
An Integrated Dynamic Method for Allocating Roles and Planning
Tasks for Mixed Human-Robot Teams

Fabio Fusaro1,2∗, Edoardo Lamon1∗, Elena De Momi2, and Arash Ajoudani1

Abstract—This paper proposes a novel integrated dynamic
method based on Behavior Trees for planning and allocating
tasks in mixed human robot teams, suitable for manufac-
turing environments. The Behavior Tree formulation allows
encoding a single job as a compound of different tasks with
temporal and logic constraints. In this way, instead of the
well-studied offline centralized optimization problem, the role
allocation problem is solved with multiple simplified online
optimization sub-problems, without complex and cross-schedule
task dependencies. These sub-problems are defined as Mixed-
Integer Linear Programs, that, according to the worker-actions
related costs and the workers’ availability, allocate the yet-to-
execute tasks among the available workers. To characterize the
behavior of the developed method, we opted to perform different
simulation experiments in which the results of the action-worker
allocation and computational complexity are evaluated. The
obtained results, due to the nature of the algorithm and to the
possibility of simulating the agents’ behavior, should describe
well also how the algorithm performs in real experiments.

I. INTRODUCTION

The increasing demand for flexible and highly reconfig-
urable production lines of small-medium size enterprises
needs industrial manipulators to be able to quickly adapt
to diversified manufacturing requirements. In this context,
torque-controlled collaborative robots (cobots), are not only
able to deal with complex tasks [1] and to execute safe
plans in human-populated and partially unstructured envi-
ronments [2], but also to offload workers from repetitive and
hard tasks [3].

Moreover, cobots are expected to be able to perform a wide
variety of tasks, both autonomously and in collaboration with
human co-workers, that can supervise and complement robot
performance with superior expertise and task understanding,
assembling proper mixed human-robot teams. This scenario
reveals two fundamental problems: how to systematically
assign a role to each member of the team to achieve a
shared goal, and how to dynamically adapt the robot plan
to dynamical changes of role between the team agents.

In the literature, a common approach to model the prob-
lem of allocating roles in a team of agents is through
combinatory approaches. A formal analysis, comprehensive
of computational models, is presented first by Gerkey and
Matarić [4] and then updated by Korsah et al. [5]. Examples
of such methods, applied to human-robot mixed teams are

∗ Contributed equally to this work.
1- HRI2 Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Gen-

ova, Italy. 2- Department of Electronics, Information and Bioengineering,
Politecnico di Milano, Milano, Italy. fabio.fusaro@iit.it

This work was supported by the European Research Council’s (ERC)
starting grant Ergo-Lean (GA 850932).

Fig. 1. Scheme of the allocation and planning method. First from the user
interface, actions and workers information are defined offline. Next, the
BT is constructed using the received characterizations. Then, in the online
phase, the BT starts its execution and dynamically allocate the actions to the
workers, exploiting the Role Allocator. Finally, through the Agent Handler,
the BT either communicates the action to the human worker or makes the
robot executing the task.

represented by [6], [7]. In order to enable the algorithm
with dynamic behaviors, that can adapt the offline plan
with the online contingencies, researchers started to add also
dynamic re-scheduler [8]. Another extensively used method
in human-robot teams is represented by AND/OR graphs, for
the ability to decompose assembly tasks [9], [10]. An online
scheduler based on time Petri nets is developed in [11], where
the robot adapts its schedule based on human activities.
In this direction, researchers started to study also which
features should be considered in such problems, adapting the
robot plan to human co-worker preferences, capabilities and
ergonomics [12]–[15].

The main limitation of these approaches consists in the fact
that the task allocation and planning problems are solved in
two different phases, often using two completely different and
separated methods. The proposed method, instead, exploits
the strength of a centralized reactive and modular task plan-
ning method, in charge of scheduling the tasks executions,
with the advantages of a cost-based role allocator, that, before

