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ABSTRACT Audio steganography aims to exploit the human auditory redundancy to embed the secret
message into cover audio, without raising suspicion when hearing it. However, recent studies have shown
that the existing audio steganography can be easily exposed with the deep learning based steganalyzers
by extracting high-dimensional features of stego audio for classification. The existing audio steganography
schemes still have room for improvements. In this work, we propose an audio steganography framework
that could automatically learn to generate superior steganographic cover audio for message embedding.
Specifically, the training framework of the proposed framework consists of three components, namely,
generator, discriminator and trained deep learning based steganalyzer. Then the traditional message
embedding algorithm LSBM, is employed to embed the secret message into the steganographic cover audio
to obtain stego audio, which is delivered to the trained steganalyzer for misclassifying as cover audio. Once
the adversarial training is completed among these three parties, one can obtain a well-trained generator,
which could generate steganographic cover audio for subsequent message embedding. In the practice of our
proposed method, the stego audio is produced by embedding the secret message into the steganographic
cover audio using a traditional steganography method. Experimental results demonstrate that our proposed
audio steganography can yield steganographic cover audio that preserves a quite high perception quality
for message embedding. We have compared the detection accuracies with the existing audio steganography
schemes as presented in our experiment, the proposed method exhibits lower detection accuracies against
the state-of-the-art deep learning based steganalyzers, under various embedding rates. Codes are publicly
available at https://github.com/Chenlang2018/Audio-Steganography-using-GAN.

INDEX TERMS Audio steganography, deep learning based steganalysis, generative adversarial network
(GAN).

. INTRODUCTION
Steganography is a technique that utilizes the human percep-
tion redundancy to embed secret message into a cover such as
video, image and audio. The cover with embedded data, i.e.,
the stego, could bypass adversary monitoring and realize the
covert communication. Steganography has been applied to
many multimedia security scenarios, e.g., privacy protection
[1].

According to different embedding strategies, steganogra-
phy can be classified into non-adaptive steganography and
adaptive steganography. In general, non-adaptive steganog-
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raphy methods often modify all elements of cover in an
indiscriminate manner. The representative works along this
line are LSB [2] and LSB Matching (LSBM) [3]. Instead,
adaptive steganography methods selectively embed the se-
cret message in areas that are unlikely to be exposed. The
renowned adaptive steganography algorithms include WOW
[4], HUGO [5], HILL [6], S-UNIWARD [7]. These meth-
ods are all based on Syndrome-Trellis Codes (STC) [8].
In the adaptive steganography framework, a distortion cost
function of each embedding position in the cover is defined
to characterize the degree of distortion for stego. The total
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distortion is then minimized under the assumption that all
embedded operations are independent of each other. Note
that, the adaptive steganography can be easily detected by
Spatial Rich Model (SRM) [9] steganalysis method. Such
methods use multiple high-pass filters to preprocess the stego
to magnify steganographic signals.

Recently, deep learning has achieved great breakthroughs
in many fields, e.g., computer vision, natural language pro-
cessing and speech recognition, and it has been transforming
the information hiding research in the last few years. As
the fact that deep learning based steganalysis methods [10],
[11] have significantly exceeded the traditional steganalysis
methods [12], [13] in detecting conventional steganography
algorithms, which may bring challenges to the development
of steganography. So researchers have begun to propose deep
learning based image steganography methods. Volkhonskiy
et al. [14] first proposed Steganographic GAN (SNGAN)
to implement cover modified steganography. Unlike SGAN,
Hayes et al. [15] proposed to use the secret message and
cover image to generate stego image. Zhang et al. [16]
proposed a novel data-driven information hiding scheme
called “generative steganography by sampling” (GSS) that
the stego image was directly sampled by a generator without
using covers. Tang et al. [17] combined GAN with adaptive
steganography to propose automatic steganographic distor-
tion learning framework (ASDL-GAN), in which the GAN
component was supposed to learn the embedding change
probability map.

