
CybersecurityMing et al. Cybersecurity (2021) 4:14
https://doi.org/10.1186/s42400-021-00082-w

RESEARCH Open Access

A secure and highly efficient first-order
masking scheme for AES linear operations
Jingdian Ming1,2, Yongbin Zhou1,2*, Huizhong Li1,2 and Qian Zhang1,2

Abstract

Due to its provable security and remarkable device-independence, masking has been widely accepted as a
noteworthy algorithmic-level countermeasure against side-channel attacks. However, relatively high cost of masking
severely limits its applicability. Considering the high tackling complexity of non-linear operations, most masked AES
implementations focus on the security and cost reduction of masked S-boxes. In this paper, we focus on linear
operations, which seems to be underestimated, on the contrary. Specifically, we discover some security flaws and
redundant processes in popular first-order masked AES linear operations, and pinpoint the underlying root causes.
Then we propose a provably secure and highly efficient masking scheme for AES linear operations. In order to show its
practical implications, we replace the linear operations of state-of-the-art first-order AES masking schemes with our
proposal, while keeping their original non-linear operations unchanged. We implement four newly combined
masking schemes on an Intel Core i7-4790 CPU, and the results show they are roughly 20% faster than those original
ones. Then we select one masked implementation named RSMv2 due to its popularity, and investigate its security and
efficiency on an AVR ATMega163 processor and four different FPGA devices. The results show that no exploitable
first-order side-channel leakages are detected. Moreover, compared with original masked AES implementations, our
combined approach is nearly 25% faster on the AVR processor, and at least 70% more efficient on four FPGA devices.

Keywords: Side-Channel Attacks (SCAs), Masking scheme, Advanced Encryption Standard (AES), Linear operations

Introduction
Side-Channel Attacks (SCAs) exploit physical leakages
(e.g. running time (Kocher 1996), power consumption
(Kocher et al. 1999) and electromagnetic radiations
(Quisquater and Samyde 2001)) of a cryptographic imple-
mentation to recover the corresponding secrets. During
the past two decades, SCAs have been proved to be seri-
ous threats to practical security of cryptographic devices,
like CPUs, GPUs, smart cards, ASICs and FPGAs. The
recent Meltdown and Spectre (Prout et al. 2018) attacks
are typical examples of utilizing cache running time to
steal secret data. As a consequence, countermeasures
against SCAs must be developed and applied to protect

*Correspondence: zhouyongbin@iie.ac.cn
1State Key Laboratory of Information Security,Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China
2School of Cyber Security, University of Chinese Academy of Sciences, Beijing,
China

the secret information. In fact, the necessity of protec-
tion against SCAs has been reached a broad consensus in
the industry. There have been international standards that
require cryptographic modules to protect against SCAs.
For example, FIPS 140-3 (FIPS Publication 140-3 2019)
and ISO/IEC 17825:2016 (JTC 2016), which both are
security standards for cryptographic modules, claim that
cryptographic modules with high level security should
concern with the mitigation of SCAs. Obviously, design-
ing secure (symmetrical) cryptography implementations
against SCAs has become one of the most important hot
spot in physical security.
Among different kinds of SCAs, first-order attacks, such

as first-order differential power analysis (DPA) (Kocher
et al. 1999) and first-order correlation power analysis
(CPA) (Schneider and Krishnamoorthy 1996), are widely
used due to their low costs. Thus, they are the first
into considerations when guarding devices against SCAs.

© The Author(s). 2021Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-021-00082-w&domain=pdf
mailto: zhouyongbin@iie.ac.cn
http://creativecommons.org/licenses/by/4.0/

Ming et al. Cybersecurity (2021) 4:14 Page 2 of 15

ISO/IEC 17825:2016 specifies the use of Test Vector Leak-
age Assessment (TVLA) framework as a certain mea-
sure to assess whether an implementation of symmetrical
cryptography is vulnerable to first-order attacks or not.
According to the highest security level, namely ISO/IEC
17825 level-4, there should be at least 100,000 traces
collected to test whether a specific implementation is
resistant to them.
Due to its provable security and remarkable device-

independence, masking (Rivain et al. 2009) has been one
of the most wide-adopted countermeasures against SCAs
(Duc et al. 2019). Specifically, masking countermeasure
randomizes the subtle dependency between a sensitive
intermediate values and its corresponding side-channel
leakages by splitting the sensitive intermediate into sev-
eral shares. Usually, it is called dth-order masking when
the sensitive intermediate is split into d+1 shares to thwart
dth-order SCAs (Ishai et al. 2003). Namely, a first-order
masked implementation should be able to protect against
first-order attacks. However, the main drawback of a
masked implementation is that its cost is relatively high
compared with the unprotected counterpart. In order to
makemasking countermeasuremore practical, it is worth-
while to reduce its cost as much as possible.
Since relatively high complexity of non-linear opera-

tions, most studies focus on improving non-linear oper-
ations for masking schemes (Rivain and Prouff 2010).
Specifically, for symmetric cryptographic algorithms such
as AES, most studies focus on increasing the S-box effi-
ciency by improving the look-up table (LUT) operations
(Coron 2014; Coron et al. 2018) or mending polynomial
computation over the finite field (Coron et al. 2014). How-
ever, the security and efficiency of linear masking schemes
(For sake of simplicity, the masking scheme of linear oper-
ations is called linear masking scheme in the rest of this
paper) are widely ignored. In this paper, we focus on the
security and efficiency of masked AES linear operations,
and we find linear part should not be ignored. As for secu-
rity, we find that there are serious flaws in MixColumns
operations in some masking schemes because correla-
tive masks are adopted in each round. As for efficiency,
to figure out which part of operations account more in
whole cryptographic computation, we evaluate the run-
ning time proportions of non-linear and linear operations
in state-of-the-art masking schemes. Due to the primacy
of first-order security, we evaluate those in four differ-
ent first-order masking schemes firstly, and these masking
schemes are described in details as follows.
SP. SP (Schramm and Paar 2006) scheme is designed to

be secure at any order d. This scheme is now regarded to
be first-order and second-order secure, as an third-order
attack against it was shown in (Coron et al. 2007). Addi-
tionally, they claimed that it is sufficient to use a single
8-bit mask for the entire masked AES algorithm.

