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ABSTRACT Recently, many IoT applications, such as smart transportation, healthcare, and virtual and 

augmented reality experiences, have emerged with fifth-generation (5G) technology to enhance the Quality 

of Service (QoS) and user experience. The revolution of 5G-enabled IoT supports distinct attributes, 

including lower latency, higher system capacity, high data rate, and energy saving. However, such 

revolution also delivers considerable increment in data generation that further leads to a major requirement 

of intelligent and effective data analytic operation across the network. Furthermore, data growth gives rise 

to data security and privacy concerns, such as breach and loss of sensitive data. The conventional data 

analytic and security methods do not meet the requirement of 5G-enabled IoT including its unique 

characteristic of low latency and high throughput. In this paper, we propose a Deep Learning (DL) and 

blockchain-empowered security framework for intelligent 5G-enabled IoT that leverages DL competency 

for intelligent data analysis operation and blockchain for data security. The framework's hierarchical 

architecture wherein DL and blockchain operations emerge across the four layers of cloud, fog, edge, and 

user is presented. The framework is simulated and analyzed, employing various standard measures of 

latency, accuracy, and security to demonstrate its validity in practical applications. 

INDEX TERMS Internet of Things, Security Attack Detection, Edge Computing, Fog Computing, Blockchain, 

Software-Defined Networking  

 

I. INTRODUCTION 

   The recent development in communication and 

networking applications gives rise to a massive demand for 

a next -generation communication paradigm. Unlike past 

generation communications (i.e., Second-Generation (2G) 

to Fourth -Generation (4G)), Fifth-Generation (5G) 

communication has become prominent in recent years due 

to its distinct competencies of higher scalability, low 

latency, high reliability, and high throughput [1]. The 

competencies of 5G support pervasive connectivity 

solutions in many Internet of Things (IoT) applications, 

such as smart healthcare, smart grid, smart home, and smart 

cities, and give rise to a new phenomenon known as 5G-

enabled IoT. A 5G-enabled IoT can facilitate the operations 

of a massive number of devices and improve user 

satisfaction, quality of service, and quality of experience in 

IoT applications [2]. To enable flexible operation and 

heterogeneous IoT services, the 5G-enabled IoT 

technologies support emerging technologies and 

orchestrations including network function virtualization, 

massive multiple inputs–multiple outputs, mobile edge 

computing, and ultra-dense networks [3].  

MarketsandMarkets [4] reported a 55.4% Compound 

Annual Growth Rate (CAGR) of the global 5G-enabled IoT 

market and an estimated increment from $0.7 billion to $6.3 

billion by 2025. In addition, 5G-enabled IoT is being 

deployed from manufacturing industries to autonomous 

system, including connected cars and consumer wearable 

devices. However, such deployment of 5G-enabled IoT 

leads to the generation of massive amounts of data by 

connected devices and IoT sensors. According to Ericsson 

Mobility Report [5], the use of 5G will account for 65% of 

the total population globally, and this will further lead to a 

significant growth in data traffic (i.e., approx. 45% of 
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mobile data traffic globally) by year 2025. The escalation in 

the connected IoT devices and data generation by end of 

2025 are estimated to be 41.6 billion and 79.4 zettabytes 

(ZB), respectively, according to the International Data 

Corporation (IDC) report [6]. The significant surge in data 

makes data analytics a forethought, giving rise to the need 

for intelligent services and applications to handle massive 

data in 5G-enabled IoT. On the other hand, security and 

privacy are also major concerns as a consequence of 

significant data growth. Various data breaches and losses, 

including sensitive and personal data, health data, and 

financial data, are likely. Several critical complications 

such as social trust, personal safety, monetary penalty, and 

consumer confidence can occur due to security and privacy 

risks [7]. Examples include Untethered Virtual Reality 

(VR) employing 5G to support ultra-low-latency 

communications, which gives rise to the data privacy issue 

such as virtual identity theft in VR. The 5G security market 

report [8] expects IoT services to account for approximately 

30% of the 5G security market from 2019 to 2024 and 

privacy and security of data to be critical issues in 5G-

enabled IoT.  

State-of-the-art security solutions have emerged to 

provide secure services and data-intensive applications in 

traditional 4G-enabled IoT. These solutions support either 

centralized approach, novel paradigms, architecture, or 

framework for efficient, secure data management (i.e., 

processing, analysis, and storing) in the cloud [9-11]. 