the proper execution phase, solves dynamically the problem
of allocating only a subset of actions to the agents. The
role of the task planner is to dynamically schedule different
tasks, ensuring that the task temporal and logic constraints,
in terms of sequence or parallel of tasks, are satisfied. In
this way, the planner simplifies the centralized problem of
allocating all the tasks to all the agents, to the sub-optimal,
but computationally less expensive, problem of allocating
only a subset of tasks to the agents, without any constraint
generated by the plan. In particular, the centralized task
planner is defined by means of Behavior Trees (BTs), which
triggers the action execution of all the agents of the team.
Differently from the usual approach, where the behavior of
each robotic agent is ruled by its own planner, here the BT
models the task instead of the agent. The main advantage
consists in the fact that, in this way, it can delegate each
task to different agents, according to the allocation results
generated by the Role Allocation node. In particular, thanks
to the Agent Handler node, the tasks assigned to the robotic
agents will be directly executed through the Action nodes,
whereas the other ones will inform the human workers by
means of the Human Communication node. The architecture
of the method is depicted in Figure 1. On the other hand,
the role allocation problem allows to dynamically assign
a suitable agent for each task. The suitability is evaluated
through the action-worker related costs, which are used to
describe how good an agent is good in performing a task.
These costs should model both general kino-dynamic agent
features, tasks duration, availability, and also more specific
ones, such as expertise and ergonomics. In particular, by
taking into account tasks’ duration and agent availability, it is
also possible to dynamically schedule the tasks, to coordinate
agents’ effort. The method has been tested with simulation
experiments in which both the proposed BT structure and the
role allocation problem are evaluated. First, the computation
complexity of the whole framework is computed increasing
progressively the number of actions and workers. Then, the
allocation algorithm is compared with different values of the
agent-related availability cost.

To summarize, the contribution of this manuscript consists
of a generic method to manage complex decomposable jobs
with schedule constraints, able to optimally assign an agent
and plan every single task of the job in a heterogeneous
human-robot team. To enable the task planner to dynamically
decide which agent is the most suitable to allocate the task,
we created four BT nodes to solve the role allocation for the
sub-tasks and the consequent agents’ handler and executor.

II. MODIFIED BTS WITH ROLE ALLOCATION
A. Preliminaries on Behavior Trees

A BT is a directed rooted tree, consisting of internal
nodes for control flow and leaf nodes for action execution
or condition evaluation. It is composed by parent and child
nodes that are the adjacent pair. The main node, root, is
the only one without parents and starts the execution of its
children propagating a signal, called tick, through the tree.
Once the children are ticked, they return immediately to the

TABLE I
BT NODE TYPES AND RETURN STATUS.

Type of Node Symbol Success Failure Running

Sequence →
All children
succeed One child fails

One child
returns
Running

Fallback ? One
child succeeds

All children
fail

One child
returns
Running

Decorator ♢ Custom Custom Custom

Parallel ⇉
≥M children

succeed
> N −M
children fail else

Condition True False Never

Action ▭ Upon
completion

Impossible to
complete

During
execution

parent a status: if the child is executing returns RUNNING, if
the node completes the execution successfully, returns SUC-
CESS, otherwise, it fails and returns FAILURE. There are two
main types of nodes: control and execution. The control ones
are divided into four standard categories (Sequence, Fallback,
Parallel, Decorator), while the execution ones in two (Action,
Condition). The standard types of nodes, with their symbol
and the return status depending on each case, are summarized
in Table I. Standard BTs were designed to control an agent
behavior, by reactively plan tasks to execute [16]. Thanks
to their design, they allow generating different behaviors
that satisfy conditions evaluated online. Moreover, it also
envisions the execution of tasks both in parallel and in
sequence, it is possible to adapt it in human-robot cooperative
tasks, such as assembly, to achieve industrial jobs.

B. Nodes for Role Allocation

To embed the role allocation problem in a BT, the standard
usage of the method should have modified. First, it is
important to specify that, in our method, the BT controls
the job behavior, instead of the agent behavior, where a job
is represented by the set of its tasks with their temporal
constraints. In this way, we exploit the BT to model all the
possible execution of a job, and only when one or multiple
jobs should be executed, the role allocation problem is solved
and finally, the different agents are informed of the results
(see Figure 1). To do so, we defined four custom nodes and
a particular subtree is designed by the means of the standard
types of nodes modifying their functionality.

Each developed node has to communicate with the others
to share information and data. When the nodes are not
directly connected or the return values are not sufficient to
achieve desired behaviors, the BT exploits input/output ports.
Each port is defined by a unique name and can be used as
static to read elements that are input from the external in
the creation phase of the BT or as dynamic to read and/or
write data. The output ports write the elements into a shared
blackboard associating to each variable a name. The input
port can access the data knowing the name of the variable.

