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Abstract: The Internet of Medical Things (IoMT) has shown incredible development with the growth
of medical systems using wireless information technologies. Medical devices are biosensors that can
integrate with physical things to make smarter healthcare applications that are collaborated on the
Internet. In recent decades, many applications have been designed to monitor the physical health of
patients and support expert teams for appropriate treatment. The medical devices are attached to
patients’ bodies and connected with a cloud computing system for obtaining and analyzing healthcare
data. However, such medical devices operate on battery powered sensors with limiting constraints in
terms of memory, transmission, and processing resources. Many healthcare solutions are helping the
community with the efficient monitoring of patients” conditions using cloud computing, however,
mostly incur latency in data collection and storage. Therefore, this paper presents a model for
the Secured Big Data analytics using Edge—Cloud architecture (SBD-EC), which aims to provide
distributed and timely computation of a decision-oriented medical system. Moreover, the mobile
edges cooperate with the cloud level to present a secure algorithm, achieving reliable availability of
medical data with privacy and security against malicious actions. The performance of the proposed
model is evaluated in simulations and the results obtained demonstrate significant improvement
over other solutions.

Keywords: Internet of Medical Things; decision oriented medical systems; security; edge cloud;
big data

1. Introduction

In recent years, the advent of the Internet of Things (IoT) has led to a paradigm shift
in all areas of human-machine interaction, particularly healthcare and security [1-3]. [oMT
is a subarea of the IoT, particularly related to healthcare systems and to solve medical-
related issues distantly such as patient identity, diagnosis of diseases, and data storage
in the cloud [4,5]. Its elements are comprised of wearable sensors, network devices, and
smartphones that collect the vital signs of the patient. Afterwards, the medical data are
forwarded to centralized database servers over the 5G network. The medical experts
obtain the stored information and perform some analysis on it for appropriate decision
making with regards to treatment [6,7]. However, the main issue in healthcare systems
is the collaboration of the IoT environment in terms of energy constraint, storage range,
accessible bandwidth, and rapid disturbance over the wireless medium [8,9]. Wireless
Sensor Networks (WSNs) are the integral components of IoT technology and Body Sensor
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Networks (BSNs) are the main underlying software for medical applications. A BSN is
a network built in and around the human body by deploying sensors with restricted
constraints. Such an enormous adoption is still ongoing, however, for early identification
of diseases and diagnosis purposes [10,11]. Combining data analytics and the IoT makes
it possible to analyze medical data with versatility and a high amount of contextual
awareness. Now, mobile edge cloud computing with remote sensors is also an emerging
area that has a significant contribution in smart medical systems for healthcare, security,
and remote management. Moreover, in edge cloud computing [12-14], local data processing
imposes the least computing power, which is a critical matter as the IoT-based nodes are
conventionally low power in terms of energy and computational resources [15]. Moreover,
as the processing unit becomes part of the network, the time for transmission between the
edge devices and the processing units declines dramatically. At the edge or preprocessed
at the edge, the data is then analyzed and offloaded to the remote processing unit. In all
cases, the network’s performance increases enormously in terms of latency. Furthermore,
by isolating edge nodes from the central network, edge computing aims to provide multi-
device interoperability. Therefore, these days researchers are focused on producing an
IoT-based medical system to monitor the patients” health with an efficient storage paradigm.
This work presents secure big data analytics with the collaboration of mobile edge—cloud
architecture, which aims to decrease the data latency performance with the support of
trusted communication among medical nodes.
The contributions of the proposed model are as follows:

i. It adopts a greedy search in proximity neighborhood graphs for optimizing with
uniform rate transmissions and increases the energy efficiency of medical systems.

ii. ~ The mobile edges have a direct or indirect association with the sink and cloud level to
cope with big data analytics and offer interactive medical systems with nominal data
latency.

iii. The mobile edges that are the bottleneck for forwarding the data to the cloud are
immune to malicious actions and kept secure against network vulnerabilities. The
proposed secured algorithm maintains the inaccessibility of medical transmission
from network threats and offers certifiable data to end-users.

iv.  The proposed model is verified with extensive experiments using simulations and it
is proven to be a remarkable contribution compared to existing schemes.

