Hindawi

Scientific Programming

Volume 2021, Article ID 6662932, 17 pages
https://doi.org/10.1155/2021/6662932

Research Article

Hindawi

Impact of Parameter Tuning for Optimizing Deep Neural Network
Models for Predicting Software Faults

Mansi Gupta), Kumar Rajnish

, and Vandana Bhattacharjee

Department of Computer Science and Engineering, BIT Mesra, Ranchi, India

Correspondence should be addressed to Mansi Gupta; jv.mansi@gmail.com

Received 13 October 2020; Revised 21 March 2021; Accepted 2 June 2021; Published 12 June 2021

Academic Editor: Jianping Gou

Copyright © 2021 Mansi Gupta et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Deep neural network models built by the appropriate design decisions are crucial to obtain the desired classifier performance. This
is especially desired when predicting fault proneness of software modules. When correctly identified, this could help in reducing
the testing cost by directing the efforts more towards the modules identified to be fault prone. To be able to build an efficient deep
neural network model, it is important that the parameters such as number of hidden layers, number of nodes in each layer, and
training details such as learning rate and regularization methods be investigated in detail. The objective of this paper is to show the
importance of hyperparameter tuning in developing efficient deep neural network models for predicting fault proneness of
software modules and to compare the results with other machine learning algorithms. It is shown that the proposed model

outperforms the other algorithms in most cases.

1. Introduction

Deep neural network (DNN) models have gained a lot of
attention due to their outstanding performance in many
tasks. The main aim of this study is to build deep neural
network models for software fault prediction by focusing on
those aspects of training which impact the classifier per-
formance the most. A comparison is made between the
performances of deep neural network and other classifica-
tion techniques such as naive Bayes, random forest, and
decision tree.

Software fault prediction is one of the major areas of
investigation in the area of software quality [1]. Fault pre-
diction being an intricate area of research, many software
researchers and practitioners have experimented on nu-
merous ways of predicting faults in software [2]. The ac-
curate prediction of faults in code plays a very important role
as it can help in reducing test effort and costs and improve
the quality of software to an extent. The main cause of failure
of a software product is the defect in the code that occurs
during the implementation of the software [3]. In an or-
ganization where the budget is limited, the software manager
instead of going for complete software testing prefers for

testing those modules that are fault prone using fault
predictors.

Software fault prediction methods initially used code
metrics or simply software metrics and statistical approach
for fault prediction. Thereafter, the focus shifted to soft
computing and machine learning (ML) techniques which
took over all the prediction techniques [4]. In software code
metrics-based methods, internal attributes of the software
were measured for fault prediction. The commonly used
software metrics’ suites were Quality Model For Object
Oriented Design (QMOOD) metric suite [5], Chidamber
and Kemerer (CK) metric suite [6], Metrics for Object
Oriented Design (MOOD) metric suite [7], etc. From the
perspective of machine learning, fault prediction comes
under the classification task in which it discriminates faulty
and nonfaulty modules [8]. Some representative ML
methods are ensemble, support vector machine (SVM),
naive Bayes, logistic regression, decision table, etc., and a
review of such techniques applied to software fault pre-
diction is given in [9]. In this work, a deep neural network
model for software fault prediction is built and also several
aspects of the deep neural network design are explored. The
role of number of layers, nodes in each layer, learning rate,

mailto:jv.mansi@gmail.com
https://orcid.org/0000-0003-3090-1216
https://orcid.org/0000-0001-9263-3072
https://orcid.org/0000-0002-0680-2691
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6662932

loss function, optimizer, and regularization methods has
been studied.

The organization of the rest of the paper is as follows:
Section 2 presents the related work, and Section 3 gives the
theoretical background. Section 4 presents the experimental
setup, and Section 5 gives the results and analysis. Finally,
Section 6 concludes the paper.

2. Related Work

This section presents the literature review of research papers
on the use of machine learning techniques for software fault
prediction.

Singh et al. [10] used public dataset AR1 for predicting
fault proneness of modules. They compared logistic re-
gression technique with 6 machine learning classifiers
(decision tree (DT), group method of data handling poly-
nomial method, artificial neural network (ANN), gene ex-
pression programming, support vector machine (SVM), and
cascade correlation network). The performance was com-
pared by computing the area under the curve using Receiver
Operating Characteristic (ROC) analysis where it was
concluded that the value generated by the decision tree was
0.865 which outperformed regression and other ML tech-
niques. Dejaeger et al. [11] considered 15 distinct Bayesian
network (BN) classifiers, and comparison was performed
with machine learning (ML) techniques. For the purpose of
feature selection, Markov blanket principle was used. The
area under the ROC curve (AUC) and H-measure was tested
using the statistical framework of Demsar. The result showed
that simple and comprehensible networks having less
number of nodes can be constructed using BN classifiers
other than the naive Bayes classifier.

Cabhill et al. [12] presented an approach for finding fault
proneness in modules where the rank sum representation
allowed the user to opt a suitable trade-off between recall and
precision. This approach was executed using NASA Metrics
Data Program (MDP) datasets, and their performance was
compared with classifiers such as the support vector ma-
chine (SVM) and naive Bayes (NB). Arar and Ayan [13], in
their study, built a software defect prediction model using
artificial neural network (ANN) technique. They optimized
ANN connection weights by artificial bee colony (ABC).
Through the new error function, the parametric cost-sen-
sitivity feature was added. This model was validated using 5
NASA repository datasets. Results were than compared with
noncost-sensitive and cost-sensitive readings.

He et al. [6] experimented on 34 releases of 10 projects of
PROMISE repository using 6 classifiers with 3 types of
predictors. Their findings showed that predictors built using
top-k metrics or the minimum metric subset deliver satis-
factory result as compared to benchmark predictors. Also
basic classifiers such as naive Bayes (NB) execute well when
the simplified metric set is used for fault prediction. Kumar
et al. [14] experimented on 30 open-source projects to build
a ML-based model for the software fault prediction model
using the least square support vector machine (LSSVM).
They applied 10 distinct feature selection techniques. Their
prediction model was only appropriate for projects with

Scientific Programming

faulty classes less than the threshold value. Twala [15]
performed software fault prediction on 4 NASA public
datasets using decision tree (DT), support vector machine
(SVM), K-nearest neighbor, and naive Bayes. He concluded
that the naive Bayes classifier was most robust and decision
tree classifier the most accurate. Boucher and Badri [16]
investigated 3 thresholds’ calculation techniques Alves
rankings, VARL (Value of an Acceptable Risk Level), and
ROC curves for prediction of fault proneness. Then, the
generated results were compared with the performance of 2
clustering-based models and 4 ML models. They used 12
public datasets, where these datasets belonged to the
PROMISE Repository and Eclipse project. Results depicted
that models using ROC curves outgrow both ML and
clustering-based models.

Wang et al. [17] proposed a representation learning
algorithm using the deep belief network (DBN) which helps
in learning semantic program representation directly from
source code. They worked on 10 open-source projects and
showed that directly learned semantic features considerably
improve both within and cross-project defect prediction
(WPDP) (CPDP). On an average, WPDP was improved by
14.2% in F1, 11.5% in recall, and 14.7% in precision. And, the
CPDP approach beats TCA+ having traditional features by
8.9% in F1. Erturk and Akcapinar Sezer [18] proposed a
novel software fault prediction methodology, which was
based on fuzzy inference system (FIS) and artificial neural
network (ANN). The methodology was developed as Eclipse
plugin. Their investigation demonstrated that the hybrid
approach used in the proposed methodology gave favorable
results to use SFP in everyday routine of software devel-
opment phases. Miholca et al. [19] proposed HyGRAR, a
non-linear hybrid supervised classification method for
software fault prediction. HyGRAR combined relational
association rule mining and artificial neural networks
(ANN) to distinguish between faulty and nonfaulty software
objects. For experimental purpose, they used 10 open-source
datasets and validated the outstanding performance of the
HYGRAR classifier.

