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ABSTRACT Almost all image sensors measure only one color per pixel through the color filter array. 
Missing pixels are estimated using a demosaicing process. For this reason, a demosaiced image leaves a 
particular trace. When an image is manipulated or tampered, the demosaicing trace can be changed. This 
change can serve as a basic clue for detecting or localizing image tampering. Demosaicing pattern-based 
tampering localization algorithms require a re-interpolation process, and the prediction residue between the 
given image and the re-interpolated image is commonly used to localize tampered regions. However, the 
prediction residue is not always valid because the demosaicing interpolation kernel cannot be known, which 
deteriorates the localization performance. This paper presents an effective re-interpolation process using 
singular value decomposition for an unknown demosaicing method. First, the green channel of the given 
image is decomposed into four sub-images according to the Bayer pattern. For a small block of each sub-
image, the singular value decomposition is performed. The prediction residue is obtained by reconstructing 
the image block after removing the largest singular value. The feature to localize the forged regions is 
extracted by the logarithm ratio of the prediction residue variance. The proposed method does not require any 
statistical model for the extracted feature, because the prediction residue is more accurate than that of 
conventional methods. We perform intensive experiments for three test datasets and compare the proposed 
method with state-of-the-art tampering localization methods, the results of which indicate that the proposed 
scheme outperforms existing approaches.  

INDEX TERMS Image tampering localization, demosaicing trace, singular value decomposition, 
prediction residue, re-interpolation kernel, color filter array, image splicing. 

I. INTRODUCTION 
Images are often used as evidence to determine the 
authenticity of an event. In recent decades, image 
manipulation has been employed for the purpose of simple 
entertainment or as the initial step of a photomontage. 
However, the use of manipulated images for malicious 
purposes can demonstrate a negative impact on human 
society. Because detecting forged images by human eye is 
difficult, the development of a reliable image tampering 
detection method is required to determine image authenticity. 
A wide range of research has been conducted with respect to 
the detection of various image forgeries [1-4]. 

A commonly used tampering method is image splicing. If a 
part of an image is spliced to a part of another image, the 

spliced image exhibits heterogeneous statistical properties. 
Choosing which characteristics appear differently by image 
tampering is vital. Therefore, identifying the different 
statistical characteristics of the parts of a tampered image is 
the basis for detecting or localizing image splicing. Splicing 
detection [5-10] can determine whether a given image is 
authentic or tampered. In practical forensic applications, 
localizing splicing regions [11-13] compared with splicing 
detection is more effective. 

Image manipulation always leaves a trace, which can be 
used to detect tampered images or localize forged regions. In 
particular, the statistical inconsistencies of blurring [14-16], 
noise patterns [17-19], JPEG artifacts [20], and color filter 
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array (CFA) patterns [21-23] are widely used as clues to detect 
forged images or localize tampered regions. Recently, 
machine learning-based forgery localization networks [24-26] 
received serious research interest. Among the traces caused by 
image manipulation, we are interested in CFA pattern artifacts. 
Various digital forensic approaches are based on CFA pattern, 
such as source camera-model identification [27], CFA pattern 
configuration [28-30], color change detection [31, 32], and 
image authentication [33, 34].  

CFA is a specially designed element in a single-sensor 
imaging pipeline to acquire low-resolution color information 
in the image scene. The raw data captured by the image sensor 
with CFA are converted into a full-resolution color image by 
a demosaicing process, which is a kind of interpolation. When 
an image is tampered, forged regions exhibit demosaicing 
inconsistencies within authentic image regions. Accordingly, 
a number of studies have been conducted [35-40] to localize 
forged regions using demosaicing traces. However, the 
interpolation kernel for demosaicing is generally unknown. 
Thus, almost all methods use the prediction residue between 
the given suspected image and the estimated image by re-
interpolation.  

In forgery localization based on CFA patterns, the re-
interpolation process is very important and is the first step in 
generating a tampering localization map. The performance of 
tampering localization can depend on the selection of the re-
interpolation kernel. In general, the re-interpolation kernel is 
assumed to be bilinear, bicubic, or median [35-37, 40].  These 
interpolation kernel types only use intra-channel information, 
and they are, therefore, inappropriate for demosaicing 
methods using inter-channel color information. To address 
this, least-squares-based approaches [38, 39] are used to 
estimate the re-interpolation kernel. However, estimating one 
kernel for one image is not desirable because more than two 
interpolation kernels can exist for one spliced image.  

This paper presents a novel prediction residue estimation 
method based on singular value decomposition (SVD) for 
forgery localization. In the proposed method, the prediction 
residue is obtained by the reconstructed image by examining 
the remaining singular values after removing the largest 
singular value. The proposed method is more efficient in 
estimating prediction residue compared with conventional 
estimation algorithms based on the re-interpolation process. 
We propose a simple feature for the variance ratio of 
prediction residue to localize the tampered image regions. The 
proposed scheme does not require CFA configuration 
information, and it generates superior forgery localization 
results than conventional localization methods. 

 The remainder of this paper is organized as follows. 
Related works are briefly reviewed in Section II. Section III 
analyzes the variance of prediction residue and its application 
to forgery localization. The proposed prediction residue 
estimation and tampering localization algorithm are presented 
in Section IV. Section V presents the experimental results 

obtained using the proposed approach, and finally, the paper 
is concluded in Section VI. 

