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Phase contrast tomography is a high sensitivity medical imaging technique. Several regularization methods have been used in
the literature to obtain stable solutions for the phase retrieval or the phase contrast tomography problems. Yet, the functional
framework and the convergence properties of the methods have not been studied in detail. In this work, the convergence properties
of regularization approaches for phase retrieval and phase contrast tomography are investigated.

1. Introduction

X-ray microtomography is a very useful imaging technique
in material science [1] and medical imaging [2–6]. Yet its
sensitivity is improved for soft tissues within dense materials
with phase contrast imaging obtained with third-generation
synchrotrons. X-ray in-line phase tomography is based on
coupling of tomography and phase retrieval to reconstruct
the real part of the refractive index [7, 8]. For coherent X-
rays, phase contrast can be achieved by letting the beam
propagate in the free space after interaction with the object
and by recording the intensity for one or several propagation
distances and for several projection angles (Figure 1). The
relationship between the phase shift induced by a sample and
the intensity recorded at a given sample-to-detector distance
relies on the Fresnel diffraction theory [9–12]. Several linear
algorithms have been proposed for the phase retrieval from
the Fresnel diffraction patterns [1, 10, 13–18] valid under some
restrictive assumptions. Yet, in these works, the convergence
of the regularization methods used to obtain stable solutions
has not been investigated. The main purpose of this paper is
to detail the functional properties of the direct and inverse
operators involved in these problems on the basis of classical
results of harmonic analysis. Our aim is also to study the con-
vergence of the regularized solutions when the noise and the
regularization parameter tend to zero for the phase retrieval
and the phase contrast tomography problems in the good

functional framework. To prove stability with respect to
the noise, we have to define a parameter choice rule for 𝛾
depending on the noise level 𝛿. This procedure is typical for
regularizing ill-posed problems [19] and is presented in detail.

This paper is organized as follows. In Section 2,we present
in detail the phase retrieval and phase contrast tomogra-
phy direct problems. In Section 3, we consider the vari-
ous regularization methods proposed in the literature for
the linearized phase retrieval problem. We investigate the
behaviour of the solutions as the regularization parameter
tends to zero with the noise level. In Section 4, we study the
convergence properties of the solutions of the phase contrast
tomography problem obtained with various regularization
methods. These methods are based on a combination of
inversion schemes for the Radon projector and the phase
operator.

2. Phase Retrieval and
Phase Contrast Tomography

2.1. The Direct Problem for Phase Contrast Tomography. In
the following, we will consider a monochromatic, coherent,
parallel X-ray beam. The real and imaginary parts of the
complex refractive index to be reconstructed, denoted as 𝛿

𝑛

and 𝛽, are defined on a 3D bounded domain (Σ) with spatial
coordinates (𝑥, 𝑦, 𝑧). For the sake of simplicity, we assume
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Figure 1: Experimental set-up in propagation based phase contrast
tomography from a single propagation based phase contrast image
per projection showing the coordinate system.

that Σ is the Cartesian product Σ
𝑥
× Σ

𝑦
× Σ

𝑧
of bounded

intervals on the coordinate axes. We denote by (𝑥
𝜃
, 𝑦
𝜃
, 𝑧) the

rotated spatial coordinate system for an angle 𝜃 around the
𝑧-axis (Figure 1).

The optical properties of an object interacting with
coherent X-rays of wavelength 𝜆 are related to its complex
refractive index given by

𝑛 (𝑥, 𝑦, 𝑧) = 1 − 𝛿
𝑛
(𝑥, 𝑦, 𝑧) + 𝑖𝛽 (𝑥, 𝑦, 𝑧) , (1)

where 𝛿
𝑛
is the refractive index decrement and 𝛽 is the

absorption index [20]. For a fixed projection angle 𝜃, thin
objects, and straight line propagation of the beamalong the𝑦

𝜃

direction, this interaction can be described by a transmittance
function 𝑇 of the coordinates𝑋

𝜃
= (𝑥

𝜃
, 𝑧):

𝑇
𝜃
[𝛿
𝑛
] (𝑋

𝜃
) = exp (−𝐵

𝜃
[𝛽] (𝑋

𝜃
) + 𝑖𝜑

𝜃
[𝛿
𝑛
] (𝑋

𝜃
))

= 𝑎
𝜃
(𝑋

𝜃
) exp (𝑖𝜑

𝜃
[𝛿
𝑛
] (𝑋

𝜃
)) ,

(2)

where 𝑎
𝜃
[𝛽](𝑋

𝜃
) is the absorption and 𝜑

𝜃
[𝛿
𝑛
](𝑋

𝜃
) is the

phase shift induced by the object for the projection angle 𝜃
[8]. The phase and the negative logarithm of the absorption,
𝐵
𝜃
[𝛽](𝑋

𝜃
) = − log(𝑎

𝜃
[𝛽](𝑋

𝜃
)), are the projections of the

absorption index and refraction index, respectively:

𝐵
𝜃
[𝛽] (𝑋

𝜃
) =

2𝜋

𝜆
∫𝛽 (𝑦

𝜃
, 𝑋

𝜃
) 𝑑𝑦

𝜃
, (3)

𝜑
𝜃
[𝛿
𝑛
] (𝑋

𝜃
) =

2𝜋

𝜆
∫ (1 − 𝛿

𝑛
(𝑦
𝜃
, 𝑋

𝜃
)) 𝑑𝑦

𝜃
, (4)

where 𝑦
𝜃
is the propagation direction of the X-rays. In the

framework of the Fresnel diffraction theory, the intensity
detected at a distance 𝑑 after the sample is given by the
squared modulus of the 2D convolution between the trans-
mittance 𝑇

𝜃
and the Fresnel propagator 𝑃

𝑑
for a distance 𝑑

downstream of the object [8, 11, 21]:

𝐼
𝑑,𝜃

[𝛿
𝑛
] =

𝑇𝜃 [𝛿𝑛] ∗ 𝑃
𝑑


2

, (5)

where

𝑃
𝑑
(𝑋

𝜃
) =

1

𝑖𝜆𝑑
exp (𝑖 𝜋

𝜆𝑑

𝑋𝜃

2

) . (6)

The intensity 𝐼
𝑑
operator can thus be considered as a

nonlinear function of 𝛿.