The rest of the paper is organized as follows. Section 2 presents a discussion on related
work. Section 3 develops the proposed model. Section 4 illuminates the simulation-based
experiments with detailed discussion. Section 5 presents conclusions.

2. Related Work

Smart medical systems [16,17] have proven productive for data analytics and security
measurement of sensitive data. IoT-based networks can change the routine work of the
community and recently a lot of researchers have investigated the potential of participating
in the concepts of the IoT with smart cities and big data analytics [18,19]. The IoT has
recently established countless considerations because of its potential and collaborated with
many complex systems. In [20], the authors suggested a framework for structural health
monitoring (SHM) based on IoT technologies with intelligent and consistent observation.
Furthermore, the strategy for data routing is presented with the collaboration of big data
analytics. The proposed framework improved the performance in terms of scalability
and low latency. In smart medical systems, the [oMT, which is a subset of IoT, performs
several different applications such as patient remote monitoring, medication, treatment
satisfaction, etc. However, the confidentiality of patient records in medical systems is
crucial in an IoMT environment. Therefore, protecting confidential health information
(PHI) is a significant aspect of healthcare data protection. Big data is also an integral
part of healthcare systems that holds all records of patients, reports, treatments records
and so forth that is highly confidential. Cloud and edge computing are the paradigms
that make IoT-enabled communication possible with nominal communication cost [21,22].
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There are countless types of data in addition to the vast volumes of data that are gen-
erated by a large variety of devices. In implementing the IoMT, data interoperability is
the principal challenge for the sector. Edge computing has been used in various solu-
tions for reducing latency in real-time situations. However, data privacy is a significant
issue. The authors of [23] proposed a lightweight privacy-preserving medical diagno-
sis mechanism on the edge called LPME which redesigns the extreme gradient boosting
(XGBoost) model using an edge—cloud model and exploits parameters of the encrypted
model rather than local data to reduce the computation overheads. Moreover, the proposed
work secured diagnosis on the edge with privacy for sensitive data and timely finding.
In [24], the authors proposed a resource preservation net (RPN) framework using Petri
net with the collaboration of cloud and edge computing. It is applicable to real-world
scenarios and its key and optimized performance parameters are the patient length of stay,
resource utilization rate, and average waiting time of patients. The proposed framework is
tested under various simulations and highlights the main contribution in different aspects.
A framework of the cloud healthcare system based on digital twin healthcare (CloudDTH)
is presented in [25]. It is a generalized, and extensible framework for cloud computing
for observing and finding health issues using medical devices. The proposed framework
introduced and implemented the concept of digital twin healthcare (DTH). Moreover, it
demonstrates the feasibility of some application-based scenarios with a case study for
real-time management. In [26], the authors proposed a decentralized cloud environment
that utilizes blockchain technology to cope with the security of medical data. It offers
digital signature schemes for the handling of data. Also, the technology of blockchain
ensures that data could be split in the form of blocks and timestamps can be produced
for the observation data which is stored or updated. The proposed work improves the
performance in terms of cost and time compared to existing schemes. In [27], the authors
proposed an Access Control Policy Algorithm for increasing data accessibility among
healthcare providers. It assisted in the simulation environment and implemented the
Hyperledger-based electronic healthcare record sharing system based on blockchain tech-
nology. The performance results are also optimized using different performance metrics
in blockchain networks, such as latency, throughput, and round-trip time. New safety
mechanisms and algorithms for the security of the health care system have been created
by [28]. Moreover, their research implemented adaptive streaming techniques for the 3GPP
packet switched streaming service, but in remote health monitoring applications, they
did not consider rate control and offline algorithms for medical video transmission. The
authors of [29] suggested various remote resource management methodologies, including
checking health facilities, power and battery timing of small wearable devices. It proposed
a mobility-aware optimal resource allocation architecture, namely Mobi-Het, to cope with
remote big data task execution and management with higher efficiency in a timely and reli-
able manner. The simulated experiments illustrated the efficacy of the proposed Mobi-Het
architecture in mobile big data applications. The authors of [30] proposed architecture and
its security protocol to permit the exchanging of data, network services, computing, and
storage resources between the connected mHealth clouds. The routing algorithm is based
on the shortest path first (SPF) strategy. Moreover, the proposed solution is highly scalable
and maintains a balanced load on the cloud. The performance tests have proven it to be a
secure system design and controlled transmission system.

