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Abstract: With the rapid development of science and technology, the application of wireless sensor
networks (WSNs) is more and more widely. It has been widely concerned by scholars. Viruses are
one of the main threats to WSNs. In this paper, based on the principle of epidemic dynamics, we
build a SEIR propagation model with the mutated virus in WSNs, where E nodes are infectious and
cannot be repaired to S nodes or R nodes. Subsequently, the basic reproduction number R0, the local
stability and global stability of the system are analyzed. The cost function and Hamiltonian function
are constructed by taking the repair ratio of infected nodes and the repair ratio of mutated infected
nodes as optimization control variables. Based on the Pontryagin maximum principle, an optimal
control strategy is designed to effectively control the spread of the virus and minimize the total cost.
The simulation results show that the model has a guiding significance to curb the spread of mutated
virus in WSNs.

Keywords: wireless sensor networks; virus mutation; stability analysis; optimal control

1. Introduction
1.1. Research Background

WSN is a self-organizing network system composed of a large number of sensor nodes
deployed in a specific area through wireless communication [1,2]. It can achieve dynamic
and real-time information monitoring, sensing and collection of monitoring objects in the
network coverage area through the cooperation between nodes. WSNs are widely used in
various fields, such as manufacturing, security monitoring and even military fields [3,4].

However, due to the strong openness of nodes, it is easy to be attacked by various
types of viruses [5,6]. The virus against wireless devices can be transmitted directly from
the device to the device using wireless communication technologies, such as Bluetooth [7–9].
Once the virus infects too many nodes in the network, it will lead to network interruption
and paralysis. The virus may mutate in the computer network [10,11], its complexity
and unpredictability are unmatched by the non-mutated virus, such as CIH virus. In
addition, viruses may mutate in wireless sensor networks because of the similarities
between computers network and WSNs. However, most of the research on the mutated
virus focuses on infectious diseases [12,13].

Therefore, it is urgent and important to study the transmission of mutated virus in
WSNs based on the principle of epidemic dynamics [14,15]. Through the establishment of
mutated virus propagation model, we can have a deeper understanding of the mutated
virus propagation behavior in the network. Then, we can take effective control and response
strategies before the large-scale spread of the mutated virus, greatly reduce the harm of the
mutated virus to the network.
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1.2. Related Work

The establishment and dynamic analysis of virus propagation model based on WSNs
has been concerned by many scholars. Kephart, J.O. and White, S.R. [16,17] first used the
epidemiological model to study and predict the spread of virus in the network. Subse-
quently, many epidemiological models [18–20] are proposed and applied to WSNs. Due to
the different characteristics and situations of infection, the models are constantly updated,
and targeted epidemic models are proposed. Different authors proposed different epidemic
models to study the dynamics of malicious objects propagation and control WSNs.

In the past, Mishra B.K. et al. [21] considered the effects of exposure status, vaccination
and reinfection process and proposed the SEIRS-V model. However, this paper only proves
the equilibrium of disease-free equilibrium. In Reference [22], Mishra B.K. and Srivastava
S.K. proposed a quarantine model of worm propagation behavior and studied the stability
of the model based on the basic reproduction number. The quarantine is a way to isolate
infected nodes from the network so as not to infect susceptible nodes. In Reference [23],
the authors studied an SLBRS computer virus model with two delays and obtain sufficient
conditions for the existence of local Hopf bifurcation and the local stability. Subsequently,
in Reference [24], Srivastava P.K. et al. proposed a worm propagation model (SEIQR). The
model described the influence of quarantined state and recovery state on worm propagation.
Moreover, they found the equilibrium point in disease-free and endemic cases, and proved
the local stability and global stability, respectively. Besides, on the basis of the SEIQR
model, Mishra B.K. and Tyagi I [25] added the vaccination and proposed SEIQRS-V model.
Based on the SIR model, Zhu L. et al. [26] studied the nonlinear propagation model of
malware and obtained the sufficient conditions for the existence of Hopf bifurcation and
the local stability.

In recent years, the authors of Reference [27] proposed the SEIRS-D agent-based model
and the characteristics of the model can be adjusted to more realistic values based on the
environment by integrating new elements. Huang D.W. et al. [28] proposed a model with
patch injection mechanism (SIPS) to evaluate the performance of patch injection rate in
inhibiting computer infection. In Reference [29], the authors considered the communication
radius and distribution density of nodes and proposed a delayed SEIQRS-V model. In
addition, they obtained the sufficient conditions for the local stability and the existence of
Hopf bifurcation. In addition, a variety of models have been proposed, such as SILRD [30],
I2S2R [31], SEIQRV [32], VCQPS [33], etc.