2.2. Linear Approaches of the Phase Retrieval Problem. For
each value of the projection 𝜃, the phase retrieval problem
to recover the phase from the intensity patterns set in the
𝑋
𝜃
= (𝑥

𝜃
, 𝑧) plane has been linearized in the framework of

several models. We first review some widely used relations
between the phase and the measured intensity. The Fourier
coordinates in the 𝑋

𝜃
= (𝑥

𝜃
, 𝑧) plane will be denoted as

�⃗� = (𝜉, 𝜂). For sufficiently small propagation distance 𝑑, the
function 𝜑 varies in an approximately linear way in 𝑑 and the
phase can be written:

𝜑 (𝑋
𝜃
) = 𝜑

𝑑=0
(𝑋

𝜃
) + 𝜑

1
(𝑋

𝜃
) 𝑑 (7)

(see [22–24]). In the small 𝑑 limit, the transport of intensity
equation (TIE) leads to the linear approximating equation:

𝑔
𝑑
(𝑋

𝜃
) = −

𝑑

𝑘
Δ𝜑

𝑑=0
(𝑋

𝜃
) , (8)

where Δ is a Laplacian operator, 𝐼
𝑑
is the intensity at a finite

object-detector distance 𝑑, 𝑔
𝑑
(𝑋

𝜃
) = (𝐼

𝑑
(𝑋

𝜃
)/𝐼

𝑑=0
) − 1 is

the intensity contrast, 𝑘 = 2𝜋/𝜆 is the wave number of the
incident monochromatic X-rays, and 𝜑

𝑑=0
is the phase shift

in the exit plane of the object.
In the framework of the contrast transfer function (CTF)

model [14–18, 25], in the small-relative-phase limit corre-
sponding to the assumption,



𝜑
𝑑=0

(�⃗�
𝜃
−
𝜋𝑑�⃗�

𝑘
) − 𝜑

𝑑=0
(�⃗�

𝜃
+
𝜋𝑑�⃗�

𝑘
)



≪ 1, (9)

the relation between the phase and the data 𝑔
𝑑
can be written

in the Fourier space with a linear operator 𝐴:

𝑔
𝑑
= F

−1

(2 sin (𝑢 �⃗�


2

)F (𝜑) (�⃗�)) = 𝐴 (𝜑) , (10)

with 𝑢 = 𝜋𝑑𝜆 and where the 2-dimensional Fourier
transform and its inverse are given by

𝑓 (�⃗�) = F𝑔 (�⃗�) =
1

2𝜋
∫
⃗𝑥∈R2

𝑒
−𝑖 ⃗𝑥⋅

⃗
𝑘

𝑓 (�⃗�) 𝑑�⃗�,

F
−1

𝑔 (�⃗�) =
1

2𝜋
∫
⃗
𝑘∈R2

𝑒
𝑖 ⃗𝑥.

⃗
𝑘

𝑓 (�⃗�) 𝑑�⃗�.

(11)

This approach is more accurate than the TIE method which
relies on a short propagation distance assumption. In the fol-
lowing, we consider only the singularity at the origin because
the other singularities can be removed with a combination of
several propagation distances.

2.3.The Coupling of Phase Retrieval with the Radon Projection
Operator. The direct intensity operator can be rewritten with
the Radon projection operator. We first summarize some
properties of this projection operator [26]. Let Ω ⊂ R2 be
a bounded open domain, the mathematical model for 2D-
tomography is the Radon transform𝑅whichmaps a function
𝑓 ∈ 𝐿

1

(Ω) to its line integrals.
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Definition 1. Let 𝐿(𝜃, 𝑥
𝜃
) be the line defined by 𝐿(𝜃, 𝑥

𝜃
) =

{𝑦
𝜃
𝜃
∗

+ 𝑥
𝜃
𝜃 : 𝑦

𝜃
∈ R}, with 𝜃 = (cos(𝜃), sin(𝜃)) and 𝜃

∗

=

(− sin(𝜃), cos(𝜃)), and let 𝑅𝑎 be the range of the Radon trans-
form and𝑍 = [0, 𝜋]×𝑅𝑎; the Radon transform for𝑓 ∈ 𝐿

1

(Ω)

is defined by

𝑅𝑓 (𝜃, 𝑥
𝜃
) = 𝑅

𝜃
𝑓 (𝑥

𝜃
) = ∫

𝑡∈𝐿(𝜃,𝑥
𝜃
)∩Ω

𝑓 (𝑡) 𝑑𝑡. (12)

Let 𝑔 ∈ 𝐿
1

([0, 𝜋] × R) and let 𝑈 = (𝑥, 𝑦); the adjoint
𝑅
∗

: 𝐿
2

(𝑍) → 𝐿
2

(Ω) of 𝑅 is given by

𝑅
∗

𝑔 (𝑈) = ∫

𝜋

0

𝑔 (𝜃, 𝑈 ⋅ 𝜃) 𝑑𝜃. (13)

The proof can be found in [26].
For parallel beam projection, with a beam parallel to the

𝑋 = (𝑥, 𝑦) plane, 𝑓 ∈ 𝐿
1

(Σ) and 𝐿(𝜃, 𝑥
𝜃
, 𝑧) the 𝐿(𝜃, 𝑥

𝜃
) line

for the coordinate 𝑧:

𝐼
𝑧
⊗ 𝑅𝑓 (𝜃, 𝑥

𝜃
, 𝑧) = 𝑅

𝜃
𝑓 (𝑥

𝜃
) = ∫

𝑡∈𝐿(𝜃,𝑥
𝜃
,𝑧)∩Σ

𝑓 (𝑡) 𝑑𝑡, (14)

where ⊗ denotes a tensor product and 𝐼
𝑧
is the identity on the

𝑧 variable. The Sobolev spaces 𝐻𝛼 are very useful to charac-
terize the smoothing properties of the Radon transform.The
Sobolev norms ‖ ⋅ ‖

𝐻
𝛼 for functions in R𝑛 are defined as

𝑓

2

𝐻
𝛼 = ∫

R𝑛
(1 +

𝜉

2

)
𝛼 F (𝑓) (𝜉)


2

𝑑𝜉. (15)

Let 𝑔 ∈ 𝐿
1

([0, 𝜋] × R); the one-dimensional Fourier
𝐹
𝑝
(𝑔)(𝜃, 𝜏) is defined by 𝐹

𝑝
(𝑔)(𝜃, 𝜏) = (1/√2𝜋)∫

R
exp−𝑖𝜏𝑝𝑔(𝜃,

𝑝)𝑑𝑝. Let 𝑠 ∈ R, the Sobolev space on [0, 𝜋] × R denoted as
𝐻
0,𝑠

([0, 𝜋]×R), be the set of all distributions 𝑔 on ([0, 𝜋]×R)
such that the Fourier transform 𝐹

𝑝
(𝑔) is a function and such

that the Sobolev norm of 𝑔, ‖𝑔‖2
𝐻
0,𝑠
(𝑍)

, is finite [26].The norm
‖𝑔‖

2

𝐻
0,𝑠
(𝑍)

is defined as

𝑔
𝐻0,𝑠(𝑍) = ∫

𝜋

0

∫
R

(1 + |𝜏|
2

)
𝑠 
𝐹
𝑝
(𝑔) (𝜃, 𝜏)



2

𝑑𝜏 𝑑𝜃. (16)

The Radon operator is a smoothing operator as detailed
in the following proposition.