II.  RELATED WORK 
Fig. 1 shows the typical process of forgery localization 
methods using CFA artifacts. First, the green channel [36, 37, 
39] or all color channels [35, 38, 40] are selected to estimate 
the re-interpolation kernel. Next, prediction residue is 
generated using the difference between the tampered and re-
interpolated images by the estimated kernel. Based on the 
prediction residue, various features are extracted, the most 
common of which is the variance ratio. Feature models to 
classify authentic or tampered regions can be developed 
based on extracted features. Finally, the localization map is 
obtained using the parameters of the feature model. 

In 2009, Dirik et al. [35] presented image tampering 
detection techniques based on CFA processing. They 
exploited the fact that the sensor noise variance in interpolated 
pixels obtained by the demosaicing process is significantly 
lower than acquired pixels. Based on this, they recognized that 
a ratio of noise variances between interpolated and acquired 
pixels can be used to identify image tampering. This method 
was successfully applied to tamper detection with low error 
rates. However, this scheme exhibits a limited performance for 
small tampered regions and produces coarse localization of 
image forgery. 

Ferrara et al. [36] assumed that image tampering removes 
artifacts due to the demosaicing process. They proposed a new 
feature measuring the presence of demosaicing artifacts, that 
is, the logarithm of the geometric mean ratio of the prediction 
error variance, and introduced a new statistical model that 
derives the tampering probability of each mage block. This 
algorithm can generate fine-grained localization of tampered 
regions. However, the detection performance is affected by 
JPEG compression, and the forgery maps exhibit high false 
positives. 

Singh et al. [37] presented a high-order statistical approach 
to detect image forgery. This method uses the Markov 
transition probability matrix (MTPM) to identify the presence 
or absence of CFA artifacts in a particular image region. The 
MTPM was employed on the local variance of the prediction 
error between the observed and estimated pixels, which 
improved the quality of forgery map, however, high false 

FIGURE 2. Green pixel selection in a row of image surrounded in yellow 
box. 

FIGURE 1. A typical process of CFA-based forgery localization. 
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positives were recorded in the presence of uniform image 
regions. 

 Fernández et al. [38] proposed an image tampering 
detection technique based on CFA artifacts arising from the 
differences in the distribution of acquired and interpolated 
pixels. This approach identifies tampered areas by computing 
the probability of each pixel of being interpolated and then 
applying discrete cosine transform (DCT) on small blocks of 
the probability map. The value of the DCT coefficient for the 
highest frequency on each block was used to decide whether 
the analyzed region had been tampered with. However, the 
method failed to clearly localize tampered regions in the image. 

In 2019, Le et al. [39] introduced an improved forgery 
localization algorithm using demosaicing artifacts. They first 
explained why the demosaicing-based approach is less 
effective with JPEG compressed images. A robust statistical 
feature was presented on the basis of the green-channel 
prediction residue, and a penalized expectation maximization 
(EM) algorithm was used to localize forged areas in the 
tampered image. This method achieved a high localization 
performance, however, the localization performance was still 
limited to uncompressed images. 

Recently, an image tampering detection technique [40] was 
proposed by exposing the CFA artifacts in the difference 
domain through high-order MTPM-based statistical analysis. 
The suspicious image was first re-interpolated with four of the 
most commonly used Bayer CFA patterns, and then, the 
difference between the given image and the re-interpolated 
versions was evaluated to analyze CFA inconsistencies. The 
MTPM in the DCT domain was obtained for the difference 
image. This method produced a significant false positive rate 
due to the presence of uniform regions. 

III. ANALYSIS OF PREDICTION RESIDUE 
The prediction residue plays a vital role in localizing the 
tampered regions of an image. In particular, in almost all 
methods, the prediction residue variance is exploited to 
extract features for forgery localization. In this section, we 
examine demosaicing traces in terms of the mean and 
variance of the prediction residue in both authentic and 
interpolated pixels. The analysis is given for a one-
dimensional case, the results of which can be easily extended 
to two-dimensional case. 

A. DEMOSAICING PROCESS 
Letting pA(x) be the acquired pixel, we consider demosaicing 
interpolation of the green pixel in a particular image row, as 
shown in Fig. 2. The acquired pixel is 

( ), if  even
( )

0, if  oddA

G x x
p x

x


 


,                        (1) 

where G(x) denotes the green pixel value at location x. 
Letting pD(x) denote the demosaiced green pixel at position 
x, it can be expressed as 

( ), if  even
( ) ( ), if  oddD

u A
u

G x x
p x h p x u x

  

 ,               (2) 

where hu is the interpolation kernel, and Σuhu=1. When x is 
odd, the interpolation is achieved using the signal G(x) at x 
in even positions. Therefore, only odd u values contribute to 
the convolution in (2). In this case, we assume that the inter-
channel information is not used, and the acquired pixels are 
not modified in the interpolation process.  

B. PREDICTION RESIDUE 
In many studies, re-interpolation is proven to be efficient 
with respect to extracting features for forgery localization. 
However, the choice of the re-interpolation kernel is 
arbitrary and can affect the localization performance. Letting 
ku be the re-interpolation kernel, the re-interpolated pixel 
pR(x) can be expressed as 

( ) ( )R u D
u

p x k p x u  .                        (3) 

The prediction residue e(x) can be defined as e(x)=pD(x)-
pR(x), which can be further expressed  
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Using (3) and (4), we can obtain 
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where Σuku=1. 

