
algorithms

Article

KDAS-ReID: Architecture Search for Person Re-Identification
via Distilled Knowledge with Dynamic Temperature

Zhou Lei 1,2, Kangkang Yang 1,2, Kai Jiang 1,2 and Shengbo Chen 1,2,*

����������
�������

Citation: Lei, Z.; Yang, K.; Jiang, K.;

Cheng, S. KDAS-ReID: Architecture

Search for Person Re-Identification

via Distilled Knowledge with

Dynamic Temperature. Algorithms

2021, 14, 137. https://doi.org/

10.3390/a14050137

Academic Editor: Mircea-Bogdan

Radac

Received: 27 March 2021

Accepted: 23 April 2021

Published: 26 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China;
leiz@shu.edu.cn (Z.L.); ykk_9678@shu.edu.cn (K.Y.); sherlock_ss@shu.edu.cn (K.J.)

2 Shanghai Key Laboratory of Computer Software Testing and Evaluating, Shanghai 201112, China
* Correspondence: schen@shu.edu.cn; Tel.: +86-021-66135378

Abstract: Person re-Identification(Re-ID) based on deep convolutional neural networks (CNNs)
achieves remarkable success with its fast speed. However, prevailing Re-ID models are usually
built upon backbones that manually design for classification. In order to automatically design an
effective Re-ID architecture, we propose a pedestrian re-identification algorithm based on knowledge
distillation, called KDAS-ReID. When the knowledge of the teacher model is transferred to the
student model, the importance of knowledge in the teacher model will gradually decrease with the
improvement of the performance of the student model. Therefore, instead of applying the distillation
loss function directly, we consider using dynamic temperatures during the search stage and training
stage. Specifically, we start searching and training at a high temperature and gradually reduce the
temperature to 1 so that the student model can better learn from the teacher model through soft
targets. Extensive experiments demonstrate that KDAS-ReID performs not only better than other
state-of-the-art Re-ID models on three benchmarks, but also better than the teacher model based on
the ResNet-50 backbone.

Keywords: architecture search; knowledge distillation; person re-identification; dynamic temperature;
convolutional network

1. Introduction

With the rapid development of Deep Learning, person re-Identification based on
deep convolutional neural networks has achieved remarkable success in the last few years.
The goal of Re-ID is to retrieve images of person-of-interest. Most researchers of the
Re-ID community focus on modifying some pre-trained convolutional neural network
backbones such as ResNet [1] and its variants in order to improve the performance of
Re-ID. The Re-ID is a challenging task result from the presence of different viewpoints,
varying low-image resolutions, illumination changes, unconstrained poses, occlusions,
heterogeneous modalities, etc. Ref. [2]. Prevailing CNN models for Re-ID has greatly
improved the rank-1 accuracy on the Market-1501 [3] and other benchmarks due to the
excellent representation capability of features. However, manually designing an efficient
convolutional neural network backbone usually needs a group of human experts and costs
a lot of time. Another problem is that these handcraft models were oriented, designed for
image classification tasks, and the Re-ID task is mainly for retrieval, so there is still a lot of
room for improvement in Re-ID tasks.

As an important branch of Automated Machine Learning (AutoML), Neural Architec-
ture Search (NAS) expects to design an efficient architecture for Re-ID tasks automatically,
rather than designing the convolutional neural network backbone for Re-ID manually.
With the growth of NAS, the time for a well-performing architecture of a particular task
can be reduced from months to hours. Re-ID is essentially a retrieval task, but current NAS
algorithms are merely designed for classification.
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Manually designing a CNN network that is suitable for Re-ID task is not only time-
consuming but also heavily relies on professional knowledge. In light of this, we propose
to automatically search for a CNN architecture that is specifically suitable for the Re-ID
task. Due to the fact that current NAS algorithms are only for classification purposes, while
Re-ID is essentially a retrieval task. A retrieval based search algorithm over a specifically
designed Re-ID search space is necessary since Re-ID is different from classification. Auto-
ReID [4] took the first step to automate the Re-ID model design. They have removed some
redundant operations and designed a new operation called a part-aware module that can
retain body structural information of humans to improve the performance of the searched
Re-ID model. Another crucial contribution is that they introduced retrieval loss in order to
fit into the Re-ID task. Different from Auto-ReID, we proposed a novel deep-based Re-ID
algorithm called KDAS-ReID that can automate the design of Re-ID architectures based on
knowledge distillation.