However, the distinct characteristics of 5G-enabled IoT, 

including low latency, high speed, high throughput, and 

high capacity, make traditional 4G-enabled IoT security 

solutions less efficient compared to the 5G-enabled IoT 

security. The large number of devices supported by 5G-

enabled IoT, unlike 4G-enabled IoT, gives rise to 

challenges in processing and analysis of the generated 

massive data. In particular, the extraction of substantial 

information from massive data is challenging in terms of 

supporting data caching (i.e., content distribution and 

content placement), classification, and prediction of future 

incidents in 5G-enabled IoT [12]. In addition, excessive 

overhead on network bandwidth due to data generated by 

more devices and more locations gives rise to 

supplementary security threats (such as Denial of Service 

(DoS) attack) that in turn cause delay or failure of services 

in terms of availability and delivery. The deployment of 

fragile security policies and global access of 5G devices 

anytime, anywhere may also give rise to different security 

threats [13]. Adversaries may maliciously control and abuse 

the communication infrastructure of the connected system, 

including nuclear facilities and vehicular network [14]. 

Thus, there is a need for the design and development of 

efficient solutions to support security and data analytics for 

intelligent 5G-enabled IoT.  Recently, deep learning (DL) 

has become a promising analytic paradigm due to its 

excellent operation in analyzing huge amounts of data. 

Unlike the traditional machine learning approach, DL 

supports efficient feature engineering by managing reliable 

and automatic feature extraction and representation [15, 16]. 

As a strong analytic tool, DL can deliver state-of-the-art 

accuracy and latency than the traditional machine learning 

approach, and it can be deployed to analyze massive data in 

5G-enabled IoT. Such DL deployment can support the 

prediction of future event and detection of attacks and 

provide substantial information for content caching and 

placement in dynamic scenarios of 5G-enabled IoT [17, 18].   

As an emerging technology, blockchain is becoming a 

promising choice for handling security and privacy in next-

generation communication infrastructure. It creates a peer-

to-peer (P2P) transactions platform wherein the information 

is recorded, validated, and exchanged in a decentralized 

manner to deliver data security and verification independent 

from a centralized authority [19]. The critical features of 

blockchain including decentralization, security, and 

anonymity can implement secure transactions of data and 

overcome the centralized server dependency to support 

security in 5G-enabled IoT [20]. Furthermore, the unique 

properties of distributed data storage, asset tracking, and 

smart contracts make blockchain technology desirable for 

5G-enabled IoT [21].  

The aforementioned discussion suggests that the 

development of DL and blockchain-based mechanisms can 

be combined to overcome data analytic and security 

challenges in 5G-enabled IoT. In addition, fog and edge 

computing can process the data nearer to the data source 

instead of the cloud layer to help overcome the constraints 

of bandwidth and computation and high latency challenges. 

The actionable intelligence supported by the distributed 

computing of fog and edge enhances the capability of 

translating big data-at-rest and data-in-motion into 

instantaneous process [22]. Thus, secure orchestration and 

intelligent services can be developed in 5G-enabled IoT by 

developing machine learning and blockchain-based 

solutions at the fog and edge computing layers [24].  

Research contribution: The main contributions of the 

research work are as follows:  

• This paper identifies the design and development 

requirements of 5G-enabled IoT and presents the 

  required design principle for emerging networks 

and services.    

• Based on the required design principle, we propose 

a DL and blockchain-empowered security 

framework   for intelligent 5G-enabled IoT that 

employs DL and blockchain's capability to support 

intelligent data   and security operations across 

the 5G-enabled IoT network.    

• The framework's hierarchical architecture wherein 
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DL and blockchain operations are  described 

along with the four layers of cloud, fog, edge, and 

user is presented.    

• To demonstrate the feasibility of the proposed 

framework in the practical application, we 

simulated it. The performance was evaluated on an 

object detection application using various standard 

measures of latency, accuracy, and security.   

 
II. REQUIRED DESIGN PRINCIPLES 
 

The proposed security framework considers some 

fundamental aspects of design and development in the 5G- 

enabled IoT environment to handle the existing and 

evolving network and service requisites. These aspects can 

be described as follows:  

 

   Scalability: The scalability of an information and 

communication system is described by its potential to 

handle a growing number of devices associated with it. The 

service overhead, i.e., communication bandwidth, latency, 

energy efficiency, security, and data analytics, can be 

impacted by the number of associated devices in the 

commination system. As 5G-enabled IoT supports a higher 

number of devices than traditional IoT, the factor of 

scalability should be considered to design security and data 

analytic solutions for it.  