ASCAD. ASCAD (Prouff et al. 2018) is a public dataset
for the study of side-channel analysis, which is also imple-
mented by a first-order masking AES scheme. So we use
the same name to represent this masking scheme in this
paper.
RSMv1. RSM (Nassar et al. 2012) is a low entropy

masking scheme, which aims at keeping performances
and complexity close to unprotected AES design while
being as robust against first-order SCAs as other masking
in cryptographic implementations. In this paper, we use
RSMv1 to denote the first vision of RSM. Note that this
masking scheme was adopted by DPA Contest v4.1 as a
study case for side-channel security. Moreover, it has been
proven in (Veshchikov and Guilley 2017) that the linear
part of RSMv1 has a first-order flaw, and similar flaw also
happens in SP scheme.
RSMv2. RSM was revisited in (Bhasin et al. 2014), and

we use RSMv2 to denote this improved RSM scheme.
Actually, RSMv2 was adopted by DPA Contest v4.2, and is
one of the most popular first-order masking schemes.
All benchmarkings have been done on an Intel Core i7-

4790 CPU. The results are shown in Fig. 1.
Moreover, we evaluate the running time proportions

of non-linear and linear operations in three higher order
masking schemes (proposed in (Rivain and Prouff 2010;
Coron 2014; Coron et al. 2018), and denoted by RP, Cor
and CRZ respectively in this paper) with d=1 and d=2 in
same experimental setting. The results are shown in Fig. 2.
It can be seen that linear operations account for at

least 70% in these four first-order masking schemes, while
they account for less than 20% in second-order masking
schemes. Note that complexity of non-linear part grows
much faster than that of linear part with increasing d, so
linear operations would account for lower in whole com-
putations when masking order d gets higher than two.
Considering that first-order security is primacy in mask-
ing countermeasure and linear operations are relatively
important in first-order masking, in this paper we mainly

Fig. 1 Running time proportion of non-linear and linear operations in
AES first-order masking schemes

Ming et al. Cybersecurity (2021) 4:14 Page 3 of 15

Fig. 2 Running time proportion of non-linear and linear operations in AES higher order masking schemes

focus on the optimization of linear operations to make
first-order masking countermeasure secure and more effi-
cient.
Our Contribution. In this paper, we find that AES

linear operations are widely ignored in state-of-the-art
first-order masking countermeasures. Specifically, these
masking schemes are insecure when correlative masks
are adopted in each round, and inefficient because some
linear operations are called redundantly. Consequently,
we propose a secure and highly efficient first-order lin-
ear masking scheme for AES, then heuristically prove its
security and critically analyze its efficiency. In fact, this
linear masking scheme can be combined with existing
non-linear masking schemes, which not only maintains
the original security level, but also further improves the
implementation efficiency. As a concrete illustration, we
apply it to four state-of-the-art AES masking schemes
on an Intel Core i7-4790 CPU by replacing their linear
operations with our proposal. The results demonstrate
that by combining our proposal, these popular masking
schemes are approximately 20% faster compared to the
original ones. Furthermore, we combine a well-studied
masking scheme named RSMv2 with our proposal, then
evaluate its practical security, and carry out a detailed per-
formance comparison on five different embedded devices.

The results of security evaluation verify that there is no
available first-order leakage in both software and hard-
ware implementations. In addition, the results of effi-
ciency evaluation show that the implementations com-
bined our proposal are nearly 25% faster than existing
implementations on AVR ATMega163 Processor, and the
efficiency is improved by more than 70% on four different
FPGA devices.
The rest of our paper is organized as follows. Sec. 2

reviews the basic knowledge of masking schemes for AES,
and Sec. 3 illustrates the issues of the masking schemes
in their linear operations. In Sec. 4, we propose our new
first-order masking scheme for AES linear operations and
analyze its security and efficiency in theory. Then in Sec. 5
we evaluate the performance of our proposal on different
implementations. Finally, Sec. 6 concludes the paper.

Preliminary
In this section, we review the existing masking schemes
for AES. In masking schemes, each sensitive value is split
into d + 1 shares x0, x1 · · · xd , and their relation can be
expressed as Eq.(1).

x = x0 ⊥ x1 · · · ⊥ xd, (1)

where x means the sensitive value while xi means i-th
split share, and ⊥ denotes the mask operation. In the rest

Ming et al. Cybersecurity (2021) 4:14 Page 4 of 15

of the paper, we shall consider that ⊥ is the exclusive-
or (XOR) operation denoted by ⊕. Usually, the d shares
{x1, · · · , xd} called masks are randomly picked up and the
{x0} called the masked value is processed such that it sat-
isfied Eq. (1). Recently, most studies focus on designing
the masked S-box with d + 1 shares, such as dth-order
masking scheme based on LUT (Coron 2014), based on
polynomial computation over the finite field (Coron et
al. 2014) and so on. But the designing for linear oper-
ations is widely ignored. As illustrated above, the costs
of linear operations account much more than that of
non-linear operations in first-order masked implementa-
tions. Thus in this paper, we focus on first-order masking
scheme, and accordingly each sensitive value is split into
two shares (d=1). Recently, a common masking approach
for linear operations is to compute each share successively
(Schramm and Paar 2006; ParisTech 2015; Coron et al.
2014), as shown in Fig. 3. First of all, 16 S-boxes are pro-
cessed respectively, and the input 8-bit value of each S-box
is split into 2 shares, so each S-box is fed with 2*8 bits.
Next, all 16*8 bits of each share are fed to two linear oper-
ations, because F(x0 ⊕ x1) = F(x0) ⊕ F(x1) if F is a linear
function. Thus, it is obvious that this masking scheme for
linear operations will cost 2 times as much as unprotected
AES implementation.
In this paper, to distinguish the two shares and sen-

sitive value clearer, x0, x1 and x are expressed as ST, M
and V respectively. Then we consider the masked AES
implementation, while a general masked AES-128 imple-
mentation is shown in Algorithm 1, with the following
linear operations:
AddRoundKey. AddRoundKey is a Boolean operation,

which XOR the state data with round keys. As for Boolean
masking schemes, the round keys need to do XOR with
only one share (generally ST), so this operation costs the
same in masked implementation with unprotected one.

Fig. 3 The process of existing first-order masking scheme in one AES
round

Algorithm 1 A general first-order Masked AES-128
implementation.
Input: 16 bytes plain[16] and key[16] for MixColumns
Output: 16 bytes cipher[16]
1: W [176]← KeyExpansion(key)
2: M[16]← MaskGen()

3: ST ← M ⊕ plain
4: for i = 0 to 9 do
5: ST ← AddRoundKey(ST ,W (i ∗ 16 : i ∗ 16 + 15))
6: [ST ,M]← Remask(ST ,M) (optional)
7: [ST ,M]← MSbox(ST ,M)

8: [ST ,M]← Remask(ST ,M) (optional)
9: ST ← ShiftRows(ST)

10: M ← ShiftRows(M)

11: ST ← MixColumns(ST)

12: M ← MixColumns(M)

13: [ST ,M]← Remask(ST ,M) (optional)
14: end for
15: [ST ,M]← Remask(ST ,M) (optional)
16: [ST ,M]← MSbox(ST ,M)

17: [ST ,M]← Remask(ST ,M) (optional)
18: ST ← ShiftRows(ST)

19: M ← ShiftRows(M)

20: ST ← AddRoundKey(ST ,W (160 : 175))
21: cipher ← ST ⊕ M

Remask. Remask is not a necessary operation for all
first-order masking schemes. Specifically, remask opera-
tion refreshes the two shares ST andM without changing
ST ⊕ M (it is different with mask refresh, since the new
M may be not generated randomly). For example, the
masking scheme in (Prouff et al. 2018) needs to remask
before and after MSbox, which corresponds to the line 6,
8, 15 and 17 in Algorithm 1. And the masking schemes
in (Nassar et al. 2012; Bhasin et al. 2014) need to remask
after MixColumns, which corresponds to the line 13 in
Algorithm 1.
ShiftRows. ShiftRows is necessary for AES. In the exist-

ing first-order masking schemes, ShiftRows operation
executes once for each share in one round, as shown in
line 9 and line 10 in Algorithm 1.
MixColumns. MixColumns is also necessary for

masked AES schemes. MixColumns is usually expressed
as several sequences of multiplications by 2 over F28
and XOR operations. Specifically, it can be expressed as
Eq. (2).