Figure 1 showed that knowledge distillation aims at transferring knowledge from
a pre-trained teacher model to a student model. Hinton et al. [5] defined knowledge
distillation as training a smaller and faster student model to approach the teacher’s outputs
after softmax. Motivated by this, we considered an approach to apply the NAS algorithm
in Re-ID tasks and make the final architecture that can be easily deployed through taking
a pre-trained network with high performance on Re-ID as the teacher model during the
search stage. Our contributions can be summarized as follows:

Figure 1. Knowledge distillation, which aims to transfer knowledge from the pre-trained teacher
model to the student model by training a smaller, faster student model and making its output close
to that of the teacher model after sofmax.

• Person re-identification is essentially a retrieval problem that aims at retrieving images
of persons-of-interest. Previous Re-ID convolutional neural networks are usually built
upon backbones for image classification, such as ResNet [1], Inception [6], and VGG [7].
In this paper, the NAS algorithm is recommended based on knowledge distillation
that aims at designing a convolutional neural network backbone that performed well
in the Re-ID task. More concretely, we first trained a teacher model on Market-1501
which built upon ResNet backbones and pre-trained on the ImageNet. Cross-entropy
loss is replaced by distillation loss, which is computed by the soft targets and the
outputs of the candidates model after softmax;

• With the success of deep learning, the demand for architecture engineering is also
growing, and an increasing number of researchers focus on CNN architecture because
the performance of CNNs depend on their architecture. Because of the features
of NAS, we considered a distillation loss with dynamic temperature in hopes of
breaking the limit of the teacher model. We started searching and training with a high
temperature and gradually reduced to 1 to control the importance of the knowledge
of teacher model;
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• Extensive experiments showed that our work achieves a competitive accuracy com-
pared with the teacher model, while the searched model has less than 50% parameters
of the teacher model. In addition, rank-1 with 94.6% accuracy is achieved on market-
1501 by using the search space of Auto-ReID.

2. Related Works
2.1. Person Re-ID

The great success of deep learning has brought tremendous progress in person Re-
ID [8–11]. Xiao et al. [8] presented a pipeline that can learn generic feature representation
from multiple datasets, and proposed Domain Guided Dropout to improve the performance
of CNN. Chen et al. [9] designed a quadruplet loss. Compared with the triplet loss, this
loss allows deep CNN to capture a larger inter-class variation and a smaller intra-class
variation so that the model can have a better generalization ability. By directly integrating
human joint information into a convolutional neural network, Saquib et al. [10] enable
deep CNN to learn to pose sensitive representations. Sun et al. [11] leveraged a part-
based CNN model and adaptive pooling method to learn part-level features. However,
these deep-based Re-ID algorithms [8,10–13] rely heavily on the CNN backbones designed
for classification problems, such as VGG [7], Inception [6], and ResNet [1]. However,
these CNN backbones are all experimented on with classified datasets, which may be
inconsistent with the Re-ID and limit the performance of the Re-ID algorithm. In our work,
we not only inherit the advantages of previous Re-ID algorithms, but also overcome their
disadvantages. KDAS-ReID will automatically search the CNN architecture suitable for
Re-ID in its search space.

