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ABSTRACT Smart grids are re-engineering the electricity transmission and distribution system throughout 

the world. It is an amalgam of increased digital information with the electrical power grids. Managing the 

data generated from the grid efficiently is the key to successful knowledge extraction from the smart grid big 

data. Most of the scientific advancements are becoming data-driven and becoming an interesting area of 

research for data scientists. It is challenging the world computationally enough to develop new storage 

methods and data processing technologies. Managing big data involves data cleaning, integration  of varied 

data sources, and decision-making applications. This paper focuses on the study of big data management and 

proposes a management process to help manage the data in the grid. Data management tools and techniques 

have been leveraged in understanding the sources and data types in the grid. The paper emphasizes the 

limitations of the existing solutions inclined towards applications of the smart grid big data. 

INDEX TERMS Apache Spark, Big data, Data mining, Hadoop, Indexing, Management process, Smart 

grid, Stream Mining  

I. INTRODUCTION 

In the past decade, electricity consumption has evolved in 

practice and, the power generation modes have changed with 

the development of renewable energy sources and the 

transformation of electrical systems is a must to properly 

balance electrical consumption and electricity production.  

Smart grids provide a safe and reliable integration of different 

renewable sources into the generation mix and guarantee the 

safe operation of the electrical systems.  

A smart grid can be viewed as an amalgamation of 

information and electrical power. It forces a cross-fertilization 

of electrical systems with different fields such as statistics, 

applied mathematics, and optimization methods.  The massive 

amounts of high dimensional data produced from the grid 

brings several new challenges and opportunities to the table. 

The solution to these challenges would lead to a substantial 

contribution to the research area of big data management for 

smart grids. Managing the data generated in the grid, turning 

the data into useful information, and making decisions are a 

few of the most important steps in managing the smart grids.  

Big data management in the smart grid plays a vital role in the 

applications and extracting information from smart grids’ 

data. 

    Big data offers potential insights and is crucial for the 

efficient functioning of the smart grid  [1]. Information from 

big data being valuable, many energy companies have 

invested in handling the data to perceive innovative and 

actionable insights. It is estimated in a preliminary assessment 

by a utility that the amount of data required to process 

transactions of its customers would reach about 25 gigabytes 

of data points per day  [2].  This set of large data to be managed 

is a challenge. Energy companies like ENEL are moving 

towards new strategies and plan to be data-driven companies 

exploiting huge amounts of data obtained from the grid 

architecture, customers, etc. [3]. It is estimated that more than 

80% of the companies will be evaluating to migration of their 

data from data center to the cloud to estimate associated 

savings [4]. ENEL plans to focus on a platform model rather 

than a pipeline model involving data-driven networks. It is 

very crucial to manage the smart grid data as it would help the 

utilities to understand the demand and perform a dynamic 

balance of demand and supply. This requires deep analysis of 
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demand data concerning different conditions of weather, 

different days of the month, different months of the year, 

weekends, and holidays for residential, commercial, and 

industrial customers.  Also, it involves huge volumes of 

granular data to be processed and the correlations between 

different data features to be identified [5].  Also, it is very 

crucial to identify different analytic and data management 

strategies to be utilized for different applications and usage. 

The authors in [6] have discussed the use of block chain 

technology in applications such as metering, energy trading, 

demand response, microgrids, virtual power plants, load 

forecasting which are all highly dependent on effective data 

management in the smart grids. The biggest players in the 

energy market have utilized big data technologies to manage 

the grid. National Grid, DTE Energy, and Ausgrid are some of 

the largest utilities which have used the International Business 

Machines (IBM) insights foundation for energy to help 

improve their decision-making for monitoring of asset health 

and maintenance [7]. 

   NextEra, one of the top renewable energy-producing 

companies, claims to perform ($3 to $4 per MWh) better than 

any other company in the United States by dynamically 

operating its wind turbine using machine learning techniques 

[8]. A SAS data management and predictive analytics 

platform were implemented by Électricité deFrance (EDF 

Energy) to perform churn modeling for the evaluation of the 

propensity of electrical users who change their utility provider 

[9]. The company has built SAS models to process immense 

volumes of data easily and accurately for training and then the 

models test or predict variables against all the data features. 

Incorporating a broad range of modeling techniques such as 

logistic regression etc. the company predicted that the top 25% 

of the customers are more inclined to opt dual fuels which 

resulted in customers being less liable to churn.  This helped 

the company save an average of £300 million a year. The 

company has also utilized Hadoop to store time-series data and 

to perform analytics [10]. Romeo project is a five-year and €16 

million project led by Iberdrola Renowables Energia [11]. 

This project focuses on managing the data from the wind 

farms using predictive models and physical fault models to 

lower the operation and maintenance costs of the wind farms 

[12]. The importance and uses of managing big data from the 

grid are endless. The following are the areas that get impacted 

the most by smart grids [13]: 

• Peak Demand and Energy usage- includes subareas of 

advanced metering infrastructure, pricing policies, 

customer end sensors, etc. 

• Energy efficiency in the distributed systems- includes 

subareas of line losses, voltage, and frequency 

optimization, etc. 

• Operations and maintenance savings from advanced 

metering infrastructure- includes subareas of smart meter 

reading, service changes, outage management, etc. 

• Operations and maintenance savings from distribution 

automation- includes subareas of automated and remote 

operations, operational efficiency and optimization, etc.  

• Distribution system reliability- includes subareas of 

feeder switching, asset monitoring, and health sensors, 

etc. 

• Transmission system operations and reliability- includes 

sub-areas of synchro-phasor technology for wide-area 

monitoring, visualization, operations control, etc. 

   The data sizes reaching petabytes is currently a challenge for 

the databases to process the data. To overcome this problem 

current utility companies are extracting processed data rather 

than raw data. The smart grid big data is booming, and it has 

become very critical to extract meaningful information from 

it. With the advent of smart grid systems, the energy data that 

is generated in huge volumes and at high velocity can be 

recorded and communicated for further processing. To 

perform the analytics on the data for required applications and 

visualization, relevant software technologies must be in place 

[14]. Few of the developed bigdata platforms in different fields 

summarized include TVA’s Hadoop-based smart grid 

management system, Kyushu’s cloud computing-based fast 

data processing platform, and others are discussed in [15][16]. 