⎧
⎪⎪⎨

⎪⎪⎩

ST4i ← 2ST4i ⊕ 3ST4i+1 ⊕ ST4i+2 ⊕ ST4i+3
ST4i+1 ← ST4i ⊕ 2ST4i+1 ⊕ 3ST4i+2 ⊕ ST4i+3
ST4i+2 ← ST4i ⊕ ST4i+1 ⊕ 2ST4i+2 ⊕ 3ST4i+3
ST4i+3 ← 3ST4i ⊕ ST4i+1 ⊕ ST4i+2 ⊕ 2ST4i+3

,

(2)

Ming et al. Cybersecurity (2021) 4:14 Page 5 of 15

where i ∈ {0, 1, 2, 3}. Actually, MixColumns can be imple-
mented as Eq. (2) directly, which is an original and trivial
implementation but is still adopted by (Coron 2014; Coron
et al. 2018). Then it was improved in (Fang 2009), which
is shown as Algorithm 2. The GF256MUL2(·) operation
denotes the multiplication by 2 over F28 . Actually, this
improvedMixColumnsmodule has been adopted in (Nas-
sar et al. 2012; Bhasin et al. 2014; Prouff et al. 2018).
In original MixColumns, the GF256MUL2 operations for
ST[4i + j] and ST[4i + (j + 1)mod 4] need to compute
respectively, so each STi in Eq. (2) needs 2 GF256MUL2
and 4 XOR (3 XOR expressed in equation and one for
3×ST[4i + (j + 1)mod 4]). Since the linear operations
are called twice in first-order masking scheme, there are
totally 32× 2 GF256MUL2 and 64× 2 XOR in original
MixColumns. Comparatively, it can be counted that there
are 16 GF256MUL2 and 60 XOR in Algorithm 2, then
totally 16× 2 GF256MUL2 and 60× 2 XOR for improved
MixColumns in first-order masking scheme.

Algorithm 2 Improved computation of one MixColumns
using GF256MUL function.
Input: 16 bytes intermediates ST[16] for MixColumns
Output: 16 bytes intermediates OT[16] for next step
1: for i = 0 to 3 do
2: t ← ST[4i]⊕ST[4i+ 1]⊕ST[4i+ 2]⊕ST[4i+ 3]
3: for j = 0 to 3 do
4: tmp ← ST[4i + j]⊕ST[4i + (j + 1)mod 4]
5: OT[4i+ j]←GF256MUL2(tmp)⊕ST[4i+ j]⊕t
6: end for
7: end for

However, there are security flaws and redundant calls
in the linear operations, which will be explained in next
section.

Security and efficiency of linear operations
In this section, we illustrate the flaws of existing masked
AES implementations in linear operations. Then we show
a protected algorithm as an example, which satisfied first-
order secure but not efficient. This example could help to
understand our proposal described in next section.
In first-order masking schemes, each sensitive interme-

diate should be randomized by at least one randomness.
Certainly, the output of a linear operation (e.g. XOR)
should also be randomized, so we have Eq. (3).

ST0 ⊕ ST1 = (V0 ⊕ M0) ⊕ (V1 ⊕ M1)

= (V0 ⊕ V1) ⊕ (M0 ⊕ M1). (3)

Two sensitive intermediates V0 and V1 are randomized
by masks M0 and M1 separately, while masked values are
denoted by ST0 and ST1. Then, the output (V0 ⊕ V1) is

randomized by (M0 ⊕ M1). If these masks are correlative
(e.g. in SP scheme,M0 = M1), then (V0 ⊕V1) are not ran-
domized enough and this masking scheme cannot reach
first-order security. Similarly, in a masked AES scheme,
these linear operations cannot reach first-order security
while the masks in each round are correlative. Specifically,
in MixColumns module, the different masked values (STi)
get XOR without any new random number introduced.
Thus if these intermediates are protected by correlative
masks, the new intermediate (their XOR results) may no
longer be protected.
It can be verified by simulated experiments. We sim-

ulated the leakages of one loop in Algorithm 2 using a
very popular leakage model (Ming et al. 2020), which
can be expressed by L = HW (x) + N , where L denotes
the leakages and HW (x) denotes Hamming weight of the
intermediate x. N denotes Gaussian noise and we use σ

to denote its standard deviation. σ is set to 2 in all sim-
ulated experiments. We simulated 200 points totally, and
19 points among them are corresponding to 3+4× 4=19
operations in one loop in Algorithm 2 while other points
are simulated by Gaussian noise. We launch t-test (Gilbert
Goodwill et al. 2011) to detect the first-order leakages
on these simulated points, and the results are shown in
Fig. 4a. It can be seen that first-order leakages are really
obvious. Additionally, this flaw is also found in RSMv1. In
this scheme, third bit of masks after XOR operation are
totally the same, so the third bit of output is not random-
ized. Utilizing this unprotected bit, first-order leakages
can also be detected, which are shown in Fig. 5b. Similar
results were illustrated in (Veshchikov and Guilley 2017),
which utilized this unprotected bit to launch first-order
attack on DPA contest v4 dataset, and successfully recov-
ered the secret key. However, they thought this attack
worked due to impropermask set, but the implementation
with their revisited mask sets is still first-order attackable
(Ming et al. 2020).
We show one protected example to make our pro-

posal easier to understand. Specially, we generate a new
randomness s and introduce it to line 2 and line 4 in
Algorithm 2 to protected sensitive intermediates, and the
protected example is shown in Algorithm 3. It is easy
to verify that the inputs and outputs of Algorithm 3 are
the same as those of Algorithm 2, since randomness s is
cancelled out before output.
It is also trivial to verify the security of Algorithm 3.

We denote by I the set of intermediate variables that pro-
cessed during an execution of Algorithm 3, and we denote
by EI the set of extra variables due to accumulation in an
intermediate variable. Table 1 lists these variables of Algo-
rithm 3. In order to prove Algorithm 3 is secure against
first-order SCA, we need to show that all variables are pro-
tected at least by one randomness. Specifically, I1 and I2
are straightforwardly secure. I3, I4 and I5 are protected by s

Ming et al. Cybersecurity (2021) 4:14 Page 6 of 15

Fig. 4 T-test on simulated leakages of Algorithm 2 and Algorithm 3 in SP scheme

Algorithm 3 One example of a protected MixColumns
implementation.
Input: 16 bytes intermediates ST[16] for MixColumns
Output: 16 bytes intermediates OT[16] for next step
1: s $←− F

8
2

2: for i = 0 to 3 do
3: t ← ST[4i]⊕GF256MUL2(s) ⊕ ST[4i +

1]⊕ST[4i + 2]⊕ST[4i + 3]
4: for j = 0 to 3 do
5: tmp ← ST[4i + j]⊕s ⊕ ST[4i + (j + 1)mod 4]
6: OT[4i+ j]←GF256MUL2(tmp)⊕ST[4i+ j]⊕t
7: end for
8: end for

orGF256MUL2(s). Note that if t (resp. tmp) is not cleared
to zero before overwriting with ST[4i] (resp. ST[4i + j]),
there will be two sets of extra variables, which are denoted
by EI1 and EI2. The extra variables in EI1 and EI2 are
related to the leakages function. For example, the extra

variable in EI1 can be denoted by t⊕ST[4(i+1)] in Ham-
ming distance leakage function. Since t (resp. tmp) is still
protected by s (resp. GF256MUL2(s)) which is indepen-
dent with ST, the two sets EI1 and EI2 are secure as well.
Note that the output OT might be attackable since s is
removed. However, if the 16 masks M[16] are the same,
OT will be still protected well. Because the masks M are
also removed in line 3 and line5, so GF256MUL2(tmp)
and t are only protected by s, which is removed in line 6.
Then OT will be under the same protection of the masks
of ST, namelyM.
In addition, we simulate the points for each operation

in protected example with 16 same masks and detect
their first-order leakages. There are 200 simulated points
while 24 points among them are corresponding to 24
operations in one loop in Algorithm 3. The detection
results for protected SP and protected RSMv1 are shown
in Figs. 4b and 5b respectively. It can be seen that no
first-order leakages detected after protection. And our
proposal described in next section is an improvement
from this example.

