different instances - one
for each temperature. It is calculated at each temperature
by comparing responses to those generated at 20 °C, then
averaging over all challenges. These plots are presented in
Fig. 5 as a function of t, the number of inverter gates after
which the response is registered. Each curve is a separate
temperature.

H. HARDWARE DESCRIPTION LANGUAGE CODE
This Verilog code is used for synthesizing the HBN in Fig. 1.

1 / / Th i s module c o r r e s p o n d s t o t h e node zoom−i n o f
F ig . 2 .

2 module Node (r e s e t , c h a l l e n g e , in1 , in2 , in3 , o u t) ;
3

4 i n p u t r e s e t ;
5 i n p u t c h a l l e n g e ;
6 i n p u t i n 1 ;
7 i n p u t i n 2 ;
8 i n p u t i n 3 ;
9 o u t p u t o u t ;

10

11 wire n o d e _ c l o c k e d ;
12 wire no d e_ as y nc h r on o u s ;
13

14 a s s i g n n o d e _a sy n c h r o n ou s = i n 1 ^ i n 2 ^ i n 3 ;

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3066948, IEEE Access

Noeloikeau Charlot et al.: Hybrid Boolean Networks as Physically Unclonable Functions

15 a s s i g n n o d e _ c l o c k e d = r e s e t ? c h a l l e n g e :
no de _ as yn ch r o n ous ;

16 a s s i g n o u t = n o d e _ c l o c k e d ;
17

18 endmodule
19

20

21 module HBN(
22

23 c lk ,
24 r e s e t ,
25 c h a l l e n g e ,
26 d e l a y _ a d d r e s s ,
27 r e s p o n s e ,
28 r e a d y
29

30) ;
31

32 p a r a m e t e r N = 256 ; / / HBN S i z e
33 p a r a m e t e r INDEX = 0 ; / / Index on t h e c h i p (0 . . 2 o r

0 . . 1 5 depend ing on N)
34 p a r a m e t e r MEASUREMENT_DELAY = 2 0 ;
35

36 l o c a l p a r a m DELAY_ADDRESS_BITS = $ c lo g2 (
MEASUREMENT_DELAY) ;

37

38 i n p u t c l k ;
39 i n p u t r e s e t ;
40 i n p u t [N−1:0] c h a l l e n g e ;
41 i n p u t [DELAY_ADDRESS_BITS : 0] d e l a y _ a d d r e s s ;
42 o u t p u t [N−1:0] r e s p o n s e ;
43 o u t p u t r e g r e a d y ;
44

45

46 wire [N−1:0] r i n g _ s t a t e ;
47 wire [N−1:0] r i n g [3] ;
48 wire r e s e t _ b u f / * s y n t h e s i s keep * / ;
49 wire d e l a y e d _ r e s e t / * s y n t h e s i s keep * / ;
50

51

52 a s s i g n r e s e t _ b u f = r e s e t ;
53

54 / / c r e a t e N nodes
55 g en va r i ;
56 g e n e r a t e
57 f o r (i =0 ; i <N; i = i +1) b e g i n : g e n e r a t e _ r i n g
58 Node n (
59

60 . r e s e t (r e s e t _ b u f) ,
61 . r e s e t _ d e l a y (d e l a y e d _ r e s e t) ,
62 . c h a l l e n g e (c h a l l e n g e [i]) ,
63 . i n 1 (r i n g [0] [i]) ,
64 . i n 2 (r i n g [1] [i]) ,
65 . i n 3 (r i n g [2] [i]) ,
66 . o u t (r i n g _ s t a t e [i]) ,
67 . r e s p o n s e (r e s p o n s e [i])
68

69) ;
70 end
71 e n d g e n e r a t e
72

73

74 a lways @(posedge c l k) b e g i n
75 i f (r e s e t) r e a d y <= 0 ;
76 e l s e r e a d y <= ~ d e l a y e d _ r e s e t ;
77 end
78

79 A d d r e s s a b l e D e l a y L i n e # (MEASUREMENT_DELAY) DLM (
r e s e t , d e l a y _ a d d r e s s , d e l a y e d _ r e s e t) ;

80

81 / / / AUTO−GENERATED CODE TO DEFINE THE WIRING
DIAGRAM

82 a s s i g n r i n g [0] [0] = r i n g _ s t a t e [5] ; / / 0 t h
i n p u t o f node 0

83 a s s i g n r i n g [1] [0] = r i n g _ s t a t e [3 7] ; / / 1 s t
i n p u t o f node 0

84 a s s i g n r i n g [2] [0] = r i n g _ s t a t e [1 3 1] ; / / 2nd
i n p u t o f node 0

85

86 / / / . . . and so−on . . .

This Verilog code is used for synthesizing the tapped-delay
line in Fig. 1.