There is no unique platform or tool that can serve as a solution 

to all the big data challenges, as each technology has its own 

merits and demerits in addressing the challenges and each 

provides a perfect specific solution to one challenge of big data 

or the other challenge that is being dealt with. Nevertheless, 

data management calls for time and energy to be invested in 

the development of better solutions to manage the grid. 

Several platforms have been proposed to manage the data 

from the grid ranging from cloud-based platforms to the real 

world implemented platforms with a primary focus on smart 

grid data [17][18][19][20][15][21].  

The main contribution of this paper is to review big data 

management processes that can handle the data from the grids 

using the latest data handling techniques. The paper focuses 

on dealing with both archived and real-time energy data and 

intends to manage the data with the help of servers/data 

centers. The data is cleaned and made available to perform 

analytics also supporting machine learning to help make 

decisions related to the grid. 

   This paper, aiming to apply big data technologies to the 

smart grid, proposes an architecture for big data management 

with detailed discussion on data acquisition,  data pre-

processing, and data communication. The proposed 

architecture is a distributed management system that takes 

care of acquisition, data monitoring as a platform, and pre-

processing in the form of data mining, data identification, and 

data sharing techniques. The distributed file system that can be 

used for data storage is also discussed. The paper gives an 

overview of the challenges of big data management in smart 

grids. 

    The rest of the paper is organized as follows: Section II 

details the related work in the area of big data management in 

the smart grid. Section III outlines the big data technologies in 

smart grids. Section 4 summarizes the software technologies, 

the various data types present in the smart grid’s data, and the 

mathematical terminology involved in handling the smart grid 

data. Section 5 discusses the challenges faced and Section 6 
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proposes a big data management platform that will overcome 

the challenges discussed in Section 5. Section VII concludes 

the paper. 

II. RELATED WORK 

A. Cloud-Based Big Data Platforms 

Many frameworks have been proposed in the literature to 

understand the data flow, analyze the data, and manage the 

data in smart grids. Previous works include the proposal and 

implementation of big data frameworks in the smart grids to 

take decisions on many aspects such as balancing demand, 

load forecasting, grid infrastructure optimization, asset 

management, consumer behavior analysis, state estimation, 

and service quality analytics, etc. 

   In [17], Mayilvaganan et al. proposed a cloud-based smart 

grid management architecture that analyses the big data for 

balancing the demand and supply to meet customer needs. 

The analysis helps in efficiently dealing with power 

generation and distribution. The advantages of this 

architecture involve the use of cloud computing and big data 

analytics to perform various functionalities in the smart grid, 

i.e. 

• Prediction of energy production by historical data 

analysis. 

• Prediction of demand in advance by consumer behavior 

analysis. 

• The decision of high or low priority demands 

In [18], Yogesh et al. have proposed ‘Floe’s, a continuous 

data flow engine that utilizes a private cloud infrastructure. 

The proposed cloud-based D2R (Dynamic Demand 

Response) platform performs intelligent dynamic demand 

response management relieving the load peaks in the power 

grid.  The platform has been validated on a microgrid and it 

is adaptable to ingest dynamic data flow. Demand 

forecasting has been performed by training massive datasets 

with scalable machine learning models. In [19], Baek et al. 

proposed ‘Smart-Frame’ as a secure cloud-computing-based 

big data platform to analyze a voluminous amount of data 

acquired from power assets, smart meters, and distinct types 

of front-end devices in the grid. Along with the structural 

framework to form hierarchical cloud computing services for 

big data analysis and information management, and identity-

based encryption security solution has also been presented. 

A popular cloud computing opensource platform called 

eucalyptus has been utilized for the prototype 

implementation [20]. It is in sync with the Amazon Web 

Services (AWS) industry standards and cloud APIs which 

also support virtualization technologies like VSphere, Xen, 

VMWare, and KVM. The platform can also be developed 

and implemented on major operating system distributions 

like Ubuntu, Debian, etc. The platform is built such that the 

following cloud computing services can be accessed:  

 

• Infrastructure-as-a-Service (IaaS)- This layer stands as a 

backbone of the system with the main tasks involved 

such as information gathering, storing, and processing. 

This layer serves all their sources demanded by the 

services and applications deployed in the smart grid 

system. 

• Software-as-a-Service (SaaS)- At the top of the system, 

all the services (smart grid) will be set up in the SaaS 

layer. The SaaS applications will have a user-friendly 

interface. For example, Google Power Meter tracks 

almost real-time electricity usage statistics and helps 

customers optimize or save energy. 

• Platform-as-a-Service (PaaS) - In this layer, applications 

and services are developed based on cloud computing 

with the help of tools and libraries provided, e.g. 

Salesforce. Platform as a service in the field of smart 

grids will help in the implementation of customized 

applications. It will make data management easier and 

quicker to some extent, as the service already integrates 

the special security requirements and lawful 

interceptions needed. Cloud characteristics will be 

inherited from the applications developed. 

• Data-as-a-Service (DaaS) - This layer provides useful 

information for statistical use from the extremely large 

smart grid data files. This layer can be used not only by 

the customers but also by electricity providers.  This 

service is provided only as read-only, and the data 

provided cannot be downloaded. 

 

The proposed framework provides security to the system 

by enabling hierarchical identity-based cryptography.  The 

cryptography makes the framework secure in addition to 

being scalable and flexible. 