Proposition 2. Let𝑓 be a distributionwith a compact support;
then, the following bound holds for 𝑠 ≥ 0:

𝑅(𝑓)
𝐻0,𝑠+1/2(𝑍) ≤ 𝐶

𝑓
𝐻𝑠(R2) . (17)

The proof of this proposition can be found in [26]. It is
now possible to use the mapping properties of the Radon
transform in the context of phase contrast tomography and
in a Hilbert spaces framework.

Proposition 3. Let 𝑅𝑎
𝑧
be the range of the Radon operator for

the height z; the operator 𝜑 = 𝐼
𝑧
⊗𝑅[𝛿

𝑛
] : 𝐿

2

(Σ) → 𝐿
2

([0, 𝜋] ×

Σ
𝑧
× ∪𝑅𝑎

𝑧
) is continuous.

Proof. For 𝑠 > 0, 𝐻𝑠

0
(R2) is continuously embedded in

𝐿
2

(R2) and thus for compactly supported functions, there is
a positive constant 𝐶

1
such that

𝑓
𝐻𝑠(R2) ≤ 𝐶

1

𝑓
𝐿2(R2) . (18)

Using (18), there exists a positive constant 𝐶 such that
𝑅(𝑓)

𝐻0,0(𝑍) ≤
𝑅(𝑓)

𝐻0,1/2(𝑍) ≤ 𝐶
𝑓

𝐿
2
(R2)

. (19)

In a Hilbert spaces context, the Radon transform is thus a
linear continuous operator from 𝐿

2

(R2) to 𝐿2(𝑍). For parallel
beam projection, let 𝑅𝑎

𝑧
be the range of the Radon operator

for the height 𝑧. For each value of 𝑧, the Radon operator is
continuous from𝐿

2

(Σ
𝑥
×Σ

𝑦
) to𝐿2([0, 𝜋]×𝑅𝑎

𝑧
). By integration

on the variable 𝑧, the operator 𝜑 = 𝐼
𝑧
⊗ 𝑅[𝛿

𝑛
] : 𝐿

2

(Σ) →

𝐿
2

([0, 𝜋] × Σ
𝑧
× ∪𝑅𝑎

𝑧
) is continuous.

With the Radon projection operator, (4) can be rewritten:

𝜑
𝜃
[𝛿
𝑛
] (𝑋

𝜃
) =

2𝜋

𝜆
𝐼
𝑧
⊗ 𝑅 [1 − 𝛿

𝑛
] (𝜃, 𝑋

𝜃
) . (20)

3. Regularization for Phase Retrieval

In this section, we investigate the convergence properties
of some regularization approaches for phase retrieval. In a
generic way, we denote by 𝑓 the unknown phase to recon-
struct, by 𝑔 the intensity data, and by 𝐴 the direct operator.

3.1. Preliminaries. Let us assume that the phase is defined on
a bounded domain Ω. It is well known that the Laplacian
operator of the TIE approach Δ : 𝐿

2

(Ω) → 𝐻
−2

(Ω) is contin-
uous [27].The phase operators involved in the direct problem
can be understood as Fourier multiplication operators, with
a Fourier multiplier𝑚(�⃗�) and written as

F𝐴𝑓 (�⃗�) = 𝑚 (�⃗�)F𝑓 (�⃗�) . (21)

The Fourier multiplier of the CTF method is given by

𝑚(�⃗�) = sin (𝜋𝜆𝑑 �⃗�


2

) . (22)

It is bounded and thus the direct operator in the CTFmethod
is bounded from𝐿

2
(R2) to𝐿

2
(R2)with the Parseval theorem.

Some functional properties are lost with the linearization of
the direct forward problem. The analysis of the nonlinear
direct operator shows that it is a compact operator [28]
because of the convolutionwith the Fresnel propagator.These
smoothing properties are lost in the linearized methods pre-
sented above. With the linearization, the Laplacian operator
in the TIE version or the CTF direct operator is not compact
operator.

The inverse Fourier multipliers 𝑚(�⃗�) involved in the
TIE or CTF approaches 𝑚(�⃗�) = 1/‖�⃗�‖

2 and 𝑚(�⃗�) = 1/

sin(𝜋𝜆𝑑‖�⃗�‖2) define tempered distributions with singular
kernels. It is necessary to use the finite part to give a sense to
these distributions.
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Definition 4. Given a function 𝑢 ∈ 𝐿
1

loc(R
𝑛

− {0}) and
given a function 𝜙 ∈ 𝐶

∞

𝑘
, the finite part 𝑓𝑝 of the integral

∫ 𝑢(𝑦)𝜙(𝑦)𝑑𝑦 is defined as

𝑓𝑝∫𝑢 (𝑦) 𝜙 (𝑦) 𝑑𝑦 = lim
𝜖→0

∫
|𝑦|>𝜖

𝑢 (𝑦) (𝜙 (𝑦) − 𝜙 (0)) 𝑑𝑦

+ ∫
|𝑦|>1

𝑢 (𝑦) 𝜙 (𝑦) 𝑑𝑦.

(23)

The following proposition is useful to show that some
finite part distributions are well defined.

Proposition 5. Let one assume that the function 𝑢 ∈ 𝐿
1

loc(R
𝑛

−

{0}) satisfies the size condition

𝑢 (𝑦)
 ≤

𝐶

𝑦

𝑛
, 𝑦 ̸= 0; (24)

then, it is possible to define the finite part of 𝑢 [29–31].

Thus, 𝑓 ⋅ 𝑝(1/‖�⃗�‖
2

) and 𝑓 ⋅ 𝑝(1/ sin(𝜋𝜆𝑑‖�⃗�‖2)) are well-
defined tempered distributions. For data 𝑔 ∈ 𝐿

2
(Ω), the pro-

duct𝑚(�⃗�) × 𝑔 defines a tempered distribution in S [29, 30].
The inverse Fourier transform of𝑚(�⃗�)×𝑔 is well defined.The
data function𝑔has a bounded support,𝑔 ∈ 𝐿

2
(Ω) ⊂ 𝐿

1
(Ω) ⊂

𝐿
1
(R2), and the convolution of 𝑚 and 𝑔 is well defined [29–

31].
Distribution solutions are obtained because of the sin-

gularity of the Fourier multiplier at the origin. The inverse
problem formulatedwithCTF or TIE approach is not a classic
linear problem with a compact operator 𝐴 : 𝑋 → 𝑌

between Hilbert spaces 𝑋 and 𝑌. The inverse is defined in
a distributional sense. A regularized distribution is obtained
when the zero frequency component of the test function
is suppressed. It is the idea of the “quasiparticule” method
detailed below. More generally, it is possible to construct
an approximate inverse 𝐴

𝛾
: 𝐿

2
(R2) → 𝐿

2
(Ω) with a

bounded kernel in 𝐿
2
. Let 𝐴

𝛾
be the approximate inverse

operator, depending on the regularization parameter 𝛾. This
approximate inverse must verify the pointwise convergence,
for all 𝑓 ∈ 𝐿

