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Detection of Face Morphing Attacks
Based on PRNU Analysis

Ulrich Scherhag , Luca Debiasi , Christian Rathgeb, Christoph Busch , and Andreas Uhl

Abstract—Recent research found that attacks based on mor-
phed face images, i.e., morphing attacks, pose a severe security
risk to face recognition systems. A reliable morphing attack
detection from a single face image remains a research challenge
since cameras and morphing techniques used by an attacker are
unknown at the time of classification. These issues are commonly
overseen while many researchers report encouraging detection
performance for training and testing morphing attack detection
schemes on images obtained from a single face database employ-
ing a single morphing algorithm. In this work, a morphing attack
detection system based on the analysis of Photo Response Non-
Uniformity (PRNU) is presented. More specifically, spatial and
spectral features extracted from PRNU patterns across image
cells are analyzed. Differences of these features for bona fide and
morphed images are estimated during a threshold-selection stage
using the Dresden image database which is specifically built for
PRNU analysis in digital image forensics. Cross-database evalu-
ations are then conducted employing an ICAO compliant subset
of the FRGCv2 database and a Print-Scan database which is a
printed and scanned version of said FRGCv2 subset. Bona fide
and morphed face images are automatically generated employing
four different morphing algorithms. The proposed PRNU-based
morphing attack detector is shown to robustly distinguish bona
fide and morphed face images achieving an average D-EER of
11.2% in the best configuration. In scenarios where image sources
and morphing techniques are unknown, it is shown to signifi-
cantly outperform other previously established morphing attack
detectors. Finally, the limitations and potential of the approach
are demonstrated on a dataset of printed and scanned bona fide
and morphed face images.

Index Terms—Biometrics, face recognition, face morphing, face
morphing attack, morphing attack detection, photo response
non-uniformity.

I. INTRODUCTION

FACE recognition systems have recently been exposed
to be vulnerable against attacks based on morphed face

images [1], [2]. Image morphing has been an active field of
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Fig. 1. Example for a morphed face image (b) of subject 1 (a) and subject
2 (c) (images taken from [5]).

image processing research since the 1980s [3], [4] with a vari-
ety of application scenarios, especially in the film industry.
Morphing techniques can be used to create artificial biometric
samples that resemble the biometric information of two (or
more) individuals in the image and feature domain. An exam-
ple of a morphed face image is shown in Fig. 1. The morphed
face image is successfully verified against probe samples of
both subjects involved using state-of-the-art face recognition
systems. This means that if a morphed face image is some-
how stored as a reference in the database of a face recognition
system, both individuals involved are successfully verified
against this manipulated reference. Morphed face images thus
pose a serious threat to face recognition systems, as the basic
principle of biometrics, the unique link between the biometric
reference data and the subject, is violated.

In many countries, the face image used for the ePassport
application process is provided by the applicant either in ana-
logue or digital form. In the scenario of a face morphing
attack, a wanted criminal could morph his facial image with
one of a lookalike accomplice. If the accomplice applies for
an ePassport with the morphed face image, he will receive a
valid ePassport equipped with corresponding document secu-
rity features. It is important to note that morphed face images
can be realistic enough to fool human examiners [6], [7] as
well as commercial face recognition systems. Both the crim-
inal and the accomplice could then be successfully verified
against the morphed image stored in the ePassport. This means
that the criminal can use the ePassport issued to the accom-
plice to pass through Automated Border Control (ABC) gates
(or even human inspections at border crossings). The risk of
this attack, called face morphing attack, is amplified by the
fact that realistic face morphs can be generated by non-experts
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using user-friendly face morphing software that is either freely
available or can be purchased at a reasonable price.

In 2014 Ferrara et al. [1] were the first to thoroughly investi-
gate the vulnerability of commercial face recognition systems
to attacks based on morphed face images. So far, a consid-
erable amount of morphing attack detection approaches has
been published, see Section II. For a comprehensive survey the
reader is referred to [2]. Proposed approaches can be catego-
rized with respect to the considered morphing attack detection
scenario:

• No-reference morphing attack detection: the detector
processes a single image, e.g., the analysis of a printed
image that is presented and scanned in a passport appli-
cation procedure and subsequently stored in an electronic
travel document or at any later point in time an off-line
authenticity check of said document by police investi-
gators (this scenario is also referred to as single image
morphing attack detection or forensic morphing attack
detection);

• Differential morphing attack detection: a trusted live cap-
ture from an authentication attempt serves as additional
source of information for the morph detector, e.g., dur-
ing authentication at an ABC gate (this scenario is also
referred to as image pair-based morphing attack detec-
tion). Note that all information extracted by no-reference
morph detectors might as well be leveraged within this
scenario [8].

Obviously, the no-reference scenario turns out to be more
challenging compared to the differential one. While the major-
ity of no-reference approaches reports practical detection error
rates, these are commonly evaluated on a dataset of bona
fide and morphed face images which are extracted from
a single (in-house) face database. In such an experimen-
tal setup the use of machine learning-based feature extrac-
tors or/and classifier increases the risk of overfitting, i.e.,
the robustness of morph detection algorithms may not be
retained with regard to images stemming from other sources as
shown in [9].

This work represents a significant extension of the prelim-
inary studies towards PRNU-based morphing attack detection
previously published in [5], [10]. The proposed system has
been complemented by a more thorough investigation of
different features and aggregation strategies, more specifi-
cally spatial features have been investigated in addition to
spectral ones from previous work. Complementary to those
efforts cross-database experiments on morphed face images
generated by four different morphing algorithms have been
conducted. The generalizability of the PRNU-based morphing
attack detection across a wide range of distinct cameras of var-
ious makers is further investigated on a database specifically
built for PRNU analysis in digital image forensics and it is
shown that said database is suitable to determine the decision
threshold for the proposed system. In addition, a database of
printed and scanned face images is employed in evaluations.
Moreover, in experiments the proposed system is benchmarked
against state-of-the-art morphing attack detectors. Also, vul-
nerability analysis of the proposed concept with respect to
potential attacks to circumvent the detection system is given.