It can be seen from the discussion of related work that the [oMT has shown rapid
growth in the development of medical applications and facilitates patients and medical
teams. It collects the patient data and is forwarded towards medical databases; thus,
medical professionals can access it and deal with patients’ diseases. Recently, many
solutions have been proposed to cope with data routing in healthcare systems but it is
observed that most of them are not optimal in terms of communication cost and reliable
data delivery. Based on the analysis, most of the solutions only consider the greedy
heuristics based on the distance parameter and overlook link failures and channel latency
parameters. Also, it is observed that some solutions achieved stable routing performance
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at the expense of energy consumption and network load. Moreover, patients” data, which
is sensitive and can be used for unauthorized statements, must be protected from network
threats and maintains its integrity. Thus, the security mechanism should also be adopted
in healthcare systems with trustworthy data accessibility.

3. The Proposed IoMT-Enabled Model

This section presents the detail of SBD-EC model and consists of two main phases.
Figure 1 depicts the components of the proposed model. Initially, we consider that the
medical devices are connected in the form of graph G(V, N). Each node n; ¢ N and vertex
v; ¢ V. The individual vertex v; is associated with directly connected neighbors by a
particular cost. All the medical nodes are controlled by a local coordinator that performs
the functions of data aggregation. Also, the local coordinator has an indirect association
with sink nodes using intermediate devices that are connected wirelessly with each other.
These intermediate nodes aim to forward the medical data towards the sink node and are
further connected with cloud services using mobile edges.
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Figure 1. Components of the proposed medical model using IoT.

Z

The SBD-EC model is comprised of three main layers. In the first layer, medical sensors
are coordinated with the local coordinator. In the second layer, the local coordinator
is linked indirectly with the sink node using various intermediate nodes. In the third
layer, the mobile edges collaborate with cloud services, decreasing the latency in data
storage and processing. Furthermore, as the edges are mobile, it takes the less time
collecting the medical data from an upper layer. Moreover, it is seen that most of the
existing work does not consider effective authentication methods on mobile edges, and
ultimately malicious users could either relay the collected data on unauthorized routes
or suspension the network services. Therefore, the proposed model also offers a security
algorithm and provides secured communication from mobile edges to cloud services
while minimizing the communication overhead and data latency. The SBD-EC model
utilizes greedy traversing with the proximity neighboring method to explore reliable routes
for forwarding medical data. The greedy heuristic follows the problem-solving strategy
and offers the choice for the sub-optimal selection with minimum run-time and space
complexity in each iteration. It simplifies the route formation process of the SBD-EC model
with a nominal computational load on the constraint IoT nodes. It makes a locally optimal
decisions and each iteration leads to a globally optimal solution. In the SBD-EC model, the
cost function is computed using energy consumption (e), bi-directional distance (dis), and
link latency (In;) parameters, which should be minimum and optimized. The cost function
follows the principle of greedy routing such that medical data is transmitted towards
the destination with bordering nodes and measurements of network status. Equation (1)
formulates the cost function Cf for the greedy heuristic and operates on both intra-body
and inter-body communication.