2
(Ω):

lim
𝛾→0

𝐴
𝛾
𝐴𝑓 = 𝑓. (25)

Let 𝑓𝛾,𝛿 be the solution obtained from the noisy data 𝑔
𝛿,

𝑓
𝛾,𝛿

= 𝐴
𝛾
𝑔
𝛿. We assume that the noisy data 𝑔

𝛿 and the
unnoisy data 𝑔 are such that


𝑔 − 𝑔

𝛿

≤ 𝛿, (26)

where 𝛿 is the noise level and ‖ ⋅ ‖ is the 𝐿
2
norm. We are

interested in this work in the convergence of various regular-
izationmethods.Wewill make use of the following inequality
for 𝑓 ∈ 𝐿

2
(R2):

𝑓 − 𝑓

𝛼,𝛿

≤ 𝛿


𝐴
𝛾


+

𝐴
𝛾
𝐴𝑓 − 𝑓


. (27)

3.2. Regularization for CTF. In this section, we investigate
the convergence properties of some regularization methods
for CTF. Several methods of regularization have been tested
[14–18] to solve this linear inverse problem, like the quadratic
Tikhonov regularization used for the classical inverse prob-
lems or the “quasiparticule approach.” We detail here the
convergence properties for the Tikhonov and quasiparticule
approach and for the approximate inverse obtained with
mollification.

3.2.1. Tikhonov Regularization for CTF. The Tikhonov regu-
larization method is a convergent regularization method.

Proposition 6. The Tikhonov regularization method is a
convergent regularizationmethodwith an optimal convergence
rate ‖𝑓 − 𝑓

𝛼,𝛿

‖ ∼ 𝛿
1/3.

Proof. For the Tikhonov regularization, the approximate
inverse can be written:

𝐴
𝛾
= (𝛾𝐼 + 𝐴

∗

𝐴)
−1

𝐴
∗

, (28)

where𝐴 is a Fouriermultiplication operator given in (10).The
approximate inverse for CTF is also a Fourier multiplication
operator:

𝐴
𝛾
𝑓 = F

−1

(𝑚 (�⃗�)F𝑓 (�⃗�)) . (29)

With 𝑢 = 𝜋𝜆𝐷, the Fourier multiplier𝑚(�⃗�) is given by

𝑚(�⃗�) =

sin (𝑢 �⃗�


2

)

𝛾 + sin (𝑢 �⃗�


2

)

2
. (30)

We first obtain an upper bound for the norm of the oper-
ator 𝐴

𝛾
:


𝐴
𝛾
𝑓

=



F
−1

sin (𝑢 �⃗�


2

)

𝛾 + sin2 (𝑢 �⃗�


2

)

F𝑓



=



sin (𝑢 �⃗�


2

)

𝛾 + sin2 (𝑢 �⃗�


2

)

F𝑓



≤ sup
⃗
𝑘


sin (𝑢 �⃗�



2

)



𝛾 + sin2 (𝑢 �⃗�


2

)

𝑓
 ,

(31)

where the first equality results from Plancherel’s theorem.
With the identity

𝑥

𝛾 + 𝑥2
≤

1

2√𝛾
, (32)

we obtain

𝐴
𝛾


≤

𝐶
1

√𝛾
. (33)
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For 𝑓 ∈ 𝐿
2
(Ω), we have

(𝐼 − 𝐴
𝛾
𝐴)𝑓 = F

−1
𝛾

𝛾 + (sin (𝑢 �⃗�


2

))

2
F𝑓 (�⃗�) . (34)

With the change of variable, �⃗� = �⃗�


𝛾
1/4 and with the identity

sin(𝑥) ≥ 2𝑥/𝜋, for 𝑥 ∈ [0, 𝜋/2], we obtain


(𝐼 − 𝐴

𝛾
𝐴)𝑓



2

=



𝛾

𝛾 + (sin (𝑢 �⃗�


2

))

2
F𝑓(�⃗�)



2

≤



𝛾

𝛾 + ((2/𝜋)𝑢

�⃗�


2

)

2
F𝑓 (�⃗�)



2

≤ ∫



1

1 + ((2/𝜋) 𝑢

�⃗�


2

)

2
F𝑓(�⃗�

𝛾
1/4

)



2

𝛾
1/2

𝑑�⃗�


.

(35)

From the Rieman-Lebesgue convergence theorem, the Four-
ier transform is a continuous function. Thus, there is a con-
stant positive 𝐶

2
such that


(𝐼 − 𝐴

𝛾
𝐴)𝑓


≤ 𝐶

2
𝛾
1/4

. (36)

Reporting in (27), we obtain for the Tikhonov regularization


𝑓 − 𝑓

𝛼,𝛿

≤ 𝛿

𝐶
1

√𝛾
+ 𝐶

2
𝛾
1/4

, (37)

and thus the optimal convergence rate is obtained for the a
priori choice, 𝛾 ∼ 𝛿

4/3, and the convergence rate is


𝑓 − 𝑓

𝛼,𝛿

∼ 𝛿

1/3

. (38)

3.2.2. Quasiparticle Regularization. In the framework of the
quasiparticule approach [22–24], the intensity contrast is
filtered in the Fourier space F(𝑔

𝑧
)(�⃗�) and is replaced by

F
Θ
(𝑔
𝑧
)(�⃗�):

F
Θ
(𝑔
𝑧
) (�⃗�) = Θ(


sin (𝜋𝜆𝑑 �⃗�



2

)


− 𝜖)F (𝑔

𝑧
) (�⃗�) , (39)

where Θ denotes the Heaviside step function and 𝜖 is a
threshold for this filter.

Considering only the singularity of the multiplier at the
origin, this threshold 𝜖 determines a threshold 𝛾 > 0 such
that

sin (𝜋𝜆𝑑𝛾2) = 𝜖. (40)

Let𝐻
𝛾
(�⃗�) be the filter function defined by

𝐻
𝛾
(�⃗�) =

{{

{{

{

0, if 
�⃗�

≤ 𝛾,

1, if 
�⃗�

> 𝛾.

(41)

The regularized inverse can be written:

𝐴
𝛾
𝑓 = F

−1
𝐻
𝛾
(�⃗�)

sin (𝑢 �⃗�


2

)

F𝑓 (�⃗�) ,


𝐴
𝛾
𝑓

≤



F
−1

𝐻
𝛾
(�⃗�)

sin (𝑢 �⃗�


2

)

F𝑓 (�⃗�)



≤
1

sin (𝑢𝛾2)

𝐻
𝛾
(�⃗�)F𝑓 (�⃗�)



≤
1

sin (𝑢𝛾2)

F𝑓 (�⃗�)


=

1

sin (𝑢𝛾2)
𝑓

 .

