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Abstract: In this letter, we present the first attempt of active light-emitting diode (LED) indexes
estimating for the generalized LED index modulation optical orthogonal frequency-division multi-
plexing (GLIM-OFDM) in visible light communication (VLC) system by using deep learning (DL).
Instead of directly estimating the transmitted binary bit sequence with DL, the active LEDs at the
transmitter are estimated to maintain acceptable complexity and improve the performance gain
compared with those of previously proposed receivers. Particularly, a novel DL-based estimator
termed index estimator-based deep neural network (IE-DNN) is proposed, which can employ three
different DNN structures with fully connected layers (FCL) or convolution layers (CL) to recover the
indexes of active LEDs in a GLIM-OFDM system. By using the received signal dataset generated in
simulations, the IE-DNN is first trained offline to minimize the index error rate (IER); subsequently,
the trained model is deployed for the active LED index estimation and signal demodulation of the
GLIM-OFDM system. The simulation results show that the IE-DNN significantly improves the IER
and bit error rate (BER) compared with those of conventional detectors with acceptable run time.

Keywords: visible light communications; deep learning; bit error rate; orthogonal frequency division
multiplexing; index modulation

1. Introduction

Visible light communication (VLC) is a promising alternative for complementing
the overcrowded radio frequency bandwidth of wireless communication owing to its
license-free operations, relative low cost, high spatial diversity, high bandwidth efficiency,
and electromagnetic interference-free transmission [1–7]. Orthogonal frequency division
multiplexing (OFDM) has been extensively used in VLC to maintain a better transmission
rate due to its high spectral efficiency and low-complexity implementation to achieve
better transmission rates [8,9]. Recently, the combination of multiple-input multiple-
output (MIMO) and index modulation [10–13] to convey additional bits has gained a
lot of attention in VLC literature. There are several published papers that investigated
different aspects of the index modulation technique, such as non-coherent detection [14],
low complexity detection [15], or precoding [16]. In addition, index modulation was
proposed in optical communication [17] and later in [18] to implement generalized 4× 4
light-emitting diode (LED) index modulation (GLIM-OFDM); in which the four transmitter
side LEDs were divided into groups to transmit real-imaginary and positive-negative
signals separately. As a result, depending on every OFDM symbol, just one LED in each
group was chosen to convey the OFDM symbol parts. In [19], an LED selection algorithm
for GLIM-OFDM was introduced to determine the best active LED combination to improve
the system performance.

In general, a maximum likelihood (ML) detector is cost-ineffective and unpractical
for an OFDM-based communication system. According to [18,19], maximum a posteriori
(MAP) detectors are better than zero-forcing (ZF) and minimum mean square error (MMSE)
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detectors because of their better bit error rate (BER) performance and reasonable demod-
ulation complexity. However, because all previously mentioned detectors only consider
the instantaneous signal received at the receiver, the underlying relationship between the
generated OFDM symbols is not fully exploited in the demodulation process.

Deep learning (DL) has had an enormous impact on various research fields over the
last couple of years; it has been applied in wireless communication since then [20–23].
Many researchers have already suggested DL solutions to wireless communication prob-
lems, e.g., modulation detection and signal detection [24]. VLC channel models, similar to
radio frequency channel models, have been developed according to probability and signal
processing theories. Furthermore, DL techniques have recently made a number of advance-
ments in the VLC system. Since the VLC transmission must be able to support a variety
of constraints, such as dimming and lighting, according to user preferences in practical
applications, the implementation of DL becomes more challenging. In [25], a data-driven
approach based on DL was proposed to predict the outage events in a line-of-sight link.
In [23], DL-based constellation design scheme for MIMO-VLC systems was introduced,
which can significantly reduce complexity compared to existing schemes while maintaining
a near-optimal performance. Despite a wide range of promising applications, the perfor-
mance of VLC systems has been impaired by the high SNR required to achieve a low error
rate for a variety of scenarios. Therefore, DL approach can be applied to VLC systems
to improve performances in practical high-speed and low error-rate indoor transmission
application, such as hospital facility. To the best of the authors’ knowledge, no researcher
has used DL to improve the BER performance of the GLIM-OFDM system.