In addition to the GAN-based steganography approaches,
researchers also proposed steganographic methods inspired
from the adversarial examples. Zhang et al. [18] em-
ployed Fast Gradient Sign Method (FGSM) [19] to devise a
steganography model, where the core idea was to add random
noise for simulating embedding operation on the cover image
to generate “stego image” with noise, and then performed ad-
versarial attack on deep learning based steganalysis network
to acquire perturbation. Finally, the adaptive steganography
algorithm was used for embedding secret messages. The
reported results showed that the proposed method achieved
superior performance in resisting deep learning based ste-
ganalysis methods. While Tang et al. [20] thoroughly investi-
gated adversarial examples from the perspective of steganog-
raphy. They suggested that adversarial example can be used
to adjust steganographic distortion cost effectively.

The existing conventional audio steganography cannot re-
sist deep learning based steganalysis methods. Lin-Net [21]
and Chen-Net [22] are two state-of-the-art deep learning
based audio steganalysis methods, which have achieved ex-
cellent classification performance for detecting traditional
audio steganography algorithms. Moreover, the emerging
steganography algorithms based on deep learning are mainly
focused in the image domain, while the deep learning based
audio steganography algorithms have drawn less attention,
which still have room for improvements. Therefore, this
paper is devoted to exploring steganography in the audio
domain. The proposed training framework consists of three
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components: generator, discriminator and trained deep learn-
ing based steganalyzer. The original cover audio is taken as
the input to the generator for generating undistinguishable
steganographic cover audio. Then the traditional message
embedding algorithm LSBM, is employed to embed the
secret message into the generated steganographic cover audio
to obtain stego audio, which is delivered to the trained stegan-
alyzer for being misclassified as cover audio. This is trying
to fool the trained steganalyzer for outputting wrong predic-
tion probabilities. When misclassification occurs, the error
corresponding to prediction loss will be back-propagated to
the generator for updating the weight parameters. Once the
adversarial training among these three parties is completed,
one can obtain a well-trained generator to generate stegano-
graphic cover audio for subsequent message embedding,
which ensures that the data distribution of generated stegano-
graphic cover audio matches well with that of messages.
It should be remarked that the steganographic cover audio
refers to the cover audio that’s suitable for message embed-
ding, not the stego audio. The stego audio is produced by
embedding the secret message into the steganographic cover
audio using a traditional steganography method. Experimen-
tal results demonstrate that our proposed audio steganog-
raphy can yield cover audio that preserves a quite high
perception quality for message embedding, and the proposed
method exhibits superior undetectability against the state-of-
the-art deep learning based steganalyzers, when comparing
with the existing audio steganography methods. The main
contributions of this paper are summarized as follows:

e We carefully design the network architecture of the
generator and discriminator of GAN framework, which
ensures the generator learn to generate steganographic
cover audio with high perception quality.

o We not only use L; norm to measure the similarities be-
tween cover audio and original audio, but also between
stego audio and original audio, which further enhances
the undetectability of proposed audio steganography
method.

« Extensive experiments are conducted to demonstrate
the effectiveness and superiority of the proposed audio
steganography method, compared with the conventional
audio steganography methods.

The rest of this paper is organized as follows. Section II
reviews the related work, Section III describes the proposed
framework, including the network architecture of generator
and discriminator, the loss function and the training strategy.
The experiment results are demonstrated in Section IV, with
perception quality of steganographic cover audio, compari-
son with existing methods and ablation experiment. Finally,
conclusions are drawn in Section V.

Il. RELATED WORK

In this section, we first briefly review the generative adver-
sarial networks, and then state the recent advances in GAN-
based steganography approaches.
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A. GENERATIVE ADVERSARIAL NETWORK

The generative adversarial network (GAN) was first proposed
by Goodfellow et al. [23]. The basic purpose of GAN is to
utilize the real samples for establishing a generator, which
could generate samples that obey the same data distribution
as the real samples. The generator can be considered as a
transformation that transforms a random noise into the space
of real samples. In order to obtain such a generator, a discrim-
inator is introduced to distinguish the generated samples from
the real data, which is aimed at enhancing the performance
of generator. In brief, through the continuous combat game
between generator and discriminator, an equilibrium point
in the training process is finally reached. So this makes
it possible that the discriminator could not distinguish the
generated samples from the real ones.

However, the training process of naive GAN is not stable,
and it is also possible to emerge vanishing gradient prob-
lem. So researchers have proposed some improved GANs
for optimizing the training of GAN. Arjovsky et al. [24]
proposed WGAN (Wasserstein GAN), which used Earth-
Mover distance instead of JS divergence to measure the
distance between the distribution of real samples and that
of generated samples. Qi et al. [25] proposed Loss-Sensitive
GAN (LS-GAN) to limit the loss function to satisfy the
Lipschitz constraint. Mirza et al. [26] proposed Conditional
GAN (CGAN) that adds extra conditional information for
both discriminator and generator to guide the training of
GAN.