Samir et al. [20] built a software defect prediction model
using deep neural network technique and compared its
performance with ML techniques (random forests (RF),
decision trees (DT), and naive Bayesian networks (NB)).
Results showed that deep neural network technique out-
performed ML techniques in most of the cases. For the
experimental purpose, they used NASA datasets and datasets
from TERA-PROMISE repository. Turabieh et al. [21] fo-
cused in developing an effective defect prediction classifier
using L-RNN, an iterated feature selection algorithm. They
experimented on 19 open-source datasets and found out that
defect prediction models are best fit for modules with faulty
classes having lesser values than the threshold value. Li et al.
[22] proposed a framework called Defect Prediction via
Convolutional Neural Network (DP-CNN) that used deep
learning in order to effectively generate features. On the
bases of program’s Abstract Syntax Trees (ASTs), they ini-
tially extracted token vectors and then encoded them as
numerical vectors with the help of the process of word
embedding and word mapping. Then, these numerical

Scientific Programming

vectors were fed into the convolutional neural network that
automatically learnt structural and semantic program fea-
tures. Then after, for perfect software fault prediction, they
combined traditional hand-crafted features with the learnt
features. The experiment was conducted on 7 open-source
project data. The measurement was done on the bases of F-
measure. The final results showed that, DP-CNN improves
the state-of-the-art method by 129%.

Yucalar et al. [23], in their study, aimed at empirical
demonstration of performance of fault prediction of 10
ensemble predictors with baseline predictor. The experiment
was conducted on 15 open-source project datasets from
PROMISE repository. The performance was tested on the
bases of Area under the Receiver Operating Characteristics
(ROC) Curve (AUC) and F-measure. They concluded that
ensemble predictors may improve performance of fault
detection to some degree. Duddu et al. [24], in their work,
considered the trade-oft between adversarial robustness,
fault tolerance, and privacy. Two adversarial settings were
also considered under the security and privacy threat model.
They studied the effect of training the model with gradient
noise (differential privacy) and input noise (adversarial
robustness) on neural network’s fault tolerance. It was
observed that due to increased overfitting, the adversarial
robustness drops fault tolerance and also (€ dp, ddp)-dif-
ferentially private models boost the fault tolerance.

Lyu and Jiang [25] established a method by using a
combination of the artificial neural network and gray neural
network with fuzzy recognition to understand the fault
prediction of the avionics system. In this method, they first
created a network model using a combination of the artificial
neural network and gray neural network with fuzzy rec-
ognition, and experimental analysis was conducted. Then,
the weight update strategy of the gray neural network was
improved by using the additional learning rate (LR) method.
This improved combination improved prediction accuracy
and time series prediction which is an effective technical
method for avionics system fault prediction.

In practice, software defect prediction models often suffer
from highly imbalanced data, which makes classifiers difficult
to identify defective instances. Recently, many techniques
were proposed to tackle this problem; oversampling tech-
nique is one of the most well-known methods to address the
class imbalance problem. This technique balances the number
of defective and nondefective instances by generating new
defective instances. However, these approaches would gen-
erate nondiverse synthetic instances and many unnecessary
noise instances at the same time. Motived by this, Gong et al.
[26] proposed a cluster-based oversampling with noise fil-
tering (KMFOS) approach to tackle the class imbalance
problem in software defect prediction. KMFOS first divides
defective instances into K clusters, and new defective in-
stances are generated by interpolation between instances of
every pair of two clusters. Experimental results indicate that
the KMFOS can obtain better Recall and bal values than other
oversampling methods and other compared class-imbalance
methods. Hence, KMFOS is an efficient approach to generate
balanced data for software defect prediction and improve the
performance of predicting models.

Huda et al. [27] proposed two hybrid SDP models by
using wrapper and filter techniques. The wrapper approach
included ANN and SVM and a maximum filter approach
which helped in finding significant metrics. The experiment
showed that the hybrid approach produced high prediction
accuracy as compared to the traditional filter or wrapper
approach. Proposed framework’s performance was validated
using a statistical multivariate quality control process using
multivariate exponentially weighted moving average. Bishnu
and Bhattacherjee [28] applied a quad tree-based K-means
algorithm for defect prediction in program modules. It is a
cluster-based technique. Initially, cluster centers were found
out using quad tree, which became input to the K-mean
algorithm. Clustering gain was used to determine the quality
of generated clusters for evaluation. The clusters generated
by the quad tree-based algorithm had maximum gain values.
Then, this quad tree-based algorithm was applied for defect
prediction in modules. The error rate of this algorithm was
compared to other algorithms, and it was observed to
perform better in most of the cases.

Pandey et al. [29] proposed a rudimentary classification-
based framework Bug Prediction using Deep representation
and Ensemble learning (BPDET) techniques for the software
bug prediction (SBP) model. Staked de-noising auto-en-
coder (SDA) was used for the deep representation of soft-
ware metrics. Their proposed model was divided into deep
learning stage and two layers of EL stage (TEL). The ex-
periment was performed on NASA (12) datasets, to calculate
the efficiency of deep representation (DR), SDA, and TEL.
The performance was evaluated in terms of Mathew cor-
elation coefficient (MCC), the area under the curve (AUC),
precision-recall area (PRC), F-measure, and Time. BPDET
was tested using the Wilcoxon rank sum test which rejects
the null hypothesis at a = 0.025. They also tested the stability
of the model over 5-, 8-, 10-, 12-, and 15-fold cross-vali-
dation and got similar results. Finally, conclusion was that
BPDET is stable and outperformed on most of the datasets
compared with EL and other state-of-the-art techniques.

Lei et al. [30] reviewed applications of machine learning
to machine fault diagnosis, which they divided into 3 pe-
riods. They also pictured and systematically presented the
development of intelligent fault diagnosis (IFD) to show
potential research trends. Also, challenges of IFD were also
discussed. Zhang et al. [31] proposed a novel deep CNN
method which was based on knowledge transferring from
shallow models for rotating machinery fault diagnosis with
scarce labeled samples. In their work, they first applied
short-time Fourier transform (STFT) to extract integral
features. Then, they trained the SVM model with scarce
labeled samples and made predictions on unlabelled samples
which were in turn used to train a deep CNN model of better
discriminative ability. Experimental results demonstrated
the effectiveness of their proposed method over the SVM
model and original deep CNN model trained with only
scarce labeled samples.

Bashiri and Farshbaf Geranmayeh [32] studied 3 ANN
performance measuring criteria and 3 factors which affect
the selected criteria. To design experiments, the central
composite design was used, and then, network behavior was

analysed according to identified parameters. Then, to find
the optimal parameter status, a genetic algorithm was
proposed. The results show that the designed ANN,
according to the proposed procedure, had a better perfor-
mance than other networks by random selected parameters
and also parameters which are selected by the Taguchi
method. In general, the proposed approach could be used for
tuning neural network parameters in solving other prob-
lems. Lee et al. [33] proposed a method to improve CNN
performance by hyperparameter tuning in the feature ex-
traction step of CNN. In their proposed method, the
hyperparameter was adjusted using a parameter-setting-free
harmony search (PSF-HS) algorithm. In the PSF-HS algo-
rithm, the hyperparameter that was to be adjusted was set as
harmony, and harmony memory was generated after gen-
erating the harmony. Harmony memory got updated based
on the loss of a CNN. Two simulations using CNN archi-
tecture on the LeNet-5 and MNIST and CifarNet and Cifar-
10 dataset were performed. It was observed that, by two
simulations, it was possible to improve the performance by
tuning the hyperparameters in CNN architectures.