B. REAL WORLD IMPLEMENTED BIG DATA 
PLATFORMS 

Big data has made its presence in numerous industries such 

as finance, smart buildings, commerce, etc. A few of the 

developed bigdata platforms in different fields have been 

summarized below: 

1) THE SMART GRID: HADOOP AT THE TENNESSEE 
VALLEY AUTHORITY (TVA) 

TVA was selected by NERC (North American Electric 

Reliability Corporation) in 2009 as the repository for PMU 

data nationwide. America’s power grids at the TVA 

producing hundreds of terabytes of data have been handled 

with the help of apache Hadoop [15]. The platform of 

Hadoop has enabled TVA to perform a deeper analysis of the 

data at very lower costs compared to the existing solutions. 

Hadoop aids data management with its distributed file 

system called H.D.F.S. to store huge amounts of PMU data 

while making the platform available and reliable at all times. 

Hadoop's aggressive replication scheme has helped the 

organization to have an operational file system even in cases 

of losing whole physical machines. The data flow from the 

measurement device to TVA is described below: 

• The measurement device of the substation timestamps 

various data samples with the help of a GPS clock and 

sends the samples to a central location over optical fiber, 
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coaxial cables, twisted-pair cables, or any other suitable 

lines. 

• A VPN tunnel over a LAN to LAN connects the TVA 

and the participant companies. Several partners also use 

the Multi-Protocol Label Switching (MPLS) connection 

in the case of more remote regions. 

• Data concentrator called the Super Phasor Concentrator 

(SPDC) was developed by the TVA and it receives the 

data after a few network hops. The PMU input is ordered 

in a time-aligned sequence compensating any delayed or 

missing data introduced by the network delay, latency, 

or congestion. 

• 19 companies, 10 different PMU device manufacturers, 

and 103PMUs comprise the entire stream. 16 measured 

values at a rate of 30 samples a second are passed to the 

servers. Archive files of the PMU moved via an FTP 

interface into the Hadoop cluster. Real-time data is 

continuously streamed, processed, and fed to client 

visualization tools. 

Cloudera along with TVA was successfully able to store 

the PMU data and make the data available for analysis. 

Utilizing Hadoop for the process has made the platform very 

cost-efficient. This is one of the best examples to show how 

big data management from the smart grid took place in a real 

case scenario. The next steps include crunching the greater 

amounts of data to be stored or analyzed in real-time for the 

multi-sensor data from the smart grids and not only PMU 

data. 

2) CIDAP - BIG DATA PLATFORM FOR SMART CITIES 

In [21], architecture named ‘SmartSantander’ which is a live 

city flexible big data platform has been introduced. A 

practical system has been built in the testbed city of Smart 

Santander to evaluate the platform. The work provides 

insight into the future smart city platforms that can address 

various issues that can be encountered at the time of building 

the system. The main emphasis of the proposed system 

architecture is to take the helm of both the historical and real-

time data. It also emphasizes handling different scales or 

types of data Figure 1 explains the platform overview and the 

workflow is described below: 

• Data from various sources is collected via the Internet of 

Things (IoT) broker and stored in the big data repository 

[22]. 

• A set of pre-defined tasks processes the collected data. 

The processing is done at different levels, depending on 

the complexity of the process. 

• Basic processing such as format transformations, 

creating new structured views for data indexing, etc. are 

performed at the big data repository level. While the 

complex processing such as mining the data with 

advanced analytics is performed on the separate 

computation resource supported by a spark cluster [23] 

which comprises a huge number of compute nodes. 

• A web-based data management portal is designed to 

monitor and operate the entire big data platform. 

3) OTHER BIG DATA PLATFORMS 

In [24], ’SCOPE’ was presented as a smart city Cloud-based 

Open platform and ecosystem by Boston University. It is a 

platform that is open to innovators to develop smart-city 

services, with a focus on being an open platform to 

collectively innovate and monetize the big data assets. It acts 

as a template to help break the technological silos involving 

deep citizens’ involvement in the wide-spread adoption of 

smart city services. It makes use of sensor-based information 

to develop services such as transportation, energy, health 

care, commerce, business, and social applications amongst 

others.  City Pulse [25] is proposed by Osborne Clarke, a 

smart city consulting firm from Europe [26]. City Pulse is a 

large-scale data analytics framework for smart cities. The 

framework combines and operates large-scale streaming data 

of the cities in an extensible and flexible manner. Application 

Programming Interface (API)s that are exposed by CityPulse 

components facilitate the application creation and services. 

   FIWARE [27] is a smart energy platform for the 

development of intelligent applications in the future internet. 

It serves as an energy platform capable of supporting various 

 
FIGURE 1. CiDAP platform architecture overview [18] 
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business models for different smart energy industries. It is 

desired to work as a testbed for facilitating new services. 

Wang et al. proposed wireless computing architecture for the 

processing and analysis of smart grid data [28]. The proposed 

inner and outer optimization method has improved the 

storage planning scheme resulting in better energy 

scheduling and lower costs to the customers. Zhou et al. 

presented data mining and visualization techniques for smart 

grid data and achieved real-time monitoring of power 

consumption [29]. Their work also highlights the need for 

distributed technologies for increased computation and 

scalability to accomplish unified data management. 

    Apart from smart grid data management some of the other 

big data platforms developed include: In [30], ‘SealedGRID’ 

a highly trusted and interoperable smart grid security 

platform has been presented which abides the blockchain 

concept with the web of trust. An anamoly detection 

framework has also been proposed based on big data and 

machine learning using the blockcahin technology [31]. In 

[32] ‘UlTraMan a unified platform for big data management 

and analytics for trajectory data is proposed. It offers a 

customized pipeline extension of modules offering enhanced 

computing. ASTROIDE a unified big data processing engine 

over spark for astronomical data. It introduces efficient query 

execution, by data partitioning with Hierarchical Equal Area 

isoLatitude Pixelization (HEALPix) on Spark [33].  

III. BIG DATA TECHNOLOGIES 

Because the data is both complex and has different formats, 

handling the data is not straightforward. Big data technologies 

offer scalability, persistence, and are computationally 

efficient. Various technologies offer services that help in 

dealing with big data complexities.  A comprehensive review 

of the storage and processing structures, database management 

systems, software technologies, architectures, systems 

benchmarking, and data indexing.  

