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Importance. With the booming growth of artificial intelligence (AI), especially the recent advancements of deep learning, utilizing
advanced deep learning-based methods for medical image analysis has become an active research area both in medical industry and
academia. This paper reviewed the recent progress of deep learning research in medical image analysis and clinical applications. It
also discussed the existing problems in the field and provided possible solutions and future directions. Highlights. This paper
reviewed the advancement of convolutional neural network-based techniques in clinical applications. More specifically, state-of-
the-art clinical applications include four major human body systems: the nervous system, the cardiovascular system, the
digestive system, and the skeletal system. Overall, according to the best available evidence, deep learning models performed well
in medical image analysis, but what cannot be ignored are the algorithms derived from small-scale medical datasets impeding
the clinical applicability. Future direction could include federated learning, benchmark dataset collection, and utilizing domain
subject knowledge as priors. Conclusion. Recent advanced deep learning technologies have achieved great success in medical
image analysis with high accuracy, efficiency, stability, and scalability. Technological advancements that can alleviate the high
demands on high-quality large-scale datasets could be one of the future developments in this area.

1. Introduction

With rapid developments of artificial intelligence (AI) tech-
nology, the use of AI technology to mine clinical data has
become a major trend in medical industry [1]. Utilizing
advanced AI algorithms for medical image analysis, one of
the critical parts of clinical diagnosis and decision-making,
has become an active research area both in industry and aca-
demia [2, 3]. Recent applications of deep leaning in medical
image analysis involve various computer vision-related tasks
such as classification, detection, segmentation, and registra-
tion. Among them, classification, detection, and segmenta-
tion are fundamental and most widely used tasks.

Although there exist a number of reviews on deep learn-
ing methods on medical image analysis [4–13], most of them
emphasize either on general deep learning techniques or on
specific clinical applications. The most comprehensive
review paper is the work of Litjens et al. published in 2017
[12]. Deep learning is such a quickly evolving research field;
numerous state-of-the-art works have been proposed since

then. In this paper, we review the latest developments in
the field of medical image analysis with comprehensive and
representative clinical applications.

We briefly review the common medical imaging
modalities as well as technologies for various specific tasks
in medical image analysis including classification, detection,
segmentation, and registration. We also give more detailed
clinical applications with respect to different types of diseases
and discuss the existing problems in the field and provide
possible solutions and future research directions.

2. AI Technologies in Medical Image Analysis

Different medical imaging modalities have their unique char-
acteristics and different responses to human body structure
and organ tissue and can be used in different clinical pur-
poses. The commonly used image modalities for diagnostic
analysis in clinic include projection imaging (such as X-ray
imaging), computed tomography (CT), ultrasound imaging,
and magnetic resonance imaging (MRI). MRI sequences
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include T1, T1-w, T2, T2-w, diffusion-weighted imaging
(DWI), apparent diffusion coefficient (ADC), and fluid atten-
uation inversion recovery (FLAIR). Figure 1 demonstrates a
few examples of medical image modalities and their corre-
sponding clinical applications.

2.1. Image Classification for Medical Image Analysis. As a
fundamental task in computer vision, image classification
plays an essential role in computer-aided diagnosis. A
straightforward use of image classification for medical image
analysis is to classify an input image or a series of images as
either containing one (or a few) of predefined diseases or free
of diseases (i.e., healthy case) [14, 15]. Typical clinical appli-
cations of image classification tasks include skin disease iden-
tification in dermatology [16, 17], eye disease recognition in
ophthalmology (such as diabetic retinopathy [18, 19], glau-
coma [20], and corneal diseases [21]). Classification of path-
ological images for various cancers such as breast cancer [22]
and brain cancer [23] also belongs to this area.

Convolutional neural network (CNN) is the dominant
classification framework for image analysis [24]. With the
development of deep learning, the framework of CNN
has continuously improved. AlexNet [25] was a pioneer
convolutional neural network, which was composed of
repeated convolutions, each followed by ReLU and max
pooling operation with stride for downsampling. The pro-
posed VGGNet [26] used 3 × 3 convolution kernels and
2 × 2 maximum pooling to simplify the structure of Alex-
Net and showed improved performance by simply increas-
ing the number and depth of the network. Via combining
and stacking 1 × 1, 3 × 3, and 5 × 5 convolution kernels and
3 × 3 pooling, the inception network [27] and its variants
[28, 29] increased the width and the adaptability of the net-
work. ResNet [30] and DenseNet [31] both used skip connec-
tions to relieve the gradient vanishing. SENet [32] proposed a
squeeze-and-excitation module which enabled the model to

pay more attention to the most informative channel features.
The family of EfficientNet [33] applied AUTOML and a com-
pound scaling method to uniformly scale the width, depth,
and resolution of the network in a principled way, resulting
in improved accuracy and efficiency. Figure 2 demonstrates
some of the commonly used CNN-based classification net-
work architectures.