The general structure of the BT developed to plan and
allocate tasks is shown in Figure 2. The tree shows the
combination of tasks in series and parallel, that ends with
a sequence. Before the execution layer, i.e. the action nodes,
we designed a fixed subtree where the Role Allocator nodes,

……….…….….

ᴓ

W→A W→A

PAH PAH PAH PAH..…. ..….

Fig. 2. Planning and Allocation Behavior Tree. The structure of the BT is
composed by a sequence of Role Allocator nodes (W → A). Each allocator
node has the Planning and Allocation Handler subtree (PAH), shown in
Figure 3, as children.

┘

Agent
Handler

Human
Communica�on

?

?

┘

…….Robot
Ac�on

Robot
Ac�on

Fig. 3. Planning and Allocation Handler subtree. The developed structure,
using two fallbacks (?) and two inverters (¬) allows to manage the return
status of the Agent Handler node to either communicate the allocation to
the human or make the robot executing the sequence of primitive actions.

represented by the symbol W → A, is in charge of solving
the allocation of such actions to the agents and the subtree
Planning and Allocation Handler, children of the Role
Allocator displayed in Figure 3, is in charge of delegating
the task to each agent. Each allocator node has a number of
children equal to the number of tasks that can be executed
in parallel, that can be one or multiple. The custom nodes
are explained in details in the following subsections.

1) Role Allocator Node: This node is the parent of the
Planning and Allocation Handler subtree. It is defined as a
control node and shares few similarities with the parallel
node. The children of this node are the Planning and
Allocation Handler subtrees, one for each task that can be
executed in parallel. The node reads from the static input
port the info of the children’s actions that still have to be
executed, and the agents’ info. In this way, the node can
calculate all the agents-task related costs, generate the role
allocation problem as explained in section III, and outputs the
result. Then, each allocated action ticks the related child. The
node is then executed again until all the tasks are completed.
The pseudocode of the Role Allocator node is synthesized
in Algorithm 1.

2) Agent Handler Node: This node is defined as a custom
condition node and it is in charge of selecting the agent,
according to the allocation result. Specifically, the Agent
Handler reads the results and returns different status in case
the task has to be communicated to a human worker or it
has to be accomplished by a robot. Thanks to the structure
of the Planning and Allocation Handler subtree, if the node
returns FAILURE the BT ticks the Human Communication
node that is in charge to communicate the allocated action

Algorithm 1 Tick() function of the "RoleAllocator" node.
1: procedure ROLEALLOCATOR::TICK()
2: if action_to_be_allocated ≠ 0 then
3: [W , A] = Allocate()
4: setOutput([W , A])
5: end if
6: for [w, a] in [W , A] do
7: cℎild_idx← a.ID
8: end for
9: for idx in cℎild_idx do
10: if ¬ idx in executing_cℎild then
11: cℎild_status← cℎild(idx).T ick()
12: else
13: cℎild_status← cℎild(idx).Status()
14: end if
15: if cℎild_status == FAILURE then
16: CLEAR(executed_cℎild)
17: return FAILURE
18: else if cℎild_status == SUCCESS then
19: if ¬ idx in executed_cℎild then
20: ADD(idx IN executed_cℎild)
21: end if
22: if executed_cℎild.size() == cℎild.size() then
23: return SUCCESS
24: end if
25: end if
26: end for
27: return RUNNING
28: end procedure

to the human. While, if the node returns SUCCESS, the BT
ticks the Robot Action nodes that make the robot executing
the scheduled tasks. The pseudocode of the Agent Handler
node is summarized in Algorithm 2.

Algorithm 2 Tick() function of the "AgentHandler" node.
1: procedure AGENTHANDLER::TICK()
2: getInput([W , A])
3: for [w, a] in [W , A] do
4: if w.type == HUMAN then
5: return FAILURE
6: else if w.type == ROBOT then
7: return SUCCESS
8: end if
9: end for
10: end procedure

3) Robot Action Nodes: The action nodes are in charge to
trigger the activation of specific motions of the robots. The
node communicates directly with the robot motion planner
or with the controller, depending on the development of the
node itself. In our case, we defined a finite set of actions,
that represent motion primitives e.g. grasp, move, etc. The
advantage to have primitive actions as nodes is that we
do not need to create an action for each robot or different
specifications of the primitive itself. A motion primitive has
an interface, where it is possible to define all the specific
information needed to be executed, position in space, force to
be exerted, etc but then it is implemented differently in each
robot. Another advantage consists in the fact that this action
info can be used not only in the execution phase, but also by

the role allocator node to compute the execution costs. When
the agent starts the action execution, the node changes the
worker availability and outputs it in the blackboard. Each
agent has its own port to allow the execution of different
actions in parallel avoiding more than one node changing
the status of the same worker.