A. STORAGE AND PROCESSING 

1) HADOOP 

A unified and centralized storage platform to manage various 

types of data. Hadoop augments itself by providing a 

repository where structured, semi-structured, and 

unstructured data may be processed together easily [34]. 

Along with being an open-source software, Hadoop is fault-

tolerant and has a very reliable storage system. Having a 

programmable storage system, it is flexible for users to 

analyze the data directly attached to the disk where it resides. 

However, Hadoop has limitations i.e. it supports only batch 

processing and is not efficient with real-time, iterative, and 

stream processing. The data collected from dispatched 

sources in the grid is stored in huge datasets. This data needs 

to be accessible by multiple users on multiple machines for 

analytics.  The Hadoop framework helps in parallelizing the 

processing in cloud computing environments and permits 

users to attain a local copy of the stored data. The Hadoop 

distributed file system is also well known for efficient 

storage of data as it provides fault-tolerance, high 

availability, and scalability. However, for applications such 

as smart meter analytics, load forecasting, and scheduling 

which require stream processing, Hadoop is not very 

efficient as it cannot produce output in real-time with low 

latency. The Hadoop ecosystem is built of two components, 

MapReduce and Hadoop distributed file system (HDFS) and 

these are discussed below: 

2) MAPREDUCE 
It is a parallel data processing system of Hadoop. It is the 

programming model used within Hadoop and it is efficient 

at processing huge volumes of data. MapReduce works on 

the concept of job scheduler which assigns multiple tasks in 

parallel to Data Nodes in a single cluster or shared clusters 

and results are collated, filtered, sorted, and then passed out 

as an output. If the task assigned to a node is overloaded or 

failed in a cluster, then the task is executed by another server 

in the cluster as shown in Figure 2. MapReduce can execute 

in a potential number of high-level languages such as C, 

C++, and scripting programming languages i.e. Python, Perl, 

and PHP. It can also be noted that as MapReduce processes 

large datasets, it requires a large amount of time and might 

result in increased latency. Running on various clusters 

results in increased time and lesser processing speeds. This 

limitation can be overcome by the in-memory computation 

capability of the Hadoop spark. MapReduce does not have 

an interactive mode. However, this can be overcome by 

adding Hive Hadoop [35] or Pig Hadoop [36] and this 

enables users to have an interface to deal with MapReduce 

paradigm without having to code complex java MapReduce 

programs.  

3) HDFS AND HOPSFS 
The file storage system in Hadoop is called Hadoop 

distributed file system. Because of its write once and read 

many models, it is best suited for data integrity when a read 

operation is performed. Many grid centers utilize Hadoop 

with HDFS file storage to collect various types of data from 

the grid such as phasor measurement units (PMU). HDFS 

however doesn’t support random reading of small file sizes. 

It is designed in a way to support a small number of large 

datasets rather than a large number of small datasets. This 

can be overcome by merging the small files into one and then 

copying the bigger files to HDFS.  

   HOPSFS is an open-source file system and it is an 

alternative to HDFS [37].  It uses the active and standby 

name nodes and thereby overcome the deficiencies of HDFS. 

The name nodes in HopsFS can process the metadata not just 

locally in memory but also the metadata stored in the 

 
 
FIGURE 2. Software Framework – MapReduce 
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database. HopsFS works with different varieties of NewSQL 

databases even if the databases have different licenses. It is 

since HopsFS uses Data Access Layer (DAL) as 

encapsulation to the database operations. 

5) APACHE SPARK  
It is a lightning-fast framework that processes data that exists 

in data storage systems such as HDFS, Amazon S3 [38], 

MapR FileSystem [39], Cassandra [40], etc. The data 

processing also utilizes a cluster manager such as spark 

cluster, Apache Mesos, HadoopYARN, etc. [41]. Spark can 

process the data as it comes, even millions of events per 

second as it uses Resilient Distributed Datasets (RDDs) 

which reside in memory. The flexibility, speed, and scalable 

features of spark address the challenges of big data in smart 

grids. Spark also supports user-friendly APIs such as Python, 

Scala, Java, etc. and this makes developers easily use spark 

for machine learning libraries [42]. The very nature of data 

from smart grids (for example, the data from SCADA) is 

dynamic and anomalies in electrical systems tend to occur in 

milliseconds. Apache spark supports the real-time 

processing of the data and it can capture real-time 

information from the grid. Memory management in spark is 

crucial and involves various levels such as memory only, 

memory and disk, memory only serialization, and memory 

and disk serialization. Based on the size of the data and the 

memory allocation is altered. 

6) RESOURCE SCHEDULER 
A key to efficient utilization of a large asset is the choice of 

a suitable resource scheduler. Both supercomputers and big 

data systems use schedulers to allocate computing resources 

for the execution of submitted processes. The authors in [43] 

analyze 15 schedulers in both supercomputing and big data 

architectures. In [44], the authors utilized upto 32 processors 

with the help of Slurm resource scheduler. Four of the most 

popular schedulers include Slurm, apache YARN, Apache 

Mesos, and Kubernetes are open-sourced.  

B. DATABASE MANAGEMENT SYSTEMS 

Picking a relational (SQL) or a non-relational (NoSQL) 

database is one of the crucial decisions in choosing a 

database system. Both types of databases are suitable 

options, however, non-relational databases are constantly 

replacing relational databases as non-relational databases are 

efficient for big data applications. The cost of scaling of 

relational databases is very high and the volume of data is 

ever-increasing in big data. Moreover, the ACID properties 

(Atomicity, Consistency, Isolation, and Durability) set 

unrequired constraints and hindrances to applications and 

these pose a challenge [45]. Therefore, relational databases 

are best avoided in big data applications. 

    NoSQL data storage has more ability to perform better 

adaptability, scaling, and performance when compared to 

relational databases.  Although it must be noted that NoSQL 

does not have a universal query language that fits with all 

data models.  Instead, it allows for RESTful coherence to the 

data and the query APIs. A comprehensive study explains the 

uses and performance comparisons between relational and 

non-relational databases [46]. Some of the non-relational 

databases include Redis, MemCached, Dynamo, Cassandra, 

PNUTS, MongoDB, CouchDB, Neo4j, HyperGraph DB, etc. 

