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ABSTRACT Electric Vehicles’ Controller Area Network (CAN) bus serves as a legacy protocol for
in-vehicle network communication. Simplicity, robustness, and suitability for real-time systems are the
salient features of CAN bus. Unfortunately, the CAN bus protocol is vulnerable to various cyberattacks
due to the lack of a message authentication mechanism in the protocol itself, paving the way for attackers to
penetrate the network. This paper proposes a new effective anomaly detection model based on a modified
one-class support vector machine in the CAN traffic. The proposed model makes use of an improved
algorithm, known as the modified bat algorithm, to find the most accurate structure in the offline training.
To evaluate the effectiveness of the proposed method, CAN traffic is logged from an unmodified licensed
electric vehicle in normal operation to generate a dataset for eachmessage ID and a corresponding occurrence
frequency without any attacks. In addition, to measure the performance and superiority of the proposed
method compared to the other two famous CAN bus anomaly detection algorithms such as Isolation Forest
and classical one-class support vector machine, we provided Receiver Operating Characteristic (ROC) for
each method to quantify the correctly classified windows in the test sets containing attacks. Experimental
results indicate that the proposed method achieved the highest rate of True Positive Rate (TPR) and lowest
False Positive Rate (FPR) for anomaly detection compared to the other two algorithms. Moreover, in order to
show that the proposed method can be applied to other datasets, we used two recent popular public datasets
in the scope of CAN bus traffic anomaly detection. Benchmarking with more CAN bus traffic datasets proves
the independency of the proposed method from the meaning of each message ID and data field that make
the model adaptable with different CAN datasets.

INDEX TERMS Electric vehicles, controller area network (CANBus), anomaly detection, one-class support
vector machine, optimization algorithm.

I. INTRODUCTION
Modern electric vehicles are composed of many hard-
ware modules, known as Electronic Control Units (ECUs),
which are controlled by sophisticated software components.

The associate editor coordinating the review of this article and approving
it for publication was Hao Luo.

ECUs read data measured by a range of sensors and perform
relevant processing for various purposes, such as pedestrian
detection, path planning, auto-parking, and collision avoid-
ance. They also control the actuators in a vehicle [1]. The
values of the sensors and actuators are transmitted over the
in-vehicle network protocol to other ECUs, leading to the cre-
ation of a highly complex network of hardware and software
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sub-modules. There are several in-vehicle network protocols,
namely CAN, CAN Flexible Data-Rate (CAN FD), Local
Interconnect Network (LIN), FlexRay, and Media Oriented
Systems Transport (MOST). Among all of the aforemen-
tioned protocols, CAN Bus is the most well-known and
widely used protocol in the automotive industry and is consid-
ered the de-facto standard for vehicular networks. In addition,
the CAN bus has been applied to more than just automotive
networks, finding a range of applications in other industries,
such as aerospace, agriculture, medical devices, and even in
some home and commercial appliances [1].

Although there are other protocols with more security
features available, e.g. Ethernet, they cannot entirely replace
the CAN bus for in-vehicle network communication due
to the following reasons: 1) The CAN bus is designed to
be perfectly applicable for hard real-time environments and
guarantees deterministic communication with minimal time
latency. 2) In the CAN bus protocol, there is a method of
prioritization where lower priority messages do not interfere
with higher priority messages. For instance, a message trans-
ferringmore critical function, such as engine control or airbag
control, has more priority than a message for door or climate
control. 3) The CAN bus protocol is used in all modern
vehicles as the backbone of in-vehicle network communica-
tion; replacing this protocol entirely with another protocols
requires re-designing the whole vehicle network architecture
and a tremendous amount of changes in vehicle software,
which runs based on the CAN protocol. Therefore, other
protocols will not entirely replace the role and application of
the CAN bus but rather augment the CAN bus.

During the invention of the CAN bus protocol by Robert
Bosch GmbH [2], vehicles were considered an isolated envi-
ronment that did not have communication with the outside
environment. Therefore, by design, the CAN bus suffers from
a lack of authentication and security features, including data
encryption and message authentication. This paves the way
for adversaries to penetrate a network and launch malicious
activities more easily than when other protocols, like the
Transmission Control Protocol/Internet Protocol (TCP/IP),
are used. For instance, given the lack of an effective message
authentication method, attackers can compromise an ECU by
injecting malicious messages and replay attacks. Fortunately,
with the advancement of data-mining techniques, this type of
attack has been addressed by researchers [3]–[7] in such a
way that any anomalous communication traffic activities can
be detected and ignored.

Recently, modern vehicles are not only considered a
closed-loop system, but they also have several types of com-
munication with the outside world. Attackers can penetrate
and inject malicious messages into the CAN traffic via differ-
ent internal and external interfaces, such as through physical
access to the OBD-II port (an on-board diagnostics system
that monitors emissions, mileage, speed, and other data about
the car) in the vehicle, short-range wireless access, e.g. Blue-
tooth, long-range wireless access, e.g. Wi-Fi, a telematics
control unit (TCU), and cellular radio. For instance, with

the embrace of over-the-air (OTA) updates, ECUs can be re-
programmed remotely, which may provide more comfort and
convenience to the vehicle owner and dealerships. However,
these interfaces have also introduced more remote attack
surfaces that can help attackers to compromise an ECU using
a malicious message.

In general, anomaly detection refers to the problem of
finding patterns in a dataset which do not follow the expected
defined behavior [7]. Anomaly detection is considered an
important topic, which has been studied within various
research domains. In the CAN bus protocol, anomaly detec-
tion is the process of monitoring communication traffic
among ECUs and identifying any abnormal behavior in
traffic using machine learning (ML) algorithms. Nowadays,
ML techniques have gained the attention of researchers in the
cybersecurity community. One popular usage of ML tech-
niques is designing intrusion detection systems (IDS) for a
wide range of applications, namely outlier detection, novelty
detection models, and antivirus/malware detection [8]–[10].
In particular, anomaly detection in automotive networks has
also attracted the attention of researchers in this area, which
is elaborated on in the Related Work section.