2.2. Neural Architecture Search

Although our work is based on the latest NAS research [14–20], most of these NAS
are used for classification tasks, and a high-performance model that is suitable for Re-ID
is required. Most NAS methods [15–18] search for CNN tasks in a small range, and then
transfer the searched structures to a large specified target task. Zoph et al. [16,17] applied
reinforcement learning to the search CNN architecture, but the search required hundreds of
GPU days. Suganuma et al. [14] attempted to automatically construct CNN architectures for
an image classification task based on Cartesian genetic programming (CGP). Real et al. [19]
suggested associating each genotype with an age and bias the tournament selection to
choose the younger CNN candidates. Brock et al. [18] and Bender et al. [20] tried to use
a one-stop architecture search method. Lorenzo et al. [21] proposed a fully automatic
method with the goal of optimizing deep neural network (DNN) topologies through
memetic evolution. Xiao et al. [22] proposed to take advantage of a variable length genetic
algorithm (GA) to systematically and automatically tune the hyperparameters of a CNN to
improve its performance. In [23], particle swarm optimization (PSO) was used to select
hyper-parameters. Liu et al. [15] relaxed the search space to be continuous, so that the
architecture can be optimized with respect to its validation set performance by gradient
descent. Furthermore, these NAS algorithms are primarily used for classification tasks,
while the Re-ID task is primarily for retrieval, and the goals of retrieval and classification
tasks are fundamentally different. Therefore, in order to apply NAS algorithm well in the
Re-ID task, we took the pre-trained network with high performance on Re-ID as the teacher
model in the search stage.

2.3. Knowledge Distillation

Transferring knowledge from a huge, cumbersome model to a smaller and simpler
model without losing too much generalization ability has always been one of the classic
problems studied by scholars in recent years. Knowledge distillation using neural networks
was originally proposed by Hinton et al. [5], which aims at improving the training of
student models by applying knowledge acquired from a powerful teacher model. Ba and
Caruana et al. [24] demonstrated that shallow feed-forward nets can learn the complex
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functions that were previously learned by deep nets and achieve accuracies that were only
achievable with deep models. Romero et al. [25] guided the students’ training process by
introducing intermediate hints from the teacher’s hidden layer, compressing wide and deep
networks into thin and deep networks. In [26], the author proposes to use activation-based
and gradient-based spatial attention maps to transfer attention as a method of knowledge
transfer from one network to another. Yim et al. [27] used the extracted two-layer feature
map to generate the flow of the solution procedure (FSP) matrix and trained the student
DNN to make the FSP matrix similar to the teacher DNN. Sau and Balasubramanian [28]
recommended to use a noise-based regularizer when training the student model to learn
from the teacher model, which can significantly enhance the performance of the student
network. Since knowledge distillation is characterized by transferring complex models to
simple ones, the NAS algorithm can be applied in Re-ID task by knowledge distillation.
At the same time, due to the characteristics of NAS, it is considered that the distillation
loss at dynamic temperature breaks the constraint of the teacher model. A searching and
training is started at a high temperature, and the temperature will gradually drop to 1 in
order to control the importance of teacher model knowledge.

3. Methods

In this section, an approach that searches for a Re-ID Model based on distilled knowl-
edge will be demonstrated. We will first introduce the preliminary background of DARTS
in Section 3.1. Then, a novel NAS algorithm for Re-ID based on the knowledge distillation
will be introduced in Section 3.2. Lastly, in Section 3.3, a comprehensive elaboration on
how the distillation loss works and the way to break the limit of the teacher model will
be provided.

3.1. Preliminaries of DARTS

Early existing architecture search algorithms are computationally like NAS [16] based
on reinforcement learning that obtains a state-of-the-art architecture for CIFAR-10 required
2000 GPU days. In order to speed up the search process, DARTS [15] has proposed relaxing
the discrete search space to a continuous search space so that the architecture parameters
can be optimized by gradient descent.

Each node x(i,j) is a latent representation such as a feature map in convolutional
networks and there are several edges (i, j) between every two nodes during the search
phase. Each edge is an operation o(i,j) of the search space O (e.g., 3× 3 dilated convolution,
3× 3 max pooling) and a directed edge represent a transformation from x(i) to x(j) by
applying operation o(i,j). Thus, each intermediate node is computed as:

x(j) = ∑
i<j

o(i,j)(x(i)) (1)

The target of DARTS is to find the optimal operation (including a special zero opera-
tion that indicates a lack of connection between two nodes) between every two intermediate
nodes, and then derive the final architecture that performs well in target datasets. Specifi-
cally, as showed in Figure 2, DARTS first initialize a supernet with random network weights
and unknown operations on the edges. Then, there is continuous relaxation of the search
space by placing a mixture of candidate operations on each edge to get a continuous search
space that can optimize validation loss by using gradient descent. The process of making
the search space continuous can be described as:

x̄(i,j) = ∑
o∈O

exp(α(i,j)o )