In reality, after a period of time, the virus will be included in the database of the
anti-virus program. Then, it will be intercepted by the anti-virus program and lose its
infectivity. However, in order to continue spreading the virus, the virus maker will also
update the virus. Therefore, it is necessary to study and control the mutated virus in the
network. However, most of the researches on mutated viruses focus on how to detect
them. As early as in [34], the authors proposed a computer virus detection method based
on neural network, which can detect and destroy the mutated virus. In Reference [11],
EVs and ECs are proposed to detect and analyze computer viruses for the first time. This
method can effectively detect all mutations of corresponding viruses with one signature. In
Reference [35], Rad B.B. developed a Hidden Markov Model that can recognize and detect
other mutations in the same metamorphic virus family. It is rare to study the propagation
behavior of mutated virus in the network. This paper enriches the content of this aspect.

In this paper, we will apply the theories of epidemic dynamics and optimal control
to study the security of WSNs. Optimal control [36–38], as a method of studying the
optimal dynamic strategy, has also been widely applied in wireless sensor networks.
In Reference [39], the attack behavior of malicious programs is studied by combining
the epidemic model and the loss equation. The maximum attack behavior of virus is
discussed by taking the node communication radius and the media scanning rate as the
optimal control variables. In Reference [40], the best defense strategy model between
malware and WSNs is constructed and it can achieve the best defense effect with less
resource consumption. In Reference [41], Huang Y.H. et al. proposed an anti-virus weight
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adaptive strategy, which effectively alleviated the spread of the virus in the network.
In Reference [26], the optimal dynamic strategy for the system and malware based on
Pontryagin Maximum Principle is given and it can reduce the total cost and inhibit the
spread of malware to a certain extent.

1.3. Contributions

This paper is the first time to apply mutation model to WSNs to study the spread and
control of virus, and proposes an SEIR epidemic model based on virus mutation in WSNs.
Our contributions are as follows:

1. An SEIR model based on virus mutation is established to describe the propagation
process of mutated virus in WSNs.

2. Calculating the basic reproduction number R0 of the improved model by the next
generation matrix method. Besides, the local and global stability of the two equilibria
are proved and simulated by the Routh criterion and the Lyapunov stability method.
Moreover, the influence of the repair rate γ1 and γ2 on the basic reproduction number
is also revealed in the simulation part.

3. Based on the Pontryagin maximum principle, the optimal control variable pairs of
the repair ratio of infected nodes and the repair ratio of mutated infected nodes are
obtained. The simulation results show that the optimal control strategy ensures the
security of wireless sensor networks and minimizes the maintenance cost.

The rest of the paper is as follows. The compositions of the model are introduced in
Section 2. The local and global stability is proved and the optimal strategy is designed in
Section 3. The simulation results, which support our theoretical predictions, are shown in
Section 4. The relevant conclusions are given in Section 5.

2. Modeling
2.1. Dynamic Equation

The proposed model is global and deterministic, and the sensor nodes are divided
into six parts: susceptible (S), exposed (E), infected (I1), mutated infected (I2), recovered (R)
and death (D). The relationship between the six compartments is depicted in Figure 1. S
nodes are vulnerable to viruses; E nodes are compromised with the attacker, but they work
normally; I1 nodes transform from E nodes, but they are unable to work normally; I2 nodes
are obtained by virus mutation from I1 nodes, they are also unable to work normally; R
nodes are immune to both pre mutated and post mutated viruses; D nodes are completely
damaged. Specifically, E, I1 and I2 nodes all can infect other nodes. Now, let us make the
following assumptions.
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The number of nodes increases at rate b, they all belong to S nodes. Meanwhile, new
E nodes are generated with λ1I1(t)S(t), λ2I2(t)S(t) and λ3E(t)S(t). The parameters λ1, λ2
and λ3 represent the transmission rate of I1, I2 and E nodes, respectively. Because E nodes
are mainly latent and the mutated virus is more infectious, λ2 is greater than λ1 and λ1 is
greater than λ3. E nodes are converted to I1 nodes at rate ε, and I1 nodes mutate to I2 nodes
at rate µ. Because I1 and I2 nodes are unable to work normally, they can be detected by
the anti-virus program, and repaired at rate γ1 and γ2, respectively. In addition, the five
compartments S, E, I1, I2 and R have the same mortality b. All parameters are greater than
0. The parameters are summarized in Table 1.