B. GAN-BASED STEGANOGRAPHY APPROACHES

In recent years, researchers have applied GAN into the
information hiding domain, and most of the GAN-based
steganography approaches are focused on the image do-
main. Volkhonskiy ef al. [14] first proposed a steganographic
model termed as Steganographic GAN (SGAN), which took
random noise as input for generating a cover image that
was visually indistinguishable from the original one. Then
the corresponding stego image was generated by LSBM.
Finally, the generator and steganalyzer were involved into an
adversarial game. The goal of such a game was to enforce
the steganalyzer to classify the stego image as an authentic
cover. Shi et al. [27] proposed Secure Steganography GAN
(SSGAN) on the basis of SGAN, which employed WGAN to
replace the GAN framework of SGAN. This could speed up
the training of SSGAN and enhance the perceptual quality
of generated images. Hayes er al. [15] proposed another
GAN-based steganography model (HayesGAN) that took the
cover image and secret message as the input of GAN to
synthesize the stego image. The discriminator was used for
extracting secret messages and evaluating their extraction
accuracy. The stegnalyzer evaluated the undetectable ability
of synthesized stego image. However, it was difficult to
ensure that the embedded secret message could be extracted
completely because of the existence of errors. Tang et al.
[17] combined GAN and adaptive steganography to devise
ASDL-GAN for steganographic distortion cost. According
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to the reported ASDL-GAN, the goal of generator was to
generate the modified probability map, and the discriminator
(namely steganalyzer) aimed at distinguishing the stego im-
age from the cover image. After several rounds of adversarial
training between generator and discriminator, the generator
could yield a relatively optimal modified probability map for
computing steganographic distortion cost. Finally, STC was
employed to embed secret messages based on the stegano-
graphic distortion cost. While Yang e al. [28] have made
several improvements to ASDL-GAN, and proposed to em-
ploye tanh-simulator as an activation function to replace TES
(Ternary embedding simulator) in ASDL-GAN for solving
the problem that TES was difficult to perform gradient back-
propagation. The selected channel was also considered in the
design of discriminator, so that the learned distortion cost
could resist the selected channel based steganalysis methods.
In addition, Ye. et al [29] proposed a GAN-based audio
steganography method which the embedding and extraction
of secret audio were accomplished by GAN. Yang et al. [30]
employed GAN for learning the embedding cost to approach
optimal embedding for audio steganography in the temporal
domain.

lll. GENERATING STEGANOGRAPHIC COVER AUDIO
USING GAN

In this section, we first describe the proposed training frame-
work, including the network architecture of generator and
discriminator, the loss function and the training strategy.

A. OVERALL FRAMEWORK

Figure 1 demonstrates the training framework of the pro-
posed steganography method, which is consisted of three
principal parts: generator, discriminator and trained stegan-
alyzer. It should be pointed out that the trained steganalyzer
is implemented on Lin-Net which has been trained to con-
vergence in advance. Specifically, the original cover audio
is taken as the input to the generator for generating undis-
tinguishable steganographic cover audio. That is to say, the
generated steganographic cover audio shall be as resemble
as possible to the original one. Then traditional message
embedding algorithm LSBM, is employed to embed the
secret message into the steganographic cover audio to obtain
stego audio, which is delivered to the trained steganalyzer
for being misclassified as cover audio. Once misclassification
occurs, the error corresponding to prediction loss will be
back-propagated to the generator for updating the weight
parameters. It is worth noting that we encourage the stegana-
lyzer misbehavior because our goal is to fool the deep learn-
ing based steganalyzer. After adequate adversarial training,
the well-trained generator will be obtained. In the ultimate
steganography, we use the well-trained generator to generate
steganographic cover audio, then traditional steganography
algorithm LSBM, will be used to embed secret message on
the steganographic cover audio to yield undetectable stego
audio. The workflow of the ultimate steganography model is
illustrated in Figure 2.
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FIGURE 1. The training framework of the proposed method.
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FIGURE 2. The workflow of the ultimate audio steganography model.