C. VARIANCE OF PREDICTION RESIDUE 
 Let us assume that pA(x) is independent and an identically 
distributed signal. Accordingly, we can easily verify that the 
mean of e(x) is zero regardless of the position of x. 
Alternatively, the variance of the prediction residue is 
dependent on the position of x. If x is even (acquired pixel), 
the variance of e(x), σA

2 can be expressed as  

2 2 2 21A G u v
u v

k h     
 

  ,                       (6) 

FIGURE 2. Green pixel selection in a row of image surrounded in yellow 
box. 
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where σG
2 is the variance of G(x). The variance of the 

prediction residue at odd x values (interpolated pixel), σT
2 is 

 22 2
T G u u

u

h k   .                       (7) 

The detail derivations for these two variances are outlined by 
[36] and [39]. 

According to (6) and (7), we can assume that σA
2 is higher 

than σT
2 in the presence of CFA demosaicing. If we know the 

demosaicing kernel hu, then σT
2 is obviously zero. When an 

image has been forged, the relation σA
2≥ σT

2 can be broken. 
Therefore, the imbalance between the prediction residue 
variance for even and odd locations is an important clue in 
detecting/localizing image tampering. 

The relation σA
2≥ σT

2 is available under the assumption that 
the demosaicing interpolations do not use inter-channel 
information. However, the relation σA

2≥ σT
2 can be broken 

when inter-channel interpolation is used. To examine this, we 
selected 50 images with RGGB Bayer pattern, and performed 
six famous demosaicing interpolations, including bilinear 
kernel, the adaptive homogeneity-directed (AHD) method 
[41], the variable number of gradients (VNG) algorithm [42], 
DCB demosaicing [43], IGV demosaicing [44], and the 
heterogeneity-projection hard-decision (HPHD) color 
interpolation [45]. For re-interpolation, the most popular 
bilinear method is used, as well as kernel estimation methods 
based on ordinary least squares (OLS) [38] and OLS using 
with smooth regions (OLSSR) [39]. 

Table 1 shows the probability that σA
2 is greater than σT

2 for 
the green color channel. For any image, a 2×2 Bayer pattern 
matrix has four components. Therefore, σA

2 is obtained by 
adding two variances based on i=2 and i=3. Alternatively, σT

2 
is calculated by adding two variances based on i=1 and i=4. 
As shown Table 1, bilinear- and DCB-demosaiced cases are 
successful for all re-interpolation methods. However, three re-
interpolation algorithms for the other demosaicing 
interpolations either slightly (AHD and VNG) or significantly 
(IGV and HPHD) fail to satisfy σA

2≥ σT
2.  On average, three 

kinds of re-interpolation kernels essentially have same success 
rates (roughly 0.78). The performance of the forgery 
localization is highly dependent on the variance of the 
prediction error between demosaiced and re-interpolated 
images. As observed in Table 1, the conventional re-
interpolation methods demonstrate limited performances. As 
such, we introduce a new algorithm to obtain prediction 
residue using SVD. 

TABLE 1. Probability of satisfying the relation σA
2≥ σT

2. 

 Re-interpolation kernel 
Demosaicing  

kernel 
Bilinear OLS OLSSR 

Bilinear 1.00 1.00 1.00 
AHD [41] 0.88 0.94 0.94 
VNG [42] 0.90 0.86 0.84 
DCB [43] 1.00 0.98 0.98 
IGV [44] 

HPHD [45] 
Average 

0.68 
0.20 
0.78 

0.52 
0.36 
0.78 

0.58 
0.30 
0.77 

IV. PROPOSED METHOD 
Many demosaicing algorithms attempt to preserve or 
enhance the image edge component, however, this is not 
always successful. Accordingly distinguishing between the 
original and interpolated background areas can be difficult. 
For this reason, a bilinear kernel is a good choice for the re-
interpolation kernel. However, because bilinear interpolation 
is performed at every position with the same kernel, it does 
not reflect local image variation. Because of this, the utility 
of the prediction residue obtained by bilinear kernelling is 
reduced for edge-preserving demosaicing methods.  

SVD for a small image block can be used to obtain the 
prediction residue.  The large singular values of an image 
block mainly contain low-frequency background information. 
Conversely, small singular values are associated with high-
frequency block components. Therefore, an image 
reconstructed by small singular values can be considered as 
prediction residue. Because SVD is performed at a small 
image block, the prediction residue contains the local variation 
of the image. 

A. IMAGE DECOMPOSION 
In this paper, we only use the green channel to localize 
tampered regions. For the given suspicious image, we let IG 
be the green channel (from hereon in, the superscript G is 
omitted). The green channel can be rearranged to four down-
sampled sub-images according to pixel location in the 2×2 
Bayer pattern matrix. By decomposition, I can be expressed 
as 

1 2

3 4

 
  
 

I I
I

I I
,                               (8) 

where Ii is the down-sampled green component (i∈{1,2,3,4} 
is the index of the sub-image corresponding to the 2×2 Bayer 
pattern matrix), and Ii(x,y) represents the pixel value at the 
(x,y) position. In this paper, we omit the variables that 
indicates position, that is, x and y, as long as no confusion 
occurs. Bold characters represent matrices and non-bold 
italic characters imply scalar values. Fig. 3 shows an 
example of color component decomposition for a GXXG 
Bayer pattern. 

 
FIGURE 3. Example of green component decomposition for a Bayer 
pattern in an image. 
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B. PREDICTION RESIDUE BASED ON SINGULAR 
VALUES 
Letting Ji be a square block with size Q×Q centered on (x,y), 
the SVD of Ji is the factorization of Ji into the product of 
three matrices as. 