∑o′∈O exp(α(i,j)o′ )
o(x) (2)

where the α indicates the architecture parameters.
Let Lt and Lv denote the training loss and validation loss, after relaxing the categorical

choice of a particular operation to a softmax over all possible operations, DARTS aims at
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jointly learning architecture α and the network weights w by finding α∗ that minimizes the
validation loss. The goal of DARTS is to reduce such a bi-level optimization problem:

min
α

Lv(w∗(α), α) (3)

w∗(α) = argminw Lt(w, α∗) (4)

where the w∗ is obtained by minimizing the training loss.
Lastly, the learned α will be used to derive the final architecture.

Figure 2. An overview of DARTS. First, initialize a supernet with random network weights w and
unknown operations on the edges. Then, there is continuous relaxation of the search space by placing
a mixture of candidate operations and jointly learning architecture α and the network weights w
by finding α∗ that minimizes the validation loss. Lastly, derive the final architecture based on the
learned α.

3.2. ReID Search Algorithm with Knowledge Distillation
3.2.1. Search Space

Recent research suggested that the knowledge of a convolutional network not only
relies on the network parameters but also depends on network architecture. The cell-based
architecture search algorithms aim at designing the topological structure of a cell instead
of the whole network structure. Therefore, the design of search space which represents a
supernet determined the upper limit of performance. Auto-ReID [4] improves the search
space based on DARTS to make the final architecture suitable to Re-ID tasks and our work
draws on this search space:

• part-aware module
• 3× 3 max pooling
• 3× 3 average pooling
• 3× 3 depth-wise separable convolution
• 3× 3 dilated convolution
• zero operation
• identity mapping.

3.2.2. Network Structure

We use the ResNet-50 [1] which manually designs for classification as the teacher
model in order to automatically design a convolutional network backbone that performs
well in the Re-ID task. We also use the macrostructure of the teacher model for our student
model backbone, where each residual layer is replaced by a cell. At the same time, we
aim at searching a student network with much fewer parameters to compare with the
teacher network by reducing the number of layers. The student backbone was stacked
by eight cells (including Normal Cell and Reduction Cell), and we set Reduction Cell in the
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3rd, 5th, and 7th place of cells to extend the dimension of features extracted by pre-cell.
A convolutional operation is also adopted to process inputs before backbone, and, after
backbone, an embedding layer and a classification model is used to transfer the features f
extracted by the backbone into the logits l.

3.2.3. Search Algorithm

As our overall algorithm showed in Algorithm 1 and Figure 1, we adopted the
differentiable search strategy of DARTS so that a mixed operation ô(i.j) parameterized by
α(i,j) for each edge (i, j) is created. For data preparation, DT is split into the search training
set Dtrain and the search validation set Dval . During the iterative procedure, we first update
the temperature T of the distillation loss in Equation (7) according to the current epoch.
Secondly, the class-balance data sampler is used to get batch data from Dtrain at each epoch
for network weights optimization. The objective loss in Equation (9) composed by the
distillation loss in Equation (7) and the triplet loss in Equation (8). After network weights’
optimization, we use the class-balance data sampler to get batch data from Dval and update
the architecture parameters α via the objective loss. Lastly, we obtain the final architecture
derived from the chosen operations, and then we train and evaluate the final architecture
on the DT and the evaluation set DE in a standard reID strategy.

Algorithm 1: The KDAS-ReID Algorithm
Input: the SuperNet weights w; the architecture parameter α; the training set DT

and the evaluation set DE; a class-balance data sampler;
1 Create a mixed operation ô(i.j) parameterized by α(i,j) for each edge (i, j);
2 Split DT into the search training set Dtrain and the search validation set Dval ;
3 while not terminated do
4 Update the temperature T of the distillation loss in Equation (7).;
5 Use the sampler to get batch data from Dtrain ;
6 Update the network weights w via the distillation loss and the triplet loss in

Equation (9);
7 Use the sampler to get batch data from Dval ;
8 Update the architecture parameters α via the distillation loss and the triplet

loss in Equation (9) ;