B. GENERATOR ARCHITECTURE

Inspired by the fact that U-Net [31] architecture can deal
with image-to-image translation tasks in an excellent perfor-
mance, we elaborately design the architecture of the gener-
ator in a U-Net fashion. The goal of generator is to auto-
matically learn to generate steganographic cover audio for
message embedding, then the steganalyzer could misclassify
corresponding stego audio as cover audio. The architecture
of generator as shown in Figure 3 contains 8 convolution
layers and 8 deconvolution layers, and Table 1 illustrates the
detailed parameter configuration of generator in the proposed
method. Specifically, the kernel size of all convolution layers
and deconvolution layers are 1 x 32, with stride 2 and padding
15, cascaded with batch normalization. As the fact that the
network is deeper, less content information will be reserved
after convolution operations, which may lead the stegano-
graphic cover audio to enjoy poor perceptual quality. Hence
we employ skip connection as a shortcut to concatenate the
feature map with the same size between convolution layers
and corresponding deconvolution layers. Skip connection can
render the deconvolution layers to share the features ex-
tracted by convolution layers, which benefits the perceptual
quality of steganographic cover audio. We concatenate the
feature map from Group ¢ to Group L — 4, here L is 16.
We apply parametric rectified linear units (PReLU) [32] from
Group 1 to Group 15. The tangent activation function in
Group 17 is applied to guarantee the sampling values of
steganographic cover audio range from —1 to 1. It should be
pointed out that all convolution and deconvolution layers of
the generator are initialized with Xavier [33] method.

4

C. DISCRIMINATOR ARCHITECTURE

The architecture of discriminator in the proposed method is
shown in Figure 4. The discriminator aims to distinguish
original audio from the steganographic cover audio, which
could motivate the generator to yield cover audio that approx-
imates the data distribution presented in the original audio. In
our proposed method, we employ the spectral normalization
technique which is proposed in the work Spectral Normal-
ization GAN (SNGAN)' [34]. Compared with other GANS,
one of the highlights of SNGAN is that the weight parame-
ters of all convolution layers and fully-connected layers are
normalized by spectral norm. The reason why we employ
spectral normalization is that this could stabilize the training
process of GAN and finally motivate the generator in the
proposed method to yield steganographic cover audio with
better perceptual quality. In more detail, the discriminator
in our proposed method contains 9 convolution layers and
1 fully-connected layer. It should be pointed out that we re-
design a novel convolution kernel in the convolution layer by
normalizing its weight parameters using spectral norm. This
redesigned convolution kernel may be named as “SNConv”.
In the redesigned fully-connected layer named “SNLinear”,
of which the weight parameters are also normalized by
the spectral norm. Each convolution block is cascaded by
LeakyReLU [35] with slope setting to 0.01, the sigmoid
function is placed in the back of fully-connected layer. The
kernel size of all convolution layers is set to 1 x 32, with
stride 1 and padding 15.

D. LOSS FUNCTION

On behalf of forcing the generator to yield steganographic
cover audio with excellent perceptual quality, the loss func-
tion is a significant criterion to guide the training process
of generator and discriminator. For the purpose of ensuring
the discriminator possess a relatively better discriminant

IThe implementation of SNGAN is that the weight parameters of all
convolution layers and fully-connected layers are normalized by the spectral
norm
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FIGURE 3. The architecture of generator in the proposed method.

TABLE 1. The parameter configuration of generator in the proposed method.