T
i J WSZ ,                             (9) 

where W and Z are orthogonal matrices, and S is a diagonal 
matrix with singular values on the diagonal. There are Q 
singular values with the condition of λ1≥ …λq≥… λQ ≥0, where 
λq is the q-th singular value. Large singular values only contain 
information about the background or uniform areas, whereas 
small singular values contain much more detailed information. 
We introduce a method that can obtain the prediction residue 
by removing the largest singular value. 

 Ji can be alternately expressed in summation form as  

1

Q
T

i q q q
q




J w z ,                           (10) 

where wq is the left singular vector, and zq is the light singular 
vector.  To obtain the prediction error, we reconstruct the 
image block after removing the largest singular value λ1, 
which can be expressed as 

2

Q
T

i q q q
q




R w z ,                           (11) 

where Ri is the reconstructed block without λ1. From (11), we 
can define the prediction residue ei(x,y) at (x,y) as 

( , ) ( , )i ie x y R x y ,                         (12) 

where Ri (x, y) is the reconstructed pixel without λ1 at (x,y). To 
obtain the prediction residue ei(x+1,y) at location (x+1,y), the 
M×M block slides one pixel to the right. 

Table 2 presents the probability that σA
2 is greater than σT

2 
obtained by the proposed SVD-based prediction residue for 
the green color channel. The test conditions are the same as 
those in Table 1. As shown in Table 2, the average probability 
of satisfying the relation σA

2≥σT
2 is 0.84, which is greater than 

that of bilinear or OLS-based estimation methods. The 
prediction residue based on SVD is adaptively calculated 
using local pixel values without the re-interpolation kernel. 
Therefore, the proposed algorithm can more precisely estimate 
the prediction residue than existing algorithms. 

TABLE 2. Probability of satisfying the relation σA
2≥σT

2 based on the 
proposed method. 

Demosaicing kernel Proposed SVD 

Bilinear 1.00 
AHD [41] 0.96 
VNG [42] 0.98 
DCB [43] 1.00 
IGV [44] 

HPHD [45] 
Average 

0.66 
0.42 
0.84 

 

Fig. 4 depicts the prediction residue for a tampered image 
obtained by various estimation methods, including the 
proposed algorithm. In this example, we do not know which 
interpolation kernel is used in the demosaicing process. We 
estimate that the Bayer pattern type will be GXXG, because 
the variances of i=1 and i=4 seem to be greater than those of 
i=2 and i=3 in the authentic region. Alternatively, we can 
observe that the variances of i=1 and i=4 are obviously smaller 
than those of i=2, and i=3 in the tampered region.  

As shown in Fig. 4(a), the relation σA
2≥ σT

2 is broken in the 
tampered region when re-interpolation is performed using the 
bilinear kernel. However, in the authentic region, strong edges 
are not sufficiently removed. OLS-based re-interpolation 
methods provide more accurate discrimination in the acquired 
regions compared with bilinear re-interpolation, however, the 
discrimination decreases in the tampered region as shown in 
Fig. 4(b) and (c). In contrast, the prediction residues obtained 
by the proposed algorithm exhibit good discrimination in both 
authentic and tampered regions as shown in Fig 4(d). 

C. FEATURE EXTRACTION 
In most localization approaches [36-39], the weighted 
variance of the prediction residue and its geometric mean are 
both calculated. The logarithm of mean ratio is used to 
achieve forgery localization. In addition, Gaussian mixture 
modeling, which results in an EM algorithm, is exploited for 
the extracted logarithm-mean ratio feature.  

In this paper, we propose a simple feature extraction 
algorithm. First, we calculate the variance of the prediction 

FIGURE 4. Prediction residues obtained by various re-interpolation 
kernels. (a) bilinear kernel, (b) OLS kernel, (c) OLSSR kernel, and (d) 
proposed SVD-based re-interpolation. 
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under the assumption that the local stationarity of prediction 
residue is valid in a (2K+1)×(2K+1) window. The local 
variance of the prediction residue is 

 
2 2 2
, ,2

,

1
( , ) ( , )

2 1

K

e i i e i
m n K

x y e x m y n
K

 


     
 ,  (13) 

where μe,i
2 is the local mean of the prediction residue. Next, 

we divide the given variance image into B×B non-overlapping 
blocks, where B is related to the period Bayer pattern mosaic. 
Letting Bi(k,l) be the B×B variance block in the block index 
(k,l) and  sub-image index i. The proposed feature, F↘(k,l) is  

1,4

2,3

( , )
( , ) log

( , )

M k l
F k l

M k l

 
   

 
 ,                    (14) 

where  

1 4

2 2
1,4 ,1 ,4

, ( , ) , ( , )

( , ) ( , ) ( , )e e
x y B k l x y B k l

M k l x y x y 
 
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and 

2 3

2 2
2,3 ,2 ,3

, ( , ) , ( , )

( , ) ( , ) ( , )e e
x y B k l x y B k l

M k l x y x y 
 

   .    (16) 

Because the Bayer pattern type is not known, swapping 
M1,4(k,l) and M2,3(k,l) in (14) can also be a feature. The 
swapped feature, of F↙(k,l)  is  -F↘(k,l). The GXXG pattern 
corresponds to F↘(k,l), whereas the XGGX pattern 
corresponds to F↙(k,l). Assuming that the tampered area is 
smaller than the acquired area, we define the final feature, 
F(k,l) as follows. 