Besides the direct use for image classification, CNN-
based networks can also be applied as the backbone models
for other computer vision tasks, such as detection and
segmentation.

To evaluate the algorithms of image classification,
researchers use different evaluation metrics. Precision is
the proportion of true positives in the identified images.
The recall is the proportion of all positive samples in the
test set that are correctly identified as positive samples.
The accuracy rate is used to evaluate the global accuracy
of a model. The F1 score can be considered a harmonic
average of the precision and the recall of the model, which
takes both the precision and recall of the classification
model into account. ROC (receiver operating characteris-
tic) curve is usually used to evaluate the prediction effect
of the binary classification model, and the kappa coeffi-
cient is a method to measure the accuracy of the model
in multiclassification tasks.

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

Accuracy =
TP + TN

n
,

F1 = 2∙
Precision∙Recall
Precision + Recall

:

ð1Þ
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Figure 1: Examples of medical image modalities and their corresponding applications (original copy).
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Here, we denote TP as true positives, FP as false pos-
itives, FN as false negatives, TN as true negatives, and n as
the number of the testing samples.

2.2. Object Detection for Medical Image Analysis. Generally
speaking, object detection algorithms include both identifica-
tion and localization tasks. The identification task refers to
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Figure 2: Examples of CNN-based classification networks (original copy).
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judging whether objects belonging to certain classes appear
in regions of interest (ROIs) whereas the localization task
refers to localizing the position of the object in the image.
In medical image analysis, detection is commonly aimed at
detecting the earliest signs of abnormality in patients. Exem-
plar clinical applications of detection tasks include lung nod-
ule detection in chest CT or X-ray images [34, 35], lesion
detection on CT images [36, 37], or mammograms [38].

Object detection algorithms can be categorized into two
approaches, the anchor-based approach or anchor-free
approach, where anchor-based algorithms can be further
divided as single-stage algorithms or two/multistage algo-
rithms. In general, single-stage algorithms are computation-
ally efficient whereas two/multistage algorithms have better
detection performance. The family of YOLO [39] and the
single-shot multibox detector (SSD) [40] are two classic and
widely used single-stage detectors with simple model archi-
tectures. As shown in Figures 3(a) and 3(b), both architec-
tures are based on feed-forward convolutional networks
producing a fixed number of bounding boxes and their corre-
sponding scores for the presence of object instances of given
classes in the boxes. A nonmaximum suppression step is
applied to generate the final predictions. Different from
YOLO which works on a single-scale feature map, the SSD
utilizes multiscale feature maps, thereby producing better
detection performance. Two-stage frameworks generate a
set of ROIs and classify each of them through a network.
The Faster-RCNN framework [41] and its descendant
Mask-RCNN [42] are the most popular two-stage frame-
works. As shown in Figure 3(c), the Faster/Mask-RCNN first
generates object proposals through a region proposal net-
work (RPN) and then classifies those generated proposals.
The major difference between the Faster-RCNN and the
Mask-RCNN is that the Mask-RCNN has an instance seg-
mentation branch. Recently, there is a research trend on
developing anchor-free algorithms. CornerNet [43] is one
of the popular ones. As illustrated in Figure 3(d), CornerNet
is a single convolutional neural network which eliminates the
use of anchor boxes via utilizing paired key points where an
object bounding box is indicated by the top-left corner and
the bottom-right corner.

There are two main metrics to evaluate the performance
of detection methods: the mean average precision (mAP)
and the false positive per image (FP/I @ recall). mAP is used
to calculate the average of all average precisions (APs) of all
categories. FP/I @ recall rate is a measure of false positive
(FP) of each image under a certain recall rate which takes into
account the balance between false positives and the missing
rate.