Group 14

Group 15
Group 16
Group 17

Output

Group Operation Convolution/Deconvolution kernels Output Size
Input Audio / / 1 x 16384
Group 1 Conv1d+Batch Normalization+PReLU 16 x (1 x 32) 16 x 8192
Group 2 Conv1d+Batch Normalization+PReLU 32 x (1 x 32) 32 x 4096
Group 3 Conv1d+Batch Normalization+PReLU 32 x (1 x32) 32 x 2048
Group 4 Conv1d+Batch Normalization+PReLU 64 x (1 x 32) 64 x 1024
Group 5 Conv1d+Batch Normalization+PReLU 64 x (1 x 32) 64 x 512
Group 6 Conv1d+Batch Normalization+PReLU 128 x (1 x 32) 128 x 256
Group 7 Conv1d+Batch Normalization+PReLU 128 x (1 x 32) 128 x 128
Group 8 Conv1d+Batch Normalization+PReLU 256 x (1 x 32) 256 x 64
Group 9 deConv1d+Batch Normalization+PReLU 128 x (1 x 32) 198 x 128
Concatenate Group 7 to Group 9
deConv1ld+Batch Normalization+PReLU
Group 10 eronvicrBateh Normalizationvite 128 x (1 x 32) 128 x 256
Concatenate Group 6 to Group 10
d 1d+Batch Ni lization+PReL
Group 11 eConv1d+Batch Normalization+PReLU 64 x (1 x 32) 64 % 512
Concatenate Group 5 to Group 11
1 —
Group 12 deConv1d+Batch Normalization+PReLU 64 x (1 x 32) 64 x 1024
Concatenate Group 4 to Group 12
deConv1ld+Batch Normalization+PReLU
Group 13 eronvicrBatch Normalzationviee 32 x (1 x 32) 32 x 2048
Concatenate Group 3 to Group 13
d 1d+Batch Ni lization+PReL
Group 14 eConv1d+Batch Normalization+PReLU 32 x (1 x 32) 32 % 4096
Concatenate Group 2 to Group 14
1d+Batch lization+PReL
Group 15 deConv1d+Batch Normalization+PReLU 16 x (1 x 32) 16 x 8192
Concatenate Group 1 to Group 15
Group 16 deConv1d 1x(1x32) 1 x 16384
Group 17 (Output Audio) Tanh / 1 x 16384
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FIGURE 4. The architecture of discriminator in the proposed method.

capability, and also facilitate the cover audio to resist the
perturbation caused by embedding secret messages. There-
fore, we divide the training process into two stages: in stage
1, only discriminator and generator are incorporated in the
adversarial training, and in stage 2, the trained steganalyzer
begins to join in the remaining adversarial training. Cor-
respondingly, we elaborately design loss functions for two
stages, respectively. Especially, in order to define the loss
function, we set the corresponding labels of steganographic
audio and stego audio both as 0, and the corresponding labels
of original audio and cover audio both as 1.
For stage 1, the loss function can be expressed as

»Cstagcl = »C’D + Egl (D

where Lgage1 represents the loss of GAN framework in
stage 1. The losses Lp and Lg, are computed in terms of
binary cross entropy. The loss for generator in stage 1 can be
calculated by

Lg, = E.[log(1 —D(G(x)))]. 2

where = denotes original audio (the input of generator), E ]
is the expectation operator over the input geniue audio clips.
The discriminator aims at distinguishing the steganographic
cover audio from the original one. Thus the loss of discrimi-
nator can be computed by

Lp = —{Ez[logD(G(z))] + Ec[log(1 — D(z))]}.  (3)
For stage 2, the loss function is exhibited as follows.
£stage2 = aLlgan + BLsim, €]

where Lg¢ag02 represents the loss of GAN framework in stage
2, and Lgjy, is the similarity loss function to measure the
similarity between steganographic cover audio and original
audio. The hyperparameters « and 3 balance the importances
between the two parts. More specifically, Lgan is composed
of the loss of generator and discriminator, which can be
denoted as

Loan =Lp + Lg, &)

The losses Lp and Lg, are computed in terms of binary
cross entropy. For the generator, its goal is to yield stegano-
graphic audio with no differences in auditory compared with
original audio, and the stego audio produced by embed-
ding operations is sent to the steganalyzer for predicting
the probability belonging to cover audio. The loss between
the cover audio label and the prediction probability should
be minimized, which is used to propagate to the generator
for updating its parameters. This is devoted to forcing the
generator to yield preferable steganographic cover audio for
embedding message so that the stego audio cannot easily be
distinguished by steganalyzer. Therefore, the loss of genera-
tor can be calculated by

Lg, = E:[log(1 —D(G(2)))] + Bz [log(1 — S(F(G(x))))], (6)

where = denotes original audio. E,[] is the expectation
operator over the input original audio clips. F(-) denotes
the traditional information method, e.g., LSBM, and D(-),
S(+), and Go(+) denote the discriminator, steganalyzer and
generator, respectively. The similarity loss term Lg;,, shall
has two parts: The first part measures the differences between
steganographic cover audio and the original cover audio, and
the second measures the differences between the stego audio
and original audio. This can be expressed as