Table 1. The parameters of the model.

Symbol Description
b Birth rate or Death rate

λ1 Transmission rate of I1 nodes
λ2 Transmission rate of I2 nodes
λ3 Transmission rate of E nodes
ε Probability at which E nodes are converted to I1 nodes
µ Probability of virus mutation
γ1 Repair rate of I1 nodes
γ2 Repair rate of I2 nodes

S(t), E(t), I1(t), I2(t), and R(t) are the ratio of susceptible, exposed, infected, mutated
infected and recovered nodes at t. The novel dynamical system is given as follows:

dS(t)
dt = b− bS(t)− λ1S(t)I1(t)− λ2S(t)I2(t)− λ3S(t)E(t),

dE(t)
dt = λ1S(t)I1(t) + λ2S(t)I2(t) + λ3S(t)E(t)− (ε + b)E(t),

dI1(t)
dt = εE(t)− (γ1 + b + µ)I1(t),
dI2(t)

dt = µI1(t)− (γ2 + b)I2(t),
dR(t)

dt = γ1 I1(t) + γ2 I2(t)− bR(t),
dD(t)

dt = bS(t) + bE(t) + bI1(t) + bI2(t) + bR(t).

(1)

Because R(t) and D(t) are independent of the other four equations, the following
system is considered:

dS(t)
dt = b− bS(t)− λ1S(t)I1(t)− λ2S(t)I2(t)− λ3S(t)E(t),

dE(t)
dt = λ1S(t)I1(t) + λ2S(t)I2(t) + λ3S(t)E(t)− (ε + b)E(t),

dI1(t)
dt = εE(t)− (γ1 + b + µ)I1(t),
dI2(t)

dt = µI1(t)− (γ2 + b)I2(t).

(2)

For the system (2), we suppose that N(t) = S(t) + E(t) + I1(t) + I2(t) and it satisfies

dN(t)
dt

= b− bN(t)− γ1 I1(t)− γ2 I2(t), (3)

which implies dN(t)
dt ≤ b − bN(t), thus limsupt→∞N(t) ≤ 1. Also, if N(t) > 1 then

.
N(t) < 0. Therefore, we get 0 < N ≤ 1. we get a feasible region as follow:

D =
{
(S(t), E(t), I1(t), I2(t)) ∈ R4

+ : 0 < S(t) + E(t) + I1(t) + I2(t) ≤ 1
}

. (4)

Therefore, the solution of system (2) is bounded and independent of the initial con-
dition. Therefore, D is an invariant set. In addition, 0 < N ≤ 1, D also is a positive set.
Therefore, we will consider the stability of system (2) on the set D
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2.2. Calculation of the Equilibrium Point and the Basic Reproduction Number

In this subsection, two equilibrium points of the system (2) on the set D are calculated.
The first point is the disease-free equilibrium point N(t) = S(t) + E(t) + I1(t) + I2(t)

P0 = (S0, E0, I1
0, I2

0), and

S0 = 1, E0 = 0, I1
0 = 0, I2

0 = 0. (5)

The second point is the endemic equilibrium point P∗ = (S∗, E∗, I1
∗, I2

∗), and

S∗ =
(γ1 + b + µ)(γ2 + b)(ε + b)

λ1ε(γ2 + b) + λ2εµ + λ3(γ1 + b + µ)(γ2 + b)
, (6)

E∗ =
λ1bε(γ2 + b) + λ2bεµ + λ3b(γ1 + b + µ)(γ2 + b)− b(γ1 + b + µ)(γ2 + b)(ε + b)

ε(γ2 + b)(ε + b)
[
λ1 +

λ2µ
γ2+b +

λ3(γ1+b+µ)
ε

] , (7)

I1
∗ =

λ1bε(γ2 + b) + λ2bεµ + λ3b(γ1 + b + µ)(γ2 + b)− b(γ1 + b + µ)(γ2 + b)(ε + b)

(γ1 + b + µ)(γ2 + b)(ε + b)
[
λ1 +

λ2µ
γ2+b +

λ3(γ1+b+µ)
ε

] , (8)

I2
∗ =

µ[λ1bε(γ2 + b) + λ2bεµ + λ3b(γ1 + b + µ)(γ2 + b)− b(γ1 + b + µ)(γ2 + b)(ε + b)]

(γ1 + b + µ)(γ2 + b)2(ε + b)
[
λ1 +

λ2µ
γ2+b +

λ3(γ1+b+µ)
ε

] . (9)

Furthermore, by the next generation matrix method, the basic reproduction number
R0 is obtained.