2.3. Segmentation for Medical Image Analysis. Image segmen-
tation is a pixel labeling problem, which partitions an image
into regions with similar properties. For medical image anal-
ysis, segmentation is aimed at determining the contour of an
organ or anatomical structure in images. Segmentation tasks
in clinical applications include segmenting a variety of organs,
organ structures (such as the whole heart [44] and pancreas
[45]), tumors, and lesions (such as the liver and liver tumor
[46]) across different medical imaging modalities.

Since the fully convolutional neural network (FCN) [47]
has been proposed, image segmentation has achieved great
success. FCN was the first CNN which turned the classifica-
tion task to dense segmentation task with in-network upsam-
pling and a pixelwise loss. Through a skip architecture, it
combined coarse, semantic, and local information to dense
prediction. Medical image segmentation methods can be
divided into two categories: the 2D methods and the 3D
methods according to the input data dimension. The U-
Net architecture [48] is the most popular FCN for medical
image segmentation. As shown in Figure 4, U-Net consists
of a contracting path (the downsample side) and an
expansive path (the upsample side). The contracting path
follows the typical CNN architecture. It consists of the
repeated application of convolutions, each followed by
ReLU and max pooling operation with stride for down-
sampling. At each downsampling step, it also doubles the
number of feature channels. Each step in the expansive
path is composed of feature map upsampling followed by
deconvolution that halves the number of feature channels;
a concatenation with the correspondingly cropped feature
map from the contracting path is also applied. Variants
of U-Net-based architectures have been proposed. Isensee
et al. [49] proposed a general framework called nnU-Net
(No new U-Net) for medical image segmentation, which
applied a dataset fingerprint (representing the key proper-
ties of the dataset) and a pipeline fingerprint (representing
the key design of the algorithms) to systematically opti-
mize the segmentation task via formulating a set of heuris-
tic rules from domain knowledge. The nnU-Net achieved
state-of-the-art performance on 19 different datasets with
49 segmentation tasks across a variety of organs, organ
structures, tumors, and lesions in a number of imaging
modalities (such as CT, MRI).

Dice similarity coefficient and intersection over union
(IOU) are the two major evaluation metrics to evaluate the
performance of segmentation methods, and they are defined
as follows:

Dice = 2 × TP
2 × TP + FP + FN

,

IOU =
TP

TP + FP + FN
,

ð2Þ

where TP, FP, and FN denote true positive, false positive, and
false negative, respectively.

2.4. Image Registration for Medical Image Analysis. Image
registration, also known as image warping or image fusion,
is a process of aligning two or more images. The goal of
medical image registration is aimed at establishing optimal
correspondence within images acquired at different times
(for longitudinal studies), by different imaging modalities
(such as CT, MRI), across different patients (for intersub-
ject studies), or from distinct viewpoints. Image registra-
tion plays a crucial preprocessing step in many clinical
applications including computer-aided intervention and
treatment planning [50], image-guided/assisted surgery or
simulation [51], and fusion of anatomical images (e.g.,
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CT or MRI images) with functional images (such as posi-
tron emission tomography, single-photon emission com-
puted tomography, or functional MRI) for disease
diagnosis and monitoring [52].

Depending on different points of view, image registration
methodologies can be categorized differently. For instance,
image registration methods can be classified as monomodal
or multimodal based on imaging modalities involved. From
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Figure 3: Examples of object detection frameworks (original copy).
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the nature of geometric transformation, methods can also be
categorized as rigid or nonrigid classes. By data dimensional-
ity, registration methods can be classified as 2D/2D, 3D/3D,
2D/3D, etc., and from similarity measure point of view, reg-
istration can be categorized as feature-based or intensity-
based groups. Previously, image registration has been exten-
sively explored as an optimization problem whose aim is to
search the best geometric transformation iteratively through
optimizing a similarity measure such as sum of squared dif-
ferences (SSD), mutual information (MI), and cross-
correlation (CC). Ever since the beginning of the deep learn-
ing renaissance, various deep learning-based registration
methods have been proposed and achieved the state-of-the-
art performance [53].