Lsim = Ea[[| G(x) — @ [1] + Eo[[| F(G(2)) =z [1]. (D)

Here, £1 norm is applied to measure the similarity loss be-
tween steganographic cover audio and original audio. In our
experiment, Lo norm is also used to measure the aforemen-
tioned similarity loss, then we find that the steganographic
cover audio with £ norm enjoys slightly better perceptual
quality compared to that generated with Lo norm. Finally,
we would like to remark that the steganalyzer is a well-
trained neural network based on Lin-Net [21]. Hence in stage
2, the steganalyzer is involved, but all its model parameters
are fixed; it is only responsible for back-propagating the
prediction errors via gradients. The back-propagated mis-
classification errors are used to update the parameters of
generator, which may force the generator into learning to
generate steganographic cover audio that suitable for mes-
sage embedding, and attempt to deceive the steganalyzer.

E. TRAINING STRATEGY

In our proposed method, the training process includes two
stages. In stage 1, we have trained the GAN framework
(i.e., generator G and D) for N epochs in advance (We
empirically set N as 30). In stage 2, the steganalyzer joins in
the training process to start post-training, which takes around
another 100 epochs. This is for the suppose of guaranteeing
the discriminator to possess stronger discriminant ability
for distinguishing the steganographic cover audio from the
original one, and also prompt the generator to yield cover
audio with superior perceptual quality. The generator and
discriminator are trained alternatively, that is to say, when
training the generator, the weight parameters of discriminator
are fixed and vice versa. It should be pointed out that the
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parameters of steganalyzer are not updated in the entire
training process. The role of steganalyzer is orientated to
output the confidence that stego audio belongs to the original
one. Then the produced misclassification loss can be back-
propagated via gradients to generator G, which is applied to
update the parameters of generator. The training strategy is
briefly described in Algorithm 1.

Algorithm 1 Training Strategy of the Proposed Method
Input: original audio z, traditional information embedding
method F, trained steganalyzer S, loop variable i, pre-
training epochs N for stage 1, total training epochs M,
learning rate 7.
Output: The well-trained generator G*.
1: Initialization: Initialize the weight parameters of gener-
ator f¢g and discriminator fp using Xavier method.
2: fori=1to M do
3: Generate fake cover audio c=G(x).
4: if i < N then

5: Update the weight parameters of generator and dis-
criminator by gradient descent optimizer in stage 1,
respectively. 0g = g — YV, Lstager, 0p = 0p —

VVGD Lstage1~

6: else

7.
algorithm to yield stego audio s = F(c).

8: Update the weight parameters of generator and dis-
criminator by gradient descent optimizer in stage 2,
respectively. 0g = 0g — YV, Lstage2, 0p = 0p —
YV, Lp. /I trained steganalyzer joins in the training
process for backpropagating gradients to generator.

9: end if

10: end for

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP

TIMIT corpus [36] and UME corpus [37] are two widely-
used datasets in speech recognition speaker recognition and
so on. Both TIMIT and UME contain uncompressed mono
audio with a sampling frequency of 16 kHz. We have con-
ducted experiments on the two datasets to verify the effective-
ness of the proposed method, respectively. TIMIT is used for
training the generator in the proposed method, and UME is
used for evaluating the undetectability performance by using
different deep learning based steganalysis methods. For the
sake of facilitating to design the framework of generator, we
tailored the audio files into small clips with 16384 sampling
points. In the training process, 15000 small clips are used for
training the generator, the mini-batch size is set to 32. The
Adam optimizer is used with the learning rate 0.0001. Em-
pirically, the hyper-parameter « and 3 in the loss function are
both set to be 1. The input is normalized firstly before feeding
to the generator, the maximum and minimum normalization
trick is used for normalizing the input audio into [—1, 1]. The
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proposed method is implemented using PyTorch and trained
on four NVIDIA RTX1080 Ti GPUs with 11 GB memory.