Fig. 5 T-test on simulated leakages of Algorithm 2 and Algorithm 3 in RSMv1 scheme

Ming et al. Cybersecurity (2021) 4:14 Page 7 of 15

Table 1 Intermediate and extra variables of Algorithm 3

l Il Steps

1 s, GF256MUL2(s) 1,3,5

2 ST 3,5,6

3 t, tmp, GF256MUL2(tmp) 3,5,6

4 ST [i]⊕s,
⊕

i ST [i] ⊕ GF256MUL2(s) 3,5,6

5 GF256MUL2(tmp) ⊕ ST [i] 6

l EIl Steps

1 < t, ST [4(i + 1)]> 3

2 < tmp, ST [4i + (j + 1)]> 5

On the other hand, these linear operations usually
become inefficient because some linear operations are
called repeatedly and redundantly. Only considering the
necessary operations, the ShiftRows and MixColumns are
called for each shares, as shown in line 9, line 10 and line
11, line 12 in Algorithm 1. Clearly, calling linear opera-
tions repeatedly is surely satisfied with correctness for a
linear function, since F(ST ⊕M) equals to F(ST) ⊕ F(M)

for a linear function F(·). However, the masks M are
randomly picked up, and linear operations for M seem
wasteful. Thus, it is important to design a secure lin-
ear algorithm without changing the masks M while ST is
updated, then the linear operations for masks M can be
saved.

Linear masking scheme
In this section, we propose a secure and highly efficient
first-order linear masking scheme for AES, then analyze
its efficiency and prove its security.

Core idea
In fact, designing two linear operations is a waste of
resources for masked AES implementation. Therefore,
we introduce the idea that: reduce two masked linear
operations in Fig. 3 to one while extra randomness is
induced to maintain the security level, as shown in Fig. 6.
Consequently, the efficiency on linear operation can be
considerably increased by a factor of two.
Following this core idea, we propose our first-order

linear masking scheme.

First-order linear masking scheme
As shown above, there are 3 necessary modules of
the linear operations in AES: AddRoundKey, ShiftRows
and MixColumns. Among them, AddRoundKey and
ShiftRows have been secure and efficient. As for
AddRoundKey, only one share needs to do XOR with cor-
responding round key, which cost the same with unpro-
tected AES. As for ShiftRows, we can just reorder the
computation of 16 S-boxes (Bhasin et al. 2014) to save

Fig. 6 The process of our proposed first-order masking scheme in
one AES round

half costs. However, designing the masked MixColumns
module is the most complex and significant for improv-
ing the linear operation since it costs the highest in these
modules.
The masked MixColumns is shown as Algorithm 4,

which is called SEMixColumns in this paper to distinguish
it from others. In order to combine two MixColumns into
one while maintaining the same security, new generated
random numbers (line 1) are needed to protect the inter-
mediates, then part of masks can be removed. Finally,
these random numbers s are removed in line 10 while this
line is protected by the masks of ST4i+j, and the outputs
of Algorithm 4 (16 bytes OT[16]) are still protected byM,
so the MixColumns forM in Algorithm 1 (line 12) can be
saved.

Algorithm 4 Secure and efficient proposal of one Mix-
Columns (called SEMixColumns in this paper).
Input:

16 bytes intermediates ST[16] for MixColumns
16 bytes masks M[16] for MixColumns

Output: 16 bytes intermediates OT[16] for next step
1: s $←− F

8
2

2: for i = 0 to 3 do
3: r0

$←− M[4i]⊕M[4i + 1]
4: r1

$←− M[4i + 1]⊕M[4i + 2]
5: r2

$←− M[4i + 2]⊕M[4i + 3]
6: r3

$←− M[4i + 3]⊕M[4i]
7: t ← ST[4i]⊕GF256MUL2(s) ⊕ ST[4i +

1]⊕ST[4i + 2]⊕ST[4i + 3]⊕r1 ⊕ r3
8: for j = 0 to 3 do
9: tmp ← ST[4i+ j]⊕s⊕ ST[4i+ (j+ 1)mod 4]⊕rj

10: OT[4i+ j]←GF256MUL2(tmp)⊕ST[4i+ j]⊕t
11: end for
12: end for

Ming et al. Cybersecurity (2021) 4:14 Page 8 of 15

Table 2 Comparison of the costs on linear operations of one round

Cost Number of XOR Number of GF256MUL2 Number of Shift

Operation AddRoundKey MixColumns Remask MixColumns ShiftRows

Original Implementation 16 64× 2 0/32/64/96 32× 2 12× 2

Improved Implementation 16 60× 2 0/32/64/96 16× 2 12× 2

Our Proposal 16 120 0/32/64/96 20 12× 2

Thus, line 11 and line 12 in Algorithm 1 are replaced
by “ST ← SEMixColumns(ST ,M)” in our masked AES
algorithm, while other parts are all the same. Note that
the ST should be cleared to zero before overwriting with
OT, otherwise there will be extra leakages correspond-
ing to the sensitive intermediate GUL2MUL(tmp) ⊕ t.
One MixColumns module is saved by the optimization,
although SEMixColumns costs more since new variables
are introduced. It can be counted that there are totally
20 GF256MUL2 and 120 XOR in Algorithm 4. Since
Algorithm 4 is only called once in masked AES implemen-
tation, it costs less than other algorithm in sum. In order to
make clearer comparison of the costs on linear operations,
we list the required number of basic operations (XOR,
Shift and GF256MUL2) of these linear implementations
in one AES round, as shown in Table 2.
It can be seen in Table 2 that our proposal is advantaged

particularly on the number ofGF256MUL2. Our proposal
only cost 20 GF256MUL2 in each AES round. So the
implementation forGF256MUL2 certainly affects the effi-
ciency gain though our proposal. Moreover, Table 2 is only
a theoretical comparison, the practical improvements may
be different more or less due to different implementation
targets.