, ,

( , ), ( , ) ( , )
( , )

( , ), otherwise
k l k l

F k l F k l F k l
F k l

F k l

  


   



.    (17) 

In conclusion, the proposed algorithm can localize tampered 
regions even if the Bayer pattern type is unknown. 

D. LOCALIZATION 
The proposed feature exhibits a range of -∞<F(k,l)<∞. To 
localize foraged regions, we introduce a probability map 
using F(k,l) as 

( , )

1
( , )

1 F k l
P k l

e



,                        (18) 

where P(k,l) represents the probability that the block B(k,l) 
has been tampered. Before obtaining P(k,l), 5×5 median 
filtering is applied to F(k,l). 

E. OVERALL ALGORITHM 
The overall proposed algorithm is presented in Fig. 5. From 
the given image, the green channel is decomposed into four 
sub-images according to the Bayer pattern. The prediction 
residues are obtained based on SVD by removing the largest 
singular value. Four variance images for four corresponding 
prediction residues are calculated. The feature is extracted 
based on (17). Finally, the probability map using (18) is 
calculated to localize tampered regions.  

In the proposed method, there are three parameters, 
including Q, K, and B. Table 3 shows the parameter values 
used in our experiment. 

TABLE 3. Three parameter values used in the experiment. 

Parameter Value

Square block size for SVD: Q×Q Q=3
Window size for variance calculation: (2K+1)×(2K+1) K=4

Square block size for feature extraction: B×B B=16

V. SIMULATION RESULTS 
To verify the effectiveness of the proposed tampering 
localization method, we tested it on three datasets, including 
the Columbia uncompressed image splicing detection 
evaluation dataset (CUISDE) [46], image manipulation 
dataset (IMD) [47], and realistic tampering dataset (RTD) 
[48]. CUISDE presents 180 images for evaluating splicing 
detection performance, and it is the easiest dataset to use of 
the three listed.  IMD is comprised of 160 images, whereas  
RTD presents 220 images for image forgery detection. The 
images of RTD are captured by four camera models, such as 
Canon 60D, Nikon D90, Nikon D7000, and Sony A57. RTD 
presents both copy-moved and spliced images. The 
performance of our approach is compared with those of four 
state-of-the-art methods, namely, Dirik’s [35], Ferrara’s [36], 
Fernández’s [38], and Le’s [39] algorithms. The code of the 
proposed algorithm is available in [49]. 

FIGURE 5. Overall system of proposed algorithm. 
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A. QUALITATIVE COMPARISON 
Fig. 6 compares the performance of the proposed algorithm 

for CUISDE with four image tampering localization methods. 
As shown in Fig. 6, Dirik’s method roughly localizes the 
tampered region region. Ferrara’s and Fernández’s methods 
fail to localize in many cases. Le’s algorithm identifies a 
tampered region, however, it generates a lot of false detected 
pixels. Overall, the proposed method has the best localization 
performance.  

The localization results for IMD are depicted in Fig. 7. As 
shown in Fig. 7, Dirik’s method does not efficiently localize 
the tampered area. Rather, it shows up the contour of the 
foraged areas. Ferrara’s method often fails to achieve 
localization, however, it is successful for some images. 
Fernández’s and Le’s methods achieve reasonable localization 
performance, however, in some images, their algorithms 
produce erroneous results. The proposed scheme demonstrates 
the best localization performance with relatively low 
erroneous regions. All methods do not localize authentic 

 
FIGURE 6. Performance comparison of various tampering localization methods for CUISDE [46]. 
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regions in copy-moved images, because CFA pattern-based 
approaches can only localize moved areas.  

 Fig. 8 presents the localization performance for RTD. 
Dirik’s method almost highlights the tampered regions, 
however, it exhibits large erroneous areas. Although the other 
three existing algorithms can identify tampered regions, they 
still falsely identify acquired areas as forged regions. The 
proposed approach achieves reasonable localization 
performance. 

B. FAILURE CASES 

If the Bayer pattern configuration and demosaicing method 
of the tampered region are the same as those of the acquired 
region, the CFA pattern-based tampering localization 
scheme will fail. In this case, the relation σA

2≥ σT
2 does not 

serve as a criterion for detecting or localizing image 
tampering. This fact is a limitation of the forgery detection 
method based on demosaicing traces. Fig. 9 illustrates some 
failure cases of the conventional and proposed methods. As 
expected earlier, the localization maps exhibit a random 
pattern or highlight salient regions.  

 
FIGURE 7. Performance comparison of various tampering localization methods for IMD [47]. 
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C. QUANTITATIVE COMPARISON 
The proposed method and four existing localization 
algorithms give a probability or score. Therefore, we use a 
receiver operator characteristic (ROC) curve [50] and a 
precision-recall curve for quantitative comparison. The ROC 
curve is a graphical plot, which shows the diagnostic ability 
of binary classifiers. In essence, it shows the trade-off 
between the true positive rate and the false positive rate. The 
true positive rate is the proportion of tampered pixels 

correctly localized, whereas the true negative rate indicates 
the proportion of acquired pixels wrongly localized. The 
ROC curve close to the top-left corner represents an optimal 
classification performance. The precision-recall curve shows 
the tradeoff between precision and recall for different 
threshold. A high area under this curve represents both high 
recall and high precision. A high precision relates to a low 
false positive rate, and a high recall relates to a low false 
negative rate. High precision-recall scores for both show that 

 
FIGURE 8. Performance comparison of various tampering localization methods for RTD [48]. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3091161, IEEE
Access

Author Name: Preparation of Papers for IEEE Access (May 2019)                                 

 

VOLUME XX, 2019 10 

the classifier is returning accurate results, as well as returning 
a majority of all positive results. 