In this paper, a deep neural network (DNN)-aided active LED index estimator (IE)
for improving the GLIM-OFDM detector performance in the VLC system is proposed.
Unlike traditional DNN-based detectors, which directly estimate the transmitted bits at the
transmitter side, the proposed method extracts the feature of the active LED index set with
the time-domain signal of the receiver. Estimating the GLIM system’s active LED indexes
is crucial for detecting the transmitted signal; this step has usually been performed by the
ZF, MMSE, and MAP detectors in previous studies [18,19]. Although an ML-based detector
is performance-optimal but impractical, a DNN-based solution is complexity-efficient and
still useful for performance enhancement. Briefly, the key contributions of the proposed
method are as follows:

• An IE-based DNN (IE-DNN) is introduced into the GLIM (multiple-input multiple-
output) MIMO-VLC demodulator;

• Only a single IE-DNN module without the need to change the transmitter and the
signal demodulation part in the receiver structure;

• Three different structures of the IE-DNN are proposed and compared to demonstrate
that the CNN-based estimator delivers the best performance;

• In comparison with conventional detectors, a remarkable active LED index estimation
accuracy significantly improves the BER performance at acceptable complexity costs.

This paper is organized as the following. In Section 2, we describe the system model of
the GLIM with the mention of conventional detection techniques. In Section 3, we present
the proposed DL-based index estimator include different network structures, the sample
generation, and training specification stages. In Section 4, we provide the simulation results
to demonstrate the advantage of the proposed index estimator in comparison with the
previous ones. Finally, we provide the concluding remark in Section 5.

2. GLIM System Model

This section presents the GLIM system model in Figure 1, which focuses on the MIMO
transmission of nT × nR; nT are nR are the numbers of LEDs and PDs, respectively. Without
loss of generality, it can be assumed that nT = nR = n, where n is an even number. In the
GLIM, the OFDM modulator directly processes the complex frequency-domain OFDM
frame through inverse fast Fourier transform (IFFT) operation. After the parallel-to-serial
(P/S) operation, the time-domain OFDM signals xl (l = 1, · · · , N) are separated into their
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real and imaginary parts (xl = xl,R + jxl,I) and converted into the time-domain signal
vector t = [x1,R, x1,I , x2,R, x2,I , . . ., xN,R, xN,I ] of length 2N. Therefore, the GLIM technique
transmission can help to convey complex and bipolar signal to the real and unipolar signal
to be transmitted through the VLC channel. Consequently, the vector z = [z1 · · · zn]T is the
signal transmitted by the LEDs. In the receiver side, after estimating the active LEDs and
recovering the transmitted signal, the serial-to-parallel (S/P) and fast Fourier transform
(FFT) operations convert the received signal to the estimated symbol. More specifically,
N is the number of subcarriers and 4N is divisible by n; consequently, the vector t is
transformed into a matrix T of size 4N/n× n/2. At each time instant i, each column of T
(a signal vector of length n/2)) is transmitted by all n LEDs as zi. More specifically, let

sgn(a) =
{

1, if a ≥ 0
−1, if a < 0

, (1)

the j-th signal of the i-th column of T can be transmitted with all n LEDs as

zi(2(j− 1) + 1) =
sgn(T(i, j)) + 1

2
T(i, j),

zi(2j) =
sgn(T(i, j))− 1

2
T(i, j).

(2)

Consequently, by activating a half number of LEDs while the other half are inactive,
the signal zi is transmitted over the n× n optical MIMO channel as

yi = Hzi + ni, (3)

where yi = [yi(1), · · · , yi(n)] is the received signal, H ∈ Rn×n is the optical communica-
tion channel matrix, and ni is real-valued additive white Gaussian noise with elements
distributed as N (0, σ2

w). In addition, a flat fading channel is considered in this letter [18].
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Figure 1. System model with proposed estimator.