Yang et al. [54] proposed a fully supervised deep learning
method to align 2D/3D intersubject brain MR in a single
step via a U-Net-like FCN. Jun et al. [55] also applied a
CNN to perform deformable registration of abdominal
MR images to compensate respiration deformation. Despite
the success of supervised learning-based methods, the
nature of acquisition of reliable ground truth remains sig-
nificantly challenging. Weakly supervised and/or unsuper-
vised methods can effectively alleviate the issue of lack of
training datasets with ground truth. Li and Fan [56] trained
an FCN to perform deformable 3D brain MR images using
self-supervision. Inspired by the spatial transfer network
(STN) [57], Kuang et al. [58] applied a STN-based CNN
to perform deformable registration of MRI T1-W brain
volumes.

Recently, Generative Adversarial Network- (GAN-) and
Reinforcement Learning- (RL-) based methods have also
motivated great attentions. Yan et al. [59] performed a rigid
registration of 3D MR and ultrasound images. In their work,
the generator was trained to estimate rigid transformation
where the discriminator was used to distinguish between
images that were aligned by ground-truth transformations
or by predicted ones. Kreb et al. [60] applied a RL method
to perform the nonrigid deformable registration of 2D/3D
prostate MRI images where they utilized a low-resolution

deformationmodel for registration and a fuzzy action control
to influence the action selection.

For performance evaluation, Dice coefficient and mean
square error (MSE) are two major evaluation metrics. Target
registration error (TRE) can also be applied if landmark cor-
respondence can be acquired.

3. Clinical Applications

In this section, we review state-of-the-art clinical applications
in four major systems of the human body involving the ner-
vous system, the cardiovascular system, the digestive system,
and the skeletal system. To be more specific, AI algorithms
on medical image diagnostic analysis for the following
representative diseases including brain diseases, cardiac dis-
eases, and liver diseases, as well as orthopedic trauma, are
discussed.

3.1. Brain. In this section, we discuss three most critical brain
diseases, namely, stroke, intracranial hemorrhage, and intra-
cranial aneurysm.

3.1.1. Stroke. Stroke is one of the leading causes of death and
disability worldwide and imposes an enormous burden for
health care systems [61]. Accurate and automatic segmenta-
tion of stroke lesions can provide insightful information for
neurologists.

Recent studies have presented tremendous ability in
stroke lesion segmentation. Chen et al. [62] used DWI images
as input to segment acute ischemic lesions and achieved an
average Dice score of 0.67. Clèrigues et al. [63] proposed a
deep learning methodology for acute and subacute stroke
lesion segmentation using multimodal MRI images, and the
Dice scores of the two segmentation tasks were 0.84 and
0.59, respectively. Liu et al. [64] used a U-shaped network
(Res-CNN) to automatically segment acute ischemic stroke
lesions from multimodality MRIs, and the average Dice coef-
ficient was 0.742. Zhao et al. [65] proposed a semisupervised
learning method using the weakly labeled subjects to detect
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Figure 4: Examples of image segmentation frameworks (original copy).
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the suspicious acute ischemic stroke lesions and achieved a
mean Dice coefficient of 0.642. Compared to using MRI, a
2D patch-based deep learning approach was proposed to seg-
ment the acute stroke lesion core from CT perfusion images
[66], and the average Dice coefficient was 0.49.

3.1.2. Intracranial Hemorrhage. Recent studies have also
shown great promise in automated detection of intracranial
hemorrhage and its subtypes. Chilamkurthy et al. [67]
achieved an AUC of 0.92 for detecting intracranial hemor-
rhage based on a publicly available dataset called CQ500 con-
sisting of 313,318 head CT scans from 20 centers. They use
the original clinical radiology report and consensus of three
independent radiologists as the gold standard to evaluate
their method. Ye et al. [68] proposed a novel three-
dimensional (3D) joint convolutional and recurrent neural
network (CNN-RNN) for the detection of intracranial hem-
orrhage. They developed and evaluated their method on a
total of 2,836 subjects (ICH/normal, 1,836/1,000) from three
institutions. Their algorithm achieved an AUC of 0.94 for
intraparenchymal, 0.93 for intraventricular, 0.96 for sub-
dural, 0.94 for extradural, and 0.89 for subarachnoid for the
subtype classification task. Ker et al. [69] proposed to apply
an image thresholding in the preprocessing step to improve
the classification F1 score from 0.919 to 0.952 for their 3D
CNN-based acute brain hemorrhage diagnosis. Singh et al.
[70] also proposed an image preprocessing method to
improve the 3D CNN-based acute brain hemorrhage detec-
tion via normalizing 3D volumetric scans using intensity
profile. Their experimental results demonstrated the best F1
scores of 0.96, 0.93, 0.98, and 0.99, respectively, for four types
of acute brain hemorrhages (i.e., subarachnoid, intrapar-
enchymal, subdural, and intraventricular) on the CQ500
dataset [67].