Cf = min(e + dis + In;) (1)
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The energy consumption of the medical sensors can be computed by the integration
of transmitting (T, ) and receiving (R.) factors as given in Equation (2).

e = Tg+Rg/Ge (2)

where G, denotes the global energy, which is comprised of maximum levels of nodes. It is
declared at the time of network initialization. The minimum value of ¢ indicates sufficient
transmission power of a node for involvement in forwarding medical data. However, if the
transmission power of a source node is not appropriate for direct data forwarding to the
destination, then it adopts a multi-hop communication paradigm. Also, the distance factor
is computed to adjust the transmission power in data forwarding and is determined using
the Pythagorean theorem [31] as given in Equation (3).

dis = \/di2 + dj2 3)

where di denotes the distance of the source node to the neighbor and dj denotes the average
distance of the source node to the coordinator and sink node. Moreover, the link latency is
also added in the decision of cost function for improving delivery performance on time, as
given in Equation (4).

Int= (Re — Do /T)-B + Py 4)

where D, denotes the transmitting time of hello packets towards the neighbors, R, is
receiving time of the hello packets, T is fixed time interval,  is available bandwidth for a
wireless channel among connected nodes and P; indicates the delay rate for the processing
of data packet.

After the computing of the cost function, the SBD-EC model performs the greedy
method to accomplish a reliable and optimal forwarding scheme, as discussed below.

i.  The source node from the graph G(V, N)) computes the cost function for each neighbor
connected with different vertexes V.

ii. It selects the vertex V with the minimum cost value. However, it stops on a stage if
reaches a local minimum, which implies that the neighbors do not have the nearer
vertex to the source node than the vertex itself.

Afterward, the SBD-EC model presents a secured edge—cloud algorithm for data
collection and storage. The edge nodes are mobile and are connected to the sink node and
cloud layer. The edge nodes collect the data from the sink node and are further forwarded
towards the cloud level. The edge nodes are rotated at the rate R which can be computed
as given in Equation (5).

R= dyp+dini/t ®)

where d,; denotes the covered distance of the mobile edge node from sink node at a time ¢,
and d;,; denotes its initial distance. Moreover, the SBD-EC model also secures edge cloud
communication by using the Schmidt-Samoa cryptosystem [32]. In the SBD-EC model, the
sink node, mobile edges, and cloud systems utilize pairs of public X and private Y keys
for data encryption and decryption. The generated pair of keys ensures data security by
using lightweight encryption and decryption mathematical functions. Firstly, the two large
distinct prime numbers p and g are chosen, and security keys are generated as given in
Equations (6) and (7).
X =p*q (6)
Y = X lmodlem(p —1,4—1) (7)
where X and Y denote public and private keys. The data encryption C from the mobile
edge towards a cloud system is computed using Equation (8).

C = DX -mod X + S.(Y,D) (8)

where D represents the medical data and S, is a signature of the mobile edge node using
the private key Y.
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On the other hand, the encrypted data C is converted to its authentic form by the

cloud servers using Equation (9).

D = ' mod p-q + Ve(X,D) )

where V, is verification function performed by cloud system using the public key of mobile
edge node X.

The flow chart of the SBD-EC model is described in Figure 2.
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Figure 2. Working flow of the proposed model.

Security Analysis of SBD-EC Model

This section provides security analysis achieved by the SBD-EC model against

network threats.

i

ii.

1ii.

Confidentiality All the information that has to be kept confidential among sink node,
mobile edges, and the cloud server is encrypted using a lightweight encryption
function. Also, the encrypted data is concatenated with the unique identifier to the
source node Id. The message m, security key K along with S(Id) is passed through the
encryption function. Since K is mathematically related to its private key, the intruder
cannot recover the original message. Also, Id is digitally signed S by the data owner,
which reflects its authentication on the receiving end.