B. PERCEPTION QUALITY OF STEGANOGRAPHIC
COVER AUDIO
Recall that one goal of our method is to incur minor per-
turbation on the steganographic cover audio. In other words,
the steganographic cover audio shall be acoustically indistin-
guishable from the original cover audio, and also the stego
audio (produced by embedding message on the stegano-
graphic cover audio) should be with no differences compared
with the original cover audio when hearing it. To show this,
the visualization results of one randomly selected original
cover audio, steganographic cover audio and corresponding
stego audio on UME are illustrated in Figure 5. As can be
seen, the waveform and spectrogram of steganographic cover
audio are almost the same as that of the original cover audio.
The residual waveform validate that the magnitude of the
perturbation is quite small when comparing with the original
cover audio. The waveform and spectrogram for stego audio
are also similar to the steganographic cover audio.
Furthermore, to quantitatively assess the audio perception
quality, we employ the widely-used reference audio quality
metrics, i.e., the subjective metric PESQ [38] and the ob-

Embed secret message using information embedding Jective metric SNR (Peak signal-to-noise ratio). PESQ score

ranges from —0.5 to 4.5, and higher value indicates better
perception quality. SNR characterizes the average power
ratio between the intrinsic signal and the noise. We randomly
select 100 test audio samples from UME as references and
corresponding steganographic cover audio for evaluation.
The average PESQ score is 4.4235 and the SNR is 83.275
dB. This means that the steganographic cover audio cannot
be distinguished from the original audio in human hearing,
which verifies the effectiveness in generating steganographic
cover audio with high perceptual quality by the means of our
proposed method.

C. COMPARISON WITH EXISTING METHODS

To demonstrate the performance of our proposed method,
two experiments on TIMIT and UME are conducted in our
work. We compare the detection accuracy with LSBM [3],
STC [8], and Yang et al’s GAN-based method [30] . Two
state-of-the-art deep learning based steganalysis methods,
Lin-Net [21] and Chen-Net [22] are used to evaluate the un-
detectability performance of these steganography methods,
respectively. For the experiments on TIMIT, 15000 audios
clips from TIMIT are selected as the input to the genera-
tor trained on TIMIT for generating corresponding 15000
steganographic cover audio samples. Then the bitstream se-
cret messages are embedded into the steganographic cover
audio samples. This finally yields 15000 cover-stego pair
samples. 12000 cover-stego pairs are used as training set,
and the remaining 3000 pairs are for testing set. We have
considered five embedding rates for testing, i.e., 0.5 bit per
sample (bps), 0.4 bps, 0.3 bps, 0.2 bps, and 0.1 bps. In order
to reduce the randomness of the experiment results, we repeat
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FIGURE 5. The visualization results of one randomly selected original audio, steganographic cover audio and corresponding stego audio on UME. (a)
(b) and (c) are the original waveform, the steganographic audio waveform and the residual waveform between (a) and (b), respectively. Similarly, (d) (e)
and (f) are the original spectrogram, the steganographic audio spectrogram and the residual spectrogram between (d) and (e), respectively. (g) and (h)

are the waveform and spectrogram for stego audio, respectively.

all the experiments for 10 times under randomly splitting
training set and test set and then average the detection accu-
racies. The similar experiments as mentioned above are also
conducted on UME. The only difference is that we take the
audio clips from UME as the input to the generator trained
on TIMIT for generating corresponding steganographic cover
audio samples.

The detection accuracy results are tabulated in Table 2.
As one can see, generally, for all embedding rates, all test
datasets, and all the deep learning based steganalyzers, our
method attains lower detection accuracy consistently. This
means the proposed method could generate better stegano-
graphic cover audio for message embedding, benefiting the
conventional steganography methods. With more careful
comparisons, for low embedding rates, e.g., 0.1 bps, the
detection accuracy of our method ranges from 48.14% to
49.25%, closing to the random guess (i.e., 50%), and a
similar phenomenon can be observed for conventional STC.
Instead, the detection accuracies for conventional method
LSBM all exceed 58%. This suggests that, for lower embed-
ding rates, the conventional method LSBM is more vulnera-
ble to deep learning based methods, while both our proposed
method and STC retain good undetectability. However, for
large embedding rates, e.g., 0.5 bps, the superiority of our
proposed method becomes more pronounced. For instance,
for the case of steganalyzer Lin-Net on UME dataset, the
detection accuracy’s for LSBM and STC are 75.24% and
71.08%, respectively. In contrast, our method yields 63.25%,
still enjoying lower undetectability. In addition, compared
with Yang et al’s GAN-based method, our proposed method
has achieved lower detection accuracies under various em-
bedding rates. For example, when training the generator on
TIMIT and evaluating undetectability with UME using Chen-
Net, the detection accuracy of our proposed method is 3.23%
lower than Yang et al’s method under 0.5 bps. Similarly,
our proposed method enjoys preferable undetectability per-
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formance when the embedding rate is 0.1 bps. Therefore,
whether compared with conventional audio steganogrpahy
methods or the existing GAN-based audio steganogrpahy
schemes, our proposed method has witnessed excellent un-
detectability performance under various embedding rates.