The comparison between the relational and NoSQL 

databases is discussed in Table 1. 

    There are many other databases in the market that provide 

support to the requirements of huge data size, different data 

types, and high speed. The big databases include in-Memory 

or main memory databases, object-oriented databases, time-

series databases, and spatial and GIS (Geographical 

Information systems) databases.  Even though in-memory 

databases are quite fast they are not durable, and it might be 

subject to data loss. The spatial databases are useful when 

data has geospatial attributes, but at the same time, it is hard 

to query upon [47]. Also, it requires good visualization to 

interpret the data patterns.  Streaming data from SCADA and 

oscillography data are usually stored in time-series 

databases.  

C. SOFTWARE TECHNOLOGIES 

The evolution of big data technologies started way early in 

the 1990s. A boost to big data technology started with 

Hadoop in 2011 and it has been an open-source platform. Big 

data technologies have evolved in the past decade 

performing batch processing at one stage to real-time 

processing later. In [48], Sebnemet al. has explained the 

evolution of big data technologies starting with Google File 

system performing batch processing (2003) to Google Data 

Flow and apache spark (2003) performing real-time 

analytical streams processing. Different software 

applications were released in the market and many were 

open-source, and these handled the high data volumes and 

high speeds while decreasing the latency of processing. One 

of the most widely used state-of-the-art lambda architecture 

has been discussed in the section below along with the 

system requirements to handle the software technologies: 

D.  ARCHITECTURES 

1) LAMBDA ARCHITECTURE 

The advantages of data systems built with the assistance of 

lambda architecture go beyond just scaling and supporting 

real-time and batch processing on the distributed data. In 

support, the architecture will not just be capable of handling 

the data only but will also be able to accumulate more data 

to interpret information from it. Increasing the number of 

data types and volumes stored will result in further 

opportunities to mine the data including, predicting 

performance, avoiding more than one version of a schema to 

be operative at the same time, and building new applications. 

Lambda architecture (Figure 3), a unique software design, is 

adopted to overcome the need to process two different 

systems considering batch processing and stream processing 

[49]. 

Hadoop discussed in section 3.1 can handle the data at rest 

with the help of Hadoop’s MapReduce functionality. The 

data received would be pulled into HDFS and MapReduce 

jobs are executed using Pig, Hive etc. As all the data would 
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be in HDFS, there will be a full view of the data available to 

process it. Streaming analytics engines such as spark and 

flink will assist to perform processing and analytics on 

incomplete data or when data is being updated [50]. These 

engines process ables the data as it comes in and does it a lot 

faster. These help in processing the data even before the data 

is transferred to HDFS. A portion of the data that is collected 

is analyzed instantaneously as and when the data is 

generated, and the rest of the data is stored for batch 

processing.  Table II refers to some current systems in the 

field of stream analytics. Analyzing the data as it is available 

from the source to the memory of a distributed platform 

needs stream mining systems. If working with stream only 

frameworks is desired, then apache storm [50] is one of the 

best-suited frameworks as it offers a great range of language 

support, but at the same time, it cannot guarantee to order in 

its default configuration. The best fit always relies on the 

data being analyzed, the required latency, and the application 

required. The three layers of Lambda Architecture are:  

• Batch layer: stores all the data as ‘master data’, manages 

it, and precomputes batch views.  

• Speed Layer: processes the incoming streaming data as 

per user-defined requirements and increments the real-

time views. 

• Serving Layer: a linearly scalable data management 

system on top of the batch layer and speed layer exposing 

queried views by the user. 

E. SYSTEMS BENCHMARKING 

 
 
FIGURE 3. Lambda Architecture [49] 

TABLE I 
SOFTWARE FRAMEWORK – MAPREDUCE 

Characteristic Relational Databases NoSQL Databases 

Data representation Predefined schemas.  Schema represents a logical view in which the 

data is organized & the relations are displayed. 

Dynamic schema for unstructured data 

Data Structure Structured Unstructured or lenient structure 

Scaling Vertically scalable.  The amount of data stored depends on the physical 

memory of the system.  Relational databases are scaled by increasing 
the hardware resources like CPU, RAM, SSD etc. on a single server. 

Horizontally scalable. No limit on data storage. NoSQL 

databases are scaled by increasing database servers. 

Examples MySQL, Oracle, SQLite, Postgres, MS-SQL, etc. MongoDB, Bigtable, Redis, RavenDB, Cassandra, 

HBase, CouchDB,  Graph databases like  Neo4j,  

OrientDB, InfiniteGraph, AllegroGraph, etc. 

Types Table based databases Column DB, Graph DB, Key-value pair DB, Document 

DB, etc. 

Properties ACID (Atomicity, Consistency, Isolation, Durability) CAP (Consistency, Availability, Partition tolerance) 

Language Structured   Query   Language   for   data   definition & manipulation Unstructured Query Language 

Development Mix of open source (PostgreSQL) & closed (Oracle) Open source 

Model source databases  

Complex Querying Suitable for complex querying does not have standards to perform complex queries. 

Complexity If records do not fit in the pre-defined schema tables, then the design of 

the database table becomes complex. 

Schema is easily changed here as it is dynamic. 

Community Widely supported from vendors Only community support 

Normalization Necessary No constraint of normalization 

Maintenance High maintenance Low maintenance with features like automatic repair, 

easier distribution of data & simpler data models is 

available.  So, administration is easy & so is tuning 

requirement. 

Consumer friendly GUI mode tools available. GUI mode tools not available. 