 

   Reliability and Performance: The total consistency of 

measurement by a system is defined by its reliability and 

performance aspects. A highly reliable system delivers 

identical performance outcomes in a definite environment 

and a consistent situation. Since security and data analytic 

are critical features in 5G-enabled IoT, the proposed 

security and intelligent design should be reasonably reliable 

and considerable in terms of performance. Low reliability 

and performance can lead to the failure of overall 5G-

enabled IoT operations, causing financial losses and 

allowing gains for attackers. The performance outcomes of 

the proposed design need to be precise, reliable, and re-

implementable in the dynamism of the testing environment. 

To ensure reliable measurement, the proposed design is 

tested repeatedly over a definite time period in a certain 

experimental and testbed setup that enables achieving 

accurate performance outcomes in 5G-enabled IoT.  

 

   Quality of Service (QoS): The overall performance of a 

system is measured by QoS that demonstrates how a newly 

proposed design is feasible in a practical environment. It 

relies on various factors, including accuracy, latency, 

computation overhead, availability, security, and privacy, to 

measure the overall performance. Our development of new 

secure and intelligent solutions for 5G-enabled IoT also 

considers QoS factors to validate real-time application 

feasibility.  

 

   Computational Complexity: It improves the efficiency of 

a system by measuring the computational feasibility of 

operation. It supports the measurement of additional 

overhead by supplementary applications that are added for 

the emergence and advancement of the system. Since the 

proposed security framework employs blockchain 

technology as well as a machine learning paradigm that can 

provide additional overhead, it is essential to measure the 

computational complexity of the framework to validate its 

efficiency and real-time deployment. We consider CPU and 

memory overhead to measure the computational complexity 

of the proposed framework.  

 

   Security measurement: The data-intensive applications of 

5G-enabled IoT, such as autonomous driving, virtual reality, 

and augmented reality, require the security and privacy 

measurement of the data circulating in the entire network 

system to ensure autonomous and instantaneous services. 

Our proposed design reflects security measurement as a 

core consideration that relies on security's fundamental 

aspects, including confidentiality, integrity, and availability.  

 

Quality of Experience (QoE): It describes the user's 

experiences and satisfaction level (i.e., annoyance or 

delight) with a service or a system. A number of factors 

related to data (privacy), network (bandwidth), and 

communication (latency) are considered to perceive the 

QoE of a service. For instance, the user satisfaction ratio of 

content caching is measured by employing various standard 

parameters, such as traffic intensity, storage size, and 

backhaul capacity. 

III. Design Overview of the Proposed Framework  

   The proposed framework aims to support intelligent and 

secure data analytic services by deploying DL and 

blockchain technologies in 5G-enabled IoT. It delivers 

secure orchestration and flexible networking by configuring 

a hierarchical architecture as illustrated in Fig. 1, wherein 

DL and blockchain mechanisms are deployed on four layers 

of cloud, fog, edge plane, and device. The configuration 

and operation of each layer are described below.  

A. Cloud Plane  

Servers with high-performance computing, processing, and 

caching capabilities are configured to design the cloud layer. 

A large-capacity storage space equipped with advanced 

operations, such as estimation algorithms (i.e., collaborative 

filtering), DL, and big data mining, is leveraged to assist in 

the pre-allocation of services or forecasting and estimation 

of future incidents to transform networking and computing 

tasks from reactive state to proactive state. Robust 

computing capability and adequate caching resources at the 

cloud server aid in additional services, including the 

processing of delay-tolerant services and log-less strategic 

content and huge volume of data. The management of 

security keys and parameters of entities at the lower layers 

(i.e., fog nodes, Macro Base Station (MBS), Small Base 
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Station (SBS), and IoT devices) is carried out by deploying 

a central authority equipped with tamper-resistant hardware 

in the cloud layer. The data analytic task is carried out on a 

cloud layer that consists of the following major 

components:  

 

   Raw Data Collection: The data analytic operation starts 

with the collection and management of raw data consisting 

of different types (such as videos, images, and text) from 

diverse sources, including Social Networking Services 

(SNSs), mobile devices, IoT devices, wearable devices, and 

many more. These data can be collected and managed by 

existing applications or by developing innovative 

applications that rely on the types of data sources. For 

instance, SNSs employ various application programming 

interfaces (APIs), such as Twitter API and Facebook API, 

to collect and manage their data for near-real-time data 

analysis purposes [25]. Our research [26] developed a 

mobile application to accumulate mobile data (i.e., values 

of mobile's sensors) for caching management.  