Yang and Shami [34] studied the optimization of the
hyperparameters of common machine learning models.
They introduced, discussed, and applied several state-of-the
art optimization techniques. Experiments were applied on
benchmark datasets so as to see the clear comparison of
performance between different optimization methods. Out
of all the hyperparameter optimization (HPO), they sum-
marized Bayesian Optimization HyperBand (BOHB) as the
recommended choice for optimizing a ML model; Bayesian
optimization (BO) models were given preference for small
hyperparameter configuration space, while particle swarm
optimization (PSO) was the best choice for large configu-
ration space. Cho et al. [35], for DNN hyperparameter
optimization, analysed 4 basic strategies for enhancing
Bayesian Optimization (BO). Investigation for diversifica-
tion, early termination, parallelization, and cost function
transformation was carried out. An algorithm named DEEP-
BO (Diversified, Early-termination Enabled, and Parallel
Bayesian Optimization) was proposed by the authors. Ex-
periments were conducted on six DNN benchmarks. Their
proposed algorithm out performed well-known solutions
including GP-Hedge and BOHB. In general, DEEP-BO
exhibited a robust performance, and it also displayed high
performance particularly for the challenging targets under
the use of multiple processors. Moolayil [36] discussed L1,
L2, dropout regularization, and hyperparameter tuning
which included discussion about the number of neurons in a
layer, number of layers, number of epochs, weight initiali-
zation, batch size, learning rate, activation function, and
optimization. They also discovered different strategies one
could use to tune the hyperparameters and obtain a better
quality model. Also a few principles were addressed which
are needed, while deploying a model. At the end, they also
looked into a small architecture for deploying the model
using Flask.

Akl et al. [37], in their work, studied the effect of altering
a hyperparameter within the deep learning model archi-
tecture. An architectural position optimization

Scientific Programming

(ArchPosOpt) method was proposed for model architectural
hyperparameter optimization. This architecture extended
three different hyperparameter optimization techniques,
namely, grid search (GS), random search (RS), and Tree-
structured Parzen Estimator (TPE), so as to gain a new
aspect of the hyperparameter optimization problem—the
hyperparameter position. With the help of a set of experi-
ments (experiments of image classification for two datasets;
binary classification and multiclass classification), they
showed that the position of the hyperparameters does matter
for both model performance as well as the hyperparameter
values. The ArchPosOpt method was found to have higher
accuracy as compared to original tools. Bal and Kumar [38]
explored an effective machine learning technique, i.e., ex-
treme learning machine (ELM) for estimation of the number
of software faults. And, also a new variation of ELM was
proposed, named weighted regularization ELM (WR-ELM).
It generalized the imbalanced data to balanced data. The
proposed model was validated through the use of 26 open-
source PROMISE software fault datasets. The use of three
prediction scenarios named intrarelease, interrelease, and
cross project was done for experimentation. The proposed
WR-ELM model was able to characterize minority (faulty)
modules and performed better as compared to other tra-
ditional ML algorithms. It was also able to handle the im-
balanced software defect data by including the information
of imbalanced class distribution.

Manjula [39] presented an approach for software fault
prediction. In this approach, the genetic algorithm opti-
mization process for feature subspace reduction was linked
with the deep belief network for pattern learning. Then, the
deep belief networks were further enhanced by applying the
L1-regularization scheme which resulted in better learning
process which reduced the overfitting errors. This linked
model was executed on the SPIE lab software defect data-
base. A broad experimental study was carried out which
showed that the proposed approach achieved higher accu-
racy when compared with other state-of-the-art software
fault prediction techniques. Qu et al. [40] conducted an in-
depth analysis to check the impact on the performance of
cross-project defect prediction (CPDP) by using hyper-
parameter optimization. Based on diverse classification
methods, they selected 5 different instance selection-based
CPDP methods. For empirical studies, 8 projects in AEEEM
and Relink datasets were chosen. AUC was used as a model
performance measure. The results showed that the impact of
hyperparameter optimization for 4 methods is non-
negligible, and among the 11 hyperparameters considered by
these 5 classification methods (K-nearest neighbor (IBK),
J48, NB, RF, and SVM), the impact of 8 hyperparameters is
nonnegligible, and these hyperparameters are mostly dis-
persed in SVM and IBK classification methods. Kudjo et al.
[41] presented an approach to characterize and predict
vulnerable software components grounded on a concept take
from the field of fault prediction. Their study inspects the
degree to which parameter optimization affects the per-
formance of vulnerability prediction models. The evaluation
of the approach was conducted by applying it on three open-
source vulnerability datasets i.e., Drupal, Moodle, and

Scientific Programming

PHPMyAdmin using five ML algorithms, namely, random
forest (RF), K-nearest neighbor, support vector machine
(SVM), J48 decision tree, and multilayer perceptron. The
effect of parameter tuning on vulnerability prediction
models (VPMs) was also examined. The finding showed a
significant increase in precision and accuracy against the
benchmark study.

2.1. Theoretical Background. This section discusses about
brief overview of a generalized software fault prediction
process, deep neural networks, parameter tuning process, L2
regularization, and dropout regularization.

2.1.1. A Generalized Software Fault Prediction Process Based
on Machine Learning. For the process of software fault
prediction, the data that is faulty should be collected for
training a prediction model. Figure 1 explains the following
process.

(1) Firstly, extract instances (data items) from software
repository/archives.

(2) Then, feature extraction takes place which mean
extracting required metrics from instances.

(3) Then, preprocessing is applied on metrics as the real
world data is in raw format, and it cannot be passed
through a model directly.

(4) Now the processed data is split into training and
testing instances. Usually, to separate the training
and testing instances, 10-fold cross-validation is
used.

(5) From the training instance, the prediction model is
built.

(6) The model built obtains a new instance and can also
classify labels, i.e., faulty (defect) or nonfaulty (no
defect).

2.1.2. Brief Overview of Deep Neural Network. A DNN is a
series of fully connected hidden layers which transform an
input vector x into a probability distribution to estimate the
output class y [42]. The DNN thus acts as a mapping for the
distribution p (y|x). A DNN maps this function using !
hidden layers followed by an output layer. The nodes in each
layer are connected to all the nodes in the subsequent layer
with weighted edges. DNN architecture is shown in Figure 2.
These weights can be thought of as a weight matrix W. Each
layer also has a bias vector b. Compute vector i’ of the i
layer using the activations of the previous layer of the DNN
as

h (x) = o(WORY +59). (1)

In all hidden layers, a nonlinear function as part of the
hidden layer computation is applied. This activation func-
tion is attached to each neuron in the neural network. The
activation function normalizes each neuron’s output to a
range between —1 and 1 or between 1 and 0. In the most of
previous works, typically a sigmoidal function would be used

as the activation function. However, in our work, rectified
linear units are used which were recently shown to give a
better performance in many DNN classification tasks.

Here, the Rectified Linear Unit (ReLU) function is used
because it looks like a linear function, but is indeed a
nonlinear function which allows complex relationships in
the data to be learned. For the input values that are negative,
the neurons stay deactivated and result is 0, and for positive
inputs, the output is equal to the input. Figure 3 displays the
ReLU activation function graph.

The mathematical expression for Rectified Linear Unit
(ReLU) activation function is

R(x) = max (0, x). (2)

To produce values from the output layer, the Softmax
activation function is used which is also a type of sigmoid
function. Softmax normalizes each neuron’s output to a
range of 1 and 0. It is nonlinear in nature. It is usually used
when trying to handle multiple classes.

The mathematical expression for the Softmax activation
function is

zi
e

?.
Yin1 e/

Also, the Adam optimizer, as an optimization function,
is used in order to update the weight of the network after
every single iteration.

0(z); =

(3)

2.1.3. Parameter Tuning Process. The machine learning
models largely work in an empirical manner, with the re-
searcher tuning her models as per the application domain
and the data available. However, in this research work, the
major focus is on tuning the parameters such as number of
hidden layers and number of nodes in each layer and
working on training details such as learning rate and reg-
ularization methods. These shall be discussed briefly now.