The remainder of this work is organized as follows:
related works are discussed in Section II. Fundamentals of
PRNU extraction are explained in Section III. The proposed
morph detection method is described in detail in Section IV.
Experimental results are reported in Section V. Finally, con-
clusions are summarized in Section VI.

II. RELATED WORK

In recent years, numerous no-reference face morphing attack
detection schemes have been proposed. Published methods
and their properties are summarized in Table I which has
been derived from [2]. In some papers more than one system
was presented, in such cases approaches that showed the
best performance in detecting morphing attacks are listed.
It is important to note that the generalizability/robustness of
the published approaches could not be demonstrated. So far,
there are no publicly accessible large databases of bona fide
and morphed facial images and hardly any publicly avail-
able morph recognition algorithms which allow comprehensive
experimental evaluations. The vast majority of published meth-
ods were trained and tested on various sequestered databases,
which hampers reproducibility of results.1 In addition, morph
detection methods are usually trained and tested on a single
database with a single morph generation algorithm. Based on
these facts, a comparison of published approaches with respect
to reported detection performance would be potentially mis-
leading and is deliberately avoided in this work. However, it
is expected that planned benchmark tests, e.g., by the National
Institute of Standards and Technology (NIST) [40], will enable
a meaningful quantitative comparison of published approaches
in the near future.

Several researchers have suggested the use of general-
purpose image descriptors, such as Local Binary Patterns
(LBP) [41] or Binarized Statistical Image Features
(BSIF) [42], which are widely used for biometric recog-
nition. Ramachandra et al. [11] proposed a system based
on a Support Vector Machine (SVM) trained on extracted
BSIF features. For the training and evaluation of the
SVMs, an internal database with morphed facial images
was created. In a derivative version of the same database,
Scherhag et al. [12] examined the accuracy of morphing
detection on printed and scanned images using the proposed
algorithm. Furthermore, Ramachandra et al. [13] proposed
a Probabilistic Collaborative Representation Classifier (Pro-
CRC) [43] trained on LBP features extracted from the
color channels. The database used was an internal database
derived from FRGCv2 [14]. The authors concentrate on the
differences between morphed and averaged images in the
evaluation.

A more complex method for morphing attack detection
is proposed in [16], [17], where a Vietoris-Rips complex is
formed from the reactions of uniform LBP extractors on the
image. In [38] a high detection performance was shown by

1Also the morphed images used in this work can not be published due
to licensing conditions as these are generated based on subsets of available
image database collected by different institutions. However, efforts are cur-
rently made by different research laboratories to acquire new datasets of bona
fide and morphed face images that shall serve future open benchmarks.
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TABLE I
OVERVIEW OF MOST RELEVANT NO-REFERENCE FACE MORPHING ATTACK DETECTION ALGORITHMS

Wandzik et al. for a linear SVM trained on high-dimensional
LBP features [44] extracted from the FEI database [28]. In [45]
Ramachandra et al. proposed an LBP extraction of Laplacian
pyramids build on different color channels. Agarwal et al. [15]
suggest training an SVM with Weighted Local Magnitude
Pattern. Similar to LBP, the proposed descriptor encodes the
differences between a central pixel and its neighbors. However,
instead of binarizing them, it assigns weights inversely pro-
portional to the difference to the middle pixel. Depending on
the feature representation of texture descriptors, the input of
classifiers has to be adjusted. E.g., for Scale-Invariant Feature
Transform (SIFT) [46] it has been shown that the number of
extracted key points is suitable for the task of morph recogni-
tion [8], [20]. A score level fusion of several image descriptors
could further improve the recognition rate [21]. Therefore,
LBP, BSIF, SIFT, Speeded Up Robust Features (SURF) [47],
Histogram of Oriented Gradients (HOG) [48] and the deep
features of Openface [49] were merged and evaluated by
Scherhag et al. [21]. Damer et al. [25] tested the suitabil-
ity of LBP features for the detection of morphs generated by
Generative Adversarial Networks (GANs). In the no-reference
scenario, classifiers may rely on different microtexture prop-
erties. These can be dataset-specific features that are changed
or can be introduced by the morphing process. Especially the
combination of features that reflect different information, e.g.,
LBP and SIFT, leads to improvements. It has been shown that
the performance of morph detectors based on general-purpose

image descriptors may decrease significantly if training and
test images are taken from another image source [9], [24].

During the morphing process, not only the texture but
the entire signal of the image is manipulated. A further
recognition approach is therefore the analysis of the changes
in the sensor noise pattern, e.g., PRNU [5]. Therefore, the
PRNU pattern, which originates from imperfections within
the camera’s sensor, not only differing for each model, but
also for each individual camera, is extracted from a facial
image and the discrete Fourier variables are calculated. The
mean value and variance are then derived from the result-
ing histogram. Recently, Debiasi et al. [10] proposed an
improved version of this scheme based on PRNU vari-
ance analysis across image blocks. A similar approach has
been proposed by Zhang et al. [27] confirming the use-
fulness of morph detection based on sensor noise pattern
analysis.

Both PRNU-based morph detection approaches analyse the
Fourier Spectrum of the PRNU and quantify spectral differ-
ences between bona fide and morphed images using statistical
measures. The main difference between both approaches lies
within the processing pipeline, block-based analysis in the spa-
tial [5], [10] vs. spectral domain [27], and final classification.
The morph detector proposed in [5] and [10] does not need
any training data, since it solely relies on a simple threshold-
ing for the final decision, while the one in [27] utilises a linear
SVM, which needs to be trained with bona fide and morphed
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images and makes the latter approach potentially more vulner-
able against unknown morphing attacks. Furthermore, different
PRNU extraction and enhancement techniques are used for
both approaches. In contrast to [5], [10], the authors of [27] did
not consider image post-processings. Also, no cross-database
performance evaluations were performed.