Data preprocessing: It is performed to eliminate noisy, 

unnecessary, or inappropriate data from the raw data. Here, 

data is properly structured and processed proficiently to 

support efficient data mining and feature extraction. Data 

processing relies on various aspects, including real-time 

processing of data, different types of data from different 

sources, and huge quantity of data (i.e., in order of 

petabytes). Various data processing engines, such as 

Apache Spark, a high-performance relational or distributed 

database, are used to do away with the immense processing 

effort.  

 

   Feature extraction: Features play a significant role in data 

analysis in the cloud layer. The selection of relevant and 

appropriate features can support effective and robust data 

analytic operation. In a broad sense, we can divide the 

relevant features into three types. Intrinsic features signify 

the inherent aspects of entities, such as personality, gender, 

and age. Actional features represent the ideological or 

behavioral aspects produced by users, such as patterns of 

the content generated or viewed by an entity. Finally, 

societal features represent the social contexts of entities 

within the social circle, such as discriminative network 

characteristics. The choice of the relevant features relies on 

the following fundamentals: 

 

• Differentiability: It defines the capability of a 

feature to differentiate multiple entities. An entity 

can be evidently differentiated by a type of feature 

or a combination of multiple types of features. 

Among all the features, actional feature shows 

high differentiability due to its reliance on unique 

patterns (i.e., behavioral or content access).  

• Tenacity: The extracted features could be erratic 

and sporadic patterns, which further make them 

inconsistent and less effective for use in data 

analytic operation.  

• Adaptability: Due to technological advancements, 

a malicious entity can imitate the patterns of an 

ordinary entity and falsify the whole data analytic 

process by implanting false data. Intrinsic and 

actional features are more vulnerable to 

adaptability and can be easily adapted by a 

malicious user to pose as an ordinary user. Societal 

features, however, are more robust against 

adaptability because they rely on social contexts of 

entities within the social network, which cannot be 

dynamically changed by a malicious user. Table 1 

summarizes the different features based on their 

substances and significance for essential 

fundamentals.  

• Estimation algorithm: It refers to an automatic 

learning method that supports the execution of 

process data (i.e., data with extracted features 

known as training data) to estimate future events 

or decisions. Collaborative filtering [27] is a 

widely used estimation technique that estimates 

unknown patterns based on direct experience or 

sample data.   

 

Table 1. Different types of features and their 

characteristics 

 Intrinsical Actional 
 

Societal 

 

Entity metaphor 

What do they 

seem like? 

How do they 

act? 

With whom 

do they 

connect? 

 

 

 

Substance 

Intrinsic 

facts about 

an entity 

such as   

personality, 

gender, age. 

 

Activity 

facts about 

an entity in 

the context 

of  content 

generation 

patterns 

Social 

connection 

of an entity, 

such as 

friend list of 

an social 

network user 

Adaptability Weak Moderate Strong 

Tenacity Moderate Strong Moderate 

Differentiability Moderate Strong Weak 

 

B. Fog Plane  

   The cloud layer allocates storage and computation load to 

many fog nodes at the fog layer to improve real-time 

applications' performance and overcome the issues of large 

data analysis and fast response in 5G-enabled IoT. The fog 

computing paradigm delivers massive parallelism that 

settles throughput and load among various computing nodes. 