Among the three detection techniques, e.g., ZF, MMSE, and MAP, MAP is regarded
as the preferred receiver as it can achieve the best BER performance [18]. Moreover,
the number of transmitted signals (4N) is generally high owing to a large number of
subcarriers (N) used for transmission. For example, in the OFDM modulation of eight
subcarriers, the transmitted signal vector at the LEDs has a size of 32 and this number is 128
with 32 subcarriers. Meanwhile, a small number of LEDs in MIMO-VLC systems, usually
four LEDs [18], or eight LEDs [19], are used in transmission, leads to only four or eight
signals that are simultaneously transmitted by LEDs and detected by the MAP detectors at
the same time. To improve the demodulation performance, all the received signals (e.g.,
the vector y = [y1. . ., yi, . . .y4N/n]) instead of only the n-length received signals yi should
be simultaneously considered in the demodulation process. In the next section, three
model-driven DNN architectures as alternatives to conventional receivers (e.g., ZF, MMSE,
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and MAP detectors) are proposed; the methods combine DNN with expert knowledge for
wireless communication.

3. Structure and Operation of DL-Based Index Estimator
3.1. Proposed DL-Based Index Estimator

To consider the BER and computational complexity of different network structures
and parameters for the active LED IE, three IE-DNN structures are considered. The three
IE-DNN structures are constructed with an LED-based fully connected DNN (LFC-DNN),
a subcarrier-based fully connected DNN (SFC-DNN), and a convolutional neural network
(CNN), respectively. The DNNs contain several sub-blocks that are sequentially connected
(the so-called hidden layers). The three IE-DNNs are presented in Figure 2.

f (0) f (1) f (3)yi

yi (1)

yi (2)

yi (n)

...

(a) LFC-DNN

Îi

Îi (1)

Îi (2)

Îi (n/2)

...

Î

Î4N/n (n/2)

y

y4N/n (n)

...
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...

...
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...... ......

f (2)

f (0) f (1)

(c) CNN
f (3)f (2)

f (0) f (1) f (3)

(b) SFC-DNN
f (2)

yi (1)
Îi (1)

CLFCL BN Flatten

Figure 2. IE-DNN-assisted active LED IE structures for GLIM-MIMO system: (a) LFC-DNN, (b) SFC-
DNN, (c) CNN.

More specifically, for a 4× 4 system and OFDM symbols with 16 subcarriers, the size
of the time-domain signal vector t is 32 because the real and imaginary parts are transmitted
separately. Thus, for the LFC-DNN in Figure 2, the input is a vector of length four, and the
output is a vector of length two. For the SFC-DNN and CNN, the outputs are vectors of
length 16; the inputs are vectors of length 64 and matrices of size 16× 4, respectively.

3.1.1. LFC-DNN

The LFC-DNN takes the instantaneous received signal at the PDs (yi) as the input.
The predicted instantaneous active LED index vector for the corresponding input is ob-
tained as a vector of length n/2 at the output. For a 4× 4 system, the received signal vector
of length four (yi) is taken as the DNN network input. Subsequently, the LFC-DNN outputs
a vector of length two as the estimated LED index value, for example, Ĩi =

[
Ĩi(1) Ĩi(2)

]T

with Ĩ1(i) as the estimated active index for the T(i, 1) signal. The estimated active index Îi
can be derived with hard decision decoding as

Îi(j) =
{

1, Ĩi(j) ≥ 0.5
0, Ĩi(j) < 0.5,

(4)

If Îi(1) = 1, the signal T(i, 1) has a positive value and was transmitted by the first LED.
If Îi(1) = 0, the signal T(i, 1) has a negative value and was transmitted by the second LED.
For i = 1, . . ., 4N/n, the estimated active index vectors Îi are concatenated to determine the
estimated vector Î =

[
Î1. . ., Îi, . . .Î4N/n

]
. Finally, with the estimated active LED indexes, the
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demodulation process is generally conducted with FFT and QAM demodulation steps to
obtain the original binary information sequence, similar to the previous demodulator [18].
All four sub-blocks are composed of fully connected layers (FCLs) and activation functions
f (0), .., f (3). The numbers of neurons in the FCLs are 32, 16, 16, and 2, respectively.
Moreover, the activation functions for the first three sub-blocks f (0), f (1), f (2) are “ReLU”
activation functions, while the activation function for the last sub-block f (3) is a “Sigmoid”
activation function. The “ReLU” function is as following form

ReLU(x) =
{

x, x ≥ 0
0, x < 0

, (5)

while the “Sigmoid” function has the following form

S(x) =
1

1 + e−x . (6)