For any dataset, the training starts with small number of
hidden layers and small number of nodes in each layer. If
train accuracy is not good, more layers and nodes are added.
The number of epochs is also increased. This strategy of
bigger network and longer training continues until the train
data fits fairly well or at least up to the accuracy obtained by
other classifiers. After this, the validation set performance is
checked. If the performance is not good, this is because there
is a high variance problem, and the network has overfitted
the training data, but unable to generalize. To overcome this,
regularizing of the network is considered.

(1) L2 Regularization. A regularization parameter A is set
which is used as in the loss (or cost) function J as follows:

1 m
JW,b) =|— 3 (3, log, +(1-y,) log(1-7,))
n=1

+ A W]
2m 2
(4)

Software
Repository/Archive

:> rics

Instances

J

Feature extraction

Scientific Programming

ww%

Training instance

Build a
model
Model
New instances

Cla531f1cat10n/
Regresswn

FIGURE 1: A generalized software fault prediction process based on machine learning.

n e
J P
B =)
=)

N

H1 H2 H3

I}’ll—)

Input layer

|~

(E—N)|
) 02
) 03
) On

Output layer

Hidden layer

FIGURE 2: Deep neural network.

-7 —|6 —|5 —|4 —|3 —|2 111_ 1 2 3 4
i,
31
4 ——
5
~6 ——
7

Ficure 3: ReLU activation function.

Scientific Programming

The first term on the right-hand side of equation (4),
cross-entropy loss function, evaluates the performance of a
classification model whose output is a probability value
between 0 and 1. In this, y, is an actual value and ¥, is a
predicted value. The second term on the right-hand side of
equation (4) is the L2 regularization term, which has the
squared norm (also called the Frobenius norm) of the weight
matrix. Here, “m” is the number of samples in the dataset. To
minimize the loss function J, it is required that both the
terms on the right-hand side be minimized. By setting a high
value of A, the weights are forced to become smaller (to
minimize J). A network with smaller weights is simple and
cannot learn complex functions. By penalizing square values
of the weights in the cost function, all weights are driven to
smaller values since the cost would be high with higher
weights. In effect, what happens is some neurons become
dormant or left out of the model, making it a simple one. The
L2 regularization is also sometimes called weight decay
regularization. In the experiments, the A values used are
between 0.05 and 0.7.

(2) Dropout Regularization. Dropout is a widely used
regularization technique that is specific to deep learning. It
randomly shuts down some neurons in each iteration. It
simply means randomly selected neurons are “dropped out”
randomly. When some neurons are shut down, in every
iteration, we are actually training a different model that uses
a subset of neurons. Thus, the neurons in the model learn
features independently without being specifically dependent
on other neurons. This means those dropped-out neurons
are temporally removed on the forward pass and no weight
updation will applied to them on the backward pass. Reg-
ularization hurts training set performance because it limits
the ability of the network to overfit to the training set.
Usually, the place of dropout is in the fully connected layers
as it is the one with the larger number of parameters and thus
more probable to excessively co-adapt themselves causing
overfitting. A DNN with some dropout nodes is shown in
Figure 4.

Consider a particular node x in layer / and nodes uy, u,,
u3, and u, in layer -1 connected to x. What dropout ac-
tually does is to spread out the weights. Instead of assigning
weight to any one node, it spreads out among all the nodes.
The following illustration will demonstrate this. Let the
weights of the connections between node x and u;, u,, us,
and uy be wy,, w,,, Wy, and w,,.

Squared norm lwl? for this layer is

2_ 2 2 2 2
lwl” = wi, + w, +w;, + wj,. (5)

Let the sum of the weights be equal to k, i.e., Y w;, = k.

Case 1. When the entire weight is with one connection, u;
to x,

7
wy, =k,
Wy = W3y = Wy = 0’ (6)
lwl® = K.

Case 2. When the weight is equally distributed among two
connections, #; to x and u, to x,

k
Wiy = 5;
k
Wy = E;
w3x = 07 (7)
w4x = 0>
K KK
ol =%+~ = %
4 4 2

Case 3. When the weight is equally distributed among all
four connections,

k
Wiy = Wy = W3y = Wy, = Z’
2 ®
k
lwl® = T

In each of the cases, the squared norm of weights de-
creases when the weights are distributed, as in Cases 2 and 3,
rather than when it is concentrated with one connection as
in Case 1. To choose the value of dropout probability, for
layers with large number of nodes, dropout should be high,
and for those with small nodes, dropout should be low,
maybe 0.

So it can be summarized by saying that the L2 regula-
rization method reduces overfitting by modifying the cost
function. But on the contrary, the dropout method reduces
overfitting by modifying the network itself.

3. Experimental Setup

This section details about datasets, experimental environ-
ment, environment deployment, and evaluation parameters.

3.1. Datasets. There are a number of open-source datasets
available online for the analysis of defect prediction models.
For the study, 4 NASA system datasets (KC1, PC1, PC2, and
KC3) are selected from PROMISE repository [43], which is
freely available as public datasets. The selected datasets are of

Scientific Programming

n /)
R /)
B =)
4 =)
In =——=)

L)

:‘}7.%7/ \\bm
.‘ \

N

v

QRO O

Input layer

RSV
i . : (\ 4'
%

Hn
A
;O = 01
|:|’> 02
OMho<= 8 = 0
Ay A
e =
Output layer

Hidden layer

FIGURE 4: Deep neural network with some dropout nodes.

different sizes and different number of set of metrics i.e.,
KC1 has 22 attributes with 2109 instances, PC1 has 22 at-
tributes with 1109 instances, PC2 has 37 attributes with 745
instances, and KC3 has 40 attributes with 194 instances.
These datasets comprise of software metrics such as Halstead
and McCabe metrics and a Boolean variable that indicates
defect or no-defect proneness of a module. Table 1 displays
characteristics of the NASA dataset (PC1, PC2, KC1, and
KC3).

The WEKA (Waikato Environment for Knowledge
Analysis) tool was used for the statistical output processing
of datasets. WEKA is open-source software that gives the
user the power of preprocessing, implementation of well-
known machine learning algorithms, and visualization of
their data so that one can develop machine learning tech-
niques and apply them to real-world data problems. The data
was analysed i.e., the accuracy of different datasets was
calculated using various classifiers, namely, random forest,
decision tree, and naive Bayes. The results of these classifiers
were then compared with the results generated by the neural
network.

3.2. Experimental Environment. For building the deep
neural network (DNN), the network parameters such as the
total number of hidden layers and the number of neurons in
each corresponding layer were configured. Four datasets
were selected to conduct the experiment with different
configuration settings i.e., by varying the number of hidden
layers, number of neurons in each corresponding layer,
epochs, learning rate, and with and without dropout.

The network setting for the datasets that gave us desired
results while experimenting is as follows: PC1 had 5 hidden
layers with 5, 5, 5, 10, and 20 neurons in each layer, re-
spectively, and L2 regularization with the value 0.7 in the last
layer. KC1 had 6 hidden layers with 20, 20, 20, 20, 50, and 50
neurons in each layer, respectively, and L2 regularization
with the value 0.05 in the last layer. KC3 had 4 hidden layers
with 5, 5, 10, and 10 neurons in each layer, respectively, and
L2 regularization with the value 0.2 in the last layer. PC2 had
5 hidden layers with 80, 80, 80, 80, and 200 neurons in each
layer, respectively, and L2 regularization with the value 0.7 in

the last two layers. An overview of our proposed research
framework and the pseudocode is shown in Figures 5 and 6.