Security analysis
In this section, we prove that our proposed masking
scheme can actually reach first-order security against
SCAs.
First of all, other linear parts except MixColumns have

been proven to reach first-order security. As for Mix-
Columns, both original implementation (Coron et al.
2018) and efficient implementation (Veshchikov and Guil-
ley 2017) will be threaten by first-order attacks if the
masks in each round are correlative, which has been
demonstrate in Sec. 3. So we need to prove that our pro-
posed SEMixColumns (Algorithm 4) is able to protect
against first-order attacks, namely each sensitive value is
protected by a random number.
We heuristically prove the first-order security of Algo-

rithm 4 with the approach similar to that in Sec. 3. We
also denote by I the set of intermediate variables that pro-
cessed during an execution of Algorithm 4, and we denote
by EI the set of extra variables due to accumulation in
an intermediate variable. Table 3 lists these variables of

Algorithm 4. Specifically, I1, I3, I4, I5 and I7 are the same as
the sets in Table 3, which have been proved to be secure.
And I2 and I6 are also protected by s or GF256MUL2(s).
Since random numbers s are removed in line 10 while ST
is protected by the masks M, the outputs I8 are still pro-
tected by M. In addition, if t (resp. tmp) is not cleared
to zero before overwriting with ST[4i] (resp. ST[4i + j]),
there will also be two set of extra variables, which are
denoted by EI1 and EI2 in Table 3. Similarly, EI1 and EI2
are protected by s or GF256MUL2(s) as well.
In summary, all sensitive intermediates in linear oper-

ations are still under protection, which proves that our
proposal for linear operations can theoretically achieve
first-order security.

More efficient implementation in certain cases
Our proposal as shown in Algorithm 4 can be optimized
further in certain cases. Specifically, if Eq. (4) is satisfied,
the masks in each column after ShiftRows are equal (the
same color in Fig. 7), then r0, r1, r2 and r3 in Algorithm 4
equal to 0. Therefore, there is no need for the XOR oper-
ations related with these intermediates, which can save an
additional 40 XOR per round.

{
mi = mi+1 (mod 16), if i (mod 4) = 1
mi = mi+5 (mod 16), others (4)

However, the optimized method cannot be adopted by
all first-order masking schemes since: (1) this method

Table 3 Intermediate and extra variables of Algorithm 4

l Il Steps

1 s, GF256MUL2(s) 1,7,9

2 r0, r1, r2, r3 3,4,5,6,7,9

3 ST, OT 7,9,10

4 t, tmp, GF256MUL2(tmp) 7,9,10

5 ST [i]⊕s,
⊕

i ST [i] ⊕ GF256MUL2(s) 7,9

6 t ⊕ r3, tmp ⊕ rj 7,9

7 GF256MUL2(tmp) ⊕ ST [i] 10

8 OT 10

l EIl Steps

1 < t, ST [4(i + 1)]> 7

2 < tmp, ST [4i + (j + 1)]> 9

Ming et al. Cybersecurity (2021) 4:14 Page 9 of 15

Fig. 7 The masks in our first-order masking scheme

requires the masks to satisfied Eq. (4) (mi denotes the
i-th mask of the 16 bytes masks M[16]), so it may be
incompatible with some first-order masking schemes with
similar type restrictions (e.g. the masking scheme RSMv1
requires the masks to be a regular sequence, which is not
compatible with this more efficient implementation). (2)
after the Mixcolumns, it is necessary to remask to ensure
continuous implementation process (as shown in Fig. 7).
So the masking scheme should contain the remask oper-
ation after Mixcolumns (line 13 in Algorithm 1), or this
optimized method would not work for the scheme duo to
extra XOR introduced.

Experiment
In this section, we combine our linear masking algorithm
with different first-order masking schemes, and evaluate
their practical efficiency in a CPU implementation. Next,
we choose the scheme named RSMv2, which have been
studied well because of DPA Contest v4.2, as our main tar-
get. Specifically, RSMv2 is implemented in both software
and hardware, then its side-channel security and practical
efficiency are evaluated later.

Evaluation of running time on CPU
A masked AES implementation is consist of two parts:
non-linear part and linear part, so the speedup of our pro-
posal toward whole AES execution time is also affected by
the implementations of non-linear part. Generally speak-
ing, if the non-linear part is well-designed and efficient,
the improvement of our proposal will get more remark-
able. In this experiment, we combine our proposal with
four state-of-the-art first-order masking schemes, which
have been introduced in details.
These schemes are implemented on an Intel Core i7-

4790 CPU running at 3.60GHz. Considering that the func-
tionGF256MUL2 also affects speedup of our proposal, we
implement GF256MUL2 by two methods: (1) Computa-
tion (slower but save memories). Rotate the 8-bits input
to the left by 1 bit, then judge whether the most signifi-
cant bit equals to 1. If so, then XOR this intermediate with

0x1b. (2) LUT (faster but need extra memories). Look up
the outputs in a stored table. The results of speedup in dif-
ferent first-ordermasking schemes are shown in Table 4. It
can be seen that our proposal can get approximately 20%
speedup on these masking schemes. Moreover, for each
masking scheme, the speedup of our proposal is greater
while GF256MUL2 is achieved by computation, because
computation based GF256MUL2 requires more running
time than LUT based one, which lead to more cost savings
by using our proposal.
Moreover, we discuss about how the compiler treats

these software implementations, and the details are shown
in Appendix.

Evaluation of embedded implementations
Considering that RSMv2 has been studied well because
of DPA Contest v4.2 and its software implementation has
been published in (ParisTech 2015), we select this popu-
lar first-order masking scheme as our study object. And
in our experiments, we replaced the linear operations by
our more efficient proposal while keeping the non-linear
operations unchanged.
As for software implementation, we adopt the similar

RSMv2 implementation as used in DPA Contest v4.2. We
programmed the hex-files on a FunCard with an Atmel
ATmega 163micro-processor, which is the suggested plat-
form from DPA Contest v4.2. The implementation codes
of RSMv2 scheme can be also downloaded from the DPA
Contest v4.2 (ParisTech 2015), which uses C Language on
connection between the processor and computer, and uses
assembly language on cryptographic implementation. To
take a fair comparison, we only use assembly language
to change the linear operations. Note that GF256MUL2
is implemented by LUT in the published codes, and we
implement this function in the same way.
Compared to the RSMv2 implementation, the code size

of our proposal gets similar. Actually both of these two
hex-files are 42KB. As for execution time, our proposal
gets obviously faster. The FunCard is connected with com-
puter by SASEBO-Wboard, and wemeasured the running
time of RSMv2 and our proposal with a trigger in codes
and an oscilloscope. Since ATmega 163 micro-processor
is running at 8MHz, it is easy to get the results on the soft-
ware implementation in cycles, which are show as Table 5.
The results show that using our proposal the masked
AES is nearly 25% faster than before on the software
implementation.
As for hardware implementations, the RSMv2 scheme

in (Bhasin et al. 2014) and our proposal are both imple-
mented in Kintex-7, Virtex-6, Virtex-5 and Spartan-3E
FPGA devices, the consumed resources for masked AES
are shown in Table 6. Since these AES implementations
take 128-bit inputs and outputs, the data size is 128 bit.
And the latency of these implementations is 14 cycles.