9 Derive the final architecture based on chosen operations ;
10 Optimize the final architecture on the DT by the standard reID training strategy ;
11 Evaluate the trained final architecture on the evaluation set DE

3.3. Evaluation Based on Knowledge Distillation
3.3.1. Knowledge Distillation

Knowledge distillation is wildly used in model compression because of the feature
that it aims to transfer knowledge from a pre-trained teacher model to a smaller and faster
student model. In the process of knowledge distillation, an appropriate soft target set
was obtained by increasing the temperature parameter of the softmax layer of the teacher
model. Then, for the student model to be trained, the same temperature parameter value is
used to match the soft target set of the teacher model as part of the total objective function
of the student model. Thus, it can induce the training of the student model and realize
the transfer of knowledge. Hinton et al. [5] redefined knowledge distillation of training a
student network to approach to the teacher’s output after the softmax layer. As we know,
neural networks typically use a softmax output layer that converts the logit, and the class
probabilities q produced as follows:

qi =
exp(li/T)

∑j exp(lj/T)
(5)
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where qi is the probability of a class, li is the logit, and lj indicate other logits. The softmax
output converges to a one-hot vector as the temperature T approaches 0. As the temperature
T approaches infinity, the softmax output is softer. Therefore, when training the new model,
a higher temperature T can be used to make the distribution produced by softmax soft
enough, and then the softmax output of the new model (at the same temperature) is
approximate to the original model. The normal temperature T = 1 was used to predict
after the training. The normal temperature T = 1 was used to predict after the training.
A softer probability distribution over classes computed by a higher value of T.

3.3.2. Architecture Search with Distilled Knowledge

Motivated by Hinton et al. [5], we proposed to introduce knowledge distillation
to automatically design a convolutional network that is suitable for Re-ID tasks. More
concretely, distillation loss is applied to guide the searching process to allow all candidates
to learn the knowledge from a manual design teacher model that is pre-trained and has a
good performance in Re-ID tasks. Let Lc denote cross-entropy loss, and Lc is widely used
to train convolutional networks for classification tasks:

Lc =
B

∑
i=1
−log

exp(li[c])

∑C
c′=1 exp(exp(li[c′])

(6)

where C denotes the number of training identities, li[c] indicates the c-th element in li, and B
indicates the number of samples in each batch during training. We introduced distillation
loss Ld instead of Lc during the searching phase, Ld aims to compute the distance between
teacher’s outputs and student’s outputs based on cross-entropy loss:

Ld = Lc(qt, qs) (7)

where qt is the outputs of the teacher model, and qs is the outputs of the student model.
Otherwise, following previous work [4], we also applied the triplet loss Lt to make the
final architecture better suitable to Re-ID tasks:

Lt = ∑
a,p,n

(margin, max
p∈Bp
|| fa − fp|| − min

n∈Bn
|| fa − fn||) (8)

where B is a batch sample, Bp is a set of B that has the same ID with anchor a, and another
set has different IDs with anchor denoted as Bn. The margin term indicates the margin of
triplet loss. fa is the feature of sample a, fp is the feature of a positive sample p, and fn
indicates the feature of a negative sample n. Training data in each batch are sampled by a
class-balance data sampler which first samples uniformly some sample identities, and then
randomly samples the same number of images for each identity. Considering the above
problem mentioned, our search objective Lobj can be summarized as:

Lobj = λ1Ld + λ2Lt (9)

where λ1 and λ2 represent the weight ratio of Ld and Lt. In the experiment, we refer to
Auto-ReID [4] to set the same weight for these two loss functions.

3.3.3. Knowledge Distillation with Dynamic Temperature

The target of our work is not only to automatically design an architecture that per-
forms well in Re-ID tasks and has much fewer parameters compared to the teacher model
but one that hopes to break the limit of the teacher model. In other words, we considered a
distillation loss with dynamic temperature to train the searched CNN. We started searching
and training with a high temperature so that the student model can better learn the knowl-
edge from the teacher model through the soft target. In addition, then, temperature T will
progressively reduce to 0 during the search process or training process. The importance
of the knowledge from the teacher model will gradually decrease due to the improve-
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ment of the student model. Thus, the student model should pay more attention to the
labels. We control the importance of the knowledge from the teacher model via controlling
temperature T. Finally, Ld equals to Lc when the T is reduced to 0.