Automakers are aiming to develop fully-autonomous vehi-
cles in the near future, a consequence of which is the intro-
duction of more attack surfaces. Since data is not encrypted
in the CAN bus protocol, attackers can launch replay attacks
and inject malicious messages into a network (i.e. perform an
intrusion-based attack) by performing a reverse-engineering
procedure to interpret each CAN packet. To achieve this
goal, attackers should send messages with very high fre-
quency to beat the arbitration mechanism (explained further
in section III) used on all messages on the bus. That said,
this message injection procedure will create some anomalous
behavior in the communication traffic, which can be detected
by developing an anomaly detection method in the CAN bus
protocol. In the world of desktop computers, the risk of attack
and the securing of communication protocols have already
received a huge amount of attention in recent years; however,
considering the same standard measures in order to provide
strong protection for vehicular networks is impractical and
almost infeasible due to the complexities of embedded sys-
tems and the reality of a real-time environment with limited
resources in terms of its processing unit and memory. There-
fore, a different approach is required to detect anomalous
behavior in a vehicular network. In this paper, we propose
a prediction model that can detect anomalous traffic in a
vehicular network protocol (here we consider the CAN bus
protocol). The application of our anomaly detection method
for vehicular network traffic is illustrated in Fig 1.

II. RELATED WORK
Anomaly detection in automotive network communication
has been addressed by a growing number of researchers,
which reflects the fact that this topic has been considered
as one of the most critical issues to governments, indus-
try, and academia. Different studies show the CAN bus’s
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FIGURE 1. Application of anomaly detection model for vehicular network
traffic.

vulnerabilities and weaknesses in terms of security fea-
tures [11]. A number of these studies are presented in this
section.

Wang and Sawhney [12] proposed a security framework for
vehicular systems (VeCure), which can fundamentally solve
the message authentication issue of the CAN bus. Their pro-
posed method creates 2000 additional clock cycles compared
to a system without this message authentication technique
(equivalent to 50 microseconds running on a 40 MHz pro-
cessor).

The authors of [13] proposed an intrusion detection system
by recording the traffic of in-vehicle network communication
(CAN bus). The basis of their proposed method is that there
are specific ranges of randomness happening at the commu-
nication level of the in-vehicle network, which can be utilized
by an information-theoretic measure, e.g. entropy.

Kang et al. [14] proposed an Intrusion Detection
System (IDS) using Deep Neural Network (DNN).
Probability-based feature vectors, which are extracted from
the CAN bus messages, are utilized to train the DNN param-
eters. Statistical properties of each class will discriminate
between normal and attack message in a given CAN bus
packet.

Theissler [15] introduced an anomaly detection approach
capable of detecting faults of known and unknown types
without requiring the setting of expert parameters. An ensem-
ble classifier, which consists of a two-class and a one-class
classifier, is employed for univariate and multivariate
anomalies.

Narayanan et al. [16] presented a Hidden Markov model
(HMM), a stochastic model that follows theMarkov property,
to detect anomalous states of real data collected from a vehi-
cle during operation. The underlying assumption when using
an HMM is that the movement of the vehicle is a sequence of
events in which each one is dependent on the previous event,
like in Markov’s processes.

Cho et al. [17] proposed a clock skew-based framework for
ECU fingerprinting and used it for the development of Clock-
based Intrusion Detection System (CIDS). The proposed
clock-based fingerprinting method [17] exploited a clock
characteristic that exists in all digital systems: ‘‘a tiny timing
error known as clock skew.’’ The clock skew identification
exploits the uniqueness of clock skew and clock offset, which

is used to identify a given ECU based on clock attributes of
the sending ECU.

The authors of [18], however, found that there are
potential vulnerabilities present in the CIDS by design,
including parameter dependence on message periodicity and
non-linearity of the clock skewness. They proposed an attack,
called a clock-spoofing attack, which can easily be used to
bypass the CIDS by replicating the clock parameters, hence
challenging their assumed uniqueness.

Taylor et al. [19] proposed an intrusion detection system
based on a long short-term memory (LSTM) recurrent neural
network for CAN bus traffic. The neural network is trained to
predict the next packet data values, and its errors are utilized
as a signal for anomaly detection in a sequence.

Other solutions to CAN bus anomaly detection are
proposed by researchers in [20]–[22] which are based on
regression learning to estimate certain parameters by using
correlated/redundant data among a group of sensors for a
given in-vehicle network attack. For example, by pressing
the accelerator pedal, the engine pump rotates faster; hence,
the RPM value and vehicle speed will increase. When an
attacker tries to manipulate these values, the existing balance
of either the negative or positive correlation across that sensor
group may deviate from the valid range.

Another approach automatically classifies fields in CAN
messages. The authors of [5] developed a greedy algo-
rithm to split the messages into fields and measure valid
ranges based on previous data. The authors also designed a
semantically-aware anomaly detection system for CAN bus
traffic, but it was not evaluated with any attack scenarios.

Marchetti and Stabili [23] proposed an anomaly detec-
tion algorithm to identify anomalies in a sequence of CAN
messages by using a transition matrix defined based on a
reiterative CAN ID pattern sequence. The authors of [24]
introduced a signature-basedmethod tomodel both legitimate
ECUs and the behavior of known attack signatures. Their
method could detect intrusions in real-time, but it sometimes
failed to detect an attack if it missed the first packets of the
attack broadcast.

The authors of [25]–[27] presented an analysis of CAN
broadcasts and subsequent testing of statistical methods to
detect timing changes in the CAN traffic that were indicative
of some of the predicted attacks.

The authors of [28] proposed a method for anomaly
detection based on packets’ time statistics analysis and a
one-class support vector machine (OCSVM) in CAN traffic.
Their method uses a flow-based anomaly detection approach,
including a packet identifier, the total number of packets,
and the time of occurrence. To the best of our knowledge,
this is the only research work that considers OCSVM for
anomaly detection in CAN traffic; however, this study lacks
deep analysis of the kernel function type (linear or nonlinear)
and optimal training of an OCSVM facing highly nonlinear
data.