Set

F =

 λ3 λ1 λ2
0 0 0
0 0 0

 (10)

and

V =

 ε + b 0 0
−ε γ1 + b + µ 0
0 −µ γ2 + b

. (11)

The next generation matrix is FV−1, the basic reproduction number R0 is its spectral
radius.

FV−1 =


λ1ε(γ2+b)+λ2εµ+λ3(γ1+b+µ)(γ2+b)

(γ1+b+µ)(γ2+b)(ε+b)
λ1(γ2+b)+λ2µ

(γ1+b+µ)(γ2+b)
λ2

(γ2+b)
0 0 0
0 0 0

, (12)

R0 =
λ1ε(γ2 + b) + λ2εµ + λ3(γ1 + b + µ)(γ2 + b)

(γ1 + b + µ)(γ2 + b)(ε + b)
. (13)

3. Dynamic Analysis and Optimal Strategy

In this section, the local and global stability of two equilibrium points are proved by
using the Routh criterion [42] and the Lyapunov stability method [43]. The existence of local
stability and global stability indicates that the development of this infectious disease will
not appear large-scale repeated infection, and will eventually maintain a static equilibrium
with the passage of time. Moreover, based on Pontryagin maximum principle [44], an
optimal strategy is proposed to control the spread of virus with minimum cost.

3.1. Subs Stability Analysis of P0

Theorem 1. When R0 < 1, the disease-free equilibrium point P0 is locally asymptotically stable.
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Proof. First, we can get the disease-free equilibrium point P0 = (1, 0, 0, 0) according to the
system (2). Thus, the Jacobian matrix of the disease-free equilibrium point P0 is:

J
(

P0
)
=


−b −λ3 −λ1 −λ2
0 −ε− b λ1 λ2
0 ε −γ1 − b− µ 0
0 0 µ −γ2 − b

 (14)

Thus,−b is one of the eigenvalues of J(P0), so just consider the following Jacobian matrix:

J′
(

P0
)
=

 −ε− b λ1 λ2
ε −γ1 − b− µ 0
0 µ −γ2 − b

 (15)

The characteristic polynomial of (15) is

P(λ) = a3λ3 + a2λ2 + a1λ + a0 (16)

where
a3 = 1 > 0, (17)

a2 = 3b + γ1 + γ2 + µ + ε > 0, (18)

a1 =
λ1ε(γ2 + b)(1− R0) + λ2εµ + λ3(γ1 + b + µ)(γ2 + b)

R0(γ2 + b)
+ (γ1 + b + µ)(γ2 + b) + (ε + b)(γ2 + b) > 0, (19)

and

a0 =
(1− R0)[λ1ε(γ2 + b) + λ2εµ] + λ3(γ1 + b + µ)(γ2 + b)

R0
> 0. (20)

Moreover, a simple calculation shows a1a2 − a0 > 0. Thus, according to the Routh
criterion, P0 is locally asymptotically stable if R0 < 1. �

Theorem 2. When R0 < 1, the disease-free equilibrium point P0 is globally asymptotically stable.

Proof. We can prove it by the Lyapunov stability method. Consider the following Lya-
punov function:

V(t) = S(t)− 1− ln S(t) + E(t) +
λ1(γ2 + b) + λ2µ

(γ1 + b + µ)(γ2 + b)
I1(t) +

λ2

γ2 + b
I2(t) > 0. (21)

We have:

dV(t)
dt = −b

[
S(t) + 1

S(t) − 2
]
+ λ1 I1(t) + λ2 I2(t) + λ3E(t)− (ε + b)E(t)+

λ1(γ2+b)+λ2µ+
λ3(γ1+b+µ)(γ2+b)

ε − λ3(γ1+b+µ)(γ2+b)
ε

(γ1+b+µ)(γ2+b) [εE(t)− (γ1 + b + µ)I1(t)]+
λ2

(γ2+b) [µI1(t)− (γ2 + b)I2(t)]

= −b
[
S(t) + 1

S(t) − 2
]
− (ε + b)E(t) + λ1(γ2+b)+λ2µ+

λ3(γ1+b+µ)(γ2+b)
ε

(γ1+b+µ)(γ2+b) εE(t)