Morphing attack detection methods based on continuous
image degradation were proposed in [20], [50], [51]. The basic
idea behind these methods is to continuously deteriorate the
image quality, e.g., by JPEG compression, in order to gen-
erate several artificial self-references of a facial image. The
distances between these references and the original image are
then analyzed for morph detection. Ramachandra et al. [31]
suggests the analysis of high frequencies. In their approach
images are converted to grayscale and a controllable pyra-
mid is built and a Collaborative Representation Classifier
(CRC) is trained on the high frequencies. The database used
was printed and scanned. An alternative to handcrafted fea-
ture extractors is the use of statistical machine learning on
the unprocessed image to distinguish between morphed and
bona fide images. Ramachandra et al. [32] suggested adapt-
ing two convolutional neural networks (CNNs) (VGG19 [52]
and AlexNet [53]) by transfer learning and combining the
intermediate features to train a CRC. In [54] three CNNs,
namely VGG19, AlexNet and GoogLeNet [55], are assessed
as pre-trained and non-pre-trained models with respect to their
morph detection abilities. Also with these methods there is
a potential problem of over-fitting. In particular, the result-
ing classifiers may prefer image sites where artefacts, such as
shadows around the iris region, may occur due to an imperfect
automated morphing process. In order to avoid over-fitting,
Seibold et al. [33] trained a VGG19 network on a series of
different images with two different databases, morphing algo-
rithms and postprocessings (motion blur, Gaussian blur, salt
and pepper noise, Gaussian noise). Since the CNN has been
trained on all types of databases, morphing algorithms, and
postprocessing, it is difficult to assess the resulting robust-
ness of the classifier. Wandzik et al. [38] suggested to use
pre-trained facial recognition networks, e.g., VGG-Face [56]
or FaceNet [57], to detect morphing attacks. The high-level
features generated by the networks are classified with a linear
SVM.

Different approaches based on media forensics were
presented, too. In several papers the detection of JPEG dou-
ble compression artefacts for the purpose of morph detection
was proposed [18], [29]. However, the presence of such arte-
facts implies a strong assumption of the image format of facial
images used for morphing and the resulting morphed facial
image. ICAO proposes to store facial image data in accordance
with the specifications of the International Standard ISO/IEC
19794-5 [58]. More specifically, ICAO requires facial images
to be stored in electronic travel documents with an average
compressed size of 15kB to 20kB in JPEG or JPEG 2000 for-
mat [59], [60]. However, JPEG 2000 is the de-facto standard
for electronic travel documents as it maintains a higher quality
when compressing facial images to 15kB. Therefore, depend-
ing on the image size and the compression algorithm used,
JPEG double compression artefacts may not be detected. A

morph detection method based on reflection analysis in facial
images is introduced by Seibold et al. [30]. The flash direc-
tion is estimated based on reflections detected in the eyes
of a potentially morphed image. Reflections from the nose
of the face are then analyzed. However, the ISO/IEC stan-
dard requires the absence of hot spots and reflections in facial
images used in electronic travel documents. In particular, dif-
fuse lighting, multiple symmetrical sources or other lighting
methods should be used, i.e., a single bright “point” light
source such as a camera-internal flash is not acceptable for
imaging [58].

Apart from no-reference approaches differential morph-
ing attack detection schemes have been presented, too.
Most notably, face de-morphing [61], [62] and facial
landmark-based approaches have been introduced [63], [64].
Additionally, some no-reference approaches, e.g., general-
purpose image descriptors, can be extended to a differential
scenario by estimating differences between feature vectors
extracted from trusted live captures and potential morphs [8].

III. PRNU-BASED IMAGE FORENSICS

The photo response non-uniformity (PRNU), also known
as sensor noise, has previously been utilised as a reliable tool
to perform various forensic tasks such as device identification,
device linking, recovery of processing history and the detection
of digital forgeries. The PRNU origins from slight variations
among individual pixels during the photoelectric conversion in
digital image sensors. All digital image sensors cast this weak
noise-like signal into all acquired images. Thus, the PRNU can
be considered as an intrinsic property of all digital imaging
sensors and an inherent part of their output.

A. PRNU Extraction and Analysis

In this work, we make use of the PRNU to detect morphed
face images. This systemic and individual pattern can be seen
as an unintentional stochastic spread-spectrum watermark that
survives processing, such as lossy compression or filtering.
The extraction of the PRNU noise residual from an image
can be performed by applying Fridrich’s approach [65]. For
each image I the noise residual WI is estimated as described
in Eq. (1),

WI = I − F(I) (1)

where F is a denoising function which filters out the sensor
pattern noise. The extraction is performed using the denois-
ing filter proposed by Mihcak et al. [66]. For further details
on the denoising filter, we refer to [66]. Fig. 2 presents the
extracted PRNU for an exemplary image. Further visualiza-
tions of PRNU signals extracted from face images can be
found in [5], [10].

Since the PRNU extraction is relying on a denoising
of the image, the resulting pattern might be contami-
nated with different signals, such as other high frequency
image components, e.g., edges, or different types of non-
unique artefacts (NUAs) [67]. Many alternative PRNU
extraction schemes [68], [69], [70], [71], [72], [73], [74] and
PRNU enhancements [75], [76], [77], [78], [79] have been
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Fig. 2. PRNU extraction example for a pre-processed face image.

proposed in literature to attenuate different types of PRNU
contaminations and improve the quality of the extracted PRNU
in source camera identification scenarios. However, to the best
of our knowledge, their impact on the general properties of
the PRNU signal has not yet been extensively investigated.
Therefore, we decided to rely on Mihcak et al.’s [66] denoising
filter for the PRNU extraction.

The following essential properties, based on the character-
istics of the PRNU described by Fridrich in [80], make the
PRNU well suited for a face morph detection scenario:

1) Dimensionality: The sensor fingerprint is stochastic in
nature and has a large information content, which makes
it unique to each sensor.

2) Unavoidability: All imaging sensors exhibit PRNU.
3) Universality: The sensor fingerprint is present in every

picture independently of the camera optics, camera set-
tings, or scene content, with the exception of completely
dark images.

4) Permanence: It is stable in time and under a wide
range of environmental conditions (temperature, humid-
ity, etc.).

5) Robustness: It survives lossy compression, filtering,
gamma correction, and many other typical processing
procedures. It is even reported to survive high quality
printing and scanning [81].