Based on the above discussions, this paper aims to pro-
pose a novel and effective anomaly detection model to avoid
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cyberattacks on a vehicle’s CAN bus. The proposed model
is constructed based on a modified one-class support vec-
tor machine (OCSVM) to provide the highest security and
accuracy. In a one-class SVM, the support vector model is
trained on data that has only one class, which is referred to as
the ‘‘normal’’ class. It emphasizes the properties of normal
cases and from these properties can predict which examples
are unlike the normal examples [29]. This is extremely prac-
tical for anomaly detection because the scarcity of training
examples is what defines anomalies. Due to the high com-
plexity and nonlinearity of the CAN bus datasets, a new
meta-heuristic optimization algorithm, called Modified Bat
Algorithm (MBA), is proposed to reduce the false positive
rate and improve the overall hit rate of anomalous message
detection. The high accuracy and satisfactory performance
of the proposed model is examined using experimental data
gathered from an unmodified licensed vehicle. Furthermore,
in order to prove the proposed method’s independence from a
specific car model, we performed the proposed method with
two other famous datasets in the area of CAN bus anomaly
detection. To the best of our knowledge, this is the first
time that the proposed MBA optimization algorithm has been
applied in an OCSVM as an anomaly detection model for a
CAN bus.

The contributions of this work are summarized as follows:

1. Proposing an intelligent anomaly detection model
based on advancedmachine learning for reinforcing the
in-vehicle network communication CAN bus protocol.

2. Developing a new modified one-class support vector
machine based on bat algorithm. The proposed bat
algorithm would adjust the anomaly detection model
parameters optimally for maximizing the efficiency
and performance of the model against cyberattacks.

3. Introducing an effective two-stage modification
approach for bat algorithm to increase population diver-
sity when avoiding the premature convergence. The
proposed modification method is constructed based
on the crossover and mutation operators borrowed
from genetic algorithm and will help the algorithm
to look for the optimal solution in the entire search
space.

The rest of this paper is organized as follows: 1) section
III explains the CAN bus protocol and its requirements.
Section IV explains the proposed improved anomaly detec-
tion model based on OCSVM and MBA. Section V provides
the simulation results using the experimental dataset. Finally,
the main conclusions are provided in Section VI.

III. CAN BUS PROTOCOL – AN OVERVIEW
To meet real-time systems’ deadline requirements, each mes-
sage in the CAN bus protocol has been assigned a unique
identifier (ID) frame, which is utilized to define the message
priority and is also used by every ECU in the car to iden-
tify whether the incoming message should be processed or
ignored [2]. The lower the message identification value, the

FIGURE 2. CAN bus arbitration technique.

higher priority it has to gain bus access. This prioritization
feature has solved the bus access conflict such that if two
nodeswant to send data simultaneously, whichever ECUhas a
lower ID value will publish its message first, due to its higher
priority. This technique is also known as message arbitra-
tion [2]. Fig. 2 depicts a situation in which three nodes (first
node: 11001011111 in binary, second node: 110011111111 in
binary, and third node: 110010110010 in binary) try to trans-
mit a message simultaneously. In order to prevent bus col-
lision, the node with the lowest ID (in this case the third
node) will transmit its information. Attackers can exploit this
feature by sending a malicious message with the lowest ID at
a very high frequency to create a condition in which a mali-
cious message always wins the arbitration and does not allow
other messages to be transmitted (Denial-of-Service attack).
In the proposed method, this type of attack can be detected
as the system learns the normal traffic behavior on the bus,
allowing abnormal traffic behavior (e.g. sending the same
message with high frequency) to be detected. The message
data payload holds different values generated bymultiple sen-
sors and is managed by a particular ECU and encoded based
on the database container (DBC) file specification. A DBC is
a database file with a vehicle manufacturer proprietary format
that holds the specifications of all the ECUs, CAN messages,
signals, message IDs, message frequency, and data payload
for a particular vehicle configuration [30].

IV. PROPOSED ANOMALY DETECTION MODEL AND
FORMULATION
A. PROPOSED CAN BUS ANOMALY DETECTION METHOD
The underlying idea behind the proposed method is to estab-
lish amodel based on normal CAN bus traffic, which contains
recurring patterns in the message IDs that are transmitted.
From the analysis of several traces taken from a car, some
recurring message ID patterns have been identified from the
logged traces, which means every message ID is followed by
a particular recurring message ID subset. Hence, we devel-
oped a model to identify these patterns in normal traffic
and any deviation from them can be considered as malicious
activities, which the proposed method can detect as anoma-
lous behavior. The proposed method consists of two main
phases: the training phase and the testing and/or evaluation
phase. During the training phase, the normal behavior of
the CAN bus traffic is logged from an unmodified licensed
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FIGURE 3. Block diagram of the proposed CAN bus anomaly detection method.

vehicle under normal operation to generate all the possible
transitions between consecutive IDs without any attacks.
Then, the model developed in the training phase can be
employed as a reference to detect anomalous behaviors in the
CAN traffic launched by an attacker.

A conceptual illustration of the proposed anomaly detec-
tion model is provided in Fig. 3. According to this figure,
there are two paths for the training and testing phases (solid
and dotted arrows, respectively). During the training phase,
the CAN bus traffic is captured and each CAN message ID
is extracted from the traffic and imported into the one-class
SVM training algorithm. Within the one-class SVM training
phase, the kernel type and function should be determined and
their parameters (σ and C) should be optimally tuned (this
process will be explained in the next section). To this end,
a modified bat algorithm (flowchart is presented in Fig. 4)
is applied as a meta-heuristic optimization algorithm to tune
these parameters and feed them into the one-class SVM train-
ing algorithm to reach a better more matching hyperplane,
as well as the optimal support vectors. Having completed the
training phase, any CAN message in the traffic log can be
classified as containing an abnormality or not by the proposed
model.

It should be noted that although there is some litera-
ture that has considered different features, the authors have
considered all possible features, including the sequence of
frames, time, and frequency of occurrence, in the initial
analysis. Through an appropriate feature selection procedure,
it was seen that only frequency and frame ID suffice for a
proper and reliable anomaly detection model. In other words,
considering other features did not add any improvement to
the classification model and only increased the anomaly
detection model’s complexity, simultaneously increasing the
risk of over-complexity issues. In this study, a fuzzy-
based feature selection method [35] is applied to select
only the most informative features for developing a pow-
erful and appropriate anomaly detection model in our case
study.