4) Human Communication Node: This node is the corre-
sponding node to the Robot Action for the human workers.
Therefore, the Human Communication node is in charge to
communicate to each human agent the action is asked to
execute by reading the allocation results. The communication
ways can differ in relation to the environment and/or the
workers’ equipment, e.g. displaying the information in a
monitor, communicating it through wearable devices such
as smartwatches or mixed reality smartglasses [14].

III. ROLE ALLOCATION
A. Problem Statement

The multi-agent task allocation (MATA), considered as
a more general class of the well-known multi-robot task
allocation (MRTA), is the problem of determining which
agent, either human or robotic, is in charge of executing each
single task that is needed to achieve the team’s goal.

Before formalizing the role allocation problem, we need
to specify which are the main components of the problem.
Following the symbolism introduced in [14], we consider
a mixed human-robot team of workers, or agents, W =
{w1, ..., wn}, |W | = N . The goal is to complete a general
single job A that could be further decomposed into the
sequence and parallel of tasks, or actions, A = {a1, .., am},
|A| = M . The set of L actions that can be executed by
each agent wi ∈ W are Ai = {ai1, .., ail}, |Ai| = L, where
Ai ⊆ A. We want to obtain is the allocation of an agent
wi to each of the actions he is able to execute aij , denoted
wi → aij . The set of worker-action allocations is denoted
W → A.

B. Mathematical Model
In this work, the MATA problem, is formalized as a

Mixed-Integer Linear Program. The most general scenario of
MATA problems in human-robot collaboration, according to
an adapted version of the taxonomy presented by Gerkey and
Matarić [4], is characterized by multi-task agents, i.e agents
that can execute multiple tasks simultaneously, multi-agent
tasks, i.e, tasks which requires multiple agents, and, finally,
time-extended assignments, i.e. the allocation considers also
future allocations. To the best of the authors’ knowledge,
a mathematical model that captures the features of such
complex problem is still missing in literature [5]. However, in
our framework, thanks to the decomposition of the task that
BTs are able to achieve, the problem is extremely simplified.
First, each agent, by definition, can perform only a task at
once; second, each task require a single agent. Moreover,
collaborative tasks, that require more than a single agent
at the same time, are already decomposed by the BT into
the parallel of tasks. By doing so, we have removed all the
complex and cross-schedule dependencies, i.e. the effective

cost of a agent for a task and the allocation constraints do
not depend on the schedules of other agents. In practice, the
BT Allocator node deals only with the allocation of a sub-
set of tasks, that are only the tasks that, according to the job
schedule represented by the BT, should be allocated within
the available agents, having as constraints, in the worst-
case scenario, intra-schedule dependencies, i.e. the agent
cost for an action depends on the other actions the agent
is performing. Hence, the problem of allocating L actions,
where L ≤ M , to N workers, can be formalized in the
following way.

Minimize:
∑

wi∈W

∑

aj∈A
(cij + �i)xij (1)

Subject to:

xij ∈ {0, 1} ∀wi ∈ W ,∀aj ∈ A
xij = 0 if aj ∉ Ai

∑

wi∈W
xij ≤ 1 ∀aj ∈ A

∑

aj∈A
xij ≤ 1 ∀wi ∈ W

∑

wi∈W

∑

aj∈A
xij = min (L,N)

∑

wi∈W

∑

aj∈A
tijxij ≤ Tk ∀k ∈ K

(2)

where cij represents the cost related to an agent wi in
executing the task aj , �i is the availability cost function, and
the xij represents the M ×N binary optimisation variables
of the problem, where xij = 1 means that the worker i is
assigned to action j (wi → aj).