Fig. 10 shows the ROC curves for various tampering 
localization methods. In Fig. 10, we also present an area under 
curve (AUC) value, which is a performance indicator of each 
localization method into a single measure, and it is a general 
measure of predictive accuracy. Fig. 10(a) depicts the ROC 
curves for all 560 test images. As shown in Fig. 10(a), the 
proposed tampering localization algorithm has the best 
performance. The AUC value of the proposed method is 0.834, 
which is higher than that of other localization methods. The 
forgery localization performance for each dataset is also 
depicted in Fig. 10. Fig. 10(b) presents ROC curves and AUC 
values for CUISDE. The proposed algorithm has an AUC 
value of 0.947, which is the greatest value of the five 
algorithms. Le’s method is ranked in second (0.865), followed 
by Dirik’s (0.860), Ferrara’s (0.805), and Fernández’s (0.732) 
methods. The ROC curves for IMD are illustrated in Fig. 10(c). 
The proposed scheme demonstrates the best performance, 
followed by Ferrara’s algorithm. For this dataset, localizing 
tampered regions is hard because it contains copy-move 
images. Finally, Fig. 10(d) shows the results for RTD. In this 
dataset, the localization performance is similar for the 
proposed method, as well as for Dirik’s, and Ferrara’s methods. 

 Fig. 11 illustrates the precision-recall curves for various 
forgery localization methods. Fig. 11(a) shows the precision-
recall curves for all test images. As shown in Fig. 11(a), the 

proposed localization method has the best performance. Figs. 
11(b), 11(c), and 11(d) depict curves for CUISDE, IMD, and 
RTD, respectively. As shown in these figures, the proposed 
approach has the superior localization performance for all 
datasets. 

D. EFFECT OF PARAMETERS 
Fig. 12 shows the effect of parameters in localizing tampered 
regions. Fig. 12(a) presents the AUC values for various B 
sizes. Except for the smallest block size of B=4, all 
demonstrate high AUC values. Fig. 12(b) shows the ROC 
curves of the proposed method according to various Q size. 
AUC values are 0.834, 0.825, and 0.808 when Q is 3, 5, and 
7, respectively. When Q=3, the largest AUC values are 
achieved. Even when Q=7, which exhibits the lowest ACU 
value, the proposed method exhibits a higher AUC value 
compared with the other methods. All results obtained by the 
proposed algorithm used the parameter values shown in 
Table 3. 

IV. CONCLUSION 
In this paper, we proposed a novel image tampering 
localization method based on CFA pattern artifacts without 
knowledge of CFA configuration. We introduced SVD to 
estimate the prediction residue between the acquired and re-
interpolated images. The prediction residue was obtained in 
the reconstructed image by examining the remaining singular 

 
FIGURE 9. Failure cases. 
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values after removing the largest singular value. We showed 
that the prediction residue of the proposed algorithm was 
more efficient for localizing forged regions. A simple feature 

using the logarithm of the ratio of the variance of prediction 
residue was extracted. Finally, we obtained the probability 
map to localize tampered regions using extracted features. 

 
FIGURE 10. ROC curve and AUC value for various datasets. (a) all 
dataset, (b) CUISDE, (c) IMD, and (d) RTD. 

 
FIGURE 11. Precision-recall curve and AUC value for various datasets. 
(a) all dataset, (b) CUISDE, (c) IMD, and (d) RTD. 
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The proposed method was compared with existing tampering 
localization algorithms, the results of which showed that the 
proposed scheme outperforms state-of-the-art approaches in 
terms of subjective and objective qualities.  

REFERENCES 
[1] W. D. Ferreira, C. B. R. Ferreira, G. Cruz Júnior, and F. Soares, “A 

review of digital image forensics,” Comput. Electr. Eng., vol. 85, 
106685, July, 2020. 

[2] R. Thakur, R. Rohilla, “Recent advances in digital image manipulation 
detection techniques: A brief review,” Forensic Sci. Int., vol. 312, 
110311, July, 2020. 

[3] X. Lin, J. H. Li, S. L. Wang, A. W. C. Liew, F. Cheng, and X. S. Huang, 
“Recent advances in passive digital image security forensics: A brief 
review,” Engineering, vol. 4, pp. 29-39, Feb. 2018. 

[4] K. Asghar, Z. Habib, and M. Hussain, “Copy-move and splicing image 
forgery detection and localization techniques: a review,” Aust. J. 
Forensic Sci., vol. 49, no. 3, pp. 281-307, May, 2017. 

[5] Z. He, W. Lu, W. Sun, and J. Huang, “Digital image splicing detection 
based on Markov features in DCT and DWT domain,” Pattern Recog., 
vol. 45, no. 12, pp. 4292–4299, Dec. 2012. 

[6] X. Zhao, S. Wang, S. Li, and J. Li, “Passive image-splicing detection 
by a 2-D noncausal Markov model,” IEEE Trans. Circuits Syst. Video 
Technol., vol. 25, no. 2, pp. 185-199, Feb. 2015. 

[7] T. H. Park, J. G. Han, Y. H. Moon and I. K. Eom, “Image splicing 
detection based on inter-scale 2D joint characteristic function 
moments in wavelet domain,” EURASIP J. Image Video Process., vol. 
2016:30, Oct. 2016.  