Ming et al. Cybersecurity (2021) 4:14 Page 10 of 15

Table 4 Speedup in popular first-order masking schemes on an Intel Core i7-4790 CPU running at 3.60GHz

Scheme Linear Operatons First-Order Security GF256MUL21 Time [us] Speedup2

Unprotected AES Original Implementation No Computation 3.178 –

LUT 2.160

Improved Implementation No Computation 2.596

LUT 2.067

SP Original Implementation No Computation 3.606 –

LUT 2.525

Improved Implementation No Computation 2.917

LUT 2.454

Our Proposal Yes Computation 3.12

LUT 2.460

ASCAD Original Implementation Yes Computation 6.377 –

LUT 4.307

Improved Implementation Yes Computation 5.143

LUT 4.169

Our Proposal Yes Computation 4.168 23.39%

LUT 3.539 17.80%

RSMv1 Original Implementation No Computation 6.315 –

LUT 4.389

Improved Implementation No Computation 5.407

LUT 4.161

Our Proposal Yes Computation 4.254

LUT 3.613

RSMv2 Original Implementation Yes Computation 6.651 –

LUT 4.610

Improved Implementation Yes Computation 5.496

LUT 4.388

Our Proposal Yes Computation 4.483 22.6%

LUT 3.796 15.6%

More Efficient Proposal Yes Computation 4.381 25.45%

LUT 3.668 19.63%

The function GF256MUL2 can be implemented by different methods, which affects the speedup of our proposal. ’Computation’ in this line means that GF256MUL2 is
implemented by shift and XOR operations, ’LUT’ means it is implemented by look-up table.
While getting the speedup for each masking scheme, we compare our proposal with first-order secure and the most efficient implementation

The delay column represent the longest path between reg-
isters. Note that non-linear part is implemented using
fixed BRAM costs, which is a common and popular imple-
mentation (Nassar et al. 2012). As for GF256MUL2, it is
implemented by computation on FPGA. Above all, it can

Table 5 Speedup on an ATmeaga 163 micro-processor running
at 8MHz

Number of cycles Speedup

RSMv2 Our Proposal

27,001 21,287 26.84%

be seen that our proposal greatly outperforms the RSMv2
scheme in efficiency on these four different FPGA devices,
and the efficiency are all increased by more than 70%.

• On Kintex-7 device, which is built on 28-nm process
technology, our proposal achieves better
performance with 70.78% efficiency gain compared to
existing implementation.

• Virtex-6 is also built on 28-nm process technology,
and the performance on it gets worse (more delays
and LUTs) than that on Virtex-6 device. But our
proposal still achieves better performance with

Ming et al. Cybersecurity (2021) 4:14 Page 11 of 15

Table 6 Comparison on different hardware implementations for RSMv2 and our proposal

Design Library Scheme Delay Throughput Area Combined Gain

[nsec] [Gbps] Gain [LUTs] Gain

Kintex-7 28nm XC7K70T RSMv2 2.916 3.135 31.07% 1599 30.32% 70.78%

Our Proposal 2.225 4.109 1227

Virtex-6 28nm XC6VCX75T RSMv2 4.000 2.286 27.73% 1646
34.15%

71.35%

Our Proposal 3.131 2.920 1227

Virtex-5 65nm XC5VLX20T RSMv2 4.240 2.156 32.65% 1700 36.11% 80.60%

Our Proposal 3.197 2.860 1249

Spartan-3E 90nm XC3S1600E RSMv2 9.003 1.016 28.18% 2501 38.10% 74.38%

Our Proposal 7.134 1.282 1811

71.35% efficiency gain, which is similar to the result
on Kintex-7 device.

• Virtex-5 is for integration at 56-nm, but the
performance on it is similar with that on Virtex-6,
and our proposal achieves better performance with
80.60% efficiency gain, which is the most in these four
devices.

• Spartan-3E is built on 90-nm process technology. On
Spartan-3E device, our proposal can also achieve
better performance with 74.38% efficiency gain.

An interesting finding is that the delays and LUTs on
Spartan-3E are much more than other three devices. We
think it is because Kintex-7, Virtex-6 and Virtex-5 are 6-
input LUTs based FPGA, while Spartan-3E devices is 4-
input LUTs based one. Therefore, the implementation on
Spartan-3E requires more LUTs (almost 50% than others),
and accordingly needs more running time.
From the results of these experiments, our proposal

for linear operations of AES masking schemes greatly
improves the efficiency of masked AES on both hardware
and software cryptographic implementations.

Side-channel security
To evaluate the practical security of our proposal, we
launch t-tests (Gilbert Goodwill et al. 2011) and first-

order CPA (Rivain 2008) to both software and hardware
implementations respectively. The traces for software
implementation are collected from an Atmel ATmega
163 micro-processor on SASEBO-W board with an Agi-
lent DSO9104A oscilloscope. The sampling rate is set
to be 20MS/s, and the collected traces are compressed
with a step of 4 points. The traces for hardware imple-
mentation are collected from a Xilinx Kintex-7 fam-
ily device XC7K160T-1FBG676 embeded on SAKURA-X
board with also an Agilent DSO9104A oscilloscope. The
sampling rate is set to be 1GS/s.
We use leakage detection test to evaluate whether any

first-order side-channel leakages existing in our proposal.
Specifically, We apply first-order t-test on both software
implementation and hardware implementation. For soft-
ware implementation, we totally collect 200,000 traces,
each trace has 12,000 points and is compressed to 3,000
points. Considering that FPGA implementation is faster
and gets more noise, we totally collect 560,000 traces, each
trace has 750 points. The results of first-order t-tests are
shown in Fig. 8. It is obvious that the first-order leakages of
two implementations are always lower than ± 4.5, which
means our proposal has no exploitable first-order leakages
on these two implementations.
In Fig. 8a, the leakages near No.400 point get more obvi-

ous than other points. Actually, it is the operations for data

Fig. 8 T-test on software and hardware RSMv2 implementation after combining our proposal

Ming et al. Cybersecurity (2021) 4:14 Page 12 of 15

Fig. 9 First-order attacks on software RSMv2 implementation after combining our proposal

input (reading plaintexts), so these points cannot be used
to recover the secret key, and the following attack results
also demonstrate it. We used 200,000 traces to launch
a first-order attack on the software implementation, and
used 560,000 traces to launch first-order attack on hard-
ware implementations. Figures 9 and 10 show the success
rate and guessing entropy results (Rivain 2008) for these
two implementations. We can see that the success rate
always equals to zero in both implementations, and there
is no downward trend in the guess entropy results.
Above all, all experimental results show that our pro-

posal can actually provide first-order security to the soft-
ware and hardware implementations.

Application in higher order masking schemes
Our proposal performs well in first-order masking
schemes in different implementations. However, we do
not think it can achieve similar performance in higher
order masking implementations.
We have shown the running time proportion of linear

operations in different AES higher order masking imple-
mentations in Fig. 2, and we find that the significance of

the linear part progressively decreases with the increase of
the masking order. Take CRZ (Coron et al. 2018) higher
order masking scheme as an example, which is state-of-
the-art provably secure masked implementation for AES
at any order d. When the order of CRZ masking scheme
exceeds two, linear operations account for less than 3% of
the total AES implementation. In fact, the evaluations on
other higher order masking schemes get similar results.
Therefore, we think that it is of little meaning to improve
the efficiency of AES higher order masking schemes by
optimizing their linear operations. Namely, it should be
still focused on non-linear operations to improve the
higher order masking schemes.