= − b
[
S(t) + 1

S(t) − 2
]
− (ε + b)

[
1− λ1(γ2+b)+λ2µ+

λ3(γ1+b+µ)(γ2+b)
ε

(γ1+b+µ)(γ2+b)(ε+b) ε

]
E(t)

= −b
[
S(t) + 1

S(t) − 2
]
− (ε + b)(1− R0)E(t)

(22)

According to mean inequality n
√

a1a2 · · · an ≤ a1+a2+···+an
n , S(t) + 1

S(t) ≥ 2. Then,
dV(t)

dt ≤ 0 if R0 ≤ 1. It is noted that dV(t)
dt |P0 = 0. According to the Lyapunov stability

theorem, P0 is globally asymptotically stable. �
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3.2. Stability Analysis of P*

Theorem 3. When R0 > 1, the epidemic equilibrium point P * is locally asymptotically stable.

Proof. First of all, S*, E*, I1* and I2* are given in Equations (4)–(7). Thus, the Jacobian
matrix at the epidemic equilibrium P* is:

J(P∗) =


−λ1 I1

∗ − λ2 I2
∗ − λ3E∗ − b −λ3S∗ −λ1S∗ −λ2S∗

λ1 I1
∗ + λ2 I2

∗ + λ3E∗ −ε− b λ1S∗ λ2S∗

0 ε −(γ1 + b + µ) 0
0 0 µ −(γ2 + b)

. (23)

The characteristic polynomial of Equation (13) is

P∗(λ) = a4
∗λ4 + a3

∗λ3 + a2
∗λ2 + a1

∗λ + a0
∗. (24)

where
a4
∗ = 1 > 0, (25)

a3
∗ = bR0 + 3b + γ1 + γ2 + ε + µ > 0, (26)

a1
∗ = bR0(δ1 + δ2) +

λ3(γ1 + b + µ)(γ2 + b)
R0

+
b(R0 − 1)[λ3(γ1 + γ2 + 2b + µ) + λ1ε]

R0
> 0, (27)

and

a0
∗ = b(R0 − 1)(γ1 + b + µ)(γ2 + b)(ε + b) + λ3b(γ1 + b + µ)(γ2 + b) > 0. (28)

where
δ1 = (γ2 + b)(ε + b) + (γ1 + b + µ)(γ2 + b), (29)

δ2 =
λ2εµ + λ3(γ1 + b + µ)(γ2 + b)

R0(γ2 + b)
. (30)

In addition, a simple calculation shows a1
∗a2
∗a3
∗ − a1

∗2 − a0
∗a3
∗2 > 0 and a2

∗a3
∗ −

a1
∗ > 0. Thus, if R0 > 1, according to the Routh criterion, P* is locally asymptotically stable.

Theorem 4. When R0 > 1, the epidemic equilibrium point P* is globally asymptotically stable.

Proof. In this subsection, S, E, I1, I2, R and V denote S(t), E(t), I1(t), I2(t), R(t) and V(t),
respectively. Consider the following Lyapunov function:

V = S− S∗ − S∗ ln S
S∗ + E− E∗ − E∗ ln E

E∗ +
ε+b−λ3S∗

ε

(
I1 − I1

∗ − I1
∗ ln I1

I1
∗

)
+ λ2S∗

γ2+b

(
I2 − I2

∗ − I2
∗ ln I2

I2
∗

) (31)

For simplicity, let t0 = S
S∗ , t1 = E

E∗ , t2 = I1
I∗1

and t3 = I2
I∗2

, we obtain:

dV
dt = b + bS∗ + (ε + b)E∗ + ε+b−λ3S∗

ε (γ1 + b + µ)I∗1 + λ2S∗ I∗2
− (bS∗ + λ3S∗E∗)t0 − b 1

t0
− (ε + b− λ3S∗)E∗ t1

t2
− λ2µS∗ I∗1

γ2+b
t2
t3

− λ1S∗ I1
∗ t0t2

t1
− λ2S∗ I2

∗ t0t3
t1

(32)
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By substituting Equations (4)–(7) in (32), we can get

dV
dt = 2(bS∗ + λ3S∗E∗) + 3λ1S∗ I1

∗ + 4λ2S∗ I2
∗ − (bS∗ + λ3S∗E∗)t0

− (bS∗ + λ1S∗ I1
∗ + λ2S∗ I2

∗ + λ3S∗E∗) 1
t0
− (λ1S∗ I1

∗ + λ2S∗ I2
∗) t1

t2

− λ2S∗ I2
∗ t2

t3
− λ1S∗ I1

∗ t0t2
t1
− λ2S∗ I2

∗ t0t3
t1

= −(bS∗ + λ3S∗E∗)
(

t0 +
1
t0
− 2
)
− λ1S∗ I1

∗
(

1
t0
+ t0t2

t1
+ t1

t2
− 3
)