3.1.2. SFC-DNN

Because the time-domain signal t after the IFFT step is a vector that the elements
contain underlying information about the relationship between the QAM symbols mapped
onto the OFDM subcarriers, the input for the network should be the entire received
time-domain signal vector y = [y1 · · · y4N/n] to exploit the underlying features of the time-
domain generated signals. Intuitively, a structure that uses the received signal vector y at
once is more complex and requires higher computational complexity cost. Nevertheless,
it will be demonstrated in the simulation section that this cost will be accommodated by
the performance gains, which is of most importance since the computational capacity of
recent mobile devices has been enormously enlarged. The SFC-DNN is identical to the
LFC-DNN, except that the input of the network is the vector y, which is composed of
all time-domain received signal at all LEDs (it is a vector of length 4N). To facilitate the
increase in the number of inputs, the numbers of neurons in the FCLs are 48, 32, 32, and 16,
respectively. The remaining parameters (e.g., the activation functions) are identical to those
of the proposed LFC-DNN.

3.1.3. CNN

The CNN structure contains four sub-blocks, such as the previously presented DNN
structures. However, instead of using the FCL in all sub-blocks, a batch normalization
(BN), convolution layer (CL), and an activation function are employed in the first three
sub-blocks while the last sub-block remains identical to those of the previously proposed
structures. The CL contains 16 kernels with sizes of 1; the number of neurons in the
last FCL is 16. Such as the SFC-DNN structure, the CNN structure receives the received
time-domain signal [y1, · · · , y4N/n]

T as the network input in the form of a matrix to exploit
the underlying features of the received signals. It is well known that the CL can perform
neighborhood filtering on the inputs to capture the input features [26]. Moreover, to ensure
that the inputs in the consecutive layer follow the same distribution, to improve the speed
of CNN training significantly, and to alleviate the initial parameter dependency of the
learning process, BN is considered before using the CL in each sub-block.

3.2. Sample Generation

Training samples are obtained by randomly generating information bits and process-
ing according to the system model as QAM mapping, IFFT. Then, the cyclic prefix (CP)
is added to IFFT symbols to effectively mitigate multipath which induces intersymbol
interference. Subsequently, the time-domain OFDM symbols are mapped onto the cor-
responding active and inactive LEDs; for each signal, a positive value indicates that the
index value is one and vice versa. More specifically, one training sample can be denoted
as u = {y, I}. It should be mentioned that due to the difference between the proposed
networks, the sizes of input vectors are different. However, a similar process of training
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and testing sample set generation can be applied. Moreover, to speed up the training
process and improve the prediction performance, we usually notice that a small number
of layers will outperform the more complicated network when the i-th element of l-th
normalization training sample d(l)

i [23] is expressed as

d(l)
i =

u(l)
i −E{ui}

max(ui)−min(ui)
. (7)

3.3. Training Specification

The proposed IE-DNN estimators need to be trained offline prior to the online deploy-
ment stage. The parameters of the IE-DNN network are optimized during offline training.
The binary cross-entropy loss function [26] is used to quantify the difference between the
predicted and actual training indexes as

L
(
I, Î

)
=

N

∑
τ=1

I(τ) log Î(τ) + (1− I(τ)) log
(
1− Î(τ)

)
−N

, (8)

where N = n/2 for the LFC-DNN network and N = 4N/n for the SFC-DNN and
CNN networks, respectively. In the next step, the network parameters can be optimized
with the adaptive moment estimation optimizer (ADAM), with early termination and
ReduceLROnPlateau callbacks in Keras. More specifically, ADAM [27] is an algorithm
based on adaptive estimates of lower-order moments to first-order gradient-based optimize
stochastic objective function. After offline training, the optimal parameters for the IE-DNN
estimator can be used to estimate the active LED index at the receiver side. If the received
time-domain OFDM symbols are input into the trained IE-DNN estimator, the active LED
index can be estimated in accordance with the framework defined in Section 2. With the
estimated active LED indexes, the demodulation is similar to that of the conventional
demodulators [18].