FIGURE 4. Modified bat algorithm flowchart.

B. ONE-CLASS SUPPORT VECTOR MACHINE (OCSVM)
One Class Support Vector Machine (OCSVM) is a classi-
fication algorithm that estimates the minimal subsets in an
input space that contain a predefined fraction of the data.
Consider a given dataset, which is designated as the normal
dataset. OCSVM solves (1) to make the optimal classification
as follows [29]:

min
w,ρ

1
2
‖w‖ 2 +

1
υN

N∑
i=1

ξi − ρ

s.t. w.8(xi) ≥ ρ − ξi
ξi ≥ 0 (1)
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where N is the number of data points and ξ = [ξ1, . . . , ξn] is
the set of slack variables for the data points that allows a given
data point to be located outside of the decision boundary.
Here,υ ∈ (0, 1] is a trade-off parameter that represents an
upper bound on the fraction of outliers and a lower bound
on the fraction of support vectors. The parameters ρ and w
define the decision boundary. Decision boundary function
f (x) is defined in (2), where x is a target and f returns
+1 when a given data point falls within the normal CAN
traffic; otherwise, f (x) returns −1 for abnormality [29].

f (x) = w ·8(x)− ρ (2)

where x ∈ RM and 8 is a feature map. The inner product
8(xi) · 8(xz) is considered as the kernel function, which is
represented by K, e.g. K (xi, xz) = 8(xi) · 8(xz). This paper
considers a radial basis function (rbf) kernel as K (xi, xz) =
e−
∥∥ xi−xz‖2/2σ 2+C . Here C is a constant and σ is the width

of radial basis function (rbf). When σ and C are selected
properly, the rbf kernel can approximate the most suitable
kernel function. Hence, these two parameters play a major
role in the performance of the kernel and should be chosen
carefully. To this end, we applied the bat algorithm with a
proposed two-step modification, which resulted in a powerful
meta-heuristic optimization algorithm, to find the optimal
values for σ and C . In order to solve the optimization prob-
lem, a Lagrange equation is formulated as follows (Eq. 1):

L(w, ξ, ρ, α, β) =
1
2
‖w‖ 2 +

1
υN

N∑
i=1

ξi − ρ

−

N∑
i=1

αi(w.8(xi)− ρ + ξi)−
N∑
i=1

βiξi

(3)

The partial derivatives for the above equation w.r.t. w, ξ , and
ρ are set to zero. Hence, w and α can be defined as follows:

w =
N∑
i=1

αi8(xi) (4)

αi =
1
υN
− βi

N∑
i=1

αi = 1 (5)

Having substituted (4) and (5) into the Lagrangian equation
in (3), its dual form can be defined as:

min
α
αTHα

s.t. 0 ≤ αi ≤
1
υN

N∑
i=1

αi = 1 (6)

where α = (α1, α2, . . . , αN ) is the vector form of the
Lagrange multipliers of the constraints and H is the kernel
matrix for the training set, H (i, z) = K (xi, xz). Any points

that have αi greater than zero are called support vectors. H as
the kernel matrix is as follows:

Hij = K (xi, xj) = 8(xi).8(xj) (7)

After solving the optimization problem in (6) to attain α, ρ
can be defined as:

ρ =
1
ns

ns∑
i=1

N∑
j=1

αjK (xi, xj)α (8)

where ns is expressed as the number of support vectors that
fulfill the criteria of ξi = 0 and where 0 < αi < 1/υN .

C. MODIFIED BAT ALGORITHM (MBA)
As explained in the previous section, the one-class SVM is
a powerful method for CAN bus traffic anomaly detection.
Nevertheless, the performance of this model depends on its
adjusting parameters, including the kernel function, and set-
ting values σ and C . In order to adjust these parameters glob-
ally, this paper proposes making use of an effective optimiza-
tion algorithm based on the modified bat algorithm (MBA).

Bat Algorithm (BA) is a meta-heuristic optimization algo-
rithm inspired by the echolocation process used by bats for
detecting prey. Each batXj sends a loud signal into the air with
the emission rate, frequency, and loudness of rkj , fj, and A

k
j ,

respectively. By listening to the echolocation sound, the bat
can update its velocity and position relative to its food (prey).
Similar to othermeta-heuristic algorithms, an initial bat popu-
lation is generated. Through the echolocation process, the bat
with the best position (most optimal fitness function) is stored
as Xg and the rest of population is updated using the following
equation:

Vj,k+1 = Vj,k + fj
(
Xg − Xj,k

)
∀j ∈ �bat

Xj,k+1 = Xj,k + Vj,k+1 ∀j ∈ �bat

fj = fmin + θ1 (fmax − fmin) ∀j ∈ �bat (9)

where Vj,k+1 is the velocity of jth bat in (k + 1)th iteration,
�bat is the set of bats, fmin /max is the min/max values of
the bat signal frequency, and θ1 is a random value in the
range (0,1]. The mechanism behind BA represents a global
search in the problem search space. On top of this global
search, BA is equipped with local search capability, look-
ing for the optimal solution in the neighborhood of each
bat.

To this end, a random value η is generated in the range
(0,1]. If η is bigger than the pulse emission raterm,k , the bat
position is updated as follows:

Xj,k+1 = Xj,k + εAj,k (10)

where ε ∈ [−1, 1]. In the case where η is smaller than rn,
a new solution Xnewj is generated randomly. The new solution
is considered subject to the below two criteria:

[η < Aj]&[f (Xnewj ) < f (Xbest )] (11)
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The loudness and rate of each bat signal is updated after each
iteration, as follows:

Aj,k+1 = λAj,k
rj,k+1 = r0j

[
1− exp (−γ k)

]
(12)

where λ and γ are two constant parameters. In each iteration,
the above steps are repeated until the algorithm converges.

While BA has shown great performance in the face of non-
linear, non-convex and multi-modal optimization problems,
in some situations it may find itself trapped in local optima
or face premature convergence. In the literature, there are
some modified versions of BA proposed. In [34], the authors
proposed a special modification method for BA to provide a
balance between the exploration and exploitation capabilities
of the algorithm. From a technical point of view, while the
BA’s exploration feature helps produce a better global search,
its exploitation feature offers better focus on local searches.
In this case, the authors tried to improve the exploration
mechanism of the algorithm by modifying the equation of the
pulse emission rate and the loudness of the bats.