1 / / Th i s i s t h e t a p p e d d e l a y l i n e i n F ig . 1 .
R e c o n s t r u c t i n g t h e t ime s e r i e s r e q u i r e s
r e s e t t i n g t h e PUF and i n c r e m e n t i n g t h e
d e l a y _ a d d r e s s

2 module A d d r e s s a b l e D e l a y L i n e (
3 in ,
4 d e l a y _ a d d r e s s ,
5 o u t
6) ;
7

8 p a r a m e t e r N = 5 ; / / # o f p a i r s o f i n v e r t e r s .
9 l o c a l p a r a m DELAY_ADDRESS_BITS = $ c lo g2 (N) ;

10

11 i n p u t i n ;
12 i n p u t [DELAY_ADDRESS_BITS : 0] d e l a y _ a d d r e s s ;
13 o u t p u t o u t ;
14

15 wire [2*N−1:0] d e l a y / * s y n t h e s i s keep * / ;
16

17 a s s i g n d e l a y [0] = i n ;
18 a s s i g n o u t = d e l a y [2* d e l a y _ a d d r e s s −1];
19

20 g en va r i ;
21 g e n e r a t e f o r (i =0 ; i <2*N−1; i = i +1) b e g i n :

g e n e r a t e _ d e l a y s
22 a s s i g n d e l a y [i +1] = ~ d e l a y [i] ;
23 end
24 e n d g e n e r a t e
25

26 endmodule

REFERENCES
[1] R. Maes, Physically Unclonable Functions: Concept and Constructions.

Springer Berlin Heidelberg, 2013, ch. 2, pp. 25–48. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-41395-7_2

[2] T. McGrath, I. E. Bagci, Z. M. Wang, U. Roedig, and R. J. Young, “A
PUF taxonomy,” Applied Physics Reviews, vol. 6, no. 1, p. 011303, Mar
2019. [Online]. Available: http://aip.scitation.org/doi/10.1063/1.5079407

[3] J. Zhang, T. Q. Duong, A. Marshall, and R. Woods, “Key generation from
wireless channels: A review,” IEEE Access, vol. 4, pp. 614–626, 2016.
[Online]. Available: http://ieeexplore.ieee.org/document/7393435/

[4] D. Holcomb, W. Burleson, and K. Fu, “Power-up SRAM state as
an identifying fingerprint and source of true random numbers,” IEEE
Transactions on Computers, vol. 58, no. 9, pp. 1198–1210, Sep 2009.
[Online]. Available: http://ieeexplore.ieee.org/document/4674345/

[5] R. Pappu, “Physical one-way functions,” Science, vol. 297, no. 5589, pp.
2026–2030, Sep 2002. [Online]. Available: https://www.sciencemag.org/
lookup/doi/10.1126/science.1074376

[6] S. S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, and P. Tuyls, “Extended
abstract: The butterfly PUF protecting IP on every FPGA.” IEEE, Jun
2008, pp. 67–70. [Online]. Available: http://ieeexplore.ieee.org/document/
4559053/

[7] U. Rührmair, H. Busch, and S. Katzenbeisser, Strong PUFs:
Models, Constructions, and Security Proofs, ser. Information Security
and Cryptography. Springer Berlin Heidelberg, 2010, ch. chapter
4, pp. 79–96. [Online]. Available: http://link.springer.com/10.1007/
978-3-642-14452-3_4

[8] K. Gołofit and P. Wieczorek, “Chaos-based physical unclonable
functions,” Applied Sciences, vol. 9, no. 5, p. 991, Mar 2019. [Online].
Available: https://www.mdpi.com/2076-3417/9/5/991

[9] T. Tuncer, “The implementation of chaos-based PUF designs in field
programmable gate array,” Nonlinear Dynamics, vol. 86, no. 2, pp.

12 VOLUME 4, 2016

http://link.springer.com/10.1007/978-3-642-41395-7_2
http://aip.scitation.org/doi/10.1063/1.5079407
http://ieeexplore.ieee.org/document/7393435/
http://ieeexplore.ieee.org/document/4674345/
https://www.sciencemag.org/lookup/doi/10.1126/science.1074376
https://www.sciencemag.org/lookup/doi/10.1126/science.1074376
http://ieeexplore.ieee.org/document/4559053/
http://ieeexplore.ieee.org/document/4559053/
http://link.springer.com/10.1007/978-3-642-14452-3_4
http://link.springer.com/10.1007/978-3-642-14452-3_4
https://www.mdpi.com/2076-3417/9/5/991

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3066948, IEEE Access

Noeloikeau Charlot et al.: Hybrid Boolean Networks as Physically Unclonable Functions

975–986, Oct 2016. [Online]. Available: http://link.springer.com/10.1007/
s11071-016-2938-3

[10] L. Chen, “A framework to enhance security of physically unclonable
functions using chaotic circuits,” Physics Letters A, vol. 382, no. 18, pp.
1195–1201, May 2018. [Online]. Available: https://linkinghub.elsevier.
com/retrieve/pii/S037596011830255X

[11] E. Ott, Fractal Basin Boundaries. Cambridge University Press, Aug 1993,
ch. 5.1, pp. 152–157.