3.1.3. Intracranial Aneurysm. Intracranial aneurysm is a
common life-threatening disease usually caused by trauma,
vascular disease, or congenital development with a preva-
lence of 3.2% in the population [71]. Rupture of an intracra-
nial aneurysm is a serious incident with high mortality and
morbidity rates [72]. As such, the accurate detection of intra-
cranial aneurysms is also important. Computed tomography
angiography (CTA) and magnetic resonance angiography
(MRA) are noninvasive methods and widely used for the
diagnosis and presurgical planning of intracranial aneurysms
[73]. Nakao et al. [74] used a CNN classifier to predict
whether each voxel was inside or outside aneurysms by
inputting MIP images generated from a volume of interest
around the voxel. They detected 94.2% of aneurysms with
2.9 false positives per case. Stember et al. [75] employed a
CNN based on U-Net architecture to detect aneurysms on
MIP images and then to derive aneurysm size. Sichtermann
et al. [76] established a system based on an open-source neu-
ral network named DeepMedic for the detection of intracra-
nial aneurysms from 3D TOF-MRA data. Ueda et al. [77]
adopted ResNet for the detection of aneurysms from MRA
images and reached a sensitivity of 91% and 93% for the
internal and external test datasets, respectively. Allison et al.
[78] proposed a segmentation model called HeadXNet to

segment aneurysms on CTA images. Recently, Shi et al.
[79] proposed a 3D patch-based deep learning model for
detecting intracranial aneurysm in CTA images. The pro-
posed model utilized both spatial and channel attentions
within a residual-based encoder-decoder architecture. Exper-
imental results on multicohorta studies proofed the clinical
applicability.

3.2. Cardiac/Heart. Echocardiography, CT, and MRI are
commonly used medical imaging modalities for noninvasive
assessment of the function and structure of the cardiovascu-
lar system. Automatic analysis of images from the above
modalities can help physicians study the structure and func-
tion of heart muscle, find the cause of a patient’s heart failure,
identify potential tissue damages, and so on.

3.2.1. Identification of Standard Scan Planes. Identification of
standard scan planes is an important step in clinical echocar-
diogram interpretation since many cardiac diseases are diag-
nosed based on standard scan planes. Zhang et al. [80] built a
fully automated, scalable, analysis pipeline for echocardio-
gram interpretation, including view identification, cardiac
chamber segmentation, quantification of structure and func-
tion, and disease detection. They trained a 13-layer CNN on
14,035 echocardiograms spanning on a 10-year period for
identification of 23 viewpoints and trained a cardiac chamber
segmentation network across 5 common standard scan
planes. Then, the segmentation output was used to quantify
chamber volumes and LV mass, determine ejection fraction,
and facilitate automated determination of longitudinal strain
through speckle tracking. Howard et al. [81] trained a two-
stream network on over 8,000 echocardiographic videos for
14 different scan plane identification, which contained a
time-distributed network to get spatial feature and a tempo-
ral network to get optical flow feature of moving objects
between frames. Experiments showed that the proposed
method can halve the error rate for video scan plane classifi-
cation, and the types of misclassification the method made
were very similar to differences of opinion between human
experts.

3.2.2. Segmentation of Cardiac Structures. Vigneault et al.
[82] presented a novel deep CNN architecture called Ω-Net
for fully automatic whole-heart segmentation. The network
was trained end to end from scratch to segment five fore-
ground classes (the four cardiac chambers plus the LV myo-
cardium) in three views (SA, 4C, and 2C) with data acquired
from both 1.5-T and 3-T magnets as part of a multicenter
trial involving 10 institutions. Xiong et al. [83] developed a
16-layer CNN model called AtriaNet to automatically seg-
ment the left atrial (LA) epicardium and endocardium. Atria-
Net consists of a multiscaled dual-pathway architecture with
two different sizes of input patches centered on the same
region that captures both the local arterial tissue and geome-
try and the global positional information of LA. Benchmark-
ing experiments showed that AtriaNet had outperformed the
state-of-the-art CNNs, with a Dice score of 0.940 and 0.942
for the LA epicardium and endocardium at the time. Moccia
et al. [84] modified and trained the ENet, a fully
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convolutional neural network, to provide scar-tissue segmen-
tation in the left ventricle. Bai et al. [85] proposed an image
sequence segmentation algorithm by combining a fully con-
volutional network with a recurrent neural network, which
incorporated both spatial and temporal information into
the segmentation task. The proposed method achieved an
average Dice metric of 0.960 for the ascending aorta and
0.953 for the descending aorta. Morris et al. [86] developed
a novel pipeline that paired MRI/CT data that were placed
into separate image channels to train a 3D neural network
using the entire 3D image for sensitive cardiac substructure
segmentation. The paired MR/CT multichannel data inputs
yielded robust segmentations on noncontrast CT inputs,
and data augmentation and 3D Conditional Random Field
(CRF) postprocessing improved deep learning contour
agreement with ground truth.