3.4. Complexity Analysis

The computational complexity is generally measured by the number of operations
based on the active LED index detector and the OFDM algorithm [18]. The required num-
ber of FLOPs operations of the algebraic expressions [28] can be summarized in Table 1.
Moreover, the real operations for GLIM with MAP detector consist of 76N + 4N log2(N)
real multiplications and 32N + 4 log2(N) real additions, which can be approximated as
O(N log2 N) [18]. On the other hand, the computational complexity of the proposed active
LED index detectors is dominated by the structure of the networks, such as the dimension
of each input, output of layer, and the number of hidden layers. More specifically, the oper-
ations for the GLIM with SFC-DNN also consist of 98N + 4N log2(N) real multiplications
and 64N + 4 log2(N) real additions, while the operations for the GLIM with CNN can be
composed of 80N + 2N2 + 4N log2(N) real multiplications and 48N + N2 + 4 log2(N) real
additions. However, most of the network operations are the feed-forward computations
with sparse vector-matrix and matrix-matrix multiplications. Therefore, the asymptotic
complexity for the proposed SFC-DNN and CNN detectors can be similarly expressed as
O(N log2 N) and O

(
N2), respectively.
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Table 1. Complexity cost of matrix-vector operations [28].

Expression Description Multiplications Summations Total Flops

αa Vector Scaling N N
αA Matrix Scaling MN MN
Ab Matrix-Vector Prod. MN M(N − 1) 2MN −M
AB Matrix-Matrix Prod. MNL ML(N − 1) 2MNL−ML
AD Matrix-Diagonal Prod. MN MN
aHb Inner Prod. N N − 1 2N − 1
acH Outer Prod. MN MN
AHA Gram MN(N+1)

2
N(M−1)(N+1)

2 MN2 + N
(

M− N
2

)
− N

2

‖A‖2 Euclidean norm MN MN − 1 2MN − 1
Q−1 Inverse of Pos. Definite N3

2 + 3N2

2
N3

2 −
N2

2 N3 + N2 + N Including N roots

4. Results and Discussion

In this section, the estimation accuracy of the active LED indexes is evaluated with
the index error rate (IER), and the BER characteristics of the proposed methods (LFC-
DNN, SFC-DNN, and CNN) are compared with those of the conventional index estimation
algorithms (the best method is MAP detection). Besides, the complexity costs are also
compared in terms of the run time measurement. More specifically, a MIMO VLC system’s
performance composed of 4 LEDs and 4 PDs are shown. For convenience, the system
configurations of the simulation are similar to those in [18]: a 5 m × 5 m × 3 m room,
positions of LEDs, PDs, and the channel gain matrix are similar to the physical channel C
in [18] is used for the simulation. At the transmitter, OFDM is employed with two cases.
Case 1 and 2 have N = 8 and N = 32 subcarriers, respectively. In both cases, 4-QAM
symbols are mapped onto the subcarrier before the IFFT. A CP length of six is chosen for
the computer simulation to ensure that it covers the maximal delay spread of the channel.

Subsequently, the IE-DNNs are trained over 200 iterations with a batch size of 400 sam-
ples. Moreover, the networks are trained with 200 epochs during each iteration. When
the validation loss value stops improving, the iteration can be terminated early. When the
validation loss does not improve after 50 epochs, the learning rate is reduced by 1/3 until
it reaches the minimum (0.0002).

Figure 3 compares the index error rates (IER) of the different algorithms. Nevertheless,
the MAP estimator only achieves an IER below 0.1 while the proposed SFC-DNN and CNN
are better in estimating the active LED index. More specifically, an accuracy of 0.001 can
be obtained in the high SNR regime. In addition, the higher the number of subcarriers is,
the better the index accuracy is. Because the LFC-DNN and MAP detection have similar
results, the simultaneous extraction of all received signals at the PDs and the additional
signal features remarkably improve the index estimation accuracy.