 

TABLE II 
STREAM MINING SYSTEMS 

Current Systems Year 

R’s stream package (clustering only) [71] 2017 

streamDM (github) [72] 2016 

Moa.cs.woikato.ac.nz (Massive Online Analysis) [73] 2014 

Samoa-project.net [74] 2014 

lambda-architecture.net [49] 2013 

Spark.apache.org/streaming [75] 2012 

Rapid Miner stream plugin [76] 2012 

Apache Samza [77] 2012 

Apache Storm [78] 2011 
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Big data in the smart grid sector involves not only data at rest 

but also real-time data. Owing to the data being real-time and 

continuous, additional resources and high computational 

speeds are required.   

    As discussed earlier, the use of cloud computing helps 

electrical companies to reduce cost and power requirements. 

Table III shows the minimum requirements needed to install 

the platforms Hadoop, Strom, Spark, and Flink and work 

with the big data frameworks [51]. A minimum of 8 GB 

RAM is required to have any of the mentioned software 

technologies to be installed. A supercomputer will help in the 

processes to run faster.  

F. DATA INDEXING 
Indexing plays an important role when it comes to big data 

management. The speed of data retrieval from a database 

system is vital for efficient data access. Time-series data is 

one of the massive types of smart girds. An index format is 

chosen based on the type of storage system. Table IV shows 

a summary of advanced data indexing techniques that exhibit 

comprehensive distributed functionality. As the paper 

suggests the utilization of a distributed framework, the 

section focuses on distributed data indexing techniques.  

IV. SMART GRID DATA 

An automated big data management pipeline for a smart 

grid must have the following qualities: 

• The platform should be able to support the acquisition 

of dynamic data at variable rates and high volumes. 

• The platform should be adaptive to the operational 

needs of current data sources. 

The data sources in the smart grid fall under four 

categories i.e. Historical (archived), real-time, multimedia, 

and time series [1]. Data sources from SCADA, PMUs, 

Automated Metering Infrastructure (AMIs), smart meter, 

Digital Fault Recorders (DFRs), Digital Protective Relays 

(DPRs), Intelligent Electronic Device (IEDs), Asset 

management, operational and weather are real-time data 

sources. The real-time data flows in high volumes and the 

data is either collected at once or streamed in chunks 

continually. For instance, standard SCADA polls every 4 

seconds. PMU, weather or lightning, and GIS are mostly 

historically based. The data is usually available in bursts 

from devices in the grid or as files stored in any of the storage 

devices and this data can be captured when there is a 

triggered event. On-demand, this data is transferred by the 

utility for different kinds of analyses.  Data in the form of 

text, voice, and video (e.g., video surveillance cameras) are 

multimedia and PMU data are time series. Most often event 

messages are generated in response to any unusual physical 

events. These responses might be in the form of commands 

communicated to the grid devices by grid-control systems, 

e.g., an asynchronous business process such as meter ping 

[52].      

A. DATA ANALYSIS APPROACHES 

Big data management deals with finding the hidden patterns 

in the data to get meaningful information as an output. As the 

data grows in volume, variety, and velocity, it tends to be 

multi-dimensional. To handle big data with multiple 

dimensions, Random Matrix Theory (RMT) is particularly 

useful [53]. The most fundamental concepts of dealing with 

big data account for the representation and modeling of big 

data. 

The random matrices are natural building blocks in 

modeling big data [1]. The non-asymptotic theory is a unified 

treatment to a lot of big data problems, which was proposed 

to model the datasets as large random matrices in 2010 [54]. 

A single dataset can be expressed as an m×n matrix given by 

𝑋 =  𝑈 ∧ 𝑉     (1) 

𝑈(𝑚 × 𝑛) - Orthonormal rows matrix 

TABLE III 
BIG DATA FRAMEWORK HARDWARE REQUIREMENTS [53] 

Framework Hadoop Storm Spark Flink 

RAM(Min) 64 GB 64 GB 64 GB 64 GB 

CPU (at least) 2 8 8 8 

Hard   Disk (for 

each 1TB at least)- 

Disks per node 

12-24 6 4-8 12-24 

Operating Sytems 64   

bit:SUS

ELinux
Enter-

priseSer
ver 

CentOS, 

Red   

HatEnterp
rise Linux, 

Windows 

Windows

XP/7/8, 

Windows 
(Cygwin), 

Linux, 
MacOSX, 

CentOS, 

Linux 

Linux 

 

TABLE IV 
DISTRIBUTED DATA INDEXING TECHNIQUES 

Indexing Year Property Underlying 

storage 

system 

FITing-Tree 2019 A data-aware index 

structure that captures data 

trends and fits an index to a 
dataset with the help of 

piecewise linear functions. 

- 

Parallel B+ trees 

[79]  

2019 Tree-based: maximizing 

terminal nodes and 

minimizing height of a B+ 
tree 

Hadoop 

FastPM [80] 2018 Extends k-d tree indexing 

to a distributed framework 

 

IndexedHBase [81] 2014 Historical and streaming data 

scalable indexing 

HBase 

E3 [82] 2013 Avoiding irrelevant data 

splits accesses 

Hadoop 

HIndex [83] 2013 Secondary Index (server 

side) 

HBase 

HAIL [84] 2012 Less index creation cost Hadoop 

MD-HBase [85] 2011 Quad-Tree and K-d based 

multi-dimensional index 

HBase 

Trojan Index [86] 2010 Created at data load time and 

at query time no penalty 

Hadoop 
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∧ (𝑛 × 𝑛) - Diagonal matrix with real and non-negative 

entries 

𝑉(𝑛 × 𝑛) - Unitary matrix 

   Where 𝑋𝑋𝐻  and 𝑋𝐻𝑋 are Hermitian matrices with diagonal 

entries of ∧ 2 correspondings to the eigenvalues. 𝑈 and 𝑉 

correspond to the eigenvectors. When it comes to large 

random matrices 𝑚 → ∞, 𝑛 → ∞, both Hermitian and Non-

Hermitian are utilized in various applications based on the 

variety of data [55]. Some of the differences between 

Hermitian and non-Hermitian matrices have been stated in 

Table V.  