Each fog node is deployed with blockchain and SDN 

controller that allows dynamic and distributed network 

configuration programmatically to support data monitoring 

and network performance. The machine learning is 

programmed in the SDN controller for analyzing and 

classifying network data to recognize various data patterns, 

such as malicious data. The blockchain provides secure, 

decentralized, Peer-to-Peer transactions of data among the 

fog node and its connected edge nodes to support secure 

participation of edge nodes and increase data availability 
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for efficient data analysis. Due to incompetent resource 

management, the fog node could be vulnerable to various 

security attacks and exploitation of "zero-day" 

vulnerabilities. Considering security and service 

management as key aspects, we designed an SDN-based 

fog node wherein an SDN controller consists of the 

following components:        

   Traffic flow analyzer: The data traffic from various edge 

nodes is analyzed at the fog node to improve resource 

management and security. The traffic flow analyzer 

supports the analysis task wherein patterns of data traffic 

such as frequency of data sending and receiving by an edge 

device, bandwidth utilization, and many more are 

accumulated and employed as training data for analysis 

purposes. Besides, several known patterns of malicious data 

traffic, such as blacklisted IP addresses of source and 

destination, TCP flooding patterns, etc. are also added to 

the training data to identify attacks and malicious behaviors 

across the network.  

   Traffic flow classifier:  The data traffic classification 

delivers the seizure or stoppage of unnecessary and 

malicious data traffic to speed up the data processing task 

and reduce the latency delay by processing only valued data. 

The traffic flow classifier aids in data traffic classification, 

wherein Machine Learning (ML) paradigms are employed 

over the training data to prepare the classification model 

(i.e., trained model). The selection of an ML paradigm 

depends on the structure of training data (i.e., ratio of 

labeled and unlabeled data). For instance, supervised 

learning is employed for a sufficient amount of labeled data. 

In contrast, an unsupervised learning approach is used in 

case of a lack of labeled data or when only unlabeled data 

are available.  

   Service Management: The management of the services 

relies on dynamic and distributed policies to support 

flexible fog infrastructure and services. The policy manager 

at the fog node supports policy-driven services that include 

the registered device's status, service orchestration, and 

service directory. Software-defined protection is maintained 

by the service orchestration that enables flexibility and 

dynamic configuration across the network to handle 

different types of threat patterns, including existing and 

new ones.          

   Context Awareness Module and Distributed Database: 

The 5G-enabled IoT supports a higher number of sensors 

that lead to a massive amount of raw sensor data. To 

understand and add value to the sensor data, contextual 

computing plays a significant role. It implies context 

awareness, including location awareness and activity 

awareness, to help recognize different activities and 

identify the movement of 5G-enabled IoT devices in a 

specific territory or a specific region. On the other hand, the 

increment in fault tolerance and scalability due to massive 

data is managed by the distributed database that supports 

smart storage and retrieval of data (i.e., faster), unlike 

centralized storage. All the application data, policies, and 

metadata are logged by the distributed database to facilitate 

fog management. 

 

C. Edge Plane 

   Several edge nodes contribute to distributing the load of 

the fog node at the edge layer, wherein network entities, 

including SDN switches, MBSs, and SBSs, are geo-

distributed and configured with blockchain application and 

MEC server. These network entities can support instant 

wireless communication and seamless coverage to deliver 

radio interfaces for 5G-enabled IoT devices. The computing 

resources are configured in MEC servers that perform 

computing tasks intelligently to carry out computation-

intensive jobs and operate delay-sensitive applications, 

including caching strategic content (i.e., recent videos) and 

DL for data analysis. An SDN controller updates the flow 

rules to the associated SDN switches to detect and mitigate 

malicious activates at the network edge. All edge nodes are 

associated with a fog node connected via a blockchain 

network to carry out the secure sharing of data and 

resources among them. 

    SDN-based edge node: Each edge node (i.e., base 

station) is a configured local edge controller enabled with 

SDN. It consists of several components, including cache 

management, switches information, channel monitoring, 

network resources, traffic monitoring, and radio resources. 

The local controller facilitates the flow table at each 

network switch, wherein specific rules are defined and 

implemented by translating the network policies employing 

ternary content addressable memory (TCAM). Due to the 

limited TCAM, only a few hundred entries can be logged in 

the flow tables. It further enforces reactively caching rules 

by switches, resulting in packet delays and large buffers in 

case of cache misses. Many approaches can be employed to 

facilitate efficient flow rules management in SDN. Huang, 

et al [28] partitioned the flow rules in the heterogeneous 

flow table distribution considering the characteristics, 

including the allocation scheme, dependency, and same 

policies. Mosherf, et al [29] employed a vCRIB algorithm 

to minimize traffic redirection and mitigate the issue of 

resource constraints on switches. In our proposed 

framework, we employed "RPAL,” our recently presented 

flow rules partition algorithm that leverages the advantage 

of that of Huang, et al [28] (i.e., dependency and policy-

enabled partition mechanism) and Mosherf, et al [29] (i.e., 

traffic and resource-conscious allocation mechanism).     