(42)

With the identity sin(𝑥) ≥ 2𝑥/𝜋, for 𝑥 ∈ [0, 𝜋/2], we
obtain that there is a constant 𝐶 such that


𝐴
𝛾


≤

𝐶

𝛾2
. (43)

Moreover, we have

(𝐼 − 𝐴
𝛾
𝐴)𝑓 = F

−1

(1 − 𝐻
𝛾
(�⃗�))F𝑓,


(𝐼 − 𝐴

𝛾
𝐴)𝑓


=

1
‖
⃗
𝑘‖≤𝛾

F𝑓

.

(44)

By the Lebesgue dominated convergence theorem, this term
tends to zero as 𝛾 → 0. Yet it is impossible to derive any
convergence rate of the method as 𝛾 → 0without any assum-
ption on the position of the spectra of 𝑓 with respect to the
threshold. In the more favorable case, if the spectra of the
function 𝑓 are above 𝛾, this term is zero and


𝑥 − 𝑥

𝛼,𝛿

≤ 𝛿

𝐶

𝛾2
. (45)

The convergence is obtained for a choice of the regularization
parameter such that 𝛿/𝛾2 → 0 as 𝛿 → 0.

3.2.3. Regularization with Mollification. It is not possible to
derive any convergence rate for the “quasiparticule” regular-
ization without any assumption about the spectrum of the
function to regularize. In this section, we detail the regulari-
zation with mollification which is valid without any restric-
tive assumption.

We consider a mollifier 𝜙 ∈ 𝐿
1

(R2) such that

F𝜙 (0) = ∫
R2

𝜙 (𝑥) 𝑑𝑥 = 1, (46)

and we assume that there exists 𝑠 > 0 such that

1 −F𝜙 (�⃗�)


∼

�⃗�


𝑠

as �⃗� → 0. (47)
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Typical examples of mollifier are the Gaussian function

𝜙 (𝑥) = (2𝜋)
−1 exp(−‖𝑥‖

2

2
) (48)

or

𝜙
]
(𝑥) = 𝐴{

(1 − ‖𝑥‖
2

)
]
, if ‖𝑥‖ ≤ 1,

0, if ‖𝑥‖ > 1,
(49)

where 𝐴 is a normalizing constant.
We consider as approximate inverse the operator defined

for 𝑓 ∈ 𝐿
2

(Ω) by

𝐴
𝛾
𝑓 = F

−1
1 −F𝜙 (�⃗�/𝛾)

(sin (𝑢 �⃗�


2

))

F𝑓 (𝑘) . (50)

Proposition 7. The CTF formulation of the phase retrieval
inverse problem can be regularized by the mollification regu-
larization with an exponent 𝑠 = 2. The optimal convergence
rate is ‖𝑓 − 𝑓

𝛼,𝛿

‖ ∼ 𝛿
1/2.

Proof. Let us assume 𝑠 = 2; then,


𝐴
𝛾
𝑓

=



F
−1

1 −F𝜙 (�⃗�/𝛾)

(sin (𝑢 �⃗�


2

))

F𝑓 (𝑘)



=



1 −F𝜙 (�⃗�/𝛾)

(sin (𝑢 �⃗�


2

))

F𝑓 (𝑘)



≤ sup
𝑘


1 −F𝜙 (�⃗�/𝛾)



sin (𝑢 �⃗�



2

)




F𝑓 (�⃗�)



= sup
𝑘


1 −F𝜙 (�⃗�/𝛾)



sin (𝑢 �⃗�



2

)



𝑓
 .

(51)

From the Rieman-Lebesque theorem, F𝜙 is continuous
and decreases at infinity and thus |1 −F𝜙(�⃗�/𝛾)|/| sin(𝑢‖�⃗�‖2)|
is bounded for the higher value of �⃗�.

As �⃗� → 0,

1 −F𝜙 (�⃗�/𝛾)



sin (𝑢 �⃗�



2

)



∼
𝛾
−𝑠

�⃗�


𝑠

𝑢

�⃗�


2
; (52)

for 𝑠 = 2, there is a constant 𝐶
1
such that


1 −F𝜙 (�⃗�/𝛾)



sin (𝑢 �⃗�



2

)



≤ 𝐶
1
𝛾
−2

. (53)

Thus, we obtain

𝐴
𝛾


≤ 𝐶

1
𝛾
−2 (54)

with the definition of approximate inverse

(𝐼 − 𝐴
𝛾
𝐴)𝑓 = F

−1

(F𝜙(
�⃗�

𝛾
)F𝑓 (�⃗�)) . (55)

The mollifier is defined on R2 and thus

F𝜙(
�⃗�

𝛾
) = 𝛾

2

F (𝜙 (𝑥𝛾)) ; (56)

we obtain

(𝐼 − 𝐴

𝛾
𝐴)𝑓


= 𝛾

2 F (𝜙 (𝑥𝛾))F𝑓 (𝑘)


≤ 𝛾
2

F𝑓 (�⃗�)



≤ 𝛾
2 𝑓

 .

(57)

With (27),

𝑓 − 𝑓

𝛼,𝛿

≤ 𝛿𝐶

1
𝛾
−2

+ 𝛾
2 𝑓

 ; (58)

the optimal convergence rate obtained with the choice 𝛾 ∼

𝛿
1/4 is


𝑓 − 𝑓

𝛼,𝛿

∼ 𝛿

1/2

. (59)

4. Regularization for
Phase Contrast Tomography

In this section, we present some regularization methods for
phase contrast tomography which are combination of regu-
larization methods for tomography and phase retrieval. We
will use the mollifier regularization for the phase retrieval
problem (Section 3.2.3).

4.1. Inversion Formula for Tomography and Regularized Inver-
sion Approaches. We first summarize the well-known filtered
backprojection inversion formula for a 2D geometry.

Definition 8. The Riesz potential Λ𝛼 : 𝐻
𝑡

(R𝑑) → 𝐻
𝑡−𝛼

(R𝑑)

for 𝛼 > −𝑑 is defined by

F (Λ
𝛼

𝑓 (�⃗�)) =
𝜉

𝛼

F𝑓 (�⃗�) . (60)

The Riesz potential is an isomorphism of Hilbert spaces.
For 𝛼 < 0, it is a compact operator. The Riesz potential used
for tomography reconstruction, Λ

𝑠
, for 𝑔 ∈ C∞

𝑐
([0, 𝜋] × R),

is the operator with Fourier multiplier |𝜉|:

Λ
𝑠
(𝑔) = F

−1

𝑠
(
𝜉
F𝑠

𝑔) , (61)

where the partial Fourier transform of 𝑔 ∈ C∞

𝑐
([0, 𝜋] ×R) in

the 𝑠 variable is defined by the formula

F
𝑠
𝑔 (𝜙, 𝜉) =

1

√2𝜋
∫

∞

−∞

𝑒
−𝑖𝑠𝜉

𝑔 (𝜙, 𝑠) 𝑑𝑠. (62)

The inversion formula is summarized by the following
theorem [26].
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Theorem 9. Let 𝑓 ∈ C∞

𝑐
(R2), the set of infinitely differen-

tiable functions with 2D compact support; then,𝑓 can be recon-
structed with the formula

𝑓 =
1

4𝜋
𝑅
∗

Λ
𝑠
𝑅𝑓, (63)

where 𝑅∗ is the adjoint of the Radon transform.