    In a high dimensional setting, it is often desired to cut 

down the dimension of the matrix by working on a low-rank 

matrix approximation and often require solving for 

eigenvalues. The most prevalent methods are Principal 

Component Analysis (PCA) and Singular Value 

Decomposition (SVD).  PCA is one of the most widely used 

dimensionality reduction techniques [56]. 

    It is used to reduce the number of features in the data. It 

selects the features which have the most variance in the data 

and neglects the features that have the least information in 

the data. We can explicitly specify the number of principal 

components or features that we wish to consider. The 

reduction in the features decreases the training and the 

testing time to a great extent and this knowledge can help in 

the reduction of data that is to be managed. 

V. CHALLENGES 

Even though the benefits of big data management are many, it 

also has many challenges and requires a high level of attention. 

Some of the key challenges related to big data management in 

the smart grid are summarized below [57]: 

Data recovery and capture: Sensors’ data sometimes is 

updated and overwritten discarding the previous data. 

However, the discarding of data should not take place until the 

information from the data is extracted [58]. 

Data size explosion: Data is generated with a precision of 

seconds resulting in Terabytes of data and so the analytical 

value per unit of data is low [59]. 

Data compression: The data communication requires the 

high-volume of data to be compressed before flow.  Special 

compression methods are required for the electrical data 

because under normal conditions, the data either has constant 

values or is sparse [60]. The data compression will allow 

tackling the issue of network congestion and bandwidth 

requirements. 

Data loss: Data generated at measuring points or sensors 

and not usually streamed or transferred to storage units for 

analysis. The data loss should be dealt with carefully in the 

pre-processing step of data analysis and there are several 

techniques to deal with missing data like imputation methods 

[61]. 

Data Coherence: The data sources in smart grids are 

numerous and, the data is collected in substations at different 

locations, it will always be a challenge to share the data or to 

have centralized data storage [62]. The data integration should 

address the challenges of multi-source datasets and different 

formats or datatypes.  

Real-time processing: The real-time processing of big data 

is of high priority because the applications required by utilities 

are very critical and require faster clearing times. The cloud-

based infrastructure with Hadoop or spark is an apparent 

solution for real-time processing [63]. However, there are still 

inherent challenges of latency, network congestion, complex 

algorithms and computational speed to be solved and this 

solution is required to be feasible with the electrical data. Even 

though the spark is considered a lightning-fast framework 

there are many challenges in configuring spark. It involves the 

choice of memory storage levels, ineffective storage levels 

will result in overhead [64]. While running in a 

supercomputing environment selection of the right job 

scheduler plays a challenging role. 

Performance: Utilizing the data in the grids to generate 

applications is a challenging problem to solve because it is 

an amalgam of both model-based analytical methods and 

data-driven IT methods. 

Visualization:  Visualization usually helps the operators 

to recognize the patterns in the data, monitor the real-time 

changes in frequency or voltage. So, it is crucial to represent 

the correlation and patterns in the multi-source data through 

innovative and effective graphs, charts, or images using 

efficient data integration, management, extraction, analytic, 

and visualization techniques [65]. 

Communication security: Fast, secure, and reliable 

communication channel is a challenge for applications 

involving real-time analytics [66].  Securing the streaming 

pipeline is a complex and time-consuming task. The grid data 

needs to be kept secure from network security attacks by 

maintaining data integrity and confidentiality. 

Listed above are some of the challenges discovered and 

many others in managing the big data of the smart grid are 

yet to be discovered. 

VI. PROPOSED BIG DATA MANAGEMENT 
ARCHITECTURE 

The proposed architecture is broadly categorized into three 

mainstages - data collection, storage or transfer, and, mining 

and analytics.  The challenges discussed in section V have 

been addressed in these three categories. To accommodate 

big data in the overall data management process, a plan needs 

to be in place.  The plan should begin with integrating data 

as part of an operational process and finally, should involve 

understanding the workflow and addressing other 

characteristics of the big data i.e. Validity, Veracity, and 

TABLE V 
DEALING WITH BIG DATA MATRICES IN SMART GRID 

Operations Hermitian 

matrices 

Non-Hermitian matrices 

Diagonalization 𝑋𝑉 =  𝑉 ∧ 𝑋𝑋𝑅 = 𝑋𝑅 ∧ and 

𝑋𝐿𝑋 =∧ 𝑋𝐿 

𝑋𝑅 right-hand eigenvectors 

𝑋𝐿 left-hand eigenvectors 

Eigenvalues Real Real or complex conjugate 

pairs 

Eigenvectors Orthonormal Not orthonormal 
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Volatility. The real-time implemented platforms discussed in 

section II such as TVA, uses Hadoop to store the data, 

CiDAP uses spark and hdfs for batch processing and 

CouchDB for real-time processing, SCOPE, a cloud-based 

smart city platform, City pulse,  an ongoing European 

project, and Fiware smart energy presents only some high-

level design architecture and details are not open. 

Smart grid data contains both data in transit and data at 

rest (see Figure 4). Keeping in view that the data generated 

from the grids may be historical or real-time and voluminous 

or varied, architecture has been proposed for handling the 

data and managing it to accommodate the desired 

applications. The data management process can be depicted 

as in Figure 5 and the three main sections of the process data 

collection, data storage and transfer, and data mining and 

analytics are discussed in detail below: 

A. DATA COLLECTION 

There are various data sources in the smart grid such as, 

SCADA, Advanced Metering Infrastructure (AMI), smart 

meters, sensors, PMUs, distributed generation units, 

weather, customers, etc.  The data is collected or transferred 

to the servers or cloud through secure channels. By selected 

querying and indexing from the endless flow of data, the 

relevant data stream can be ingested. The big data platform 

can also be to connected to simulated micro-grid system 

software’s i.e. MATLAB or Simulink, PSSE, PSCAD, 

Power World, etc. This will add flexibility in terms of 

experimenting with the platform to handle the data received 

from a plethora of sources to customized sources and 

parameters. 