3.2.3. Coronary Artery Segmentation. Shen et al. [87] pro-
posed a joint framework for coronary CTA segmentation
based on deep learning and traditional-level set method. A
3D FCN was used to learn the 3D semantic features of coro-
nary arteries. Moreover, an attention gate was added to the
entire network, aiming to enhance the vessels and suppress
irrelevant regions. The output of 3D FCN with the attention
gate was optimized by the level set to smooth the boundary to
better fit the ground-truth segmentation. The coronary CTA
dataset used in this work consisted of 11,200 CTA images
from 70 groups of patients, of which 20 groups of patients
were used as a test set. The proposed algorithm provided sig-
nificantly better segmentation results than vanilla 3D FCN
intuitively and quantitatively. He et al. [88] developed a novel
blood vessel centerline extraction framework utilizing a
hybrid representation learning approach. The main idea
was to use CNNs to learn local appearances of vessels in
image crops while using another point-cloud network to
learn the global geometry of vessels in the entire image. This
combination resulted in an efficient, fully automatic, and
template-free approach to centerline extraction from 3D
images. The proposed approach was validated on CTA data-
sets and demonstrated its superior performance compared to
both traditional and CNN-based baselines.

3.2.4. Coronary Artery Calcium and Plaque Detection. Zhang
et al. [89] established an end-to-end learning framework for
artery-specific coronary calcification identification in non-
contrast cardiac CT, which can directly yield accurate results
based on given CT scans in the testing process. In this frame-
work, the intraslice calcification features were collected by a
2D U-DenseNet, which was the combination of DenseNet
and U-Net. While those lesions spanned multiple adjacent
slices, authors performed 3D U-Net extraction to the inter-
slice calcification features, and the joint semantic features of
2D and 3D modules were beneficial to artery-specific calcifi-
cation identification. The proposed method was validated on
169 noncontrast cardiac CT exams collected from two cen-
ters by cross-validation and achieved a sensitivity of 0.905,
a PPV of 0.966 for calcification number, a sensitivity of
0.933, a PPV of 0.960, and a F1 score of 0.946 for calcification
volume, respectively. Liu et al. [90] proposed a vessel-focused

3D convolutional network for automatic segmentation of
artery plaque including three subtypes: calcified plaques,
noncalcified plaques, and mixed calcified plaques. They first
extracted the coronary arteries from the CT volumes and
then reformed the artery segments into straightened vol-
umes. Finally, they employed a 3D vessel-focused convolu-
tional neural network for plaque segmentation. This
proposed method was trained and tested on a dataset of mul-
tiphase CCTA volumes of 25 patients. The proposed method
achieved Dice scores of 0.83, 0.73, and 0.68 for calcified pla-
ques, noncalcified plaques, and mixed calcified plaques,
respectively, on the test set, which showed a potential value
for clinical application.

3.3. Liver. CT and MRI are widely used for the early detec-
tion, diagnosis, and treatment of liver diseases. Automatic
segmentation of the liver and/or liver lesion with CT or
MRI is of great importance in radiotherapy planning, liver
transplantation planning, and so on.