1) Constraints Design: The problem constraints are ex-
ploited to ensure the feasibility of the problem:

∙ the first is representative of the binary nature of the
variables;

∙ the second one ensures that the solver does not allocates
a worker to an action that is not capable to execute.
Another, more common, solution, consists in penalizing
the allocation by assigning a large cost for the task;

∙ the third and fourth constraints ensures that to each agent
only one task is allocated, and the same task is not
allocated to two different agents.

∙ the fifth constraint ensures that there are exactly a
number of allocations equal to the number of agents N ,
in case N > L, where L, are the tasks to be allocated,
and L otherwise;

∙ the budget constraint ensures limits the number of tasks
assigned to each agent, where tij is the budget that wi
would spend for ai, and Tk is the budget limit for the
K joint agent-task constraints.

2) Costs Design: In this work, the optimization costs are
split into two main components: the agent-actions related
costs cij and the agent-related availability cost �i. The first
should describe how good is a worker in performing each

tasks, considering the kino-dynamics features of the agents,
the tasks duration, the human ergonomics etc. The role and
the design of the costs for such problems has already been
described in our previous work [14] and, hence, it will not
be repeated here.

The availability value has been considered into the cost
function, instead of into the problem constraints, since we
cannot ensure that at least an agent is always available. In
case no agents, or multiple ones, are available, the allocator
node tries to assign the task to the agent whose cost is
smaller. We consider an agent available if it is present in
the workcell and if it is not occupied by any other task.
One simple definition of the availability activation is the
following:

�i =

{

0, if wi is available;
�i, otherwise.

(3)

�i is the availability cost of wi. To ensure that the availability
weights more than the other costs, we set �i > max {cij}.
With this method, we are able to ensure that the allocation
node favors an available agent, minimizing in this way the
agents waiting times. In this case, the agent suitability to the
task is not considered. On the other hand, in some situations,
instead allocating a task only among the available agents,
that might all be strongly unsuitable for the task, it might be
convenient to make the system to wait for the most suitable
agent. For this reason, we modified the binary nature of the
availability to account for the remaining execution time:

�i =

⎧

⎪

⎨

⎪

⎩

0, if wi is available;

�i
Taij−taij
Taij

, otherwise. (4)

where Taij is the nominal duration of aj performed by wi,
taij is the time spent by wi for aj from the beginning of aj ,
where taij ≤ Taij . In this way, taij = 1 if the task has just
started, and, as the agent executes the task, it goes to 0. To
ensure that the two costs are comparable, �i = max {cij}.

IV. EXPERIMENTS
The performances of the proposed approach are evalu-

ated through simulation experiments. In order to analyze
the performances of the method, different experiments are
conducted varying the job characteristics, such as the num-
ber of actions in sequence, in parallel and the number
of workers. The simulation experiments were run on a
laptop with an Intel Core i7-8565U 1.8 GHz × 8-cores
CPU and 8 GB RAM. The architecture has been devel-
oped in C++, on Ubuntu 18.04 and ROS Melodic, ex-
ploiting the BehaviorTree.CPP (https://github.com/
BehaviorTree/BehaviorTree.CPP) library to define
the BT nodes and the Osi (https://github.com/
coin-or/Osi) library with GLPK (GNU Linear Program-
ming Kit) solver to formalize the MATA problem.

First, the computational complexity of the whole proposed
method is evaluated. The computation time has been counted
from the initialization of the BT until the action execution,

1 3 5 10 15 20 25 35 45 60 80 100
10

-2

10
-1

10
0

Fig. 4. Computational time (in log scale) of series (black) and parallel
(pink) actions and workers (cyan), with different number of variables.