Due to the criteria described above, the PRNU offers sig-
nificant advantages over analysing other high-frequency image
components to detect morphed face images.

According to Fridrich [65], the spectral characteristics of
the PRNU reveal whether an image has been subject to further
processing, e.g., non-geometrical operations have an influence
on the strength of the embedded PRNU signal. Since the face
morphing process involves non-linear warping and averaging
operations, the distribution of the PRNU values is expected to
change after these processing operations. Fig. 3 illustrates the
PRNU and Fig. 4 the Discrete Fourier Transform (DFT) mag-
nitude spectra obtained by averaging the extracted PRNU of
500 bona fide and 500 morphed face images from the FRGCv2
dataset, which is described in more detail in Section V.

These effects on the distribution of the PRNU values in the
spatial domain can be observed in Fig. 3(c), where the dis-
tribution of morphed images is squashed compared to bona
fide ones, i.e., the values around the mean of the distribu-
tion become more frequent and the values around the tails of

Fig. 3. PRNU values and histograms of the PRNU extracted from a single
bona fide image (a) and morphed face images (b). The PRNU values have
been averaged over 500 randomly selected images of the FRGCv2 dataset.

Fig. 4. DFT magnitude spectra and histograms of the PRNU extracted from
bona fide and morphed face images. The DFT spectra have been averaged
over 500 randomly selected images of the FRGCv2 dataset.

the distribution become less frequent which leads to a steeper
slope. Furthermore, some undesired components of the PRNU,
e.g., edges in the image content, are emphasised in the mor-
phed images, as it can be observed in Fig. 3(b). These effects
are caused by the averaging operations applied during the
morphing process.

The magnitude spectra of bona fide and morphed face
images in Fig. 4, representing the frequency domain of the
PRNU, show a clearly visible discrepancy among each other,
where the most obvious differences can be observed in the
reduction of high-frequency components within the morphed
images’ DFT magnitude spectrum as compared to the bona
fide ones. Furthermore, the DFT spectrum of the morphed face
images appears more compressed, i.e., the area covered by the
large magnitudes is smaller compared to bona fide images.

These effects are caused by the previously mentioned oper-
ations involved in the face morphing process, which lead to
changes in the distribution of the PRNU values. The approach
presented in this work aims at exploiting these effects in order
to perform a blind no-reference face morph detection.

B. Potential Attacks and PRNU Robustness

PRNU-based forensics and counter forensics can be con-
sidered as a cat-and-mouse game, since attacks and counter
attacks are presented on a regular basis in the related litera-
ture. While attackers try to bypass various forensic approaches
and conceal their counter-forensic approaches, techniques are
developed to reveal such attacks.

The counter-forensic techniques proposed to overcome
PRNU-based forensics can be divided into the following
categories:

• Destroying the Image Identity: This class of counter
forensic techniques tries to conceal the identity of
an image and therefore prevents an identification
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of the image source or camera, respectively. Some
examples are: removing the PRNU [82], [83], [84], [85],
seam carving [86], [87], adaptive PRNU denoising [88].
Applying these techniques to morphed face images poses
a lower threat to a PRNU-based morph detection system,
since the aim is not to detect the image source, but to
analyse the general properties of the PRNU signal. When
the PRNU is destroyed, it can be assumed that its general
properties are also not preserved.

• Forging the Image Identity: The goal of this class
of counter forensic techniques is to fake the iden-
tity of an image, i.e., changing the identity of the
image or concealing traces of its modification. Some
examples for this are: Insertion of a differing PRNU
signal [83], [85], fingerprint copy attacks [89], [90], [91],
hiding of post-processing operations [83]. When applied
to morphed face images, these type of counter foren-
sic techniques can most likely be considered as a threat
for a PRNU-based morph detection system, because
their aim is to spoof an authentic image source, which
usually contains similar characteristics to the PRNU
of unaltered images. A potential attack on the PRNU-
based morph detection system could involve extracting
the PRNU from an authentic image and inserting it
into a morphed image. This would restore the origi-
nal properties of the PRNU when it is extracted again
for the detection and therefore conceal the morphing
operations.

Different approaches are proposed in literature to detect
such intentional counter forensic attacks, e.g., the “Triangle
Test” [92] and more recently Sameer et al. [93] proposed
a deep learning based CNN model for the detection of
counter forensic images. In biometrics, forging of the image
identity has only been investigated for iris sensor data by
Banerjee et al., [94] and Uhl and Höller [95], where the
detection of such attacks is furthermore evaluated in the latter.

Another type of attacks on the PRNU are unintentional
ones, such as recompression, geometric transformations (crop-
ping, scaling, rotation), photometric transformations and post-
processing of the images. These attacks might occur uninten-
tionally, i.e., when images are simply processed to enhance the
appearance of a subject within the image, like it is often done
for portrait photos. The PRNU has been shown to be resilient
to photometric transformations [96] to a certain degree. While
geometric transformations heavily affect the image source
identification because they destroy the alignment of the PRNU
signal, they are expected to not affect the general properties
of the PRNU. However, post-processing of images, such as
sharpening, blurring or contrast enhancement, can severely
affect the PRNU. In previous work we showed that differ-
ent post-processing techniques might even completely prevent
a PRNU-based detection of morphed face images [5], [10].
Furthermore, recompression [97] is reported to alter the PRNU
pattern after several passes in a way that source identification
performance is affected. However, its influence on the general
properties of the PRNU has not been investigated.

We consider intentional attacks on the PRNU to be less
likely compared to unintentional ones, because the former

require profound knowledge about the PRNU and its properties
as well as an attacker with experience in the field. As the
robustness of PRNU-based morph detection against simple
post-processings has been already investigated in previous
works [5], [10], an evaluation of four morphing algorithms
has been included in order to provide a more comprehen-
sive performance analysis in Section V-B. The four morphing
algorithms picture a more realistic attack scenario, since they
use different combinations of the simple post-processings.
To address the question whether a PRNU-based approach
can be applied for a wide range of distinct cameras, in
Section V-C we evaluated the generalizability of the proposed
morph detection approach on the Dresden Image Database [98]
containing images from 63 different cameras from multiple
manufacturers.