[12] D. P. Rosin, D. Rontani, and D. J. Gauthier, “Ultrafast physical
generation of random numbers using hybrid boolean networks,”
Physical Review E, vol. 87, no. 4, Apr 2013. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevE.87.040902

[13] D. P. Rosin, Autonomous Boolean Networks on Electronic Chips,
ser. Springer Theses. Springer International Publishing, 2015, ch.
chapter 3, pp. 25–33. [Online]. Available: http://link.springer.com/10.
1007/978-3-319-13578-6_3

[14] R. Zhang, H. L. D. de S.Cavalcante, Z. Gao, D. J. Gauthier,
J. E. S. Socolar, M. M. Adams, and D. P. Lathrop, “Boolean chaos,”
Physical Review E, vol. 80, no. 4, Oct 2009. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevE.80.045202

[15] M. Ghil and A. Mullhaupt, “Boolean delay equations. ii. periodic and
aperiodic solutions,” Journal of Statistical Physics, vol. 41, no. 1-2, pp.
125–173, Oct 1985. [Online]. Available: http://link.springer.com/10.1007/
BF01020607

[16] H. L. D. d. S. Cavalcante, D. J. Gauthier, J. E. S. Socolar, and R. Zhang,
“On the origin of chaos in autonomous boolean networks,” Philosophical
Transactions of the Royal Society A Mathematical Physical and
Engineering Sciences, vol. 368, no. 1911, pp. 495–513, Jan 2010. [Online].
Available: https://royalsocietypublishing.org/doi/10.1098/rsta.2009.0235

[17] M. Hiller, M.-D. Yu, and G. Sigl, “Cherry-picking reliable PUF bits
with differential sequence coding,” IEEE Transactions on Information
Forensics and Security, vol. 11, no. 9, pp. 2065–2076, Sep 2016. [Online].
Available: http://ieeexplore.ieee.org/document/7480444/

[18] R. Maes, PUF-Based Key Generation. Springer Berlin Heidelberg, 2013,
ch. chapter 6, pp. 143–168. [Online]. Available: http://link.springer.com/
10.1007/978-3-642-41395-7_6

[19] F. Ganji, D. Forte, and J.-P. Seifert, “PUFmeter a property testing
tool for assessing the robustness of physically unclonable functions to
machine learning attacks,” IEEE Access, vol. 7, pp. 122 513–122 521,
2019. [Online]. Available: https://ieeexplore.ieee.org/document/8819883/

[20] S. K. Mathew, S. K. Satpathy, M. A. Anders, H. Kaul, S. K.
Hsu, A. Agarwal, G. K. Chen, R. J. Parker, R. K. Krishnamurthy,
and V. De, “16.2 a 0.19pj/b pvt-variation-tolerant hybrid physically
unclonable function circuit for 100stable secure key generation in
22nm cmos.” IEEE, Feb 2014, pp. 278–279. [Online]. Available:
http://ieeexplore.ieee.org/document/6757433/

[21] Y. Gao, Y. Su, L. Xu, and D. C. Ranasinghe, “Lightweight (reverse) fuzzy
extractor with multiple reference PUF responses,” IEEE Transactions on
Information Forensics and Security, vol. 14, no. 7, pp. 1887–1901, Jul
2019. [Online]. Available: https://ieeexplore.ieee.org/document/8574914/

[22] P. Simons, E. van der Sluis, and V. van der Leest, “Buskeeper PUFs, a
promising alternative to d flip-flop PUFs.” IEEE, Jun 2012, pp. 7–12.
[Online]. Available: http://ieeexplore.ieee.org/document/6224311/

[23] B. Chandra, H. Karloff, and C. Tovey, “New results on the old
K-opt algorithm for the traveling salesman problem,” SIAM Journal on
Computing, vol. 28, no. 6, pp. 1998–2029, Jan 1999. [Online]. Available:
http://epubs.siam.org/doi/10.1137/S0097539793251244

[24] F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens, “The context tree
weighting method: Basic properties,” IEEE Trans. Inf. Theory, vol. 41,
no. 3, pp. 653–664, May 1995.

[25] T. Ignatenko, G.-j. Schrijen, B. Skoric, P. Tuyls, and F. Willems,
“Estimating the secrecy-rate of physical unclonable functions with the
context-tree weighting method.” IEEE, Jul 2006, pp. 499–503. [Online].
Available: http://ieeexplore.ieee.org/document/4036011/

NOELOIKEAU F. CHARLOT received the B.S.
degrees in physics and biological engineering
from the University of Hawai’i at Manoa, Hon-
olulu, HI, USA in 2017, and an M.S. degree in
physics from the Ohio State University, Columbus,
OH, USA in 2020, where he is currently pursuing
a Ph.D. degree in physics.