4. Experiments
4.1. Datasets and Evaluation Metrics
4.1.1. Datasets

Market-1501 [3] is a high-quality pedestrian re-identification dataset composed of
1501 pedestrians captured by six cameras. Among them, the training set has 751 people
and contains 12,936 images; the test set has 750 people and contains 19,732 images. It means
that each person has 17.2 pieces of training data and 26.3 pieces of test data on average.
After adding 500K irrelevant pictures, it is a large-scale pedestrian re-identification dataset
with 32,668 + 500K bboxes and 3368 query pictures.

CUHK03 [29] contains 14,096 pictures from 1467 identities collected by five pairs of
cameras. In [29], 100 identities are randomly selected as the test set, and the remaining
identities are used as the training set. We use the new protocol proposed in [30] to divide
the data set into a training set of 767 identities and a test set of 700 identities.

MSMT17 [31] is a dataset that is closer to real life scenarios. In four days with different
weather, 12 outdoor cameras and three indoor cameras collect videos at three different
time periods every day. Then, 126,441 bounding boxes of 4101 identities were obtained,
of which the training set contained 32,621 bounding boxes of 1041 pedestrians, and the test
set contained 93,820 bounding boxes of 3060 pedestrians. For the test set, 11,659 bounding
boxes were randomly selected as the query, and the other 82,161 bounding boxes were
used as the gallery. Therefore, this is a more challenging data set due to the fact that it has
both indoor and outdoor scene information of different weather and time periods.

4.1.2. Evaluation Metrics

In order to better evaluate our KDAS-ReID and compare it with other general Re-
ID methods, two general evaluation metrics are considered during the comparison. We
use the rank-1, rank-5, and rank-10. The cumulative matching characteristics (CMC) are
used as one of the evaluation indicators. The other evaluation indicators are to calculate
the mean average precision (mAP) of the above three benchmarks according to common
settings [3,31].

4.2. Implementation Details
4.2.1. Search Configurations

As mentioned in Algorithm 1, we equally split DT into the search training set Dtrain
and the search validation set Dval by randomly selecting data from official training data on
Market-1501 during the searching stage. In addition, we use the macro-struct of Auto-ReID
which is stacked by eight cells and set the channel of the first convolutional layer C = 32.
By default, the Reduction Cell is set in the 3rd, 5th, and 7th place of cells to double the
number of channels.

During this period, the class-balance data-sampler will randomly select eight identities
and sample two images for each identity in a batch with a batch size of 16 and the total
epoch of 200. We use random horizontal flipping and cropping for data augmentation.
For a momentum SGD optimizer with the initial learning rate of 0.1, decreasing it to 0.001
in a cosine scheduler is used to optimize the weights w of supernet. We use an Adam
optimizer with an initial learning rate of 0.02 to optimize the architecture parameters α.
The weight decay for both SGD and Adam is set as 0.0005. The margin is set to 0.3 and
λ1 = λ2 = 1 in the objective loss in Equation (9). We start searching with a high value of
temperature T = 2 and decrease evenly. The temperature T will eventually decrease to 0 at
the 190th epoch.
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4.2.2. Training Configurations

After obtaining the final architecture, a macro-struct stacked by eight cells and the
first convolutional layer channels C = 64 is adopted. In addition, we use the same input
size of 384× 128 as the searching period and also use random horizontal flipping and
cropping for data augmentation. For optimizer, only an Adam optimizer with a 0.00035
starting learning rate, a 0.0005 weight decay, and a 0.0005 weight decay bias is used to
optimize final architecture weights w. The class-balance data sampler will randomly select
eight identities and four images for each identity at each batch, and 16 identities will be
selected when using ImageNet pre-trained models. Therefore, the total training epoch is
200 and both of the objective loss settings in Equation (9) and the temperature T setting are
identical to the searching period.

4.3. Ablation Study

In this section, we will investigate the effect of each component of the KDAS-ReID
algorithm after an extensive experiment on the Market-1501. In addition, we show the
results in Table 1.