− λ2S∗ I2
∗
(

1
t0
+ t1

t2
+ t2

t3
+ t0t3

t1
− 4
)

(33)

According to mean inequality n
√

a1a2 · · · an ≤ a1+a2+···+an
n , t0 +

1
t0
≥ 2, 1

t0
+ t0t2

t1
+ t1

t2
≥ 3

and 1
t0
+ t1

t2
+ t2

t3
+ t0t3

t1
≥ 4 are obtained. Then dV

dt ≤ 0 if R0 ≥ 1. According to the Lyapunov
stability theorem, the epidemic equilibrium is globally asymptotically stable. �

3.3. Optimal Strategy

In this paper, our goal is not only to effectively control the spread of the virus, but
also to make the cost of sensor node repair as low as possible. Selecting the repair rate of
I1 nodes γ1 and the repair rate of I2 nodes γ2 as the control variable, the cost function is
as follows:

J(γ1, γ2) = min
γ1,γ2

{
E
(

t f

)
+ I1

(
t f

)
+ I2

(
t f

)
+
∫

t f
0

(
c1γ1

2(t)I1
2(t) + c2γ2

2(t)I2
2(t)

)
dt
}

, (34)

In this formula, c1 and c2 indicate the repair cost parameter of I1 nodes and I2 nodes,
respectively. Here, tf represents the terminal moment. The terms c1γ1

2(t)I1
2(t) and

c2γ2
2(t)I2

2(t) describe the repair cost of I1 nodes and I2 nodes at time t. The Equation (34)
shows that the sum of the number of E nodes, I1 nodes and I2 nodes at the terminal moment
and the cost from the start time to the terminal moment is the least by controlling γ1(t) and
γ2(t). We apply the Pontryagin maximum principle to solve the optimization problem and
consider the following Hamiltonian:

H = c1γ1
2(t)I1

2(t) + c2γ2
2(t)I2

2(t) + β1(t)
.
S(t) + β2(t)

.
E(t) + β3(t)

.
I1(t) + β4(t)

.
I2(t), (35)

where β(t) = {β1(t), β2(t), β3(t), β4(t)} is a set of covariates. According to the Pontryagin
Maximum Principle, the differential equations of covariates can be obtained as follow:

.
β1(t) = [β1(t)− β2(t)][λ1 I1(t) + λ2 I2(t) + λ3E(t)] + bβ1(t).
β2(t) = [β1(t)− β2(t)]λ3S(t) + bβ2(t).
β3(t) = −2c1 I1(t)γ1

2(t) + [β1(t)− β2(t)]λ1S(t) + (γ1 + b + µ)β3(t)− µβ4(t).
β4(t) = −2c2 I2(t)γ2

2(t) + [β1(t)− β2(t)]λ2S(t) + (γ2 + b)β4(t)

, (36)

where β1

(
t f

)
= 0 and β2

(
t f

)
= β3

(
t f

)
= β4

(
t f

)
= 1.

According to the Pontryagin Maximum Principle, we get{
∂H

∂γ1(t)
= 2c1γ1(t)I1

2(t)− β3(t)I1(t) = 0,
∂H

∂γ2(t)
= 2c2γ2(t)I2

2(t)− β4(t)I2(t) = 0.
(37)

From the Equation (38), it can be concluded that:

γ1(t) =
β3(t)

2c1 I1(t)
, γ2(t) =

β4(t)
2c2 I2(t)

. (38)

And γ1(t), γ2(t) ∈ [0, 1], so the optimal control pairs are as follows:

γ1 ∗ (t) = min
{

max
(

0,
β3(t)

2c1 I1(t)

)
, 1

}
, γ2 ∗ (t) = min

{
max

(
0,

β4(t)
2c2 I2(t)

)
, 1

}
. (39)
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4. Simulation

This section will be divided into three parts, the first two parts are to further verify
the stability of the system, and the latter part is to show the effectiveness of the optimal
control. Simulation parameters are obtained by simulating different scenes.