3.3. Environment Deployment. For the proposed DNN
model’s modelling, Python 3.7.3 is used. With the help of
Keras, which is a neural network library written in Python
and which is also capable of running on top of TensorFlow,
the DNN-related results were generated. The experiments
were executed using the system having 64 bit operating
system with 16 GB RAM.

3.4. Evaluation Parameters. In the field of machine learning
and, specifically, the problem of statistical classification, a
confusion matrix, also known as an error matrix, is used. A
confusion matrix is a summary of prediction results on a
classification problem. The number of correct and incorrect
predictions is summarized with count values and broken
down by each class. This is the key to the confusion matrix.
The confusion matrix shows the ways in which the classi-
fication model is confused when it makes predictions. It
gives us insight not only into the errors being made by a
classifier but more importantly the types of errors that are
being made. Figure 7 shows the description regarding the
confusion matrix.

Class 1: NO
Class 2: YES

The above terms are defined as

(1) YES: observation is positive
(2) NO: observation is not positive

(3) TruePositive (TP): observation is positive and is
predicted to be positive

(4) FalseNegative (FN): observation is positive, but is
predicted negative

(5) TrueNegative (TN): observation is negative and is
predicted to be negative

(6) FalsePositive (FP): observation is negative but is
predicted positive

Scientific Programming 9

TaBLE 1: Characteristics of the NASA dataset (PC1, PC2, KC1, and KC3).

Dataset Project Number of attributes Number of instances ~Number of defective entities Number of nondefective entities

NASA PC1 22 1109 77 (6.9%) 1032 (93.05%)
NASA PC2 37 745 16 (2.10%) 729 (97.90%)
NASA KC1 22 2109 326 (15.45%) 1783 (84.54%)
NASA KC3 40 194 36 (18.6%) 158 (81.4%)

Select the number of layer and parameters
Perform validation
Repeat
Select the number of layer (1-M: M depends on experiments)
Select number of nodes of the layer
Choose dropout [Range 0.1-0.7]
Select parameter
Perform training
Perform validation
Replace to next layer
Until reached desired threshold

FIGURE 5: Algorithm pseudocode.

Number of layers |

|

Number of neuron in each
layer

'

Parameter tuning

| Number of epochs

I Batch size |
I Dropout rate |

Regularization

!

Activation function

| Input layer: ReLU |

I Hidden layer: ReLU |

| Output layer: softmax |

!

| Optimization function |

FIGURE 6: Proposed research framework.

10

Predicted

NO | YES

NO TN FP
Actual

YES | EN TP

Figure 7: Confusion matrix.

The evaluation parameters used in this research work are
True Positive Rate (TPR), True Negative Rate (TNR), False
Negative Rate (FNR), False Positive Rate (FPR), precision,
recall, F-measure, and accuracy.

True Positive Rate is when it is actually YES; how often
does it predict YES?

True Positive (TP)
True Positive (TP) + False Negatives (FN)’

TRP = 9)

True Negative Rate is when it is actually NO; how often
does it predict NO?
True Negatives (TN)

TNR = .
True Negatives (TN) + False Positives (FP)

(10)

False Positive Rate is when it is actually NO; how often
does it predict YES?
False Positives (FP)

FPR = :
False Positives (FP) + True Negatives (TN)

(11)

False Negative Rate is the proportion of YES which yields
NO test outcomes with the test:
False Negatives (FN)

FNR = .
False Negatives (FN) + True Positive (TP)

(12)

Precision (P) measures the number of positive class
predictions that belong to the positive class:
3 True Positive (TP)
" True Positive (TP) + False Positives (FP)’

(P) (13)

Recall measures the number of positive class predictions
made out of all positive examples in the dataset:
3 True Positive (TP)
"~ True Positive (TP) + False Negatives (FN)’

(R) (14)

F-measure offers a single score that balances both the
concerns of precision and recall in one number:

« Recall (R) * Precision (P)
Recall (R) + Precision (P)’

(FM) =2 (15)

whereas accuracy is the total number of correct predictions
divided by the total number of predictions made for a
dataset:

Scientific Programming

_ True Positive (TP) + True Negatives (TN)

A
(4) Total Examples (TE)

(16)

4. Results and Analysis

For the final analysis, the performance measures for all the 4
classification techniques used in the study are computed. The
results were based on the values of precision, recall, F-
measure, and accuracy. Also, accuracy comparison with
different dropout rates is also discussed in the later part of
this section.

Table 2 presents each classifier’s comparative result in
terms of precision, recall, F-measure, and accuracy for the
KCI1 dataset. For this dataset, the deep neural network with
dropout provides the best result for recall and accuracy i.e., 1
and 92, respectively, whereas the deep neural network
without dropout provides the best result in terms of the F-
measure value. Thus, DNN with dropout outperforms all
other classifiers in terms of accuracy. Table 3 shows each
classifier’s performance statistics for the KC3 dataset. For
this dataset, our DNN model with dropout outperforms all
other classifiers. The precision, recall, and F-measure value is
examined to be 0.91, 1, and 0.98, respectively, and the ac-
curacy value is calculated as 97. In Table 4, it is observed that
the accuracy value (96) and recall value (1) of DNN with
dropout are better than all other classifiers but the value of
precision (0.95) is good for the random forest classifier, and
F-measure (0.97) is good for DNN without dropout. For
Table 5, the proposed DNN model with the dropout pre-
cision value (0.98), recall value (1), F-measure (0.98), and
accuracy value (99) is better than the performance values
generated from DNN without dropout, RF, NB, and DT.

Figures 8-11 display the graphs showing performance
comparison between RF, DT, NB, and DNN with/without
dropout for all datasets. Figure 12 displays different accu-
racies generated by the 4 different classifiers for KC1, KC3,
PC1, and PC2 datasets. It is observed that, in each case, the
accuracy generated by the proposed deep neural network
(DNN) with dropout is the highest as compared to other
machine learning techniques.

As it is known, dropout is a method by which model
overfitting is prevented. In this method, outgoing edges of
hidden neurons are randomly set to zero at each update of
the training phase. Here, dropout rates have been taken in
between 0.1 and 0.7 for all datasets and are intensively
experimented and explored changes in the accuracy. At first,
with the increasing dropout rate, loss will decrease and
accuracy will gradually increase. But if the dropout is
incremented beyond a certain threshold, it results in de-
crease in accuracy, and hence, the model is not being able to
fit properly. It is observed from Table 6 that, with increasing
dropout rates from 0.1 to 0.5, accuracy is also increasing. But

Scientific Programming 11
TaBLE 2: Comparative results for the KC1 dataset.
KC1
Algorithm Precision Recall F-measure Accuracy
RF 0.887 0.965 0.925 86.670
DT 0.865 0.974 0.916 84.870
NB 0.888 0.905 0.897 82.360
Without dropout DNN 0.790 0.970 0.940 88.570
With dropout DNN 0.850 1.000 0.920 92.000
TasLE 3: Comparative results for the KC3 dataset.
KC3
Algorithm Precision Recall F-measure Accuracy
RF 0.832 0.968 0.895 81.440
DT 0.870 0.930 0.899 82.990
NB 0.863 0.880 0.971 78.870
Without dropout DNN 0.890 0.870 0.880 93.000
With dropout DNN 0.910 1.000 0.980 97.000
TaBLE 4: Comparative results for the PC1 dataset.
PC1
Algorithm Precision Recall F-measure Accuracy
RF 0.950 0.984 0.960 93.680
DT 0.937 0.990 0.960 92.870
NB 0.947 0.936 0.942 89.170
Without dropout DNN 0.940 0.990 0.970 93.000
With dropout DNN 0.930 1.000 0.960 96.000
TaBLE 5: Comparative results for the PC2 dataset.
PC2
Algorithm Precision Recall F-measure Accuracy
RF 0.979 1.000 0.989 97.850
DT 0.979 1.000 0.989 97.850
NB 0.980 0.925 0.951 90.730
Without dropout DNN 0.810 0.900 0.970 98.660
With dropout DNN 0.980 1.000 0.980 99.000
KC1
n A o =
[Ny N 0 0~ =2 o288
£S2 | 223 | 232 | g2 | 228
(=]
RF DT NB Without With
dropout dropout
DNN DNN
M Precision
B Recall

B F-measure

FIGURE 8: Performance comparison for KCI.