Mutual Authentication In the registration phase of the SBD-EC model, sink node,
mobile edges, and cloud servers generate security keys and exchange the public
keys with each other using the Schmidt-Samoa cryptosystem. The public keys are
used for data encryption and their related mathematical private key is used for
data decryption. The private keys perform the dual role of authentication along
with data confidentiality. The combination of a pair of public-private keys along
with a unique identity Id i.e., (N,d)+ Id denotes the authentication packets for
communicating node.

Integrity The collected data is divided into n sized blocks with the combination of
the padding method. Each block has a unique hash k; and it is interconnected with
hashing value of the previous block ;_; shown as h; = h;_1 xor m. If an intruder
changes any data block, then the receiver recomputes and compares with the received
hash value. In case of mismatch, it assumes the incoming data is false. Moreover, the
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arrangement of hashing values in the form of a sequence makes it not possible for
intruders to damage the integrity of data.

4. Simulations

This section presents the simulation scenarios and the obtained results. The experi-
ments were performed using 15 medical sensors and one coordinator node that is placed
on the patient body. The performance tests are evaluated using two different scenarios
(i) the number of iterations in terms of network throughput, data retrieval latency, nor-
malized routing overhead, energy consumption, and packet drop ratio (ii) the speed of
mobile edges in terms of packet disruption, retransmitted packets, data delivery ratio, and
breaches attack. In the implementation phase, we considered a platform with medical
sensors, mobile edges, sink nodes, and cloud servers. Initially, the energy level of all the
medical sensors was 2 j. The data flow among healthcare devices was considered at a
constant bit rate (CBR). A few high-powered nodes were randomly deployed in the vicinity
of sink and cloud systems that acted as mobile edges. The transmission range of medical
sensors was set to 2 m. We considered 5 to 10 nodes as malicious to evaluate the security
performance in the presence of network threats. To simulate the proposed model with
existing schemes, a well-known network simulator NS-3 was utilized, as considered in
different work [33,34]. The performance evaluation was carried out using the simulation
parameters as illustrated in Table 1.

Table 1. Simulation parameters.

Parameter Value
Medical sensors 15
Malicious nodes 5-10
Transmission power 2m
Time interval 2s
Mobile edge nodes 10

No. of the sink node 1
Payload size 512 bytes
Initial energy 2j
Observing field 15m x 15m
Simulation time 400 s

Figure 3 depicts the performance analysis of the SBD-EC model in terms of energy
consumption against other schemes. Based on the simulation experiments, it can be seen
that the SBD-EC model improves energy consumption by 18% and 32% compared to other
models. This is due to utilizing greedy heuristics for the selection of the next hop for
forwarding medical data. Furthermore, the stability period of medical sensors is increased
due to the computation of cost function which decreases the additional overheads on it.
Moreover, as the SBD-EC model employs a multi-criteria selection for the computing of
cost function which is more adjustable in constraint-oriented applications as compared
to other solutions. The proposed strategy not only confirms data routing via reliable
nodes, but it also balances the energy consumption in negotiating through shorter routes.
Unlike other solutions, the SBD-EC model decreases the calls for route maintenance and
exchange of beacon messages based on network needs, and thereby results in the least
energy consumption among selected forwarders.
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Figure 3. Energy consumption and iterations.

Figure 4 illustrates the performance of the SBD-EC model against existing solutions
in terms of data retrieval rate. Based on the results, it can be observed that it significantly
improves the data retrieval rate over the existing solutions by 37% and 46% respectively.
This is due to the fact that the SBD-EC model avoids forwarding the data on interrupted
routes and utilizes the constraints of medical sensors very efficiently. Also, the SBD-EC
model utilizes a smaller number of hops in transmitting the medical data by evaluating
the neighbors’ information. With the consideration of more reliable paths using greedy
heuristics, the SBD-EC model decreases the chances for route re-construction and network
faults, which improves the data retrieval rate from storage servers. Moreover, by making
use of security algorithms among mobile edge and cloud storage, the SBD-EC model avoids
the possibility of malicious actions altering the route directions while forwarding the data.
Furthermore, the proposed model is constantly monitoring the link latency and in case
of network congestion, it removes such a node from routing decisions and maintains the
timely delivery of sensitive patient data.