B.  DATA STORAGE AND TRANSFER 

It is the nature of databases to get slower over time because of 

the increased usage as it results in staggering amounts of data 

being stored and databases getting bigger. As the data size can 

be in petabytes or more, computationally high storage devices 

are required. This calls for database management systems to 

perform better as per the application requirements. To 

overcome the challenges, the system needs to be robust and 

must have a strong disaster recovery plan keeping in view the 

worst-case scenarios. More on data storage and on trending 

big data technologies has been discussed in section III. Apache 

Hadoop is utilized in the proposed big data architecture. If an 

energy company, has archived data on the cloud or stroage 

facilities it can be easily transferred to the hadoop storage with 

the help of HDFS. To maintain fault tolerance in the data, 

database sharding is applied which horizontally partitions data 

across various nodes or servers. Data is either stored on the 

data centers or cloud, shared nodes or clusters based on the 

platform selected and the requirements of the application. 

Secure LAN or wireless channels are used to migrate the data 

from the grid to mining tools. Cybersecurity is a major concern 

when it comes to data storage or transfer on the cloud. 

Kerberos aids the security concern by providing authentication 

technology in the Hadoop cluster [67]. 

   Data streaming action over time is elaborated in Figure 6. 

Each of the devices can produce the data endlessly and 

continuously at a fixed rate or a custom pattern or in a random 

intermittent way. The multiple data streams from the stream 

 
 
FIGURE 4. Perception on the Methodologies 

 
 
FIGURE 5. Proposed Big Data Management architecture 
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producers can be chosen and selected to be processed as a 

single data stream. This is possible as there is interdependency 

between the various data sources. The stream processing tool 

is responsible to perform operations such as a map, reduce, 

filter, etc. Spark streaming is fault-tolerant and is compatible 

with the HDFS file system of Hadoop and can process real-

time data. The chain of operations is performed yielding the 

output of one operation as an input to the next operation. The 

result is delivered in an on-demand fashion to the customer, 

application, database, etc. 

C. DATA MINING AND ANALYTICS 

The data from the storage or transfer units is accessed by data 

mining tools and applications over a secured network channel. 

Information is extracted from the data after cleaning and 

mining the data and then analytics is performed.  Based on the 

application, data from different sources is combined if needed 

and catered to the need of the application. Many applications 

such as load forecasting, bad data detection, state estimation, 

asset management, etc. can be performed with the help of the 

latest big data tools, i.e. Apache Hadoop, Apache Spark, 

Apache Hive, Cassandra, etc. along with programming 

languages such as Python or Scala or Java (discussed in 

section III). As the Machine Learning(ML) applications are 

massive, the use of ML in smart grid applications has been 

intense. To aid ML although spark and flink both support the 

python API, the spark has a mature community for ML 

applications and has more ML libraries than flink. Pyspark, a 

python API that supports both python and spark integrates 

both machine learning modeling and the spark platform and is 

an excellent framework to work with big datasets. A web 

interface in node js is also added to help as a communication 

medium between the smart grid and the operator or customer. 

Smart grid applications such as load forecasting, fault 

detection, and many others use machine learning capabilities 

to produce better prediction [68]. Data modeling is discussed 

in detail in the following section.  

1) DATA MODELING 

Modeling the data is an important step in mining and analytics.  

This is a part of the data mining process where an algorithm is 

selected, trained, tested, and finally deployed. The process is 

depicted in Figure 7.  The data in hand is cleaned and validated 

to verify its completeness. If any of the data is missing, then 

different imputation methods or techniques can be used to deal 

with the missing data [61]. Redundant features such as a linear 

combination of other features that add no relevant information 

can be removed. Hence, feature selection methods are applied 

to deal with any correlated data, as having this redundant data 

only adds up to increased computational time. The reduced 

data is split into training and validation datasets and the 

experiment starts with the training dataset. Various models are 

 
 
FIGURE 6. High-level view of Data Streaming 

 
FIGURE 7. Data Mining phases/steps - process flow to find the best 
algorithm that fit the data 
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used on the training dataset to select models and algorithms 

that best suit the data. Once the best model is identified, it is 

implemented on the validation dataset to assess the model 

accuracy.  

    This process is repeated for various combinations of 

training and validation data splits making improvements until 

an acceptable level of accuracy is attained. The repetitive 

process at this step can make use of the parallel processing 

technology to spread the work across various computational 

nodes or cores. Cross-validation is one such method that can 

be used for the split of data into different combinations of 

training and validation datasets. The performance metrics such 

as accuracy, f-score, precision, recall measure, and processing 

time can be used to evaluate different machine learning 

models on the training and validation datasets and the best 

model with optimized hyperparameters can be selected [69]. 

Parallely distributed ML models are now available from 

spark’s resource that are scalable and can be readily utilized 

resulting in more than 10x faster accuracy compared to 

Hadoop’s mapreduce [70]. 

2) PERFORMANCE EVALUATION 

Two important factors determine the robustness of the 

proposed data management architecture i.e., time and 

accuracy of models developed for the applications. The time 

includes the extract, transfer, and load (ETL) time and time to 

process the data. For example, for an application such as load 

forecasting, the time to access the data from HDFS, process 

the data, and run ML models is summed and a tradeoff 

between the total execution time and the accuracy of the ML 

model is considered. 

VII. CONCLUSION 

In the era of big data, where information is one of the key 

factors in making decisions, this paper has drawn attention to 

the need for data management in smart grids. Smart grid data 

from the electrical power utilities is very crucial to be worked 

upon for business valued applications and for saving energy 

sources. In this paper, a detailed list of big data platforms in 

the smart grid domain has been studied and the methodologies 

have been discussed. Numerous storage and real-time 

databases have been discussed to come up with an effective 

database for the proposed bigdata management process. 

Several computation models have been reviewed, necessary to 

manage the big data in the smart grid. A comprehensive 

review on the indexing, software technologies, storage and 

processing, frameworks, and architectures have been 

presented. Along with the review a centralized process flow 

has been proposed to manage the data in the smart grids. 

Challenges faced in data management has also been discussed. 
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