4.1. Stable Analysis of Disease-Free Equilibrium

In this subsection, we suppose λ1 = 0.1, λ2 = 0.2, λ3 = 0.05, γ1 = 0.1, γ2 = 0.05,
µ = 0.05, ε = 0.05, and b = 0.1. According to the Formula (11), we can get R0 = 0.56 < 1.
Theoretically, S(∞) = 1, E(∞) = 0, I1(∞) = 0, and I2(∞) = 0 according to the Formula
(3). The simulation results are illustrated in Figure 2, and it is consistent with Theorems 1
and 2.
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In Figure 2a,c, the curves all start from the X, Y and Z axes, and the curves in
Figure 2b,d all start from the hypotenuse of the X-Y, X-Z and Y-Z planes.

As shown in Figure 2a,b in the three-dimensional graph with I1 nodes scale as X axis,
E nodes scale as Y axis and S nodes scale as Z axis, the curves finally converge to (0, 0, 1).
In Figure 2a, there are only I1 and I2 nodes in the beginning if the curves start from the
X-axis; there are only E and I2 nodes in the beginning if the curves start from the Y-axis;
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and there are only S and I2 nodes in the beginning if the curves start from the Z-axis. These
assumptions ensure that the virus exists at the beginning. In Figure 2b, the ratio sum of I1
nodes and E nodes is 1 in the X-Y plane at the initial moment; the ratio sum of I1 nodes
and S nodes is 1 in the X-Z plane at the initial moment; and the ratio sum of E nodes and S
nodes is 1 in the Y-Z plane at the initial moment.

Figure 2c,d are similar to Figure 2a,b. In the three-dimensional graph with I2 nodes
scale as X-axis, E nodes scale as Y-axis and S nodes scale as Z-axis, the curves finally
converge to (0, 0, 1). In Figure 2c, in the beginning, there contain only I2 and I1 nodes when
the curves start from the X-axis; there contain only E and I1 nodes when the curves start
from the Y-axis; and there contain only S and I1 nodes when the curves start from the
Z-axis. In Figure 2d, the curves contain only I2 and E nodes in the X-Y plane; the curves
contain only I2 and S nodes in the X-Z plane; and the curves contain only E and S nodes in
the Y-Z plane. In summary, those curves will gather together, and then finally converge to
(0, 0, 1) in a variety of cases of R0 < 1, as shown in Figure 2. These results are according to
Theorems 1 and 2.

4.2. Stable Analysis of Epidemic Equilibrium

In this subsection, λ1 = 0.2, λ2 = 0.3, λ3 = 0.05, γ1 = 0.1, γ2 = 0.05, µ = 0.05, ε = 0.1,
and b = 0.05. It is easily obtained that R0 = 1.5 > 1. According to the Formulas (4) to (6),
we know S(∞) = 0.667, E(∞) = 0.111, I1(∞) = 0.056, and I2(∞) = 0.028. The simulation
results conform to Theorems 3 and 4, as shown in Figure 3.
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The assumptions are the same as in Figure 2. In Figure 3a,b, I1 nodes ratio is the X-axis;
the E nodes ratio is the Y-axis; and the S node ratio is the Z-axis. The simulation results
show that the curve converges to (0.056, 0.111, 0.667) from the axis and the hypotenuse,
respectively. In Figure 3c,d, I2 nodes ratio is the X-axis; E nodes ratio is the Y-axis; and S
node ratio is the Z-axis. The simulation results show that the curve converges to (0.028,
0.111, 0.667) from the axis and the hypotenuse, respectively.

4.3. Optimal Control

In this subsection, four parts will be considered: the evolution of sensor nodes, the
total cost, the evolution of control variables, and the influence of control variables on R0.
Suppose that except for b = 0.1, the other parameters remain unchanged, as described
in Section 4.2. Besides, set γ(t) = {γ1(t), γ2(t)},X(t) = {S(t), E(t), I1(t), I2(t), R(t)},
β(t) = {β1(t), β2(t), β3(t), β4(t)}, t f = 200, c1 = 1, c2 = 2, S(0) = 0.4, E(0) = 0.3,
I1(0) = 0.2, I2(0) = 0.1, and R(0) = 0. The optimal control calculation process is shown in
Figure 4.
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Figure 4. Flow chart of optimal control calculation.