IV. PROPOSED SYSTEM

Based on the observed effects of the face warping proce-
dure on the spatial and spectral characteristics of the PRNU, in
this work we propose a PRNU-based morph detection system
which is able to discriminate between bona fide and morphed
images. Therefore, we analyse the spatial and spectral charac-
teristics of the PRNU in a no-reference manner, thus there is
no need for a trusted bona fide reference image of one of the
morphed subjects.

The proposed system relies on a divide and conquer prin-
ciple and its processing steps are illustrated in Fig. 5. In
the remainder of this section, we will discuss the various
processing steps in more detail.

A. Preprocessing and PRNU Extraction

The first step of the system consists in extracting the facial
region from a face image, which is normalised and then
cropped to the facial area (320×320 pixels) before being con-
verted to grayscale. This process is described in more detail
in Section V-A.

Following, the PRNU is extracted from the preprocessed
image, as described in Section III, using the wavelet-based
denoising filter by Mihcak et al. [66] in conjunction with
the filtering distortion removal (FDR) enhancement proposed
in [79]. The extracted PRNU is then split into multiple equally
sized cells. The proposed system is able to work with arbitrary
splits from 1 cell (whole image) to N cells. In this work, only
a cell size of 10×10 cells is investigated, because it yields
the best performance according to previous work [5], [10].
In general, a larger number of cells is expected to further
expose the non-linear transformations of the PRNU during
the morphing process by putting stronger emphasis on local
variations within an image. Eventually, we obtain N different
cells C1, . . . , CN . Fig. 5 shows an example of how the face
image is preprocessed and the PRNU is extracted and split
into 10×10 equisized cells.

B. Feature Extraction

The feature extraction is performed individually for each
cell. In previous work [5], [10], only spectral features based
on the DFT magnitude histogram and magnitude energy have
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Fig. 5. Processing steps of the proposed PRNU-based morph detection system and different feature types: spatial features (upper path) and spectral features
(lower path).

been investigated. In this work, two different feature types are
investigated: spectral features based on the PRNU’s DFT mag-
nitudes and new spatial features based on the PRNU values,
since the PRNU values are affected by the morphing proce-
dures and post-processings in the spatial domain as well the
spectral one.

Both feature types are described in more detail in the
following.

1) Spatial Features: The newly proposed spatial features
aim at analysing the distribution of the PRNU values, which
is observed to differ between bona fide and morphed images
according to Fig. 3(a) and Fig. 3(b).

For the first spatial feature, Pvar, the histogram of the PRNU
values is computed, which is constrained to a range of [−5, 5]
and divided into 100 bins. These values have been selected by
analysing the DFT spectra of extracted PRNUs of bona fide
and morphed images. Due to the different slope of bona fide
and morphed image’s PRNU value distributions that can be
observed in Fig. 3(c), we decided to compute the variance of
the histogram bin frequencies Pvar, which we defined as

Pvar = 1

B

B∑

n=1

(
HP(n) − H̄P

)2 (2)

where B is the number of bins in the PRNU cell’s histogram
HP. H̄P represents the mean frequency of the histogram bins.

As second spatial feature, we consider the energy of the
PRNU values, Pen, which is defined as

Pen =
∑

x∈V

|x|2 (3)

where x is a value within all PRNU values V of a cell.
As the Eqs. (2) and (3) show, both spatial features yield a

simple scalar value SV for each PRNU cell.
2) Spectral Features: In order to compute the spectral

features, the first step consists in obtaining the frequency spec-
trum of the PRNU in each cell, which is done by means of the
DFT. The resulting magnitude spectrum, which is illustrated
in Fig. 4(a) and Fig. 4(b) respectively, reveals the alterations
of the PRNU signal caused by the morphing process.

These effects are quantified, on one hand, by calculating the
DFT magnitude histogram to represent the magnitude distribu-
tion within the spectrum. As described in Section III, a shift
of the magnitude distribution can be observed for morphed

images. The DFT magnitude histograms are constrained to the
same universal range of [0, 8] and are divided into 100 bins.
These values have again been estimated by analysing the DFT
spectra of extracted PRNUs of bona fide and morphed images.
Based on the observations in Section III, we select the variance
of the histogram Dvar as being suited for the discrimination
between bona fide and morphed images. We obtain Dvar in a
similar manner as the previously described Pvar:

Dvar = 1

B

B∑

n=1

(
HM(n) − H̄M

)2 (4)

where B is the number of bins in a cell’s DFT magnitude
histogram HM , with H̄M being the mean frequency of the
histogram bins.

On the other hand, we propose to compute the energy of the
PRNU’s DFT magnitudes Den, as defined in Eq. (5), where M
are the DFT magnitudes within a cell and x their respective
values.

Den =
∑

x∈M

|x|2 (5)

As for the spatial features, both spectral features yield a
simple scalar value SV for each PRNU cell when considering
Eqs. (4) and (5).

C. Feature Aggregation

After obtaining the scalar values SV for all cells Cn, the
values are aggregated to obtain a global aggregation score A
for the image. We investigated various strategies, where
we present the two best performing ones. The aggregation
strategies used in this work are:

Amin = min∀n∈1...N
SVn (6)

Amax = max∀n∈1...N
SVn (7)

where N is the number of total cells and SVn is the feature
(scalar value) obtained for the cell Cn, as described in the
previous processing step.

Amin yields the minimum score among the individual cells,
while Amax characterizes maximum score among all cells. As
already mentioned, we obtain a single scalar value A for each
image using one of the Eqs. (6) or (7).
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Fig. 6. Examples of bona fide portrait and pre-processed face images of the used datasets. Due to the printing and scanning face images from the Print-Scan
dataset exhibit slightly lower resolution.

Fig. 7. Used morphing algorithms applied to a female (top) and a male (bottom) image pair. Note that the FaceFusion algorithm uses the inner eye regions
and nostrils of subject 1 in order to avoid artefacts in these regions.

D. Decision

The final decision, whether a face image has been created
through morphing of multiple images or not, is taken by a
simple thresholding.