This reconstruction formula can be generalized for paral-
lel beam projection with tensor product of identity operators
on the 𝑧 coordinate. In this case, 𝜉 is the spatial frequency
associated to the 𝑥

𝜃
axis (Figure 1). For parallel beam projec-

tion, the reconstruction formula is

𝑓 (𝑥) =
1

4𝜋
(𝐼
𝑧
⊗ 𝑅

∗

) (𝐼
𝜃
⊗ 𝐼

𝑧
⊗ Λ

𝑠
) (𝐼

𝑧
⊗ 𝑅)𝑓 (𝑥) . (64)

Several regularized inverse operators have been studied in
the literature, based on truncated filtered backprojection [26,
32] or on the approximate inverse obtained with mollifiers
[33].

In the framework of the truncated filtered backprojection,
the approximate inversion formula can be written as 𝑓 =

(1/4𝜋)𝑅
∗

(Π ∗ 𝑅𝑓), where Π is the inverse Fourier transform
of the truncated multiplier |𝜉| and ∗ denotes the convolution
in the 𝑠 variable:

F
𝑠
Π (𝜉) = {

𝜉
 , if 𝜉

 ≤ 𝜔,

0, if 𝜉
 > 𝜔,

(65)

where 𝜔 is a cutoff frequency. In the following, we denote by
Λ
𝛾
the regularized Riesz potential obtained with this kernel,

with the power law 𝜔 = 𝛾
−𝜏, where 𝜏 is a positive constant.

In the framework of the approximate inverse theory
obtained with mollifiers, the approximate inverse is given by

𝑓 ∗ 𝑒 = 𝑅
∗

(V∗
𝑠
𝑅𝑓) , (66)

where V is the reconstruction kernel and 𝑒 is a mollifier
approximating the 𝛿 distribution, centered about 0 and with
mean value 1. The reconstruction kernel and the mollifier are
related by

V = Λ𝑅𝑒. (67)

A family of reconstruction kernel is obtained for 𝛾 > 0 as

𝑒
𝛾
(𝑥) = 𝛾

−2

𝑒 (
𝑥

𝛾
) ,

V
𝛾
(𝑥) = 𝛾

−2V(
𝑥

𝛾
) .

(68)

The theory of the approximate inverse Hilbert space is
fully presented in [33, 34]. This method of reconstruction
allows for error estimates. Givenmeasured data 𝑔𝛿, assuming
that the range of the Radon transform is [−1, 1], the recon-
struction formula can be written, for 𝑦 ∈ Ω:

�̃�
𝛾
𝑔
𝛿

(𝑦) = 𝑓 (𝑦)

= 𝛾
−2

∫

𝜋

0

∫

1

−1

𝑔
𝛿

(𝜃, 𝑠) V(𝜃,
𝑠 − ⟨𝑦, 𝜃⟩

𝛾
)𝑑𝑠 𝑑𝜃.

(69)

For a 3D geometry, an approximate inverse of the Radon
projector can be obtained with the tensorial product �̃�

𝛾
⊗ 𝐼

𝑧
.

4.2. The Approximate Inverse for Phase Contrast Tomography.
The phase contrast tomography problem can be written in a
generic way as

𝑈 (𝑓) = (𝐴 ⊗ 𝐼
𝜃
) (𝐼

𝑧
⊗ 𝑅)𝑓 = 𝑔, (70)

where 𝑓 denotes in this section the unknown imaginary
index part 𝛿

𝑛
and 𝑔 is the intensity data. The operator 𝐼

𝑧
⊗ 𝑅,

𝜑 = 𝐼
𝑧
⊗ 𝑅[𝛿

𝑛
] : 𝐿

2

(Σ) → 𝐿
2

([0, 𝜋] × Σ
𝑧
× ∪𝑅𝑎

𝑧
), is

linear and continuous.The same result is true for the operator
𝐴 ⊗ 𝐼

𝜃
: 𝐿

2

([0, 𝜋] × Σ
𝑧
× ∪𝑅𝑎

𝑧
) → 𝐿

2

([0, 𝜋] ×R2).
The approximate inverse of the direct operator can be

expressed as

�̃� = (�̃�
𝛾
⊗ 𝐼

𝑧
) (𝐴

𝛾
⊗ 𝐼

𝜃
) , (71)

where𝐴
𝛾
and �̃�

𝛾
are approximate inverses for the Radon pro-

jection operator and the phase retrieval operator 𝐴. We will
study successively the convergence of two inversion schemes:
a coupling of the CTF approach regularized with mollifiers
with the tomography inverse obtained with truncated filtered
backprojection or with mollifiers.

4.2.1. Coupling of CTF and Riesz Potential Regularized with a
Rectangular Window. We first study the case of a coupling
of CTF regularized with mollifiers with a Riesz potential
regularized with a rectangular window. In this case, the
approximate inverse �̃� is given by

�̃� = (𝐼
𝑧
⊗ 𝑅

∗

) (𝐼
𝜃
⊗ 𝐼

𝑧
⊗ Λ

𝛾
) (𝐼

𝜃
⊗ 𝐴)

= (𝐼
𝑧
⊗ 𝑅

∗

) (𝐼
𝜃
⊗ 𝐼

𝑧
⊗F

−1

1

𝜉
 1|𝜉|≤𝜔F1

)

⋅ (𝐼
𝜃
⊗F

−1

2
𝑚(𝜉, 𝜂)F

2
) .

(72)

In this formula, 𝑚(𝜉, 𝜂) is the Fourier multiplier of the CTF
approach regularized with the mollifier approach and 𝜉 and
𝜂 are the Fourier coordinates associated with the 𝑥

𝜃
and 𝑧

axes. We obtain a formula similar to the one in Gureyev et
al.’s paper [25]. We demonstrate in the following that the
inversion obtained with this method is convergent.

Proposition 10. Let us assume that, for each z, 𝑓(⋅, ⋅, 𝑧) ∈

𝐻
0,1/2+𝜖

(R2). The coupling of mollifier regularization for CTF
with an inversion method for tomography based on a Riesz
potential regularized with a rectangular window is a conver-
gent regularization method. The method is convergent for 𝜏 <

4/3. The optimal convergence rate is obtained as ‖𝑓 − 𝑓
𝛼,𝛿

‖ ∼

𝛿
𝜏𝜖/(𝜏𝜖+𝜏+2) for 𝜏𝜖 < 2−𝜏 and ‖𝑓−𝑓𝛼,𝛿‖ ∼ 𝛿

(2−𝜏)/4 for 𝜏𝜖 > 2−𝜏.