On the other hand, the modification method proposed in
this paper is constructed based on two quite different and
powerful approaches: 1) a new modification method based
on the mutation and crossover operators to increase the bat
population diversity. This not only avoids possible prema-
ture convergence but also will absolutely improve the global
search ability of the BA. 2) A new math-based modification
method to increase the convergence rate of the BA. The best
bat in each iteration tries to improve the positions of other
bats via (16). This is made possible by first evaluating the
mean of the bat population and then trying to improve each
bat’s position according to its distance from the best bat.
These two newly introduced modification methods are quite
powerful and compatible with the high nonlinearity existing
in the CAN bus dataset in this paper.We explain them inmore
detail below.

With regard to the first modification, in each iteration k and
for each bat j, three dissimilar bats z1, z2 and z3 are chosen
from the population, such that z1 6= z2 6= z3 6= j. Using these
random solutions, a new mutated bat is generated as follows:

Xmut = Xz1,k + θ1 × (Xz2,k − Xz3,k )

Xmut = [xmut,1, xmut,2, . . . , xmut,N ] (13)

where N equals the number of control variables and xmut,v
represents the vth element in bat vector Xmut . Using (11) and
the crossover operator, two new test bats are generated as
follows:

x test1j1,v =

{
xmut,v if θ1 ≤ θ2
xg,v otherwise

(14)

X test2j2 = θ3 × Xmut + θ4 × (Xg − Xmut ) (15)

where θ1, L, θ4 are random values in the range of (0,1]. The
best solution among Xnewj1 , Xnewj2 and Xj will replace Xj.

The second modification method is constructed based on
the idea that the bats should try to move their positions

toward the best current bat,Xg. Therefore, first themean value
of the bat population is evaluated column-wise as AD. Now,
the position of the ith bat is updated as follows:

X test3 = Xj + θ5(Xg − φFAD) (16)

where θ5 is a random value in [0,1] and φF is a random integer
equal to 1 or 2, representing the moving acceleration rate. The
flowchart of the modified bat algorithm is shown in Fig. 4.

Moreover, the intelligent fuzzy-based feature selection
which is proposed by authors in [35] is applied to extract the
most effective features for the anomaly detection model [35].

V. RESULTS AND DISCUSSION
This section provides simulation results based on practical
data gathered from a licensed unmodified vehicle and also
two other public CAN bus traffic dataset to examine the accu-
racy of the proposed model. The dataset, with its original for-
mat, is a collection of text files containing comma separated
values (csv) with a timestamp, message ID, and data field. For
performance evaluation, random partitioning is performed to
divide the dataset into three sets, namely training, validation,
and testing. 70% of the dataset is assigned to the training
model, 10% to the validation to avoid any overfitting in the
training, and the remaining 20% is assigned to the testing
phase, which is sliced up into the normal traffic log and a sim-
ulated attacked traffic log. It should be noted that even though
the CAN bus protocol specification is openly documented,
the meaning of each message ID, the corresponding data
field, and the expected broadcast frequency are not available
to the researchers due to the proprietary nature of the dataset
for different car manufacturers. However, the independency
of the proposedmethod from themeaning of eachmessage ID
and data field make the model adaptable with different CAN
datasets during the training of the OCSVM. In order to prove
the superiority of the proposed method compared to other
anomaly detection algorithms for CAN traffic, we bench-
marked the proposed MBA-OCSVM with famous anomaly
detection algorithms including Isolation Forest and classical
one-class SVM. Isolation forests was introduced in [36] as
a powerful classification algorithm for real datasets. This
method is based on the assumption that it is easier to isolate
anomalies from the rest of the observations than to construct
a model describing normal behavior. To isolate an observa-
tion, it recursively partitions the data set randomly until the
observation is the only data point in a partition. Recursive
partitioning can be represented by a tree structure. A forest
of random trees can collectively give a measure of normality
for an observation. Three datasets are gathered from differ-
ent sources to evaluate the effectiveness and performance
of proposed method. One of the sources is an unmodified
licensed electric vehicle in normal operation where CAN
traffic was logged by the VN1630A device via the ODB-II
port existing in the vehicle. Furthermore, in order to prove
the independence of the proposed method from a specific car
model, we gathered additional CAN traffic traces from two
more available datasets. One CAN dataset is available on the
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FIGURE 5. Observed frequency, support vectors, and decision boundaries for selected CAN identifier.

website of the Crash Reconstruction Research Consortium of
the University of Tulsa [37]. This dataset was recorded from
a Dodge RAM Pickup. They used a Dearborn Group (DG)
Gryphon S3 [38] to record the data and export it to a .csv
file using DG Technologies Hercules software [39]. The data
was recorded under normal driving conditions. The car drove
away from a normal residential driveway and pulled up on
the street. After three right hand turns, the car was backed
up into a parking space. The other available CAN traffic
dataset is utilized from [40]. This dataset was constructed
by logging CAN traffic via the OBD-II port from a real
vehicle while message injection attacks were performing,
e.g. Denial of Service (DoS) Attack in which messages
of ‘0x000’ CAN ID were injected in a short cycle. The
dataset includes 2,369,868 attack free states CAN message
and 656,579 messages where DoS attacked was launched.
The proposed anomaly detection algorithm was implemented
in MATLAB 2018b software on a computer with a Core
i7 processor 4GHz and 4GB RAM with 100 iterations for
OCSVM training. To evaluate the effectiveness of the pro-
posed anomaly detectionmethod, we simulated a condition in
which an attacker tries to send a message that is not expected
to be sent. For this purpose, we replicated an attack scenario
by increasing the frequency of an exemplary message ID in
the CAN traffic (here 3F0). During the normal operation of
the vehicle, the cycle time of ID 3F0 is 100 ms, which means
that this message is triggered in the traffic every 100 ms. For
this attack, we intentionally doubled the frequency of this
message and sent another message every 100 ms. Since all
nodes share a single bus, increasing occupancy of the bus
can produce latencies of other messages and cause threats
regarding availability with no response to driver’s commands.
From the CAN traffic captured during the normal driving,
we observed that each message occurrence has its own fre-
quency pattern in the traffic, an observation that is leveraged
during the training phase of the proposed method. Any devia-
tion from the pre-defined message occurrence frequency can
then be detected by this method. Table 1 shows some of
the message IDs and their corresponding frequency during
10minutes of driving for one of themain dataset that we used.
The same attack simulation scenarios such as DoS attack was

TABLE 1. Can identifier and frequencies.

developed for the other datasets that are employed in this
study.