Previous work [5] showed that a one dimensional decision
was not able to reliably detect some of the post-processed mor-
phed images for some spectral features. Hence, we introduce
an additional decision step and derive a mean value B̄ from
bona fide images, where the characteristics of the PRNU are
well known. With this property, we can calculate the distance
D of an investigated image to bona fide images as

D = |A − B̄| (8)

B̄ = 1

NB

NB∑

n=1

A (9)

where A is the cell aggregation result, B̄ is the mean variation
of the NB bona fide images.

It has to be noted, that this distance calculation is only
applied for the two spatial and spectral energy-based features
Pen and Den, while it is not calculated for the histogram-
based features Pvar and Dvar, due to the histogram-based
features yielding more consistent scores among different post-
processings which can be classified with a one dimensional
threshold.

If the distance calculation is applied, the final decision for
a presented face image is taken by thresholding the calcu-
lated distance D. Otherwise, the final decision simply relies on
thresholding of the value A, which is obtained directly from
the cell aggregation.

V. EXPERIMENTS

In the following subsection the experimental setup,
i.e., used databases, morphing algorithms, baseline systems
and performance metrics, are described. Subsequently, the
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detection performance of the proposed systems and the base-
line systems is reported and discussed. Further, the generaliz-
ability of the proposed PRNU-based morph detection approach
with respect to utilized cameras and printed and scanned face
images is investigated.

A. Experimental Setup

Performance evaluations are conducted based on a subset
of 1,948 images selected from the FRGCv2 [14] face image
database. Face images have been manually filtered to meet
ICAO requirements for electronic travel documents [59], e.g.,
frontal pose, neutral expression, homogeneous background and
sufficient resolution (at least 90 pixels between left and right
eye center). Images of this database have been developed using
a Fujifilm Frontier 5700 R Minlab and scanned using a Epson
DS-50000 Scanner at 300 dpi to obtain the Print-Scan database
of equal size. In addition, a subset of 1,058 images from
the FERET [22] face image database which exhibit the same
properties are used for training purposes of baseline morph
detection algorithms. Note that the latter database is not used
for evaluation of the proposed PRNU-based morph detection
scheme since it has been acquired using an analog camera.
PRNU is primary caused by Pixel Uniformity Noise related
to the sensor which are non-existent if images are acquired
with a film camera, i.e., only the PRNU signal of the sen-
sor inside the scanner used to digitize the images might be
present in this case. Instead, the Dresden Image Database [98]
is used for training the PRNU-based morph detection schemes
to underline the claim that the proposed PRNU-based morph
detector is not dependent of a specific camera unit, since it
contains images from 63 distinct cameras from various mod-
els and manufacturers. More details on how the bona fide and
morphed images have been generated using the Dresden Image
Database are given in Section V-C.

In a pre-processing step the face of a subject is segmented
and normalized according to eye coordinates detected by the
dlib landmark detector [99]. Subsequently, the normalized
region is cropped to 320×320 pixels to ensure that the morph
detection algorithm is only applied to the facial region. Finally,
the cropped face part is converted to a grayscale image.
Examples of original face images (cropped to portrait format)
and pre-processed face images of the FRGCv2 and Print-Scan
database are depicted in Fig. 6.

The subsets are split into images used for morph cre-
ation and images used as bona fide references. The resulting
database constellation is listed in Table II. In order to generate
a great variation of morphs, four morphing algorithms were
employed:

1) OpenCV/dlib: a self-scripted morphing algorithm based
on th “Face Morph Using OpenCV” tutorial2 using the
dlib landmark detector [99].

2) FaceMorpher3: an open-source implementation using
python.

3) FaceFusion4: a proprietary morphing algorithm.

2http://www.learnopencv.com/face-morph-using-opencv-cpp-python/
3https://github.com/alyssaq/face_morpher
4http://www.wearemoment.com/FaceFusion/

TABLE II
NUMBER OF SUBJECTS, BONA FIDE AND MORPHED FACE IMAGES OF

USED DATASETS. “F” AND “M” INDICATE FEMALE AND MALE

SUBJECTS, RESPECTIVELY

4) UBO: the morphing tool developed by the University of
Bologna, as used, e.g., in [61].

In order to be able to conduct comparable experiments,
the same combination of morphed face images was created
for each of the listed algorithms. All algorithms detect corre-
sponding landmarks in two face images to be morphed which
are averaged. Subsequently, both face images are warped
accordingly. Finally, alpha-blending is performed to create
the morphed face image. All morphs were created in a way
such that both used images tend to contribute equally to the
inner facial region. Note that FaceFusion and UBO morphing
algorithms are closed-source and might apply certain image
post-processing methods to enhance the quality of resulting
morphs. Examples of cropped facial regions of morphed face
images generated all four morphing algorithms are shown in
Fig. 7.

The vulnerability of a COTS facial recognition system
to attacks based on the generated morphed face images is
assessed by using the metrics specified in [100], in partic-
ular the Mated Morph Presentation Match Rate (MMPMR).
This measure is an adaptation of the general Impostor
Attack Presentation Match Rate (IAPMR) introduced in
ISO/IEC 30107−3 [101] and is defined as the proportion of
attack presentations using the same type of presentation attack
instruments in which the target reference matches. In the adap-
tation, however, the MMPMR covers the fact that not one
target subject (contained in the morphed reference) is matched
- but for a successful face morphing attack, both data subjects
that previously contributed to the morphed image are expected
to match.

Using the default decision threshold of the COTS facial
recognition system, an MMPMR of 1 is obtained across all
used face image databases and morphing techniques. This
means that all facial images of individuals contributing to a
morphed facial image are successfully compared to it, so that
the attacks have a 100% chance of success.