   Blockchain network: To enable less resource-intensive 

blockchain operation (i.e., blockchain mining task), a 

private blockchain is configured in the proposed framework. 

Unlike the public blockchain, it foregoes the need for an 

economic incentive mechanism. The blockchain application 

is deployed on fog nodes and their associated edge nodes. 

Here, as a full blockchain node, a fog node performs 

resource-intensive tasks, including generating and 

propagating blocks and monitoring the transactions. In 

contrast, as a light blockchain node, an edge node 

communicates and logs its transactions. To facilitate 
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blockchain deployment, a lightweight consensus, for 

instance, Practical Byzantine Fault Tolerance (PBFT) [96]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 Design overview of the proposed security framework 

 

that supports no proof-of-work and resource constraints 

mining, is used.  
   Smart contract: It defines service contracts (i.e., rules and 

policies) among all nodes, including the fog node and its 

associated node across the blockchain network, to operate 

and govern the data services. The contracts consist of data 

contract and processing contract. The data contract 

describes the rules and policies to facilitate data 

transactions at the edge nodes in the blockchain network 

(i.e., delivery of data from each edge node to its associate 

fog node), while processing contract liable for data 

processing at the fog node from its associated edge nodes 

and block generation and mining.   

   Smart contract interface:  The smart contract interaction 

among fog node and edge nodes is set up and executed via 

a smart contract interface. It facilitates the various 

important tasks of smart contracts’ operations such as 

registration whenever a new node participates in the 

blockchain network, uploading (i.e., data from edge nodes 

to their associated fog node), and requesting (i.e., request 

processed data by an edge node from an associated fog 

node). It can be configured using the JavaScript-based 

Application Programming Interface (API) such as Web3 

protocol. Here, programming functions are called to 

execute policies and rules in smart contract operations.              

D. User Plane 

   Several 5G-enabled IoT devices are clustered with an 

edge node in its coverage via 5G communication. 

 

 

 

 

IV. Experimental Evaluation 

 

This section presents a case study to validate the feasibility 

of the proposed framework in the practical application. The 

case study involves object detection tasks at the three 

different planes, specifically how the proposed services can 

play a significant role in overcoming existing challenges in 

5G-enabled IoT. Each plane employs the basic components 

and technologies described in the previous section.   

 

A. Experimental configuration 

   The experimental evaluation of the proposed framework 

was carried out by implementing a prototype model with 

four major components: cloud server, fog nodes, edge 

nodes, and 5G-enabled IoT devices. Here, Amazon EC2 

cloud data center is employed as a cloud server supporting 

high-performance computing, processing, and caching 

capabilities, configuring SVDFeature [30] as an estimation 

algorithm to estimate strategic contents. An OpenStack 

deployment functions as the fog computing nodes, wherein 

high-performance Dell PowerEdge R630 and Dell 

PowerEdge C730x rack servers and Cisco 3850 switch are 

deployed. The typical configuration of each rack server 

includes 18 independent CPU cores, 256 GB RAM, and a 

CentOS 7. Python-based software-defined networking, 

known as the POX controller [31], is employed as a 

development platform to facilitate the SDN-based fog node. 

Workstations with Intel processor are deployed to function 

as the edge nodes and 5G-enabled IoT devices. A total of 

40 workstations are configured wherein each workstation is 

associated with several Raspberry Pi 3 Model B single-
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board computers. The configuration of each Raspberry Pi 

includes the Raspbian Operating System, 1 GB RAM, and 

32GB storage and consists of additional accessories 

including cameras and Google bonnet. A MacAir laptop 

with 4 GB RAM is set up to monitor and analyze the entire 

network's operation. A 5G network is configured with a 

high-performance Cisco WiFi. The blockchain 

configuration at each fog and edge node includes Go-

ethereum [32] for private blockchain setup, solidity 

language for writing smart contracts, and Truffle 

development suite for blockchain deployment. The DL 

application is set up by each node by employing 

Tensorflow version 2.0.    

   The object detection problem is widely discussed by 

many researchers, such as indoor guarding, crowd control, 

and city surveillance, requiring highly accurate result at low 

latency. For object detection, a well-known MS COCO 

dataset containing 82,783 training instances and 40,504 

validation instances of 80 different object classes [33] was 

used.  