3.3.1. Liver Lesion Detection and Segmentation. Vorontsov
et al. used deep CNNs to detect and segment liver
tumors [91]. For lesion sizes smaller than 10mm (n = 30),
10–20mm (n = 35), and larger than 20mm (n = 40), the
detection sensitivities of the method were 10%, 71%, and
85%; positive predictive values were 25%, 83%, and 94%;
and dice similarity coefficients were 0.14, 0.53, and 0.68.
Wang et al. proposed an attention network by using an extra
network to gather information from continuous slices for
lesion segmentation [92]. This method had a Dice per case
score of 74.1% on LiTS test dataset. In order to improve the
performance on small lesions, modified U-Net (mU-Net) is
proposed by Seo et al. which obtained a Dice score of
89.72% on validation set for liver tumor segmentation [93].
An edge enhanced network was proposed by Tang et al.
[94] for liver tumor segmentation with a Dice per case score
of 74.8% on LiTS test dataset.

3.3.2. Liver Lesion Classification. Unlike liver lesion segmen-
tation or detection, there are few works about lesion classifi-
cation, as there is no public dataset about lesion classification,
and it is difficult to collect enough data. A liver tumor classi-
fication system trained with 1,210 patients and validated in
201 patients based on deep learning was proposed by Zhen
et al. [95]. The system can distinguish malignant from benign
liver tumors with an AUC score of 94.6% using only unen-
hanced images, and the performance can be improved a lot
with clinical information.

3.3.3. Liver Fibrosis Staging. Liver fibrosis staging is impor-
tant for the prevention and treatment of chronic liver disease.
Although the amount of the works based on deep learning for
liver fibrosis staging is few, these methods have shown their
capability for this task. Liu et al. proposed a method using
CNNs and SVM to classify the capsules on ultrasound images
to get the stage score, and this method had a classification
AUC score of 97.03% [96]. Yasaka et al. proposed two deep
CNNs models to obtain stage scores, respectively, from CT
[97] and MRI [98] images, achieving AUC scores of
0.73-0.76 and 0.84-0.85, respectively. Choi et al. trained a
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model based on deep learning using 7,491 patients and
validated on 891 patients, and the AUC score on the val-
idation dataset was 0.95-0.97 [99]. Recently, a model based
on multimodal ultrasound images received an AUC score
of 0.93-0.95 [100] which used transfer learning to improve
the classification performance.

3.3.4. Other Liver Disease. Prediction of microvascular inva-
sion (MVI) before surgery is valuable for liver cancer
patients’ treatment planning since MVI is an adverse prog-
nostic factor for these patients [101]. Men et al. proposed
3D CNNs with LSTM to predict MVI on enhanced MRI
images receiving an AUC score of 89% [102]. Jiang et al.
[103] also reported a 3D CNN-based one with enhanced
CT images achieving an AUC score of 90.6%.

3.4. Bone. Bone fracture, also called orthopedic trauma, is
a relatively common disease. Bone fracture recognition in
X-ray images has become a promising research direction
since 2017 with the development of deep learning technol-
ogy. In general, there are two main approaches for bone frac-
ture recognition, namely, the classification-based approach
and the object detection-based approach.

3.4.1. Classification-Based Approach. For the classification-
based approach, researchers usually use the labels of “no
fracture” and “fracture” for the whole image. The pioneer
and dedicated work of the classification pipeline was from
Olczak et al. [104]. By adopting the VGGNet as the back-
bone of the classification pipeline, they trained the model
on 256,000 well-labeled images of the wrists, hands, and
ankles for recognizing fractures. With a large amount of
validating data, the model set a strong and credible base-
line of the accuracy of 83%. Urakawa et al. [105] used
the same network architecture as Olczak et al.’s in classify-
ing intertrochanteric hip fractures on 3,346 radiographs.
The results have shown a 95.5% accuracy whereas an
accuracy of orthopedic surgeons was reported at 92.2%.
Gale et al. [106] extracted 53,000 clinical X-rays to get
an area under the ROC curve of 0.994 whereas Krogue
et al. [107] labeled 3,034 images to get an area under the

curve of 0.973. They both applied DenseNet into the
classification task on hip fracture radiographs.