0.16 B

0.14 B
0.12 u

0.10 -

retrieval rate(sec)

varying iterations(sec)

Figure 4. Data retrieval rate and iterations.

Figure 5 illustrates the performance analysis of the proposed model in terms of packet
drop ratio as compared to existing models in varying iterations. It can be seen from the
experimental results that the SBD-EC model decreases the packet drop ratio by 26%, and
59% compared to other solutions. This is due to the incorporation of energy and link
latency factors, which chooses data forwarders more reliably with the updated values
of the network communication system. Moreover, it selects the wireless channels for
forwarding medical data with the least congestion and avoids channels with interference,
which results in minimizing the packet drop ratio. Using weighted and minimized cost,
only more optimal nodes can participate in the route discovery process, accordingly, the
SBD-EC model decreases the probability of routing faults and high congestion levels.
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Such constraints improved the packet drop ratio over unreliable communication media.
Furthermore, it utilizes mobile edges for the collection of medical data intelligently from
the sink node and securely transmits it to the cloud layer.

S —

22+ —B—SBD-EC
4 -@—LPME
RPN

data drop ratio(%)

varying iterations(sec)

Figure 5. Data drop ratio and iterations.

Figure 6 depicts the experimental results of the SBD-EC model for network throughput
against existing work. It is defined as aggregate data to the receiving side and reflects
the efficiency of any routing solution. It is revealed that the SBD-EC model increases
the network throughput by 17% and 21% compared to other models. This is because of
the proposed communication strategy of the SBD-EC model, which is split into multiple
layers and each layer operates independently with the least communication overhead.
Also, the multi-hop paradigm is utilized by the proposed model when needed and makes
use of the cost function in the selection criteria of the data forwarder. Moreover, due to
the incorporation of the link latency in the cost function, the SBD-EC model judges the
transmission flow on selected time ¢, and offers an appropriate contribution for the selection
of next-hop in medical data. Such a method significantly increases the acceptance rate of
medical data over unreliable communication routes with efficient energy management
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Figure 6. Network throughput and iterations.

Figure 7 illustrates the performance of the SBD-EC model in the comparison of nor-
malized routing overhead with varying iterations. Based on the results, it can be seen that
it reduces the routing overhead by 41 % and 47% over the existing solutions. It is due to the
fact that most of the network operations such as aggregation, fusion, etc., are performed on
high-powered edge nodes. Also, most of the management of security functions is executed
on the sink node that has unlimited resources and ensures network privacy against ma-
licious threats. Furthermore, it operates a multi-criteria cost function, which minimizes
the number of attempts for data retransmission and, significantly, produces a low routing
overhead. Moreover, it can be seen that unlike most of the schemes that are vulnerable to
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high network overheads due to the exchange of several control messages regularly, the
SBD-EC model decreases such practice and only transmits the node and network-related
information based on certain criteria.

L e e |
24

—@—SBD-EC
22 =@—LPME
RPN

normalized overhead

varying iterations(sec)

Figure 7. Normalized overhead and iterations.

Figure 8 illustrates the performance analysis of the SBD-EC model for second scenario
in terms of packet disturbance, in comparison with other schemes. Based on the results,
it is proven that the SBD-EC model improves the packet disturbance ratio by 37% and
45%. This is due to the use of heuristic cost function based on three parameters i.e., energy
consumption, bi-directional distance, and link latency parameters for data routing. Such a
strategy maintains the packet reception ratio among nodes and increases the efficacy for
network performance. Moreover, it maintains the routes’ consistency by considering the
limited constraints of nodes with nominal communication load.