As shown in Table 1, compared to traditional manual architecture and backbones,
which are searched on CIFAR-10 such as DARTS [15] and GDAS, our work has competitive
performance. In our ablation experiment, we make several observations as follows:

• Baseline. Directly searching on the Re-ID dataset with differentiable architecture
search strategy and adopted the search space of Auto-ReID [4]. The loss is computed
by the cross-entropy function and the triplet function.

• Baseline + Distillation. Based on Baseline, we use the objective loss (Equation (9))
which is composed of triplet loss and distillation loss instead of the original loss
function. Considering the effect of the distillation loss heavily relying on a well-
performance teacher model, we use the official ResNet-50 network which pre-trains
on the ImageNet as the backbone of the teacher model. In addition, the temperature
T = 2 is retained during the whole search stage.

• Distillation + Dynamic Temperature. To break the limit of the teacher model, we
introduce the distillation loss with dynamic temperature T. We start searching with a
high value of temperature T = 2 and decrease evenly; finally, the temperature T will
decrease to 0 at the 190th epoch.

All of the above experiments ran four times under the same training configuration to
ensure fairness. Although we can find that the CNNs searched with distillation loss has a
better performance than the CNNs searched only with triplet loss, there is still room for
improvement. We have found the best architecture through the method “Distillation + Dy-
namic Temperature” called KDAS-ReID. In addition, extensive experiments in Section 4.4
showed that the KDAS-ReID not only has the best performance but also broke the limit of
the teacher model.

4.4. Architecture Evaluation

To enable the model to obtain the best performance, the latest Re-ID algorithm will be
pre-trained on ImageNet first. In order to ensure a fair comparison with other state-of-the-
art algorithms, we also put our algorithm on ImageNet for pre-training.

Results on Market-1501. We compare our method with the state-of-the-art Re-ID
model in Table 2. The CNN found by our KDAS-ReID reached a rank-1 of 94.7% and a
mAP of 85.3%, which is better than other state-of-the-art Re-ID models. Our KDAS-ReID
obtains higher accuracy and mAP than the teacher model based on ResNet-50, and reduces
the parameters of the teacher model by more than 43%. In addition, after using the same
augmentation technology, our KDAS-ReID also outperforms other Re-ID models.

Results on CUHK03. Table 3 shows the comparison between KDAS-ReID and other
models. Whether in the bounding box of manually marked or automatically detected
people, our KDAS-ReID has shown better performance than other models.



Algorithms 2021, 14, 137 10 of 13

Results on MSMT17 in Table 4. On MSMT17, the rank-1 accuracy of our KDAS-ReID
achieves 78.4%, and the mAP achieves 53.2%. In addition, our model outperforms the
teacher model and the previous state-of-the-art method.

Table 1. We investigated the effect of each component of the KDAS-ReID. All candidates are trained
in the same strategy. In addition, no candidates used pre-training on ImageNet except the teacher
model. We use the official ResNet-50 network which pre-trains on the ImageNet as the backbone of
the teacher model. We have boldfaced the best results in the table.

Architectures mAP Rank-1 Rank-5 Rank-10 Params(M)

ResNet-18 [1] 66.0 85.2 94.6 96.5 11.6
ResNet-34 [1] 68.0 86.7 94.8 96.6 21.7
ResNet-50 [1] 68.5 87.2 95.5 97.1 25.1

DARTS [15] 65.2 85.6 94.3 96.4 9.1
GDAS [32] 66.8 86.5 94.7 96.9 13.5

Baseline 1 71.7 87.9 95.9 97.4 11.2
Baseline 2 71.5 87.0 95.7 97.3 9.8
Baseline 3 72.3 89.0 96.5 97.9 12.0
Baseline 4 72.1 88.6 96.4 97.9 11.4

Baseline + Distillation 1 74.7 89.7 96.2 97.6 16.5
Baseline + Distillation 2 75.8 91.0 96.6 98.0 15.0
Baseline + Distillation 3 75.3 89.9 96.5 98.1 14.3
Baseline + Distillation 4 74.9 89.3 96.5 97.7 12.1

Distillation + Dynamic Temperature 1 77.0 91.1 97.0 97.9 14.3
Distillation + Dynamic Temperature 2 76.9 91.1 96.7 97.9 15.7
Distillation + Dynamic Temperature 3 76.0 90.0 96.6 98.0 16.4
Distillation + Dynamic Temperature 4 75.7 90.1 96.5 98.0 15.4

Table 2. The current state-of-the-art model is compared with our model on the Market-1501 dataset.
We compare each model in terms of parameters, R-1 (Rank-1) accuracy, and mAP. We have boldfaced
the best results in the table.