Conclusion
In this paper, we point out that there are some design
defects in the linear operation of state-of-the-art masked
AES implementations. These defects not only decrease
the security level of some popular first-order masking
schemes, but also reduce their implementation efficiency.
In order to remedy these defects, we propose a first-order
linear masking scheme with inspired performance, then

Fig. 10 First-order attacks on hardware RSMv2 implementation after combining our proposal

Ming et al. Cybersecurity (2021) 4:14 Page 13 of 15

prove its security and analyze its efficiency. Specifically,
this masking scheme is designed for AES linear opera-
tions, so it can be combined with any existingmasked AES
scheme to further improve the implementation efficiency.
To demonstrate its practical security and efficiency, we
combine our proposal with four different state-of-the-
art first-order masking schemes on an Intel Core i7-4790
CPU. The results show that the four masking schemes
can get roughly 20% faster than before by using our pro-
posal. Moreover, we select a well-studied masking scheme
named RSMv2, and implement it on five different embed-
ded devices. The results show that by using our proposal,
the masking implementations achieve much higher effi-
ciency without exploitable first-order leakages.

Appendix
To figure out how the compiler treats the software imple-
mentation, we optimize the implementations with the
help of “-O3” option. Then we measure the performance
of all popular first-order masking schemes on an Intel
Core i7-4790 CPU again. The results are shown in Table 7.
It can be seen that the speedup is not impressive under
this environment.
We additionally take ARM as embedded software target.

Specifically, we evaluate the performance of unprotected
AES and four masking schemes on a STM32F4 MCU
based on ARM Cortex-M4. Thanks to the simulator in
Keil uVision5, the performance results of all the schemes
are straightforwardly in cycles, as shown in Table 8. It can

Table 7 Speedup in popular first-order masking schemes on an Intel Core i7-4790 CPU with “-O3” compiler option running at 3.60GHz

Scheme Linear Operations First-Order Security GF256MUL21 Time [us] Speedup2

Unprotected AES Original Implementation No Computation 3.178 –

LUT 0.362

Improved Implementation No Computation 0.400

LUT 0.362

SP Original Implementation No Computation 0.587 –

LUT 0.523

Improved Implementation No Computation 0.562

LUT 0.533

Our Proposal Yes Computation 0.528

LUT 0.599

ASCAD Original Implementation Yes Computation 0.847 –

LUT 0.734

Improved Implementation Yes Computation 0.793

LUT 0.732

Our Proposal Yes Computation 0.775 2.32%

LUT 0.693 5.63%

RSMv1 Original Implementation No Computation 0.775 –

LUT 0.666

Improved Implementation No Computation 0.734

LUT 0.660

Our Proposal Yes Computation 0.665

LUT 0.593

RSMv2 Original Implementation Yes Computation 0.969 –

LUT 0.840

Improved Implementation Yes Computation 0.909

LUT 0.845

Our Proposal Yes Computation 0.893 1.79%

LUT 0.819 3.17%

More Efficient Proposal Yes Computation 0.809 12.36%

LUT 0.795 6.29%

Ming et al. Cybersecurity (2021) 4:14 Page 14 of 15

Table 8 Speedup in popular first-order masking schemes on an Cortex-M4 using simulator

Scheme Linear Operations First-Order Security GF256MUL21 Time [us] Speedup2

Unprotected AES Original Implementation No Computation 3.178 –

LUT 14,683

Improved Implementation No Computation 14,116

LUT 0.362

SP Original Implementation No Computation 25,177 –

LUT 18,661

Improved Implementation No Computation 21,001

LUT 17,959

Our Proposal Yes Computation 22,909

LUT 18,922

ASCAD Original Implementation Yes Computation 41,894 –

LUT 28,862

Improved Implementation Yes Computation 33,542

LUT 27,458

Our Proposal Yes Computation 28,214 18.88%

LUT 24,056 14.14%

RSMv1 Original Implementation No Computation 45,048 –

LUT 32,016

Improved Implementation No Computation 36,696

LUT 30,612

Our Proposal Yes Computation 31,368

LUT 27,210

RSMv2 Original Implementation Yes Computation 46,995 –

LUT 33,963

Improved Implementation Yes Computation 38,643

LUT 32,559

Our Proposal Yes Computation 33,315 15.99%

LUT 29,157 11.67%

More Efficient Proposal Yes Computation 33,279 16.12%

LUT 29,148 11.70%

be seen that our proposal is nearly 15% faster on the typ-
ical 32-bit processor, which is not as much as the benefis
on 64-bit Intel processor. Namely, the performance gains
are different due to implemented compiler.

Acknowledgments
The authors would like to thank the Xinkuan Qiu for his valuable comments.

Authors’ contributions
JM and YZ proposed the first-order AES masking scheme, and drafted the
manuscript. HL participated in problem discussions and improvements of the
manuscript. QZ implemented and benchmarked the proposed scheme in
FPGA devices. All authors read and approved the final manuscript.

Authors’ information
All authors (Email: mingjingdian, zhouyongbin, lihuizhong,
zhangqian@iie.ac.cn) are with State Key Laboratory of Information Security,

Institute of Information Engineering, Chinese Academy of Sciences, Beijing
100093, China, and School of Cyber Security, University of Chinese Academy of
Sciences, Beijing 100049, China. Yongbin Zhou is the corresponding author of
this paper.

Funding
This work is supported in part by National Natural Science Foundation of
China (No.61632020, No.U1936209 and No.62002353) and Beijing Natural
Science Foundation (No.4192067).

Availability of data andmaterials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 2 October 2020 Accepted: 10 February 2021

Ming et al. Cybersecurity (2021) 4:14 Page 15 of 15

References
Bhasin S, Bruneau N, Danger J, Guilley S, Najm Z (2014) Analysis and

improvements of the DPA contest v4 implementation. In: Chakraborty RS,
Matyas V, Schaumont P (eds). Security, Privacy, and Applied Cryptography
Engineering. SPACE 2014. Lecture Notes in Computer Science, vol 8804.
Springer, Cham. https://doi.org/10.1007/978-3-319-12060-7_14

Coron J (2014) Higher order masking of look-up tables. In: Nguyen PQ, Oswald
E (eds). Advances in Cryptology - EUROCRYPT 2014. EUROCRYPT 2014.
Lecture Notes in Computer Science, vol 8441. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-55220-5_25

Coron J, Prouff E, Rivain M (2007) Side channel cryptanalysis of a higher order
masking scheme. In: Paillier P, Verbauwhede I (eds). Cryptographic
Hardware and Embedded Systems - CHES 2007. CHES 2007. Lecture Notes
in Computer Science, vol 4727. Springer, Berlin, Heidelberg. https://doi.
org/10.1007/978-3-540-74735-2_3

Coron J, Roy A, Vivek S (2014) Fast evaluation of polynomials over binary finite
fields and application to side-channel countermeasures. In: Batina L,
RobshawM (eds). Cryptographic Hardware and Embedded Systems - CHES
2014. CHES 2014. Lecture Notes in Computer Science, vol 8731. Springer,
Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44709-3_10

Coron J, Rondepierre F, Zeitoun R (2018) High order masking of look-up tables
with common shares. IACR Trans Cryptogr Hardw Embed Syst 1:40–72.
https://doi.org/10.13154/tches.v2018.i1.40-72

Duc A, Faust S, Standaert F (2019) Making masking security proofs concrete (or
how to evaluate the security of any leaking device), extended version. J
Cryptol 32(4):1263–1297. https://doi.org/10.1007/s00145-018-9277-0