12 Scientific Programming
KC3
0 —_ 89
L ol o S oo 23R
a R o N 0 - <
nex | 522 | 282 | 2858 | 2-5
Sm° s - < S o S s o
RF DT NB Without With
dropout dropout
DNN DNN
M Precision
B Recall
B F-measure
FIGURE 9: Performance comparison for KC3.
PC1
(=] o (=3
2 3 2o g
N o) SR -
(=) S O I~ S O
n [o~ [<+ o g : o [N
Qg = oD p ISP =
© S °cso = g
RF DT NB Without With
dropout dropout
DNN DNN
M Precision
B Recall
B F-measure
FIGURE 10: Performance comparison for PCI.
PC2
N 2D N DN o (=} oo
588 | 358 | 898 | =83 | §8%
S =S S — o S 23 2 =SS S =S
S
RF DT NB Without With
dropout dropout
DNN DNN

W Precision
B Recall
B F-measure

FiGUrE 11: Performance comparison for PC2.

in most of the datasets, the accuracy starts to fall on in-
creasing dropout beyond threshold, say 0.6 onwards.

From Table 7, it is observed that TPR of DNN with
dropout is greater than DNN without dropout, RF, DT, and
NB for the datasets KC1, KC3, PC1, and PC2. And, in all the
cases, accuracy of DNN with dropout is higher than all other
analysis which also reflects that proposed DNN with the
dropout model outperforms all other classifiers.

From Figure 13, it is observed that the proposed DNN
model with dropout in case of KC1 detects 168 faults,
whereas the DNN model without dropout, RF, DT, and NB
detects 152, 107, 54, and 123 faults, respectively. From
Figure 14, it is observed that the DNN model with dropout in
case of KC3 detects 37 faults, whereas the DNN model
without dropout, RF, DT, and NB detects 32, 5, 14, and 14
faults, respectively. From Figure 15, in case of PCl, it is

Scientific Programming 13
Accuracy comparison
RS < B o s O Bgsn
20+ 3 > -] 1S3
55%¢ | S55aF Sgaq | 8383
RF DT NB Without With
dropout dropout
DNN DNN
m PC2 m KC3
m PCl KC1
FIGURE 12: Accuracy comparison between KC1, KC3, PC1, and PC2 datasets.
TABLE 6: Accuracy comparison with different dropout rates.
Dropout rate KC1 KC3 PC1 PC2
DR (0.1) 90.89 96.00 89.00 97.10
DR (0.2) 90.00 96.00 93.34 98.19
DR (0.3) 91.60 96.21 92.00 98.19
DR (0.4) 92.00 97.00 95.22 99.00
DR (0.5) 92.00 97.00 96.00 99.00
DR (0.6) 89.66 97.00 94.45 98.11
DR (0.7) 70.23 92.90 94.45 90.00

TasLE 7: Confusion matrix analysis for the KC1, KC3, PC1, and PC2 datasets (TPR: True Positive Rate, TNR: True Negative Rate, FPR: False
Positive Rate, and FNR: False Negative Rate).

Aleorith KC1 KC3 PC1 PC2
orithm
8 TPR TNR FPR FNR TPR TNR FPR FNR TPR TNR FPR FNR TPR TNR FPR FNR
RF 0.330 0.960 0.040 0.670 0.140 0.970 0.030 0.860 0.290 0.980 0.015 0.700 0.000 1.000 0.000 1.000
DT 0.170 0.970 0.030 0.830 0.380 0.910 0.070 0.610 0.290 0.930 0.060 0.700 0.130 0.920 0.070 0.880
NB 0.380 0.900 0.070 0.620 0.380 0.900 0.120 0.610 0.290 0.930 0.060 0.700 0.130 0.920 0.070 0.880
Without dropout DNN 0.470 0.980 0.020 0.530 0.170 0.970 0.030 0.830 0.020 0.990 0.010 0.980 0.020 0.990 0.010 0.980
With dropout DNN 0.520 0.980 0.017 0.470 0.970 0.980 0.012 0.026 0.410 0.980 0.011 0.580 1.000 0.990 0.001 0.000
KC1
Confusion matrix analysis
S & = g h
= S ° S =
N
Sglé L\r‘[:‘g §§§ gég gg§
RF DT NB Without With
dropout dropout
DNN DNN
Algorithm
m TN m FN
m FP TP

F1GUre 13: Confusion matrix analysis for KC1.

14

Scientific Programming

KC3
Confusion matrix analysis

2 % 2 A %
o = =
2 @ _ S EN & &
v —“a - < < N~
RF DT NB Without With
dropout dropout
DNN DNN
Algorithm
m TN m FN
m FP TP
Figure 14: Confusion matrix analysis for KC3.
PC1
Confusion matrix analysis
2 5 2 3
S = 8 IS =)
— — ™ — —
o3RS |S@w |8$&’ 3D |§;;g
RF DT NB Without With
dropout dropout
DNN DNN
Algorithm
m TN FN
m FP TP
Figure 15: Confusion matrix analysis for PC1.
PC2
Confusion matrix analysis
=)} [=2} — o
R R 3 3 R
n —
- ‘OSO w3 e ‘-—10‘\‘
RF DT NB Without With
dropout dropout
DNN DNN
Algorithm
m TN FN
m FP TP

FiGure 16: Confusion matrix analysis for PC2.

observed that RF and NB detect 23 faults, DNN model with
dropout detects 22 faults, DNN model without dropout
detects 17 faults, and DT detects only 8 faults. From Fig-
ure 16, it is observed that the DNN model with dropout in
case of PC2 detects 21 faults, whereas the DNN model
without dropout, RF, DT, and NB detects 13, 0, 0, and 2
faults, respectively.

Unlike model parameters, one cannot learn hyper-
parameters; they are needed to be tuned with different

settings to get enhanced performance and desired results. So,
the DNN was made robust by playing around with its width
of the network (i.e., the number of neurons in the layer). It
was also found that, by just adding up few layers, perfor-
mance increased marginally. Sometimes, increase in the
number of epochs displayed promising results.

For example, experiments with several parameter tun-
ings were performed on all the four datasets. One set of
experiment on the PC2 dataset is shown in Tables 8-11. In

Scientific Programming 15

TaBLE 8: Experiment performed on the PC2 dataset by tuning the parameter i.e., learning rate = -2, epochs = 100, 200, 300, 500, 1000, and
2000, number of layers =5, and dropout=0.2 and 0.5.

No. of layers 5 5 5 5 5 5

80 (0.5), 80 (0.5), 80 80 (0.5), 80 (0.5), 80 80 (0.5), 80 (0.5), 80
No. of neurons 80 (0.2), 80, 80, 80 (0.2), 80, 80, 80 (0.2), 80 (0.2), (0(5) 230 (0(5) Zmd (0(5) 230 (0(5) z)md (0(5) éo (0(5) zmd
with dropout 80, and 200 80, and 200 80, 80, and 200 e 0 r 0 e 0

200 (0.5) 200 (0.5) 200 (0.5)
Lr 1.00E - 02 1.00E - 02 1.00E - 02 1.00E - 02 1.00E - 02 1.00E - 02
Epoch 100 200 300 500 1000 2000
Accuracy 0.92 0.913 0.913 0.94 0.94 0.94
Loss 0.55 0.389 0.42 0.63 0.765 0.223

TaBLE 9: Experiment performed on the PC2 dataset by tuning the parameter i.e., learning rate = -3, epochs = 100, 200, 300, 500, 1000, and
2000, number of layers =5, and dropout=0.2 and 0.5.