3.4.2. Object Detection-Based Approach. The object
detection-based approach is aimed at localizing the fracture
locations in the images. Gan et al. [108] trained a Faster
R-CNN model to locate the area of wrist fracture; then,
they sent the ROI to an inception framework for classifica-
tion. The AUC score achieved 0.96 overpassing radiolo-
gists’ performance by 9% in accuracy on a set of 2,340
anteroposterior wrist radiographs. Thian et al. [109]
employed the same Faster R-CNN architecture and also
ran the model on wrist radiographs with a larger volume
of the dataset of 7,356 images. The result had an indistinc-
tive AUC score of 0.957. Still on wrist radiographs, using
the idea of semantic segmentation, Lindsey et al. [110]
adopted an extension of U-Net to predict a heat map
probability of fractures for each image pixel. Even using
135,409 wrist radiographs, the article only reported an
average clinician sensitivity of 91.5% and specificity of
93.9% aided with a trained model, which seemed to be
inferior to the above research. Wu et al. [111] proposed
an end-to-end multidomain facture detection network
which treated each body part as a domain. The proposed
network was composed of two subnetworks, namely, a
domain classification network for predicting the domain
type of an image and a fracture detection network for
detecting fractures on X-ray images of different domains.
By constructing feature enhancement modules and
multifeature-enhanced r-CNN, the proposed network
extracted more representative features for each domain.
Experimental results on real-clinical data demonstrated
the effectiveness with the best F-score on all the domains
over existing Faster R-CNN-based state-of-the-art
methods. Recently, Wu et al. [112] proposed a novel fea-
ture ambiguity mitigation model to improve the bone frac-
ture detection on X-ray radiographs. A total of 9,040
radiographic images for various body parts including the
hand, wrist, elbow, shoulder, pelvic, knee, ankle, and foot
were studied. Experimental results demonstrated perfor-
mance improvements in all body parts.

Table 1: Publicly available Benchmark datasets.

Dataset name Organ/modalities Image size No. classes No. of cases Tasks Resources

LIDC-IDRI Lung/CT 133 × 512 × 512 3 1018 Lung nodules [114]

LUNA Lung/CT 133 × 512 × 512 1 888 Lung nodules [115]

DDSM Breast/mammography — 3 2,500 Breast mass [116]

DeepLesion Diversity CT — 3+ 4427 Lung nodules, liver tumors, lymph nodes [117]

LiTS Liver/CT 432 × 512 × 512 2 131 Liver, liver tumors [118]

Brain tumor Brain/MRI 138 × 169 × 138 3 484 Edema, tumor, necrosis [119]

Heart Heart/MRI 115 × 320 × 232 1 20 Left ventricle [119]

Prostate Prostate/MRI 20 × 320 × 319 2 32 Peripheral and transition zone [119]

Pancreas Pancreas/CT 93 × 512 × 512 2 282 Pancreas, pancreas cancer [119]

Spleen Spleen/CT 90 × 512 × 512 1 41 Spleen [119]

Colon Colon/CT 95 × 512 × 512 1 126 Colon cancer [119]
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4. Challenges and Future Directions

Although deep learning models have achieved great success
in medical image analysis, small-scale medical datasets are
still the main bottleneck in this field. Inspired by the idea of
transfer learning technique, one possible way is to do domain
transfer which adapts a model trained on natural images to
medical image applications or from one image modality to
another. Another possible way is to apply federated learning
[113] by which training can be performed among multiple
data centers collaboratively. In addition, researchers have
also begun to collect benchmark datasets for various medical
image analysis purposes. Table 1 summarized examples of
the publicly available datasets.

Class imbalance is another major problem of medical
image analysis. A number of researches on novel loss func-
tion design, such as focal loss [120], grading loss [121],
contrastive loss [122], and triplet loss [123], have been pro-
posed to tackle this problem. Making use of domain subject
knowledge is another direction. For instance, Jiménez-
Sánchez et al. [124] proposed a curriculum learning method
to classify proximal femoral fractures in X-ray images,
whose core idea is to control the sampling weight of sam-
ples in the training process based on a priori knowledge.
Chen et al. [125] also proposed a novel pelvic fracture
detection framework based on bilaterally symmetric struc-
ture assumption.

5. Conclusion

The rise of advanced deep learning methods has enabled
great success in medical image analysis with high accuracy,
efficiency, stability, and scalability. In this paper, we reviewed
the recent progress of CNN-based deep learning techniques
in clinical applications including image classification, object
detection, segmentation, and registration. More detailed
image analysis-based diagnostic applications in four major
systems of the human body involving the nervous system,
the cardiovascular system, the digestive system, and the skel-
etal system were reviewed. To be more specific, state-of-the-
art works for different diseases including brain diseases,
cardiac diseases, and liver diseases, as well as orthopedic
trauma, are discussed. This paper also described the existing
problems in the field and provided possible solutions and
future research directions.
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