Before his work as a research assistant in the
QuantInfo lab and CYAN cybersecurity collabo-
ration at OSU, he interned in the Gravitational

Astrophysics lab at NASA Goddard and the Dark Matter Detection lab at
UH Manoa. Noelo’s industrial experience includes bioreactor design and
photonics at ProtaCulture, LLC. His research interests include network
science, artificial intelligence, ultrafast electronics, and quantum gravity.
Noelo is a prior McNair Scholar.

DANIEL CANADAY was born in Columbus, OH
in 1991. He received the B.S. degree in physics
and mathematics from Ohio State University,
Columbus, OH, USA in 2014, the M.S. degree
in physics from Ohio State University, Columbus,
OH, USA in 2017, and the Ph.D. degree in physics
from Ohio State University, Columbus, OH, USA
in 2019.

He is currently a scientist at Potomac Research,
LLC, Alexandria, VA. His research is concerned

with applied reservoir computing and the application of physical neural
networks to cryptography.

ANDREW POMERANCE Andrew Pomerance
was born in Washington, DC, USA, in 1980. He
received the B.S. and M.S. degrees in Electrical
and Computer Engineering from Carnegie Mellon
University, Pittsburgh, PA, in 2002, and the Ph.D.
in Physics from the University of Maryland, Col-
lege Park, MD, in 2009.

From 2009 to 2013, he was with Raytheon
Applied Signal Technology, Tyson’s Corner, VA,
USA. He is currently the president of Potomac

Research, LLC, Alexandria, VA, USA. His research is concerned with
nonlinear dynamics with applications to machine learning and cryptography.

VOLUME 4, 2016 13

http://link.springer.com/10.1007/s11071-016-2938-3
http://link.springer.com/10.1007/s11071-016-2938-3
https://linkinghub.elsevier.com/retrieve/pii/S037596011830255X
https://linkinghub.elsevier.com/retrieve/pii/S037596011830255X
https://link.aps.org/doi/10.1103/PhysRevE.87.040902
http://link.springer.com/10.1007/978-3-319-13578-6_3
http://link.springer.com/10.1007/978-3-319-13578-6_3
https://link.aps.org/doi/10.1103/PhysRevE.80.045202
http://link.springer.com/10.1007/BF01020607
http://link.springer.com/10.1007/BF01020607
https://royalsocietypublishing.org/doi/10.1098/rsta.2009.0235
http://ieeexplore.ieee.org/document/7480444/
http://link.springer.com/10.1007/978-3-642-41395-7_6
http://link.springer.com/10.1007/978-3-642-41395-7_6
https://ieeexplore.ieee.org/document/8819883/
http://ieeexplore.ieee.org/document/6757433/
https://ieeexplore.ieee.org/document/8574914/
http://ieeexplore.ieee.org/document/6224311/
http://epubs.siam.org/doi/10.1137/S0097539793251244
http://ieeexplore.ieee.org/document/4036011/

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3066948, IEEE Access

Noeloikeau Charlot et al.: Hybrid Boolean Networks as Physically Unclonable Functions

DANIEL J. GAUTHIER Daniel J. Gauthier is
a Professor of Physics and Electrical and Com-
puter Engineering at The Ohio State University.
He received the B.S., M.S., and Ph.D. degrees
from the University of Rochester, Rochester, NY,
in 1982, 1983, and 1989, respectively. His Ph.D.
research on “Instabilities and chaos of laser beams
propagating through nonlinear optical media” was
supervised by Prof. R.W. Boyd and supported
in part through a University Research Initiative

Fellowship. From 1989 to 1991, he developed the first CW two-photon
optical laser as a Post-Doctoral Research Associate under the mentorship
of Prof. T.W. Mossberg at the University of Oregon. In 1991, he joined
the faculty of Duke University, Durham, NC, as an Assistant Professor of
Physics and was named a Young Investigator of the U.S. Army Research
Office in 1992 and the National Science Foundation in 1993. He was the
Robert C. Richardson Professor of Physics at Duke from 2011- 2015, chair
of the Duke Physics Department from 2005 – 2011, interim chair in spring
2015, and was a founding member of the Duke Fitzpatrick Institute for
Photonics. He moved to The Ohio State University in 2016. His research
interests include: reservoir computing, synchronization and control of the
dynamics of complex networks in electronic and optical systems, quantum
communication, and nonlinear quantum optics. Prof. Gauthier is a Fellow of
the Optical Society of America and the American Physical Society.

14 VOLUME 4, 2016