As baseline face morphing attack detection systems Local
Binary Patterns (LBP) [102], Binarized Statistical Image
Features (BSIF) [42], FaceNet features [57] and the FS-SPN
analysis of [27] are applied. At feature extraction for LBP
and BSIF the pre-processed face image is optionally divided
into 4×4 cells to retain local information. That is, feature
extractors are applied pixel-wise storing feature value in his-
tograms for each texture cell. The final feature vector is
formed as a concatenation of histograms extracted from each
cell. While LBP simply processes neighboring pixel values of
each pixel, BSIF utilizes specific filters learned from a set of
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TABLE III
PERFORMANCE RESULTS IN TERMS OF D-EER (IN %) FOR DIFFERENT

CONFIGURATIONS OF THE BASELINE MORPHING ATTACK DETECTION

SYSTEMS. BEST PERFORMING SYSTEMS ARE MARKED BOLD. μ IS THE

MEAN ERROR AND σ 2 THE VARIANCE OVER ALL MORPHING METHODS

images. For details on these texture descriptors the reader is
referred to [42], [102]. The use of these well-established gen-
eral purpose texture descriptors has shown to be successful
in diverse texture classification problems. As the process of
image morphing is expected to cause changes in textual prop-
erties between bona fide and morphed face images said texture
descriptors have been shown to reveal competitive morphing
attack detection performance [8], [11], [12], [21]. Minimum
filter sizes of 3×3 pixels which have been reported to reveal
best detection performance in [8] are used for both texture
descriptors. In the training stage feature vectors are extracted
for each baseline system and SVMs with Radial Basis
Function (RBF) kernels are trained to distinguish between
bona fide and morphed face images. Similarly, an SVM is
trained with deep facial features extracted from cropped face
image using the FaceNet recognition system. This approach
resembles the schemes proposed in [31], [33]. The SVM-based
classifiers of these morph detection schemes are trained on
the subset of the FERET image database. Eventually, the pre-
trained open-source implementation5 of [27] is directly applied
for morph detection. The major advantage of the proposed
PRNU-based morph detection over the baseline algorithms
is that it does not need any training. Only for some of the
proposed features, a pre-computed decision threshold has to
be computed. In such cases, the threshold has been estimated
on the Dresden image database [98].

The performance of the detection algorithms is reported
according to metrics defined in ISO/IEC 30107−3 [101].
The Attack Presentation Classification Error Rate (APCER)
is defined as the proportion of attack presentations using the
same presentation attack instrument species incorrectly clas-
sified as bona fide presentations in a specific scenario. The
Bona Fide Presentation Classification Error Rate (BPCER) is
defined as the proportion of bona fide presentations incorrectly
classified as presentation attacks in a specific scenario. The
D-EER, i.e., the operation point where APCER = BPCER, is
used as general operation point and reported for the different
morphing methods.

B. Performance Evaluation

Table III lists the D-EERs for different configurations of
the baseline systems. It can be observed that morphs created
using OpenCV with dlib are generally harder to detect, in
contrast to the images created by other morphing algorithms.

5https://github.com/Le-BingZhang/FS-SPN

Fig. 8. DET curves for different configurations of the baseline morphing
attack detection systems in the presence of all morphing attacks on FRGCv2.

Fig. 9. DET curves for different configurations of the baseline morphing
attack detection system in the presence of all morphing attacks.

However, FS-SPN performs best detecting morphs created
with OpenCV and dlib, but the detection rate drops when
detecting morphs created by FaceFusion or the UBO algo-
rithm. In contrast, BSIF4×4 shows improved performance for
detecting FaceFusion morphs, but lacks detecting morphs cre-
ated by OpenCV. The DET curves for the baseline systems in
presence of all morphing attacks are shown in Fig. 8. In sum-
mary, it appears that a heterogeneous training and test database
as well as the utilization of different morphing algorithms sig-
nificantly deteriorate the detection performance of the baseline
systems leading to significantly worse results to what has been
reported in previous works.

Performance results for the proposed PRNU-based mor-
phing attack detection scheme for best performing feature
extractors and cell aggregation techniques are summarized
in Table IV. DET plots for the best performing proposed
approaches across all post-processings are shown in Fig. 9.
In addition, Fig. 10 compares the average D-EERs and their
variances of all proposed morphing attack detection schemes
to the baseline systems. In contrast to the baseline systems,
the PRNU-based approaches yield low error rates detecting
morphs created using OpenCV and dlib, but struggle detect-
ing FaceFusion morphs. However, compared to the baseline
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TABLE IV
PERFORMANCE RESULTS IN TERMS OF D-EER (IN %) FOR DIFFERENT CONFIGURATIONS OF THE PROPOSED PRNU-BASED MORPHING

ATTACK DETECTION SYSTEMS. BEST PERFORMING SYSTEMS ARE MARKED BOLD. μ IS THE

MEAN ERROR AND σ 2 THE VARIANCE OVER ALL MORPHING METHODS

Fig. 10. Error bars of D-EERs for different configuration of the proposed
PRNU-based morphing attack detection system and the baseline morphing
attack detection systems in presence of all morphing attacks.

systems average D-EER are observably lower and exhibit
smaller standard deviations. Additionally, smaller variance in
detection performance across different datasets and morphing
algorithms are obtained, which is vital for an application of any
morphing attack detection algorithm in real world scenarios
where said parameters are unknown.

Compared to the baseline systems, significantly improved
results are achieved for the newly proposed spatial features,
i.e., Pvar followed by Pen, which significantly outperform
the baseline systems. The spectral Den feature, proposed in
previous work, also obtains very competitive results on this
new dataset. Another aspect to note is that the energy-based
features Den and Pen, whose mean bona fide threshold B̄ has
been determined on the Dresden image database, underlines
the generalisability of the approach in regard to cameras from
different models and manufacturers.

At this point, it is important to note that morphing attack
detection algorithms analyze cropped faces only. Thereby
higher generalizability is achieved since outer facial parts can
be created in different ways during morph creation. Many
morph generators copy the outer facial image part of one sub-
ject contributing to the morph, e.g., in [29], [61]. In such
cases, the PRNU signal of the outer part of the morph is
expected to remain almost unaltered. That is, if the proposed
PRNU-based morphing attack detection schemes are extended
to analyze the entire face image, a variance-based cell aggre-
gation is expected to reveal improved results for detecting
morphs created in the aforementioned way.