No. of layers 5 5 5 5 5 5

No. of neurons 80 (0.2), 80, 80, 80 (0.2), 80, 80, 80 (0.2), 80 (0.2), 8(00(50)'5;’08(00(50)'5;’11 30 88)2%'5;’08(00(50)'51’11 ?10 8(00%'5;’08?0%0)'5;}1 io
with dropout 80, and 200 80, and 200 80, 80, and 200 e 0 = iy e iy

200 (0.5) 200 (0.5) 200 (0.5)
Lr 1.00E - 03 1.00E - 03 1.00E- 03 1.00E - 03 1.00E - 03 1.00E - 03
Epoch 100 200 300 500 1000 2000
Accuracy 0.9635 0.9783 0.9819 0.99 0.99 0.994
Loss 0.3606 0.3486 0.3611 0.319 0.4112 0.3529

TaBLE 10: Experiment performed on the PC2 dataset by tuning the parameter i.e., learning rate = -4, epochs = 100, 200, 300, 500, 1000, and
2000, number of layers =5, and dropout=0.2 and 0.5.

No. of layers 5 5 5 5 5 5

No. of neurons 80 (0.2), 80, 80, 80 (0.2), 80, 80, 80 (0.2), 80 (0.2), 8(00(50)'523’08(00%0)'5;’[1 30 8(00(50)'5;’08(00(50)'5;}1 fio 8(0020)'2’08(00%5;}1 io
with dropout 80, and 200 80, and 200 80, 80, and 200 e Y = iy e 0

200 (0.5) 200 (0.5) 200 (0.5)
Lr 1.00E - 04 1.00E - 04 1.00E - 04 1.00E - 04 1.00E - 04 1.00E - 04
Epoch 100 200 300 500 1000 2000
Accuracy 0.972 0.899 0.972 0.972 0.981 0.981
Loss 0.3614 0.3761 0.3649 0.3504 0.435 0.342

TaBLE 11: Experiment performed on the PC2 dataset by tuning the parameter i.e., learning rate = -5, epochs = 100, 200, 300, 500, 1000, and
2000, number of layers =5, and dropout=0.2 and 0.5.

No. of layers 5 5 5 5 5 5

No. of neurons 80 (0.2), 80, 80, 80 (0.2), 80, 80, 80 (0.2), 80 (0.2), 8(00 go).Sg,os(()() (50)52m 30 8(00 (:)'523’08(00 (50)52m 30 8(00 (50)'523’08(00 (50)52m 30
with dropout 80, and 200 80, and 200 80, 80, and 200 e 0 e 0 r 0

200 (0.5) 200 (0.5) 200 (0.5)
Lr 1.00E - 05 1.00E - 05 1.00E - 05 1.00E - 05 1.00E - 05 1.00E - 05
Epoch 100 200 300 500 1000 2000
Accuracy 0.9623 0.9623 0.9623 0.9623 0.9623 0.9623
Loss 0.5104 0.4097 0.3033 0.1055 0.1112 0.2213

this, results are generated by varying the learning rate = 0.01,
0.001, 0.0001, and 0.00001, epochs = 100, 200, 300, 500, 1000,
and 2000, and dropout=0.2 and 0.5.

neural network models built by the appropriate design
decisions are crucial to obtain the desired classifier per-
formance. This is especially desired when predicting fault
proneness of software modules. When correctly identified,
this could help in reducing the testing cost by directing the
5. Conclusion and Future Scope efforts more towards the modules identified to be fault
prone. However, there is still a need to improve the pre-
diction accuracy of these models. In this paper, an attempt
has been made to build an efficient deep neural network
model, based on the parameters such as the number of

Software fault prediction is typically used to predict faults in
software components. Machine learning techniques (e.g.,
classification) are widely used to tackle this problem. Deep

16

hidden layers, number of nodes in each layer, and training
details such as learning rate and regularization methods
(such as L2 regularization and dropout regularization). An
attempt has been also made to show the importance of
hyperparameter tuning in developing efficient deep neural
network models for predicting fault proneness of software
module, and to compare the results with other machine
learning algorithms. To evaluate the correctness of the
proposed model, it is compared against other well-known
machine learning models such as the random forest, deci-
sion trees, and naive Bayesian networks. The experiments
were performed on 4 NASA system datasets (KC1, PCI,
PC2, and KC3), selected from PROMISE repository which
are freely available as public datasets. From Figure 12, it is
observed that, in each case, the accuracy generated by the
proposed deep neural network (DNN) with dropout is the
highest as compared to other machine learning techniques
for all the datasets. And, in most of the cases, the proposed
DNN model with dropout detects more faults as compared
to other machine learning techniques. It is also seen that
DNN with dropout preforms better than DNN without
dropout. Thus, it is shown that the proposed DNN model
with dropout outperforms the other algorithms in most
cases. In terms of future scope, it is intended to use more
advanced deep learning techniques and explore more
datasets from different resources. In addition, it would be
promising to try some of feature generation techniques to
generate the features which will help in improving the
model’s recall, F-measure, and also accuracy.

Data Availability

The datasets are taken from an online public data repository,
namely, “PROMISE Software Engineering Repository”
(http://promise.site.uottawa.ca/SERepository/datasets-page.
html).

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] X.-Y. Jing, S. Ying, Z.-W. Zhang, S.-S. Wu, and J. Liu,
“Dictionary learning based software defect prediction,” in
Proceedings of the 36th International Conference on Software
Engineering—ICSE 2014, Hyderabad India, May 2014.

[2] M. Tan, L. Tan, S. Dara, and C. Mayeux, “Online defect
prediction for imbalanced data,” in Proceedings of the 2015
IEEE/ACM 37th IEEE International Conference on Software
Engineering, Florence, Italy, May 2015.

[3] A.G. Liu, E. Musial, and M.-H. Chen, “Progressive reliability
forecasting of service-oriented software,” in Proceedings of the
2011 IEEE International Conference on Web Services,
Washington, DC, USA, July 2011.

[4] S. S. Rathore and S. Kumar, “A decision tree logic based
recommendation system to select software fault prediction
techniques,” Computing, vol. 99, no. 3, pp. 255-285, 2016.

[5] R.Malhotra and A. Jain, “Fault prediction using statistical and
machine learning methods for improving software quality,”

(6]

(7]

(8]

(9]

(10]

(11]

(12

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

Scientific Programming

Journal of Information Processing Systems, vol. 8, no. 2,
pp. 241-262, 2012.

P.He, B. Li, X. Liu, J. Chen, and Y. Ma, “An empirical study on
software defect prediction with a simplified metric set,” In-
formation and Software Technology, vol. 59, pp. 170-190, 2015.
M. O. Elish, A. H. Al-Yafei, and M. Al-Mulhem, “Empirical
comparison of three metrics suites for fault prediction in
packages of object-oriented systems: a case study of Eclipse,”
Advances in Engineering Software, vol. 42, no. 10, pp. 852-859,
2011.

Y. Peng, G. Kou, G. Wang, W. Wu, and Y. Shi, “Ensemble of
software defect predictors: an ahp-based evaluation method,”
International Journal of Information Technology ¢ Decision
Making, vol. 10, no. 1, pp. 187-206, 2011.

R. Malhotra, “A systematic review of machine learning
techniques for software fault prediction,” Applied Soft
Computing, vol. 27, pp. 504-518, 2015.

Y. Singh, A. Kaur, and R. Malhotra, “Prediction of fault-prone
software modules using statistical and machine learning
methods,” International Journal of Computer Applications,
vol. 1, no. 22, pp. 8-15, 2010.