Proof. In order to use a single regularization parameter, we
assume that the threshold for the Riesz operator is given by
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𝜔 = 𝛾
−𝜏, where 𝜏 is a positive constant. We first obtain a

bound for the norm of the truncated Riesz potential:


Λ
𝛾
𝑓

=

F
−1

1
|𝜉|≤𝜔

𝜉
F𝑓



=

1
|𝜉|≤𝜔

𝜉
F𝑓



≤ 𝜔
F𝑓

 = 𝛾
−𝜏 𝑓

 .

(73)

The norm of a tensorial product of operators is the product
of the norm of the operators. With the upper bound for the
norm of the approximate inverse obtained with the mollifier
regularization for the CTF operator (54) and the fact that the
operator 𝑅∗ is bounded, we get


�̃�

≤ 𝐶

1
𝛾
−𝜏−2

. (74)

Ignoring tensorial products with identity operators for the
sake of simplicity, we have the equality

𝐼 − �̃�𝑈 = 𝐼 − 𝑅
∗

Λ
𝛾
(𝐴𝐴 − 𝐼) 𝑅 + 𝑅

∗

Λ𝑅 + 𝑅
∗

(Λ
𝛾
− Λ)𝑅

= −𝑅
∗

Λ
𝛾
(𝐴𝐴 − 𝐼) 𝑅 + 𝑅

∗

(Λ
𝛾
− Λ)𝑅;

(75)

we obtain

(𝐼 − �̃�𝑈)𝑓


≤

𝑅
∗

Λ
𝛾
(𝐴𝐴 − 𝐼) 𝑅𝑓


+

𝑅
∗

(Λ
𝛾
− Λ)𝑅𝑓


.

(76)

Let us assume that 𝑓 ∈ 𝐻
1/2+𝜖

(R2), with a constant 𝜖 >

0; then, 𝑔 = 𝑅𝑓 ∈ 𝐻
0,1+𝜖

(𝑍), and |𝜉|
1+𝜖F𝑔 ∈ 𝐿

2

(Proposition 2):


(Λ

𝛾
− Λ)𝑅𝑓


=

1
|𝜉|≥𝜔

𝜉
F𝑅𝑓



=

1
|𝜉|≥𝜔

𝜉

1+𝜖 𝜉


−𝜖

F𝑅𝑓


≤

1
|𝜉|≥𝜔

𝜉

1+𝜖 𝜉


−𝜖

F𝑅𝑓


≤ sup
|𝜉|≥𝜔

𝜉

−𝜖 

𝜉

1+𝜖

F𝑅𝑓


≤ 𝛾
𝜏𝜖


𝜉

1+𝜖

F𝑅𝑓


≤ 𝐶
2
𝛾
𝜏𝜖

,

(77)

where𝐶
2
is a positive constant.The same bound can be obtai-

ned for 3D geometry with parallel beam projection. With the
bound obtained for (𝐴𝐴−𝐼)𝑓 for mollifier regularization, we
have

(𝐼 − �̃�𝑈)𝑓


≤

𝑅
∗

Λ
𝑟
(𝐴𝐴 − 𝐼) 𝑅𝑓


+
𝑅
∗

(Λ
𝑟
− Λ)𝑅𝑓



≤ 𝐶
2
max (𝛾2−𝜏, 𝛾𝜏𝜖)

≤ 𝐶
2
𝛾
min(2−𝜏,𝜏𝜖)

.

(78)

We thus obtain the following bound:


𝑓 − 𝑓

𝛼,𝛿

≤ 𝐶

1
𝛿𝛾
−𝜏−2

+ 𝐶
2
𝛾
min(2−𝜏,𝜏𝜖)

. (79)

Themethod is convergent for 𝜏 < 2.The optimal convergence
rate is obtained as ‖𝑓 − 𝑓

𝛼,𝛿

‖ ∼ 𝛿
𝜏𝜖/(𝜏𝜖+𝜏+2) for 𝜏𝜖 < 2 − 𝜏

and the choice 𝛾 = 𝛿
1/(𝜏𝜖+𝜏+2) and ‖𝑓 − 𝑓

𝛼,𝛿

‖ ∼ 𝛿
(2−𝜏)/4 for

𝜏𝜖 > 2 − 𝜏 and the choice 𝛾 = 𝛿
1/4.

4.2.2. Coupling of CTF and Mollified Approximate Inverse. In
this section, we study the coupling of mollifier regularization
for CTF with the inverse Radon transform obtained with the
approximate inverse method based on mollifier kernels [33].
Classical results for mollifier show that 𝑒∗𝑓 converge to 𝑓 in
𝐿
2 as 𝛾 → 0. To have a more precise bound, we will use the

following lemma about difference quotients in Sobolev spaces
[27].

Definition 11. Given a unit vector V and ameasurable function
𝑢, the ℎ-translate of 𝑢 in the direction V is denoted as 𝜏ℎV 𝑢 and
defined by

𝜏
ℎ

V 𝑢 (𝑥) = 𝑢 (𝑥 + Vℎ) . (80)

For a measurable function 𝑢, the difference quotient of 𝑢 in
the coordinate direction 𝑒

𝑖
of length ℎ ̸= 0 is the measurable

function defined by

Δ
ℎ

𝑖
𝑢 =

𝜏
ℎ

𝑒
𝑖

𝑢 − 𝑢

ℎ
. (81)

Proposition 12. Let 𝑢 ∈ 𝑊
1,𝑝

(Ω


) and let 𝐷𝑢 be the weak
derivative of u. Then, Δℎ𝑢 ∈ 𝐿

𝑝

(Ω) for any Ω ⊂ Ω
, with ℎ <

dist(Ω, 𝜕Ω


) and


Δ
ℎ

𝑢
𝑝;Ω

≤ ‖𝐷𝑢‖
𝑝;Ω
 . (82)

The convergence results are summarized by the following
proposition.

Proposition 13. Let us assume that 𝑓 can be extended to a
larger domain Ω

 such that 𝑓 ∈ 𝑊
1,2

(Ω


). The coupling of
the mollifier regularization for CTF and of the regularization
of the inverse Radon transform with the approximate inverse
approach based on mollifiers is a convergent method with a
convergence rate ‖𝑓 − 𝑓

𝛼,𝛿

‖ ∼ 𝛿
1/8.
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Proof. We first bound the norm of �̃�
𝛾
. We assume that the

range of the Radon transform is 𝑉 = [−1, 1], with the Young
and Schwartz inequalities we obtain, for 𝑦 ∈ Ω:


�̃�
𝛾
𝑔 (𝑦)



2

= (𝛾
−2

∫

𝜋

0

∫

1

−1



𝑔 (𝜃, 𝑠) V(𝜃,
𝑠 − ⟨𝑦, 𝜃⟩

𝛾
)



𝑑𝑠 𝑑𝜃)

2

≤ (∫

𝜋

0

𝑔 (𝜃, 𝑠)
𝐿
2
(𝑉)


V
𝛾
(𝜃, 𝑠)

𝐿
2
(𝑉)

𝑑𝜃)

2

≤ (∫

𝜋

0

𝑔 (𝜃, 𝑠)

2

𝐿
2
(𝑉)

𝑑𝜃)(∫

𝜋

0


V
𝛾
(𝜃, 𝑠)



2

𝐿
2
(𝑉)

𝑑𝜃) .