[8] B. Chen, X. Qi, X. Sun, and Y. Q. Shi, “Quaternion pseudo-Zernike 
moments combining both of RGB information and depth information 
for color image splicing detection,” J. Vis. Commun. Image vol., 49, 
pp. 283-290, Nov. 2017. 

[9] J. G. Han, T. H. Park, Y. H. Moon and I. K. Eom, “Quantization based 
Markov feature extraction method for image splicing detection,” Mach. 
Vis. Appl., vol. 29, no. 3, pp. 543-552, April, 2018. 

[10] N. Kanwal, A. Girdhar, L. Kaur, and J. S. Bhullar, “Digital image 
splicing detection technique using optimal threshold based local 
ternary pattern,” Multimed. Tools Appl., vol. 79, pp. 12829–12846, Jan. 
2020. 

[11] M. Zampglou, S. Papadopoulus, and Y. Kompatsiaris, “Large-scale 
evaluation of splicing localization algorithms for web images,” 
Multimed. Tools Appl., vol. 76, pp. 4801–4834, Sep. 2016. 

[12] P. Sun, Y. Lang, S. Fan, Z. Shen, L. Liu, D. Shan, and S. Peng, 
“Exposing splicing forgery based on color temperature estimation,” 
Forensic Sci. Int., vol. 289, pp. 1-11, Aug. 2018. 

[13] S. Dua, J. Singh, and H. Parthasarathy, “Detection and localization of 
forgery using statistics of DCT and Fourier components,” Signal 
Process. Image Commun., vol. 82, 115778, March 2020. 

[14] M. P. Rao, A. N. Rajagopalan and G. Seetharaman, “Harnessing 
motion blur to unveil splicing,” IEEE Trans. Inf. Forensics Secur., vol. 
9, no. 4, pp. 583-595, April 2014. 

[15]  K. Bahrami, A. C. Kot, L. Li, and H. Li, “Blurred image splicing 
localization by exposing blur type inconsistency,” IEEE Trans. Inf. 
Forensics Secur., vol. 10, no. 5, pp. 999–1009, May 2015. 

[16] D. M. Uliyan, H. A. Jalab, A. W. Wahab, P. Shivakumara, and S. 
Sadeghi, “A novel forged blurred region detection system for image 
forensic applications,” Expert Syst. Appl., vol. 64, pp. 1–10, Dec. 2016. 

[17] S. Lyu, X. Pan, and X. Zhang, “Exposing region splicing forgeries 
with blind local noise estimation,” Int. J. Comput. Vis., vol. 110, no. 2, 
pp. 202–221, Nov. 2014. 

[18] N. Zhu, and Z. Li, “Blind image splicing detection via noise level 
function,” Signal Process. Image Commun., vol. 68, pp. 181-192, Oct. 
2018. 

[19] B. Liu, C. M. Pun, “Locating splicing forgery by adaptive-SVD noise 
estimation and vicinity noise descriptor,” Neurocomputing, vol. 387, 
pp. 172-187, April 2020. 

[20] T. Bianchi, and A. Piva, “Image forgery localization via block-grained 
analysis of JPEG artifacts,” IEEE Trans. Inf. Forensics Secur., vol. 7, 
no. 3, pp. 1003–1017, June 2012. 

[21] A. C. Popescu and H. Farid, “Exposing digital forgeries in color filter 
array interpolated images,” IEEE Trans. Signal Process., vol. 53, no. 
10, pp. 3948-3959, Oct. 2005. 

[22] S. Bayram, H. T. Sencar, and N. Memon, “Classification of digital 
camera-models based on demosaicing artifacts,” Digit. Invest., vol. 5, 
pp. 49-59, Sep. 2008. 

[23] H. Cao, and A. C. Kot, “Accurate detection of demosaicing regularity 
for digital image forensics,” IEEE Trans. Inf. Forensics Secur., vol. 4, 
no. 4, pp. 899–910, Oct. 2009. 

[24] Y. Rao, J. Ni and H. Zhao, “Deep learning local descriptor for image 
splicing detection and localization,” IEEE Access, vol. 8, pp. 25611-
25625, Jan. 2020. 

[25] Y. Liu and X. Zhao, “Constrained image splicing detection and 
localization with attention-aware encoder-decoder and atrous 
convolution,” IEEE Access, vol. 8, pp. 6729-6741, Jan. 2020. 

[26] B. Liu, and C. M. Pun, “Exposing splicing forgery in realistic scenes 
using deep fusion network,” Inf. Sci., vol.526, pp. 133-150, July 2020. 

[27] S. Gao, G. Xu, and R. M. Hu, “Camera model identification based on 
the characteristic of CFA and interpolation,” in Proc. Int. Workshop 
Digit. Watermarking, Atlantic City, NJ, USA, Oct. 2011, pp. 268-280 

[28] M. Kirchner, “Efficient estimation of CFA pattern configuration in 
digital camera images,” in Proc. SPIE Media Forensics and Security 
II, vol. 7541, San Jose, California, USA, Jan. 2010, Art. no. 754111. 

[29] C. H. Choi, J. H. Choi, and H. K. Lee, “CFA pattern identification of 
digital cameras using intermediate value counting,” in Proc. 13th 
ACM Multimedia Workshop Multimedia Secur., New York, USA, Sep. 
2011, pp. 21-26. 