Overall, some of the proposed PRNU-based morph-
ing attack detection configurations reveal promising results

considering the challenging experimental setup. In contrast to
trained morphing attack detection schemes, e.g., [32], [54],
the proposed schemes do not rely on the presence of distinct
artefacts, e.g., ghost artefacts, which might occur due to imper-
fect morph creation. Hence, similar results are to be expected
if advanced morphing algorithms are developed which allow
for an automated creation of morphs comprising less or no
artefacts.

C. Generalizability Across Cameras

As mentioned in Section III, the proposed PRNU-based
morph detection system relies on changes in the distribution
of the PRNU values. Since the PRNU differs for each cam-
era, it might contain camera (model) specific contaminations
(non-unique artefacts) that might affect the PRNU values’
distribution.

In order to investigate the generalizability of the proposed
morph detection approach and due to a lack of suitable face
image datasets acquired with different cameras, we decided
to fall back to the Dresden image database [98], which offers
images from multiple cameras and even multiple instances of
the same camera model. More specifically, we selected the
flatfield dataset, since it contains images beneficial for PRNU
extraction, i.e., bright images of an evenly illuminated surface,
which do not contain any contaminations from the image con-
tent like edges or other high-frequency patterns. The flatfield
dataset contains images from 63 distinct digital cameras from
20 different camera models across many camera manufactur-
ers. For some camera models, images from up to 5 instances
are available in the dataset.

To generate the bona fide and morphed images, we first
selected 315 images from the Dresden image database [98],
consisting of 5 random images for every one of the 63 cam-
eras. For the generation of the morphed image samples, we
used the same morphing parameters as they would occur in a
face morphing attack. In this experiment, they were obtained
from applying the OpenCV with dlib approach on the FRGCv2
database, as described in Section V-A. With these parameters,
we generated a total of 53, 362 morphed images from bona fide
image pairs of different cameras. Finally, a patch of 320×320
pixels is cropped from the center of all bona fide and morphed
images.

The results of applying the proposed PRNU-based face mor-
phing system on these bona fide and morphed images are
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TABLE V
PERFORMANCE RESULTS IN TERMS OF D-EER (IN %) FOR DIFFERENT CONFIGURATIONS OF THE PROPOSED PRNU-BASED MORPHING ATTACK

DETECTION SYSTEMS (CELL SIZE OF 10×10) AND 63 DIFFERENT CAMERAS FROM THE DRESDEN IMAGE DATABASE.
“ALL” INDICATES THE RESULT FOR ALL CAMERA INSTANCES

presented in Table V. Looking at the overall results for all cam-
eras at the bottom of the table, we obtain a D-EER of 13.65%
with Pvar|Amin aggregation. For most cameras the detection
error rate is very low. However, some cameras exhibit higher
error rates of around 15−20% and cameras of a specific model
(Practica DCZ59) even of up to 41.56%. We assume that this
degradation might be caused by camera-specific non-unique

artefacts, since the degradation mostly occurs for all cam-
eras of the same model, as the mentioned Practica DCZ59
or FujiFilm FinePixJ50 and Panasonic DMCFZ50. Though, it
has to be noted that the degradation does not persist among
all investigated features, where a fusion of multiple features
might yield improved performance and more consistent results.
The other proposed features Den, Pvar and Pen also achieve
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TABLE VI
PERFORMANCE RESULTS IN TERMS OF D-EER (IN %) FOR DIFFERENT

CONFIGURATIONS OF THE PROPOSED PRNU-BASED MORPHING

ATTACK DETECTION SYSTEMS (CELL SIZE OF 10×10) FOR

THE PRINT-SCAN DATASET

Fig. 11. DET curves for different configurations of the proposed morphing
attack detection on the printed and scanned images for all morphing algorithms
(OpenCV/dlib, FaceMorpher, FaceFusion, UBO).

respectable overall results between 14.5 and 28.6% D-EER.
The histogram-based feature Pvar, which is independent of any
training data, show a better generalizability over the various
cameras compared to the energy-based features Den and Pen.

These results demonstrate that PRNU-based features in gen-
eral are able to generalize well over a large number of different
cameras and show promising results for a face morph detection
scenario.

D. Printed and Scanned Images

In this last experiment, we look at the performance of the
PRNU-based morph detection approach when applied to the
Print-Scan dataset described in Section V-A. This scenario is
very challenging for a PRNU-based approach, since the scan-
ning process of the images embeds the scanner’s PRNU within
all scanned images, which might prevent the detection of the
morphed images. The D-EER results are presented in Table VI.

We can observe, that the detection performance signif-
icantly drops for all proposed feature-aggregation combi-
nations, where the best result is obtained with Pvar|Amin

with a D-EER of 30.52%. Fig. 11 illustrates the DET plots
for all proposed morph detection algorithms on the printed
and scanned images, where all morphing algorithms, i.e.,
OpenCV/dlib, FaceMorpher, FaceFusion and UBO, have been
included. These results show that the scanners PRNU leads to
a detection performance degradation for the proposed PRNU-
based approach, however Pvar|Amin is still able to discriminate
bona fide and morphed images to some degree in this print and
scan scenario.

VI. CONCLUSION

Face morphing attacks pose a serious security risk to
face recognition systems. In this work, the potential PRNU
analysis has been thoroughly analyzed for the challenging
task of no-reference face morph detection. In comprehensive
cross-database experiments for which different face morph-
ing and image post-processing techniques have been applied,
the proposed PRNU-based morphing attack detection system
has been shown to outperform other state-of-the-art methods.
Moreover, the feasibility of detecting morphed face images
from printed and scanned image data has been investigated.
Since the proposed system is based on a simple and min-
imal approach, further detection performance improvements
can be expected by fusing multiple PRNU features and by a
more sophisticated classification approach based on machine
learning techniques.

In contrast to differential morphing attack detection
schemes, e.g., [61], which additionally process a trusted live
capture of a subject’s face the proposed approach is particu-
larly useful in cases where only a single potentially morphed
face image is presented, e.g., digital transmission of a face
image for issuance of an electronic travel document which
turns out to be relevant in some countries. In other scenarios,
e.g., facial recognition at ABC gates, the presented PRNU-
based morphing attack detection scheme could be fused with
other (differential) approaches to further improve the detection
performance.
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