Firstly, the control variables γ1, γ2 are be given an initial guess, and then Runge–Kutta
method is used to solve the numerical solution of the state variables of the system (2). With
the values of the obtained state variables, the initial values of the optimization variables
and transversal conditions, the numerical solutions of the costate differential Equation (36)
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are obtained by inverse integral. In order to better curb the spread of the virus, the value of
control is always one when calculating the covariate. Finally, the values of the optimization
control variables are obtained according to the Equation (39). Repeat the above process
until the curves of the control variable are no longer changed.

4.3.1. Evolution of Sensor Nodes

In this part, we will discuss the evolution of sensor nodes under non-optimal control
and optimal control, as shown in Figure 5.
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One of our optimization objectives is to effectively control the ratio of nodes with virus
at the terminal moment. By comparing Figures 5b and 5a, it can be seen that the nodes
with virus under the optimal control are eliminated faster than those with fixed repair rate.

4.3.2. Total Cost and Control Variables

Another control goal is to reduce the repair cost on the basis of curbing the spread of
the virus. The actual total cost of repair equation is C =

∫ tf
0 [c1γ1(t) + c2γ2(t)] dt. In this

subsection, the fixed repair rates of 1 was selected as the non-optimal control group. By
applying for approximate method, the total cost as shown in Figure 6.
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When γ1 and γ2 are always 1, the ratio of nodes with virus decreases fastest, the
evolution of sensor nodes as shown in Figure 7 is similar to the evolution of sensor nodes
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under the optimal control as shown in Figure 4a. It further shows that the goal of effectively
controlling the ratio of nodes with virus is achieved. In addition, as shown in Figure 6, it
can be seen that the total cost under the optimal control is lower than the total cost under
non-optimal control. Specifically, the cost finally reaches 0.801 under the non-optimal
control and the cost finally reaches 0.674 under optimal control. Therefore, the optimal
strategy not only effectively controls the spread of the virus, but also minimizes the cost of
the security strategy.
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The results of optimizing variables are shown in Figure 8. In the early stage of security
measures, because the ratio of I1 nodes is higher and the repair cost c2 of I2 nodes is larger
than the repair cost c1 of I1 nodes, so γ2 < γ1. Then, due to the decreasing ratio of I1 nodes
and the higher transmission rate λ2 of I2 nodes, I2 nodes become the biggest threat, so
γ2 > γ1. In the later stage, our goal is to diminish the number of nodes with virus, so the
removal intensity of nodes with virus should be improved to make γ1 = γ2 = 1. Figure 8
provides the optimal combination of I1 nodes repair rate γ1 and I2 nodes repair rate γ2 at
all times.
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4.3.3. Influence of Control Variables on the Basic Reproduction Number R0

The influence of control variables on R0 is shown in Figure 9. The simulation results
show that R0 decreases with the increase of the repair rate γ1 and γ2. The lower the R0,
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the faster the virus is eliminated. When the control variables converge to 1, then R0 < 1, as
shown in Figure 8. Thus, the system will eventually achieve the disease-free equilibrium
under optimal control. In addition, compared to γ2, γ1 has a greater impact on R0 under
these parameters as described in Section 4.3.
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5. Conclusions

In this paper, we use epidemiology to propose an improved SEIR model based on
virus mutation, where E nodes are infectious and cannot be repaired to S nodes or R nodes,
describing the propagation of mutated virus in WRSNs. Meanwhile, the basic reproduction
number of the improved model is calculated by the next generation matrix method and the
local and global stability of the two equilibrium points are proved by analyzing the stability
of the model. Besides, in order to minimize the ratio of nodes with virus and the total cost
associated with the measure, an optimal control strategy is proposed by optimizing the
combination of the repair rates γ1 and γ2. In addition, the influence of control variables on
the basic reproduction number is analyzed.

The simulation results verify the correctness of the stability theory. Further, the
optimal control strategy is proved to be effective in controlling the ratio of nodes with virus
and minimizing the maintenance cost. Figure 9 shows that the virus can be eliminated by
adjusting the repair rate γ1 and γ2, but it needs to rise to a certain threshold. The SEIR
propagation model with the mutated virus provides new insights into the virus propagation
in WSNs. However, our model only considers one case of mutated virus, which is not
comprehensive enough. In the future work, we will consider the case of time delay, and
apply stochastic modeling and advanced mathematical theory when the ability permits.
We hope the work of this paper can give some enlightenment to the relevant researchers.
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