As shown in the above table, eachCAN identifier possesses
its own occurrence frequency. Before beginning the training
phase of the proposed method, data preprocessing (here data
numericalization) is required to store the data in the correct
structural format for analysis, such that CAN identifiers are
transformed into decimal indicators while maintaining the
same frequency. Additionally, in order to avoid a very large
range between the maximum and minimum values of the
dataset, attributes are normalized through attribute rescaling.
Having completed the data preprocessing steps, each CAN
identifier and its corresponding frequency is imported into
the proposed method as an input parameter, and then the
MOCSVM training phase will start. Fig. 5 presents the
observed frequency, support vectors, and decision boundaries
for selected CAN identifiers, shown in Table 1.

A. PERFORMANCE EVALUATION OF MODIFIED BAT
ALGORITHM
In order to assess the performance of the proposed MBA,
the convergence characteristic of this algorithm is provided
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FIGURE 6. Convergence characteristics of the MBA, BA, PSO and GA in the
training process.

in Fig. 6. To have a better comparison, the convergence char-
acteristics obtained by other well-known algorithms, such
as Particle Swarm Optimization (PSO) [31], Genetic Algo-
rithm (GA) [32], and original BA [33] are plotted, simultane-
ously. The setting parameters of the GA, PSO, BA and MBA
algorithms are determined as follows: for the PSO algorithm,
the initial number of particles in the swarm equals 40 and
the maximum number of iterations is 100. Also, the social
parameters and inertia weight factor are set to 1.5 and 0.8,
respectively. For the GA, the crossover and mutation proba-
bility values are set to 0.7 and 0.08, respectively. The initial
population size equals 60 individuals with 100 iterations. For
the BA andMBA algorithms, the initial size of the population
is 25, the termination criterion is to reach 100 iterations,
λ = γ = 0.2 and ε = 0.5. According to Fig. 6, the proposed
MBA not only converged first but could reach a more optimal
solution, which was not found by the other algorithms. This
figure also shows the high search ability and convergence
characteristics of the MBA, making it an appropriate tool for
use in our case. Therefore, the simulation results provided in
the remainder of this paper are all evaluated using MBA as
the optimization tool.

B. PERFORMANCE EVALUATION OF PROPOSED
MBA-OCSVM
Comparing the proposed MOCSVM results {outlier, inlier}
with the real-world observation labels {anomaly, normality}
is an essential task for performance evaluation of an anomaly
detection method. A confusion matrix is used for perfor-
mance evaluation, which represents the four possible out-
comes when we compare the actual data point labels given by
an expert to the corresponding data point results generated by
a given classification algorithm. In this case, the four possible
outcomes include: hit (Hi), false alarm (FA), miss (Mi), and
correct reject (CR). If a given data point in the training data
with normal CAN traffic is labeled as an anomaly and the
outlier-detection algorithm classifies that data point as an
outlier as well, the outcomewill be a ‘‘hit.’’ In addition, if both
normal CAN traffic and the anomaly detection algorithm
agree with each other about an inlier data point, the result
will be ‘‘correct reject.’’ The other two possible confusion

FIGURE 7. Confusion matrix showing the four possible outcomes.

matrix outcomes (‘‘miss’’ and ‘‘false alarm’’) are the results
of disagreement between the expert (i.e. normal CAN traffic)
and the anomaly detection algorithm. If a given data point
is considered an outlier but the anomaly detection algorithm
detects that point as normal, it will be labeled as a miss.
Similarly, if a given data point in the CAN traffic is presented
as a normal (inlier) data point but the anomaly detection algo-
rithm wrongly classifies it as an anomalous (outlier) point,
the result is considered a ‘‘false alarm’’. The computed outlier
scores are converted to the classification outcomes {outlier,
inlier} using the threshold defined by the expert, which can
be compared to the data point labels {anomaly, normality},
resulting in the aforementioned outcomes. Fig. 7 represents
the four areas of the confusion matrix’s outcomes, namely
hit, miss, false alarm, and correct reject, graphically.

As is observed fromFig. 8, if an attacker tries tomanipulate
the occurrence frequency of a given CAN message, the pro-
posed algorithm can detect that behavior as an anomalous
situation and discard it. Usually, an attacker tries to double
the message frequencies to win the arbitration scenario so
they can publish their data on the bus. This behavior falls
into the hit area in Fig. 6, where the compromised message
frequency is higher than the maximum valid frequency for a
given message in the normal CAN traffic. The four confusion
matrix outcomes have four associated performance rates,
as follows:

Hit Rate =
|Hi|
|CA|

(17)

False Alarm Rate =
|FA|
|CN |

(18)

Miss Rate =
|Mi|

|CA|
(19)

Correct Reject Rate =
|CR|
|CN |

(20)

To compare the performance of the different algorithms we
need a way to quantify the correctly classified windows in
the test sets containing attacks. Precision, recall (true positive
rate), and specificity are the three famous evaluation indices
to measure the reliability of the anomaly detection system in
CAN traffic. Precision is defined as ratio of marked anomaly
streaming data that is a true anomaly. Recall is the propor-
tion of ratio of identified anomaly CAN data to the actual
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FIGURE 8. Hit, miss, correct reject, and false alarm area for a given CAN bus message.