32 T T

—&—SBD-EC
30 ~8—LPME

J = RPN
28
26
24

224

packet disturbance(%)

T T T T T T
2 3 4 5 6 7 8 9 10

speed of mobile edges(m/s)

Figure 8. Packet disturbance and mobility.

Figure 9 illustrates the performance of the SBD-EC model against other solutions
for second scenario. It can be seen from the experimental results that the SBD-EC model
decreases the ratio of retransmitted packets by 37% and 45% compared to other models.
This is due to the fact that the SBD-EC model decreases the probability of choosing non-
optimal routes for forwarding healthcare data even in the case of mobility of medical
edges. The incorporation of latency values increases the ratio of routes that can decrease
the delivery ratio, thus the SBD-EC model is continuously searching for another route until
it finds the optimal performance. Moreover, a properly secured and mutual authentication-
based solution is offered by the SBD-EC model, which strengthens the communicating
nodes in terms of packet delivery performance with the least transmission distance.
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speed of mobile edges(m/s)

Figure 9. Retransmitted packets and mobility.

Figure 10 depicts the performance of the SBD-EC model for second scenario in the
comparison with other solutions. Based on the experimental results, it is revealed that it
increases the packet delivery ratio by 13%, and 17%. This is due to the fact that the SBD-EC
model minimizes the number of hops and data latency in forwarding the nodes” data. Also,
the weighted cost values give uniform contributions from each parameter and optimize
the performance. In the SBD-EC model, the mobile medical edge performs a key role in
data collecting and forwarding toward cloud services. Moreover, due to the mobility factor,
the SBD-EC model decreases the data retrieval rate from nodes and offers a significant
improvement in message delivery. Furthermore, with proper management of crowding
control on the selected route, the SBD-EC model maintains the well-timed distribution of
health data to medical servers.

100 T T T T T T

SBD-EC T
LPME

I RPN

packet delivery ratio(%)

1 2 3 4 5 6 7 8 9 10 M
speed of mobile edges(m/s)

Figure 10. Delivery ratio and mobility.

Figure 11 illustrates the performance analysis of the SBD-EC model compared with
other solutions in the case of breach attack. It can be seen from the experimental results
that the SBD-EC model decreases the malicious attacks by 41%, and 49% and increases the
trustworthiness among nodes. The generation of security keys by high computing nodes
guarantees secure transmission in real-time scenarios even in the existence of intruders.
Moreover, mathematical and related keys are utilized by directly connected nodes for data
confidentiality and mutual authentication. Furthermore, the sequence of unique hashes
gives little time to intruders for destruction and compromising the sensors” data. The SBD-
EC model sets up the routing paths with data security along with reliable delivery, thus
increases the trustworthiness for medical data without ignoring the resource constraints.
Communication routes are such that energy consumption is balanced.
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Figure 11. Breaches attack and mobility.

5. Conclusions

In recent decades, healthcare technologies such as biosensors, communication devices,
and medical apps have been integrated with cloud computing to enable effective commu-
nication systems. However, most of the solutions have simply addressed the forwarding
scheme to handle the healthcare data without considering constraint-oriented networks.
Although some solutions cope with data security, they impose additional overheads in
terms of processing and computation. In this paper, a model for the IoMT with Big Data
Analytics using Edge—Cloud architecture is introduced which aims to increase the trust
level of connected medical sensors. The computed cost function using greedy heuristics
decreases the data retrieval rate based on mobile edges and improves the management
of big data analytics. Moreover, the high-cost security computations are implemented
on the sink and mobile edges that lower the overhead on the IoT network. Furthermore,
it provides data privacy and authentication before arranging the medical data on cloud
systems. The SBD-EC model was analyzed, and experimental tests revealed its significant
performance in dynamic scenarios. In the future, we aim to provide security against some
other potential network vulnerabilities. The scalability factor also needs to improve for
mobile users connected with multiple clouds.
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