Methods Backbone Params(M)
Market-1501

R-1 mAP

PAN [33] ResNet50 >25.1 82.8 63.3
TriNet [34] ResNet50 25.1 84.9 69.1
AOS [35] ResNet50 >25.1 86.4 70.4

MLFN [36] ResNeXt-50 >25.0 90.0 74.3
DuATM [37] DenseNet-121 >8.0 91.4 76.6

PCB [11] ResNet50 27.2 93.8 81.6
Mancs [38] ResNet50 >25.1 93.1 82.3
HPM [39] ResNet50 25.1 94.2 82.7

Auto-ReID [4] - 13.1 94.5 85.1

Teacher Model ResNet50 >25.1 93.7 83.2
KDAS-ReID - 14.3 94.7 85.3

Using the re-ranking technique [30]

TriNet [34] ResNet50 25.1 86.7 81.1
AOS [35] ResNet50 >25.1 88.7 83.3

AACN [40] GoogleNet >8.0 88.7 83.0
PSE+ECN [10] ResNet50 >25.1 90.3 84.0

PCB [11] ResNet50 27.2 95.1 91.9

Auto-ReID [4] - 13.1 95.4 94.2

Teacher Model ResNet50 >25.1 94.7 93.1
KDAS-ReID - 14.3 95.6 94.7
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Table 3. We use the new evaluation protocol in [30] to evaluate on the data set CUHK03. We compare
with the most advanced Re-ID model in terms of Rank-1 accuracy and mAP. We have boldfaced the
best results in the table.

Methods
Labeled Detected

Rank-1 mAP Rank-1 mAP

PAN [30] 36.9 35.0 36.3 34.0
SVDNet [41] 40.9 37.8 41.5 37.3

HA-CNN [42] 44.4 41.0 41.7 38.6
AOS [35] - - 47.7 43.3

MLFN [36] 54.7 49.2 52.8 47.8
PCB [11] - - 63.7 57.5

Mancs [38] 69.0 63.9 65.5 60.5
DG-Net [43] - - 65.6 61.1

Auto-ReID [4] 77.9 73.0 73.3 69.3

Teacher Model 76.3 71.5 71.9 68.0
KDAS-ReID 78.0 73.2 73.4 70.0

Table 4. Comparison of accuracy and mAP with the state-of-art reID models on MSMT17. We have
boldfaced the best results in the table.

Methods Rank-1 Rank-5 Rank-10 mAP

GoogleNet [6] 47.6 65.0 71.8 23.0
PDC [12] 58.0 73.6 79.4 29.7

GLAD [44] 61.4 76.8 81.6 34.0
PCB [11] 68.2 81.2 85.5 40.4

Auto-ReID [4] 78.2 88.2 91.1 52.5

Teacher Model 77.1 86.6 90.1 51.2
KDAS-ReID 78.4 88.3 91.1 53.2

5. Conclusions

In this paper, we propose a novel algorithm that automated neural architecture search
for the Re-ID tasks based on Knowledge Distillation, and we name our method as KDAS-
ReID. We have made progress based on Auto-ReID via transferring the knowledge from
the teacher model to the student model. Furthermore, we introduced distillation loss with
a dynamic temperature in order to break the limit of the teacher model. In our experiments,
the KDAS-ReID outperforms other state-of-the-art Re-ID models on Market-1501, CUHK03,
and MSMT17. In addition, the KDAS-ReID also outperforms the teacher model which
was built upon the ResNet-50 backbone and using pre-training on the ImageNet. In the
future, we consider the other ways of knowledge distillation such as employing the internal
representation of the teacher to guide the searching and training of the student.
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