excluded the execution time of the action, as the mean of 10
repetitions of the same BT. To generate different situations,
the number of tasks in sequence, in parallel and the number
of agents is progressively increased. The tasks in parallel are
all children of the same allocation node, hence increasing
parallel tasks means increasing the size of the MILP. On the
other hand, the tasks in sequence are not in parallel with any
task, and, hence, increasing the number of tasks in sequence
means increasing the number of MILPs to solve. While the
number of tasks increases, the number of workers is fixed
to 4. Both actions in parallel and in series are increased
from 1 to 100. The results in Figure 4 show that the trend
of the computation time, increasing the number of actions
both series and parallel, can be approximated with a linear
function. It is interesting to notice that, even if the trends
are similar, in this specific scenario, it is faster to solve
a N-sized MILP than N MILPs. This, however, does not
imply that solving the offline centralized problem is faster
than the decomposed sub-problems since the centralized
one should include all the task temporal constraints. A
different simulation is conducted to estimate the evolution
of the computation time increasing the number of workers,
keeping the number of actions fixed. In this case, the BT
is constructed to have 11 Role Allocator nodes in sequence,
each one with: 12, 8, 10, 12, 8, 10, 12, 8, 10, 5, 5 number of
parallel actions, respectively. Again, the number of workers
is increased starting from 1 until 100, and, as can be noticed
in Figure 4 in cyan, increasing the number of agents the
computation time decreases. This is because the number of
actions executed in parallel increases with the workers until
the maximum degree of parallelism is reached. Specifically,
this happens when the agents are 15 and, hence, are more
than the maximum number of actions in parallel, i.e. 12.
From that value on, the computation time is approx. constant.

Then, the allocation approach is validated with a single
fixed job. The goal is to run the allocation method for the
same job with different costs, to validate the different design
of the availability cost �i explained in subsubsection III-
B.2. The job is made of a total of 14 actions, combined
in a sequence of 4 different sets of actions that can be
executed in parallel. For this reason, 4 Role Allocator nodes
are present in the BT. Each node has 3, 4, 5 and 2 actions as
children, respectively. The number of workers is fixed to 4.

https://github.com/BehaviorTree/BehaviorTree.CPP
https://github.com/BehaviorTree/BehaviorTree.CPP
https://github.com/coin-or/Osi
https://github.com/coin-or/Osi

Time Availability

4

3

2

1

Binary Availability

4

3

2

1

Without Availability

40 60 80 100 120

4

3

2

1

Fig. 5. Detail of the Gantt charts related to the allocation of actions a8−a12:
in the top plot the availability cost �i is computed as in Equation 4, in the
middle one as in Equation 3 and in the bottom one �i = 0.

The agent-actions related costs cij , for simplicity, are defined
as the time (twi) required by the worker wi to execute the
action aj . First, we compute the allocation with availability
cost defined in Equation 4. The results in Table II show
that, in general, the algorithm picks always the agent that
minimizes the total execution time. These results are then
compared with the same allocation method computed with
the binary availability Equation 3 and without any availability
cost (�i = 0). The results differ for the allocation of action
a12 (see Figure 5). Without considering the availability of
the agents, the action a12 is assigned to the worker w3
minimizing only the agent-actions related costs cij . This,
however, is not optimal since w3 is occupied by another
task. In the case of the binary availability, the action a12
is assigned to the worker w2, since he’s the first available
after finishing a10. But, even if the w2 starts before, the
execution time required by him to achieve a12 is higher than
the expected waiting time for the execution of a8 by w1
plus the following a12, that is the solution proposed with
availability cost in Equation 4. Consequently, this solution
minimizes also the overall duration of that set of tasks, and
also the waiting time for the other agents for the next task.
It can be noticed that actions a8, a9, a10 and a11 starts at
the same time because are defined as parallel actions but in
series with the previous ones, hence, these can start only
when all the previous ones are completed.

V. CONCLUSIONS
In this work, we proposed a novel integrated method to

allocate and plan tasks for mixed human-robot teams. The
method extends the standard formulation of BT with custom
reusable nodes that enable to dynamically generate and solve
different MILP sub-problems. The results showed the crucial
role of the cost definition in the allocation behavior. For
these reasons, further metrics should be evaluated with the
method, to reduce the agent workload by optimizing the
human ergonomics. Furthermore, future studies will compare
the method with other state-of-the-art approaches, focusing
not only on the computational complexity but also on the
intuitiveness and user-friendliness assessment of the inter-
face to generate the jobs. Finally, the effectiveness of the
allocation method should be evaluated with real experiments
in multi-human and multi-robot teams.

TABLE II
ALLOCATION RESULTS OF THE ACTIONS OF THE SIMULATED JOB.