FIGURE 9. ROC performance curve for proposed MOCSVM, Isolation Forest, and classic SVM.
Dataset#1: CAN Bus traffic from unmodified licensed vehicle under normal operation - Dataset#2: CAN Bus traffic dataset from Dodge RAM Pickup track
(Crash Reconstruction Research Consortium of the University of Tulsa) – Dataset#3: Available online CAN Bus traffic dataset [40].

anomaly data. Also, specificity is the fraction of the total
number of anomalies that the algorithm recognizes as the real
normal behavior. The recall value close to 1.0 represents the
higher performance of the anomaly detection model. We can
measure different detection models by Receiver Operating
Characteristic (ROC). ROC is a diagram of the relationship
between hit rate (recall) and false alarm rate (1-specificity).
The ROC curve should approach the top-left corner as close
as possible with a steep slope, as this would indicate a high
number of detected anomalies, i.e. a high hit rate, with a
low number of false positives, i.e. a low false alarm rate.
To draw this diagram, it is important to understand how an
anomaly detection algorithm determines which label, e.g.
normal or anomalous, to give to an observation. This is done
by calculating a so called decision score. The decision score is
a measure of how normal, or how anomalous, an observation
is. The algorithm sets a threshold and all observations with
a decision score on one side of the threshold are labelled
as normal behavior and all observations with a decision
score on the other side are labelled as anomaly. There is a
trade-off between the hit rate (recall) and false alarm rate
(1-specificity), for which the expert can determine a threshold
value. Choosing the optimal value of the threshold depends

on the application and the cost of misclassification. In this
study, the MOCSVM is employed as an optimization algo-
rithm to find the optimal value of the thresholds to minimize
the number of false alarms while maximizing the hit rate.
Fig. 9 shows the ROC for three different datasets which
have been used for CAN anomaly detection. In addition,
Table 2 summarizes the four aforementioned performance
rates for conventional one-class SVM, Isolation Forest, and
proposed modified one-class SVM based on MBA.

As it is shown in Fig. 9, the proposed MBA-OCSVM is the
one that achieved the highest hit rate (True Positive Rate) and
lowest false alarm rate (False Positive Rate) in the ROC curve
compared to the Isolation Forest and classical OCSVM. The
kernel that is used in the proposed method has the biggest
impact on anomaly detection performance and has been opti-
mized by the proposed modified bat algorithm (MBA) as a
powerful optimization algorithm which resulted in achieving
higher hit rate and lower false alarm rate compared to the
other two algorithms. According to the results of Table 2,
the proposed method achieves the highest hit rate and correct
reject in all three different datasets, compared to those of the
other two methods shown here. This high hit rate shows that
the proposed method has adequate capability to recognize
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TABLE 2. Confusion matrix for OCSVM, isolation forest AND MBA-OCSVM.

legitimate messages as normal messages in the traffic. In a
similar way, the high correct reject rate shows that malicious
messages can be recognized as anomalous behavior in the
traffic. In addition, in the proposedmethod, there is an accept-
able drop in the false alarm rate compared to in the other two
methods, respectively. This reduction shows the very low per-
centage of legitimate messages that are incorrectly identified
as anomalous by the proposed method. It should be noted
that the low false alarm rate of the proposed method mostly
exists in frequencies far from the original message frequency.
Since it is quite rare for the original message frequencies
to reach the overlapping area of abnormality and normality,
the proposed method will not affect the performance of the
normal CAN bus traffic behavior. Please note that we have
simulated a wide range of message hacking with frequen-
cies ranging from 200% to the very small range of a 1%
increase/decrease. Therefore, our model is assessed with a
varied range of message frequencies to check its true capabil-
ity as an anomaly detection model. While accurate anomaly
detection when dealing with frequencies very close to the
real vehicle frequency may be hard to achieve, our model
could show good performance with regard to its high hit and
correct reject indices. On the other hand, since most practical
message flooding starts from high frequencies (generally the
hacker does not know the exact frequency of the target mes-
sage frame), the capability of the proposed model needs to be
assessed at high frequency ranges, such as 150% to 200% of
the actual message frequency. Furthermore, in order to prove
the independence of the proposed method from a specific
car model, we gathered additional CAN traffic traces from
two other unmodified licensed vehicles. Fig. 10 shows the
benchmark results of the proposed MBA-OCSVM anomaly
detection model for three different datasets. As shown in Fig.
10, the proposed anomaly detection method is independent
from the different message IDs contained in each DBC for
each vehicle model and achieves a high hit rate and correct
reject rate.

C. COMPUTATIONAL TIME EVALUATION
To evaluate the suitability of the proposed method in real-
time systems, the computational time required for each

FIGURE 10. Benchmarking of three different datasets for the proposed
MBA-OCSVM anomaly detection method.

major function is calculated. It is worth noting that all CAN
messages, corresponding signals, message ID, message fre-
quencies, and data payload for each message is defined in
a proprietary database (DBC) file by each car manufacturer.
This DBC file is defined during the manufacturing phase and
might be changed in very rare circumstances after produc-
tion. Therefore, since the construction of DBC file is not
changing in real-time, the training phase of the proposed
method can be performed offline to save computational
time and memory in real-time environment. As a result,
only detection/classification part of the algorithm with the
optimal parameters of the detection model should be run
online in the ECUs. This approach of offline training is
widely applied in the industry for other Advanced Driver
Assistance Systems (ADAS) features such as pedestrian
detection, tracking, parking slot classification, etc. where
the model requires computational time more than real-time
standards for training. Our proposed method consists of
the following major components which mainly affect the
computational overhead compared to the other functions:
FEATURE_EXTRACTION, MBA_OCSVM_TRAINING,
and ANOMALY_DETECTION. The first two functions are
performed as offline basis and ANOMALY_DETECTION
part will be run online. All simulations are implemented in
the MATLAB software which is run on a Core i7 processor,
4GHz and 4GB RAM. FEATURE_EXTRACTION takes
15 ms time to select the most useful features and extract
them from CAN traffic log. MBA_OCSVM_TRAINING is
the function that requires the longest computational time
in the proposed method because calculating the optimal
parameters for OCSVM classifier by modified bat optimiza-
tion method is also included in this function. The computa-
tional burden required for MBA_OCSVM_TRAINING and
ANOMALY_DETECTION functions for classical OCSVM,
Isolation Forest, and proposed MBA-OCSVM are calculated
separately which are summarized in Table 3. The com-
putational times for ANOMALY_DETECTION should be
minimized because our model needs the CAN traffic to be
analyzed in real time.
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TABLE 3. Computational time for major functions.