D. ABLATION EXPERIMENT

In this section, we have conducted ablation experiments
on the proposed framework’s main architecture variants as
shown in Table 3. Figure 6 illustrates the corresponding
PESQ score of steganographic cover audio from UME when
these main variants are modified. We can easily find that our
proposed framework can steganographic cover audio with the
largest PESQ score 4.4235, compared with the other 6 gener-
ative steganography models. This means that our proposed
framework is the most effective in generating cover audio
with excellent perception quality. In addition, variants #2
and #4 could impose prominent influences on the perceptual
quality of steganographic cover audio, the PESQ scores are
3.8315 and 3.9256, respectively. We may perceive that there
exists obvious noise in the steganographic cover audio when
hearing it, which enjoys low auditory experience. To sum
up, the architecture variants in the proposed framework are
optimal.

V. CONCLUSION

In this work, we proposed to generate a better steganographic
cover audio for using the generative adversarial network. Em-
bedding messages on such steganographic cover audio could
yield more secure stego audio, which is able to resist the
deep learning based steganalyzers. The training framework
of the proposed method contains three principal modules:
generator, discriminator, and an off-the-shelf deep learning
based steganalyzer. We deliberately devised the network
architecture of the generator and discriminator, and propose
an effective training strategy for adversarial training among

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3090445, IEEE Access .
IEEE Access

L. Chen et al.: Learning to Generate Steganographic Cover for Audio Steganography using GAN

TABLE 2. Comparison of the detection accuracy (%) using Lin-Net [21] and Chen-Net [22] steganalyzers. For each cell, the top number is for Lin-Net and
the bottom number is for Chen-Net. Lower detection accuracy indicates better undetectability performance.

Dataset Steganography Embedding rates (bps)
0.5 0.4 0.3 \ 0.2 0.1
LSBM 76.28 72.54 69.15 67.45 60.24
72.15 70.22 67.23 63.35 59.41
TIMIT STC 70.12 68.72 62.35 55.18 52.32
68.22 63.48 60.25 54.95 50.19
68.12 62.24 59.43 54.56 51.02
Yang et al.’s method
66.39 60.69 57.34 52.64 50.11
64.39 61.58 55.28 52.33 49.25
Proposed method
61.25 55.80 54.23 51.29 48.62
LSBM 75.24 72.35 70.24 67.38 60.15
71.65 65.21 63.49 60.14 58.31
UME STC 71.08 68.27 60.12 56.49 51.13
65.21 62.08 59.49 52.65 50.89
, 66.42 62.06 59.04 55.19 51.36
Yang et al.’s method
65.62 61.20 58.47 53.10 50.09
63.25 61.42 55.13 52.11 49.03
Proposed method
62.39 59.56 55.46 50.49 48.14

TABLE 3. The main modified architecture variants in the proposed

method
Index Modified variants
#1 Proposed framework
#2 Remove spectral normalization
#3 Remove similarity loss
#4 Remove skipping connection in the generator framework
#5 Remove PReLU in the generator framework
#6 Remove batch normalization in the generator framework
#7 Remove LeakyReLU in the discriminator framework

PESQ score

4.4235

#1

4.1924 42546 3314

#2 #3 #4 #5 #6
Index

4.2754

#7

FIGURE 6. The corresponding PESQ score of steganographic cover
audio from UME when the main architecture variants of the proposed
method are modified.
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the three modules in the proposed framework. Once the
adversarial training is completed among these three parties,
one can obtain a well-trained generator, which could generate
steganographic cover audio for subsequent message embed-
ding. By using the well-trained generator, one can use con-
ventional steganography for embedding secret the message
as usual. Experimental results show that the generator of
the proposed audio steganography method can yield stegano-
graphic cover audio with high perception quality, while re-
taining reasonably good undetectability performance, even
under large embedding rates.
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