Action tw1
(s) tw2

(s) tw3
(s) tw4

(s) Worker allocated
a1 20 13 15 15 w2
a2 17 20 22 16 w4
a3 10 12 17 11 w1
a4 13 15 9 21 w3
a5 22 18 24 18 w4
a6 11 9 15 15 w2
a7 17 23 18 16 w1
a8 30 54 48 57 w1
a9 66 27 60 39 w2
a10 60 66 39 75 w3
a11 63 48 57 42 w4
a12 45 51 42 54 w1
a13 14 17 9 16 w3
a14 21 10 15 18 w2

REFERENCES

[1] A. Ajoudani, A. M. Zanchettin, S. Ivaldi, A. Albu-Schäffer, K. Ko-
suge, and O. Khatib, “Progress and prospects of the human–robot
collaboration,” Autonomous Robots, vol. 42, pp. 957–975, 2018.

[2] S. Haddadin, A. Albu-Schaffer, A. De Luca, and G. Hirzinger,
“Collision detection and reaction: A contribution to safe physical
human-robot interaction,” in 2008 IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2008, pp. 3356–3363.

[3] W. Kim, J. Lee, L. Peternel, N. Tsagarakis, and A. Ajoudani,
“Anticipatory robot assistance for the prevention of human static
joint overloading in human–robot collaboration,” IEEE Robotics and
Automation Letters, 2018.

[4] B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of
task allocation in multi-robot systems,” The International Journal of
Robotics Research, vol. 23, no. 9, pp. 939–954, 2004.

[5] G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensive taxonomy
for multi-robot task allocation,” The International Journal of Robotics
Research, vol. 32, no. 12, pp. 1495–1512, 2013.

[6] M. C. Gombolay, C. Huang, and J. Shah, “Coordination of human-
robot teaming with human task preferences,” in 2015 AAAI Fall
Symposium Series, 2015.

[7] C. Ferreira, G. Figueira, and P. Amorim, “Scheduling human-robot
teams in collaborative working cells,” International Journal of Pro-
duction Economics, vol. 235, p. 108094, 2021.

[8] A. Pupa, W. Van Dijk, and C. Secchi, “A human-centered dynamic
scheduling architecture for collaborative application,” IEEE Robotics
and Automation Letters, pp. 1–1, 2021.

[9] L. Johannsmeier and S. Haddadin, “A hierarchical human-robot
interaction-planning framework for task allocation in collaborative
industrial assembly processes,” IEEE Robotics and Automation Letters,
vol. 2, no. 1, pp. 41–48, Jan 2017.

[10] K. Darvish, E. Simetti, F. Mastrogiovanni, and G. Casalino, “A hi-
erarchical architecture for human–robot cooperation processes,” IEEE
Transactions on Robotics, vol. 37, no. 2, pp. 567–586, 2021.

[11] A. Casalino, A. M. Zanchettin, L. Piroddi, and P. Rocco, “Optimal
scheduling of human-robot collaborative assembly operations with
time petri nets,” IEEE Transactions on Automation Science and
Engineering, 2019.

[12] M. Gombolay, A. Bair, C. Huang, and J. Shah, “Computational
design of mixed-initiative human–robot teaming that considers human
factors: situational awareness, workload, and workflow preferences,”
The International journal of robotics research, vol. 36, no. 5-7, pp.
597–617, 2017.

[13] G. Michalos, J. Spiliotopoulos, S. Makris, and G. Chryssolouris, “A
method for planning human robot shared tasks,” CIRP journal of
manufacturing science and technology, vol. 22, pp. 76–90, 2018.

[14] E. Lamon, A. De Franco, L. Peternel, and A. Ajoudani, “A capability-
aware role allocation approach to industrial assembly tasks,” IEEE
Robotics and Automation Letters, vol. 4, no. 4, pp. 3378–3385, 2019.

[15] I. El Makrini, K. Merckaert, J. De Winter, D. Lefeber, and B. Van-
derborght, “Task allocation for improved ergonomics in human-robot
collaborative assembly,” Interaction Studies, vol. 20, no. 1, pp. 102–
133, 2019.

[16] M. Colledanchise and P. Ögren, “Behavior trees in robotics and ai: an
introduction,” arXiv preprint arXiv:1709.00084, 2017.

	INTRODUCTION
	MODIFIED BTs with ROLE ALLOCATION
	Preliminaries on Behavior Trees
	Nodes for Role Allocation
	Role Allocator Node
	Agent Handler Node
	Robot Action Nodes
	Human Communication Node

	ROLE ALLOCATION
	Problem Statement
	Mathematical Model
	Constraints Design
	Costs Design

	EXPERIMENTS
	CONCLUSIONS
	References