Fang J (2009) Mixcolumn round transformation optimization and
improvement in the aes algorithm. Microcomput Inf 25(21):49–51

FIPS Publication 140-3 (2019) Security Requirements for Cryptographic
Modules. The National Institute of Standards and Technology. https://
nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf

Gilbert Goodwill BJ, Jaffe J, Rohatgi P, et al. (2011) A testing methodology for
side-channel resistance validation. In: NIST non-invasive attack testing
workshop, vol 7. NIST. pp 115–136. https://csrc.nist.gov/csrc/media/events/
non-invasive-attack-testing-workshop/documents/08_goodwill.pdf

Ishai Y, Sahai A, Wagner DA (2003) Private circuits: Securing hardware against
probing attacks. In: Boneh D (ed). Advances in Cryptology - CRYPTO 2003.
CRYPTO 2003. Lecture Notes in Computer Science, vol 2729. Springer,
Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45146-4_27

JTC I (2016) Iso/iec 17825:2016 information technology - security techniques -
testing methods for the mitigation of non-invasive attack classes against
cryptographic modules. https://www.iso.org/standard/60612.html

Kocher P (1996) Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In: Koblitz N (ed). Advances in Cryptology -
CRYPTO ’96. CRYPTO 1996. Lecture Notes in Computer Science, vol 1109.
Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-68697-5_9

Kocher PC, Jaffe J, Jun B (1999) Differential power analysis. In: Wiener M (ed).
Advances in Cryptology ? CRYPTO? 99. CRYPTO 1999. Lecture Notes in
Computer Science, vol 1666. Springer, Berlin, Heidelberg. https://doi.org/
10.1007/3-540-48405-1_25

Ming J, Zhou Y, Cheng W, Li H, Yang G, Zhang Q (2020) Mind the balance:
Revealing the vulnerabilities in low entropy masking schemes. IEEE Trans
Inf Forensics Secur 15:3694–3708. https://doi.org/10.1109/TIFS.2020.
2994775

Nassar M, Souissi Y, Guilley S, Danger J (2012) RSM: A small and fast
countermeasure for aes, secure against 1st and 2nd-order zero-offset scas.
In: 2012 Design, Automation & Test in Europe Conference & Exhibition,
DATE 2012, Dresden, Germany, March 12-16, 2012. pp 1173–1178. https://
doi.org/10.1109/DATE.2012.6176671

ParisTech T (2015) Dpa contest v4.2. documentation. http://www.dpacontest.
org/v4/42_doc.php. Accessed 27 Aug 2015

Prouff E, Strullu R, Benadjila R, Cagli E, Dumas C (2018) Study of deep learning
techniques for side-channel analysis and introduction to ASCAD database.
IACR Cryptol ePrint Arch 53. http://eprint.iacr.org/2018/053

Prout A, Arcand W, Bestor D, Bergeron B, Byun C, Gadepally V, Houle M,
Hubbell M, Jones M, Klein A, Michaleas P, Milechin L, Mullen J, Rosa A,
Samsi S, Yee C, Reuther A, Kepner J (2018) Measuring the impact of spectre
and meltdown. In: 2018 IEEE High Performance Extreme Computing
Conference, HPEC 2018, Waltham, MA, USA, September 25-27, 2018.
pp 1–5. https://doi.org/10.1109/HPEC.2018.8547554

Quisquater J, Samyde D (2001) Electromagnetic analysis (EMA): measures and
counter-measures for smart cards. In: Attali I, Jensen T (eds). Smart Card
Programming and Security. E-smart 2001. Lecture Notes in Computer
Science, vol 2140. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-
540-45418-7_17

Rivain M (2008) On the exact success rate of side channel analysis in the
gaussian model. In: Selected Areas in Cryptography, 15th International
Workshop, SAC 2008, Sackville, New Brunswick, Canada, August 14-15,
Revised Selected Papers. pp 165–183. https://doi.org/10.1007/978-3-642-
04159-4_11

Rivain M, Prouff E (2010) Provably secure higher-order masking of AES. In:
Mangard S, Standaert FX (eds). Cryptographic Hardware and Embedded
Systems, CHES 2010. CHES 2010. Lecture Notes in Computer Science, vol
6225. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-
15031-9_28

Rivain M, Prouff E, Doget J (2009) Higher-order masking and shuffling for
software implementations of block ciphers. In: Clavier C, Gaj K (eds).
Cryptographic Hardware and Embedded Systems - CHES 2009. CHES 2009.
Lecture Notes in Computer Science, vol 5747. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-04138-9_13

Schneider PH, Krishnamoorthy S (1996) Effects of correlations on accuracy of
power analysis - an experimental study. In: Proceedings of the 1996
International Symposium on Low Power Electronics and Design, 1996,
Monterey, California, USA, August 12-14, 1996. pp 113–116. https://doi.
org/10.1109/LPE.1996.547490

Schramm K, Paar C (2006) Higher order masking of the AES. In: Pointcheval D
(ed). Topics in Cryptology - CT-RSA 2006. CT-RSA 2006. Lecture Notes in
Computer Science, vol 3860. Springer, Berlin, Heidelberg. https://doi.org/
10.1007/11605805_14

Veshchikov N, Guilley S (2017) Implementation flaws in the masking scheme of
DPA contest v4. IET Inf Secur 11(6):356–362. https://doi.org/10.1049/iet-ifs.
2016.0475

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1007/978-3-319-12060-7_14
https://doi.org/10.1007/978-3-642-55220-5_25
https://doi.org/10.1007/978-3-540-74735-2_3
https://doi.org/10.1007/978-3-540-74735-2_3
https://doi.org/10.1007/978-3-662-44709-3_10
https://doi.org/10.13154/tches.v2018.i1.40-72
https://doi.org/10.1007/s00145-018-9277-0
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf
https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/08_goodwill.pdf
https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/08_goodwill.pdf
https://doi.org/10.1007/978-3-540-45146-4_27
https://www.iso.org/standard/60612.html
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1109/TIFS.2020.2994775
https://doi.org/10.1109/TIFS.2020.2994775
https://doi.org/10.1109/DATE.2012.6176671
https://doi.org/10.1109/DATE.2012.6176671
http://www.dpacontest.org/v4/42_doc.php
http://www.dpacontest.org/v4/42_doc.php
http://eprint.iacr.org/2018/053
https://doi.org/10.1109/HPEC.2018.8547554
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/978-3-642-04159-4_11
https://doi.org/10.1007/978-3-642-04159-4_11
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/978-3-642-04138-9_13
https://doi.org/10.1109/LPE.1996.547490
https://doi.org/10.1109/LPE.1996.547490
https://doi.org/10.1007/11605805_14
https://doi.org/10.1007/11605805_14
https://doi.org/10.1049/iet-ifs.2016.0475
https://doi.org/10.1049/iet-ifs.2016.0475

	Abstract
	Keywords

	Introduction
	Preliminary
	Security and efficiency of linear operations
	Linear masking scheme
	Core idea
	First-order linear masking scheme
	Security analysis
	More efficient implementation in certain cases

	Experiment
	Evaluation of running time on CPU
	Evaluation of embedded implementations
	Side-channel security
	Application in higher order masking schemes

	Conclusion
	Appendix
	Acknowledgments
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher's Note