[30] J. J. Jeon, H. J. Shin, and I. K. Eom, “Estimation of Bayer CFA pattern 
configuration based on singular value decomposition,” EURASIP J. 
Image Video Process., vol. 2017, Art. no. 47, July 2017. 

[31] C. H. Choi, H. Y. Lee, and H. K. Lee, “Estimation of color 
modification in digital images by CFA pattern change,” Forensic Sci. 
Int., vol. 226, pp. 94-105, Mar. 2013. 

[32] J. J. Jeon, and I. K. Eom, “Wavelet-based color modification detection 
based on variance ratio,” EURASIP J. Image Video Process., vol. 2018, 
Art. no. 47, June 2018. 

 
FIGURE 12. ROC curve and AUC value for various parameters obtained 
by proposed method. (a) various B values, and (b) various Q values. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3091161, IEEE
Access

                                                                                                         Author Name: Preparation of Papers for IEEE Access (May 2019) 

13 VOLUME XX, 2019 

[33] A. C. Gallagher and T. Chen, “Image authentication by detecting 
traces of demosaicing,” in Proc. IEEE Conf. Comput. Vis. Pattern 
Recognit., Anchorage, AK, USA, Jun. 2008, pp. 1-8. 

[34] Y. Huang, and Y. Long, “Demosaicking recognition with applications 
in digital photo authentication based on a quadratic pixel correlation 
model,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 
Anchorage, AK, USA, Jun. 2008, pp. 1-8. 

[35] A. E. Dirik and N. Memon, “Image tamper detection based on 
demosaicing artifacts,” in Proc. 16th IEEE Int. Conf. Image Process., 
Cairo, Egypt, Nov. 2009, pp. 1497-1500. 

[36] P. Ferrara, T. Bianchi, A. D. Rosa, and A. Piva, “Image forgery 
localization via fine-grained analysis of CFA artifacts,” IEEE Trans. 
Inf. Forensics Secur., vol. 7, no. 5, pp. 1566-1577, Oct. 2012. 

[37] A. Singh, G. Singh, and K. Singh, “A Markov based image forgery 
detection approach by analyzing CFA artifacts,” Multimedia Tools 
Appl., vol. 77, pp. 28949-28968, Nov. 2018. 

[38] E. G. Fernández, A. L. S. Orozco, L. J. G. Villalba, and J. Hernandez-
Castro, “Digital image tamper detection technique based on spectrum 
analysis of CFA artifacts,” Sensors, vol. 18, no. 9, 2804, Aug. 2018. 

[39]  N. Le, and F. Retraint, “An improved algorithm for digital image 
authentication and forgery localization using demosaicing artifacts,” 
IEEE Access, vol. 7, pp. 125038-125053, Sep. 2019. 

[40] G. Singh, and K. Singh, “Digital image forensic approach based on the 
second-order statistical analysis of CFA artifacts,” Forensic Sci. Int.: 
Digit. Invest., vol. 32, 200899, Mar. 2020. 

[41] K. Hirakawa and T. W. Parks, “Adaptive homogeneity-directed 
demosaicing algorithm,” IEEE Trans. Image Process., vol. 14, no. 3, 
pp. 360-369, March 2005. 

[42] E. Chang, S. Cheung, and D. Y. Pan, “Color filter array recovery using 
a threshold-based variable number of gradients,” in Proc. SPIE, 
Sensors, Cameras, and Applications for Digital Photography, San 
Jose, CA, USA, Mar. 1999, pp. 36–43. 

[43] DCB demosaicing algorithm. Accessed: Mar. 26, 2021. [Online] 
Available: http://www.rawtherapee.com/. 

[44] IGV demosaicing algorithm. Accessed: Mar. 26, 2021. [Online] 
Available: http://www.rawtherapee.com/. 

[45] C. Tsai and K. Song, “Heterogeneity-projection hard-decision color 
interpolation using spectral-spatial correlation,” IEEE Trans. Image 
Process., vol. 16, no. 1, pp. 78-91, Jan. 2007. 

[46] T. T. Ng and S. F. Chang, “A dataset of authentic and spliced image 
blocks,” Technical Report 203–2004, Columbia University, 2004. 
Accessed: Apr. 28, 2021. [Online] Available: 
https://www.ee.columbia.edu/ln/dvmm/downloads/authsplcuncmp/. 

[47] V. Christlein, C. Riess, J. Jordan, C. Riess, and E. Angelopoulou “An 
evaluation of popular copy-move forgery detection approaches,” IEEE 
Trans. Inf. Forensics Secur., vol. 7, no. 6, pp. 1841-1854, Dec. 2012. 
Accessed: Apr. 28, 2021. [Online] Available: 
https://www5.cs.fau.de/research/data/image-manipulation/. 

[48] P. Korus and J. Huang, “Multi-scale analysis strategies in PRNU-based 
tampering localization, IEEE Trans. Inf. Forensics Secur., vol. 12, no. 4, 
pp. 809-824, Apr. 2016. Accessed: Apr. 28, 2021. [Online]. Available: 
https://pkorus.pl/downloads/dataset-realistic-tampering/. 

[49] Source code for the proposed method: Accessed: Apr. 28, 2021. [Online] 
Available: https://sites.google.com/view/ispl-pnu/. 

[50] A. P. Bradley, “The use of the area under the ROC curve in the 
evaluation of machine learning algorithms,” Pattern Recog., vol. 30, 
no. 7, pp. 1145-1159, July 1997. 