 

B. Experimental Results 

For object detection, video frames (objects) were 

captured with a camera module integrated with Raspberry 

Pi in 60Hz frequency and 1080p resolution and processed 

by employing the proposed framework. We carried out the 

object detection task at the different plane (i.e., cloud, fog, 

and edge) that illustrates distinct performance outcomes and 

feasibility for the task. To measure performance outcomes, 

standard evaluation metrics, including Mathew Correlation 

Coefficient (MCC), Mean precision accuracy, F-measure, 

Detection Rate, Latency, and area under the Receiver 

Operating Characteristic (AUC) curve were used. We 

measured these standard metrics with a varying amount of 

data traffic. As shown in Fig. 2, the detection task at the 

edge plane always outperformed that at the fog and cloud 

planes. However, the fog plane distributes the task to 

several fog nodes (i.e., employing SDN controllers) instead 

of processing the data at the central cloud server, which 

supports efficient processing and data availability to 

increase performance compared to the cloud plane. On the 

other hand, the edge plane decentralizes the processing task 

among several edge nodes (i.e., employing blockchain) and 

shares only significant data (i.e., DL model parameters) to 

the fog node rather than the whole data. It lowers the 

reluctance of an edge node to participate in the detection 

task that supports higher cooperation, thereby leading to 

better task performance than the fog plane.  

In order to evaluate the QoE of the proposed framework, 

we considered measurements of the satisfaction ratio and 

the backhaul load with variation in traffic intensity. Here, 

the satisfaction ratio signifies the fraction of the detection 

requests satisfied, and the backhaul load describes the ratio 

of average traffic carrying by the backhaul links to the total 

amount of traffic generated at the different planes. Traffic 

intensity indicates the average count of requests arriving 

within a given time slot. 

 

 

 

 

 
Fig. 2. Performance measurement of the proposed security 

framework 

Fig. 3(a) shows that the edge plane has higher satisfaction 

ratio than the fog and cloud planes. Obviously, the edge 

plane satisfies more detection requests than the fog plane 

due to decentralization, and the fog plane further satisfies 

more detection requests than the cloud plane due to 

distribution. Fig. 3(b) shows that the cloud plane 

contributes to higher backhaul load due to the highest 

amount of traffic carrying by the backhaul links to perform 

the task, whereas going to the lower plane from fog to edge 

decreases the load of backhaul links. 

We also evaluated the QoS of the proposed framework by 

measuring factors, including accuracy and latency, with the 

varying data traffic rate. Fig. 4(a) shows the increment in 

latency with the increasing amount of data traffic for all 

three planes. Since edge nodes prepare the detection models 

at their end, which has higher proximity to the end devices 

than the detection model at the fog node, such further leads 

to lower latency at the edge plane. In general, proceed from 

the cloud toward the edge plane with higher proximity to 

end devices that lower the latency. Similarly, Fig. 4(b) 

illustrates the significant improvement in accuracy with the 

varying amount of data traffic. However, the use of the 

SDN controller and distribution of data processing at the 

fog plane support a higher quantity of data for detection 

tasks, leading to a more accurate detection model than that 

of the cloud plane. Furthermore, the edge plane employs 

blockchain technology that enables cooperation among 

several edge nodes (i.e., sharing local model updates to an 

associated fog node) to prepare an accurate global model 

update for an excellent detection task. 

V. Conclusion 

   This study investigated the design and development 

requirement for emerging networks and services in 5G-

enabled IoT. A DL and blockchain-powered security 

framework for intelligent 5G-enabled IoT that delivers 

intelligent data and security operations across the 5G-

enabled IoT network was presented. The proposed 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3077069, IEEE Access

 

VOLUME XX, 2020 1 
 

framework contributes to employing DL and blockchain 

strength along with the four layers of a hierarchical  

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                                                                                                     

                                                                                                                               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

architecture: cloud, fog, edge, and user. The proposed 

framework's simulation was done on a widely used object 

detection task to validate its feasibility in practical 

applications. The simulation results demonstrate that the 

proposed framework satisfies the fundamental aspects of 

design and development in a 5G-enabled IoT environment, 

including scalability, reliability and performance, QoS, 

computational complexity, security and privacy, and QoE. 
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