K. Dejaeger, T. Verbraken, and B. Baesens, “Toward com-
prehensible software fault prediction models using bayesian
network classifiers,” IEEE Transactions on Software Engi-
neering, vol. 39, no. 2, pp. 237-257, 2013.

J. Cahill, J. M. Hogan, and R. Thomas, “predicting fault-prone
software modules with rank sum classification,” in Proceed-
ings of the 2013 22nd Australian Software Engineering
Conference, Hawthorne, Australia, 2013.

O. F. Arar and K. Ayan, “Software defect prediction using
cost-sensitive neural network,” Applied Soft Computing,
vol. 33, pp. 263-277, 2015.

L. Kumar, S. K. Sripada, A. Sureka, and S. K. Rath, “Effective
Fault Prediction model developed using least square Support
vector machine (LSSVM),” Journal of Systems and Software,
vol. 137, pp. 686-712, 2018.

B. Twala, “Predicting software faults in large space systems
using machine learning techniques,” Defence Science Journal,
vol. 61, no. 4, pp. 306-316, 2011.

A. Boucher and M. Badri, “Software metrics thresholds cal-
culation techniques to predict fault-proneness: an empirical
comparison,” Information and Software Technology, vol. 96,
pp. 38-67, 2018.

S. Wang, T. Liu, and L. Tan, “Automatically learning semantic
features for defect prediction,” in Proceedings of the 38th
International Conference on Software Engineering—ICSE’16,
Austin, TX, USA, May 2016.

E. Erturk and E. Akcapinar Sezer, “Iterative software fault
prediction with a hybrid approach,” Applied Soft Computing,
vol. 49, pp. 1020-1033, 2016.

D.-L. Miholca, G. Czibula, and I. G. Czibula, “A novel ap-
proach for software defect prediction through hybridizing
gradual relational association rules with artificial neural
networks,” Information Sciences, vol. 441, pp. 152-170, 2018.
M. Samir, M. El-Ramly, and A. Kamel, “Investigating the use
of deep neural networks for software defect prediction,” in
Proceedings of the 2019 IEEE/ACS 16th International Con-
ference on Computer Systems and Applications (AICCSA), Abu
Dhabi, UAE, November 2019.

H. Turabieh, M. Mafarja, and X. Li, “Iterated feature selection
algorithms with layered recurrent neural network for software
fault prediction,” Expert Systems with Applications, vol. 122,
pp. 27-42, 2019.

http://promise.site.uottawa.ca/SERepository/datasets-page.html
http://promise.site.uottawa.ca/SERepository/datasets-page.html

Scientific Programming

[22] J. Li, P. He, J. Zhu, and M. R. Lyu, “Software defect prediction
via convolutional neural network,” in Proceedings of the 2017
IEEE International Conference on Software Quality, Reliability
and Security (QRS), Prague, Czech Republic, July 2017.

[23] F. Yucalar, A. Ozcift, E. Borandag, and D. Kilinc, “Multiple-
classifiers in software quality engineering: combining pre-
dictors to improve software fault prediction ability,” Engi-
neering Science and Technology, An International Journal,
vol. 23, no. 4, pp- 938-950, 2019.

[24] V. Duddu, N. Rajesh Pillai, D. V. Rao, and V. E. Balas, “Fault
tolerance of neural networks in adversarial settings,” Journal
of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 5897-5907,
2020.

[25] Y. Lyu and Y. Jiang, “Examination on avionics system fault
prediction technology based on ashy neural network and
fuzzy recognition,” Journal of Intelligent & Fuzzy Systems,
vol. 38, no. 4, pp. 3939-3947, 2020.

[26] L. Gong, S. Jiang, and L. Jiang, “Tackling class imbalance
problem in software defect prediction through cluster-based
over-sampling with filtering,” IEEE Access, vol. 7,
pp. 145725-145737, 2019.

[27] S. Huda, S. Alyahya, M. Mohsin Ali et al., “A framework for
software defect prediction and metric selection,” IEEE Access,
vol. 6, pp. 28442858, 2018.

[28] P. S. Bishnu and V. Bhattacherjee, “software fault prediction
using Quad tree-based K-means clustering algorithm,” IEEE
Transactions on Knowledge and Data Engineering, vol. 24,
no. 6, pp. 1146-1150, 2012.

[29] S. K. Pandey, R. B. Mishra, and A. K. Tripathi, “BPDET: an
effective software bug prediction model using deep repre-
sentation and ensemble learning techniques,” Expert Systems
with Applications, vol. 144, Article ID 113085, 2020.

[30] Y. Lei, B. Yang, X. Jiang, F. Jia, N. Li, and A. K. Nandi,
“Applications of machine learning to machine fault diagnosis:
a review and roadmap,” Mechanical Systems and Signal
Processing, vol. 138, Article ID 106587, 2020.

[31] J. Zhang, J. Tian, T. Wen, X. Yang, Y. Rao, and X. Xu, “Deep
fault diagnosis for rotating machinery with scarce labeled
samples,” Chinese Journal of Electronics, vol. 29, no. 4,
pp. 693-704, 2020.

[32] M. Bashiri and A. Farshbaf Geranmayeh, “Tuning the pa-
rameters of an artificial neural network using central com-
posite design and genetic algorithm,” Scientia Iranica, vol. 18,
no. 6, pp. 1600-1608, 2011.

[33] W.-Y. Lee, S.-M. Park, and K.-B. Sim, “Optimal hyper-
parameter tuning of convolutional neural networks based on
the parameter-setting-free harmony search algorithm,” Optik,
vol. 172, pp. 359-367, 2018.

[34] L. Yang and A. Shami, “On hyperparameter optimization of
machine learning algorithms: theory and practice,” Neuro-
computing, vol. 415, pp. 295-316, 2020.

[35] H. Cho, Y. Kim, E. Lee, D. Choi, Y. Lee, and W. Rhee, “Basic
enhancement strategies when using bayesian optimization for
hyperparameter tuning of deep neural networks,” IEEE Ac-
cess, vol. 8, pp. 52588-52608, 2020.

[36] J. Moolayil, “Tuning and deploying deep neural networks,” in
Learn Keras for Deep Neural Networks, pp. 137-159, Springer,
Berlin, Germany, 2018.

[37] A. Akl 1. El-Henawy, A. Salah, and K. Li, “Optimizing deep
neural networks hyperparameter positions and values,”
Journal of Intelligent & Fuzzy Systems, vol. 37, no. 5,
pp. 6665-6681, 2019.

[38] P. R. Bal and S. Kumar, “WR-ELM: weighted regularization
extreme learning machine for imbalance learning in software

(39]

(40]

(41]

(42]

(43]

17

fault prediction,” IEEE Transactions on Reliability, vol. 69,
no. 4, pp. 1355-1375, 2020.

C. Manjula, “Software defect prediction using deep belief
network with L1-regularization based optimization,” Inter-
national Journal of Advanced Research in Computer Science,
vol. 9, no. 1, pp. 864-870, 2018.

Y. Qu, X. Chen, Y. Zhao, and X. Ju, “Impact of hyper pa-
rameter optimization for cross-project software defect pre-
diction,” International Journal of Performability Engineering,
vol. 14, no. 6, pp- 1291-1299, 2018.

P. K. Kudjo, S. B. A formaley, S. Mensah, and J. Chen, “The
significant effect of parameter tuning on software vulnera-
bility prediction models,” in Proceedings of the 2019 IEEE 19th
International Conference on Software Quality, Reliability and
Security Companion (QRS-C), Sofia, Bulgaria, July 2019.

A. Ng, Neural Networks and Deep Learning, Springer, Berlin,
Germany, 2019.
http://promise.site.uottawa.ca/SERepository/datasets-page.
html.

http://promise.site.uottawa.ca/SERepository/datasets-page.html
http://promise.site.uottawa.ca/SERepository/datasets-page.html