(83)

The Fourier slice theorem can be written [32]:

1

√2𝜋
F
𝑠
𝑅𝑓 (𝜃, 𝜎) = F (𝑓) (𝜎𝜃) = 𝑓 (𝜎𝜃) , (84)

whereF
𝑠
denotes the Fourier transform with respect to the 𝑠

variable andF𝑓 = 𝑓 is the 2D Fourier transform; thus,

Λ
𝑠
𝑅
𝜃
𝑒
𝛾
(𝑠) = √2𝜋F

−1

𝑠
|𝜎| 𝑒

𝛾
(𝜎𝜃) ,


Λ
𝑠
𝑅
𝜃
𝑒
𝛾



2

𝐿
2
(𝑉)

= 2𝜋

|𝜎| 𝑒

𝛾
(𝜎𝜃)



2

𝐿
2
(𝑉)

= 2𝜋∫ |𝜎|
2

𝑒
𝛾
(𝜎𝜃)



2

𝑑𝜎

= 2𝜋∫ |𝜎|
2

𝑒 (𝛾𝜎𝜃)



2

𝑑𝜎

= 2𝜋𝛾
−3

∫ |𝜎|
2

𝑒 (𝜎𝜃)



2

𝑑𝜎,

∫

𝜋

0


Λ
𝑠
𝑅
𝜃
𝑒
𝛾



2

𝐿
2
(𝑉)

𝑑𝜃

= 𝛾
−3

∫

𝜋

0

2𝜋∫ |𝜎|
2

𝑒 (𝜎𝜃)



2

𝑑𝜎 𝑑𝜃

= 𝛾
−3

∫
R2


�⃗�



𝑒 (�⃗�)



2

𝑑�⃗�

≤ 𝛾
−3

∫
R2

(1 +

�⃗�


2

)

1

2

𝑒 (�⃗�)



2

𝑑�⃗�

= 𝛾
−3

‖𝑒‖
1/2

,

(85)

with a polar change of variable. By integration on the variable
𝑦, there is a positive constant 𝐶 such that


�̃�
𝛾


≤ 𝐶𝛾

−3/2

. (86)

We first bound the norm ‖𝑒
𝛾
∗ 𝑓 − 𝑓‖:

𝑒
𝛾
∗ 𝑓 (𝑥) − 𝑓 (𝑥)

= ∫ 𝑒
𝛾
(𝑦) (𝑓 (𝑥 − 𝑦) − 𝑓 (𝑥)) 𝑑𝑦

= 𝛾
−2

∫ 𝑒(
𝑦

𝛾
) (𝑓 (𝑥 − 𝑦) − 𝑓 (𝑥)) 𝑑𝑦

= ∫ 𝑒 (𝑧) (𝑓 (𝑥 − 𝛾𝑧) − 𝑓 (𝑥)) 𝑑𝑧.

(87)

With the Hölder inequality, we obtain

𝑒
𝛾
∗ 𝑓 (𝑥) − 𝑓 (𝑥)



≤ (∫ 𝑒 (𝑧) (
𝑓 (𝑥 − 𝛾𝑧) − 𝑓 (𝑥)


2

) 𝑑𝑧)

1/2

(∫ 𝑒 (𝑧) 𝑑𝑧)

1/2

≤ (∫ 𝑒 (𝑧) (
𝑓 (𝑥 − 𝛾𝑧) − 𝑓 (𝑥)


2

) 𝑑𝑧)

1/2

.

(88)

By integration,


𝑒
𝛾
∗ 𝑓 − 𝑓



2

≤ ∫ 𝑒 (𝑧)
𝑓 (𝑥 − 𝛾𝑧) − 𝑓 (𝑥)


2

𝑑𝑧. (89)

Let us note 𝑑(Ω), the diameter of the domain Ω.
Let us assume that 𝑓 can be extended to a larger bounded

domain Ω
, such that 𝑓 ∈ 𝑊

1,𝑝

(Ω


) with 𝛾𝑑(Ω) < dist(Ω,

𝜕Ω


). Then, with proposition (8) with 𝑝 = 2, we obtain

𝑒
𝛾
∗ 𝑓 − 𝑓


≤ 𝐶

2
𝛾, (90)

for a positive constant 𝐶
2
.

The regularized inverse can bewritten as �̃� = (𝐼
𝑧
⊗�̃�

𝛾
)(𝐼

𝜃
⊗

𝐴
𝛾
). Using (86) and (54) for the mollifiers regularization of

CTF, we thus obtain the bound

�̃�

≤ 𝐶

1
𝛾
−7/2

, (91)

for a positive constant 𝐶
1
. From the identity

𝐼 − �̃�𝑈 = 𝐼 − �̃�
𝛾
𝑅 − 𝑅

𝛾
(𝐴

𝛾
𝐴 − 𝐼)𝑅, (92)

and with (90) and (57), we obtain for 𝐶
2
≥ 0


(𝐼 − �̃�𝑈)𝑓


≤ 𝐶

2
max (𝛾, 𝛾1/2) ≤ 𝐶

2
𝛾
1/2

. (93)

With (27), we obtain

𝑓 − 𝑓

𝛼,𝛿

≤ 𝐶

1
𝛿𝛾
−7/2

+ 𝐶
2
𝛾
1/2

. (94)

The optimal convergence rate obtained is ‖𝑓 − 𝑓
𝛼,𝛿

‖ ∼ 𝛿
1/8

with the choice 𝛾 = 𝛿
1/8.

It should be noted that the convergence rate obtained
is very low. Yet it can not be improved with a Tikhonov
regularization for CTF: with the bounds for the norm of
𝐴
𝛾
𝐴 − 𝐼 for the Tikhonov method (36) and for the norm of

𝑅
𝛾
(86), (92) shows that the convergence of 𝐼 − �̃�𝑈 towards

zero is not achieved.
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5. Conclusion

In this paper, we have investigated the convergence of regular-
ization methods for phase retrieval and phase contrast tomo-
graphy. For the phase retrieval problem, the Tikhonov regu-
larization, quasiparticule approach, and regularization with
mollification methods have been studied and the optimal
convergence rates have been estimated. The phase contrast
tomography problem has also been studied. The inverse
of the Radon operator is regularized with a rectangular
window for the Riesz kernel or with the approximate inverse
method based on mollifiers. The a priori convergence rate
for the combined inversion of the Radon and phase retrieval
operators is estimated for each approach.
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