Figure 4 presents the BERs of Case 1. As the IER values of the MAP detection and LFC-
DNN are similar, their BERs are the worst among those of all compared estimators. The
CNN-based estimator exhibits significantly better BERs than the others. More specifically,
at the SNR value of 10 dB, the proposed CNN, FCN, and the conventional MAP detector
achieve a BER value of 10−4, 10−3, and 10−2, respectively. Nevertheless, the SNR gain in
the BER is only 4 dB when a CNN instead of MAP detection is used. This is because the
total number of correctly estimated active LED indexes is not the sole dominant factor that
affects the BERs of the demodulator. Because the estimator only estimates the active LED
index, after the CNN-based and other estimators, the signal magnitude of the active LEDs
is also an essential factor that impacts the BER. With its lower IER, MAP detection can
estimate a good number of active LEDs with large signal magnitudes, which leads to an
acceptable BER. Moreover, owing to the remarkably high accuracy of SFC-DNN and CNN
regarding the IER, the additional correct LED index estimation usually lower in signal
magnitude and not as important as the higher ones. Therefore, only an SNR gain of 4 dB
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can be achieved with the CNN-based estimator. On the other hand, with lower complexity
cost, the proposed FCN can only provide a SNR gain of 3 dB at the BER value of 10−6.
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Figure 3. Comparison of IER: (a) Case 1 and (b) Case 2.
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Figure 4. Comparison of BERs for Case 1.

The same observation is made in Case 2. In Figure 5, the CNN-based estimator
achieves an SNR gain of approximately 3 dB, and SFC-DNN achieves an SNR gain of
only 2 dB. More specifically, the proposed PCN provides a same performance with the
conventional MAP detector in almost all SNR regions, except the SNR value between 0
and 5 dB. Additionally, in comparison with Case 1, due to a large number of employed
subcarriers, an additional SNR increment of around 3 dB is required to maintain same
value of 10−6 BER. Therefore, the performance observed in all figures demonstrates the
advantage of the proposed detector over the conventional MAP detector in terms of error
rate performance, which is most important to the reliability of VLC systems.

In Table 2, the complexity costs of the compared estimators are analyzed. To evaluate
the run time of both IE-DNN estimators and the MAP estimator, we use MATLAB to convert
the trained model from Keras and estimate the run time for each sample. It should be noted
that only the active LED index estimation results are evaluated in this simulation because
all other operations (e.g., the costly IFFT computation) are the whole part and identical
for all estimators. For all cases, the run time increases with the number of subcarriers
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hence the number of trainable parameters. The MAP estimator with its simple algorithm
and poorer performance has the shortest estimation time; by contrast, the SFC-DNN with
the highest number of trainable parameters has the longest estimation time. Interestingly,
the CNN exhibits the best performance. At first glance, it seems that the SFC-DNN and
CNN estimators are computational costly for GLIM-VLC systems. However, compared
with other operations, such as IFFT and QAM demodulation (which significantly increase
complexity), the active LED index estimation increase does not significantly impact the
total complexity cost. Moreover, with the ever-growing computational power of mobile
devices and required quality of services, the BER improvement is much more important
than complexity costs.
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Figure 5. Comparison of BERs for Case 2.

Table 2. Comparison of run time of active LED IEs.

Detector Numbers of Trainable Parameters Estimation Time
(Case 1/Case 2) (Case 1/Case 2)

LFC-DNN 994/994 13 ms/44 ms
SFC-DNN 4736/9544 28 ms/78 ms
CNN 3096/6328 22 ms/67 ms
MAP -/- 6 ms/23 ms

5. Conclusions

This paper presents an IE-DNN for active LED index estimation in GLIM-MIMO-
VLC demodulation. The proposed network structure promotes signal demodulation by
estimating the correct active LED indexes. Moreover, the simulation results of the proposed
LFC-DNN, SFC-DNN, and CNN are compared. According to the results, the relationship
between the time-domain OFDM signals can be exploited to a higher extent with the
IE-DNN structures. Especially, with an acceptable complexity cost, the network with CNN
one is the one that can provide the best IER and BER performance improvement.
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Abbreviations
The following abbreviations are used in this manuscript:

AWGN Additive white Gaussian noise
CL Convolution layers
CNN Convolutional neural network
DNN Deep neural network
FCL Fully connected layers
MIMO Multiple-input multiple-output
LED Light emitting diode
GLIM Generalized LED index modulation optical orthogonal frequency-division multiplexing
PD Photo detector
MAP Maximum a posteriori
ZF Zero-forcing
VLC Visible light communication
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