According to ISO-11898, CAN protocol supports baud
rates from 40 Kbit/s to 1 Mbit/s. Among them, the 500 Kbit/s
CAN network (known as high speed CAN) is the most typi-
cally used baud rate in automotive industry. To ensure that no
message gets lost, the CAN bus load should not be occupied
100%. Hence, in-vehicle CAN networks maintain their bus
load no more than 60% [41]. Considering a high speed CAN
bus with 500Kbit/s and 60% bus occupancy, it is realized that
each message is publishing every 2ms by measuring the aver-
age time interval between two consecutive CAN messages in
the logged traffic. Therefore, the ANOMALY_DETECTION
function needs to take less than 2ms to identify the state of
a given message whether it is anomalous or normal. As it
can be seen from Table 3, the computational time required
by the proposed anomaly detection model in the online case
is around 1 ms, which guarantees the applicable aspect of
the proposed model for real cases. Given the fact that recent
ECUs that are deployed for ADAS features can support
multi-thread processing to boost the computational perfor-
mance, computational time for each message to be analyzed
by ANOMALY_DETECTION function can still be much
less negligible and readily implemented in the recent ADAS
ECUs.

VI. CONCLUSION
This article proposed an effective anomaly detection model
for CAN bus traffic. The proposed method, a modified one-
class SVM, was constructed based on a new meta-heuristic
optimization algorithm called the Modified Bat Algo-
rithm (MBA), which helps prevent the algorithm from
becoming trapped in local optima and avoids pre-mature con-
vergence. The proposed MOCSVM method is used to detect
malicious cyberattack behaviors in CAN traffic. The under-
lying idea behind the proposed method is to establish a model
based on the normal CAN bus traffic, which contains recur-
ring patterns in message IDs that are transmitted in a given
normal traffic. To this end, any deviation from the normal traf-
fic, e.g. increased message occurrence frequency or message
flooding, can be detected by the MBA-OCSVM algorithm
as an outlier. In order to demonstrate the high performance
of the proposed model, three methods, namely conventional
one-class SVM, Isolation Forest, and MBA-OCSVM have
been compared. The experimental results show that the pro-
posed method achieved the highest hit rate and lowest miss
rate compared to other anomaly detection methods. From a
cyber-resilience point of view, the proposed model can pro-
vide a highly secure and accurate model to prevent vehicles
from being harmed by attackers. Last but not least, the pro-
posed MBA could show high search ability and convergence

characteristics, making it a good algorithm for optimization
applications.

REFERENCES
[1] M. Steger, C. A. Boano, T. Niedermayr, M. Karner, J. Hillebrand,

K. Roemer, and W. Rom, ‘‘An efficient and secure automotive wireless
software update framework,’’ IEEE Trans. Indus. Informat., vol. 14, no. 5,
pp. 2181–2193, May 2018.

[2] Robert Bosch GmbH, document 50, C. A. N. Specification, Postfach, 1991.
[3] O. Avatefipour, A. Hafeez, M. Tayyab, and H. Malik, ‘‘Linking received

packet to the transmitter through physical-fingerprinting of controller
area network,’’ in Proc. IEEE Workshop Inf. Forensics Secur. (WIFS),
Dec. 2017, pp. 1–6.

[4] Y. Yuan, H. Yuan, L. Guo, H. Yang, and S. Sun, ‘‘Resilient control of
networked control system under DoS attacks: A unified game approach,’’
IEEE Trans. Ind. Informat., vol. 12, no. 5, pp. 1786–1794, Oct. 2016.

[5] M. Markovitz and A. Wool, ‘‘Field classification, modeling and anomaly
detection in unknown CAN bus networks,’’ Veh. Commun., vol. 9,
pp. 43–52, Jul. 2017.

[6] A. Theissler, D. Ulmer, and I. Dear, ‘‘Interactive Knowledge Discovery
in recordings from vehicle tests,’’ in Proc. 33rd FISITA World Automot.
Congr., Budapest, Hungary, 2010, pp. 1–10.

[7] V. Chandola, A. Banerjee, and V. Kumar, ‘‘Anomaly detection: A survey,’’
ACM Comput. Surv., vol. 41, no. 3, p. 15, 2009.

[8] T. Kieu, B. Yang, and C. S. Jensen, ‘‘Outlier detection for multidimensional
time series using deep neural networks,’’ in Proc. 19th IEEE Int. Conf.
Mobile Data Manage. (MDM), Jun. 2018, pp. 125–134.

[9] C. Sommer, R. Hoefler, M. Samwer, and D. W. Gerlich, ‘‘A deep learning
and novelty detection framework for rapid phenotyping in high-content
screening,’’ Mol. Biol. Cell, vol. 28, no. 23, pp. 3428–3436, 2017.

[10] S. Sharma, C. R. Krishna, and S. K. Sahay, ‘‘Detection of advanced
malware by machine learning techniques,’’ in Soft Computing: Theories
and Applications. Singapore: Springer, 2019, pp. 333–342.

[11] O. Avatefipour and H. Malik, ‘‘State-of-the-art survey on in-vehicle net-
work communication (CAN-Bus) security and vulnerabilities,’’ Feb. 2018,
arXiv:1802.01725. [Online]. Available: https://arxiv.org/abs/1802.01725

[12] Q. Wang and S. Sawhney, ‘‘VeCure: A practical security framework
to protect the CAN bus of vehicles,’’ in Proc. Int. Conf. Internet
Things (IOT). Cambridge, MA, USA, Oct. 2014, pp. 13–18. doi: 10.1109/
IOT.2014.7030108.

[13] M. Marchetti, D. Stabili, A. Guido, and M. Colajanni, ‘‘Evaluation of
anomaly detection for in-vehicle networks through information-theoretic
algorithms,’’ in Proc. IEEE 2nd Int. Forum Res. Technol. Soc. Ind. Lever-
aging Better Tomorrow (RTSI), Sep. 2016, pp. 1–6.

[14] M.-J. Kang and J.-W. Kang, ‘‘Intrusion detection system using deep neural
network for in-vehicle network security,’’ PLoS ONE, vol. 11, no. 6, 2016,
Art. no. e0155781.

[15] A. Theissler, ‘‘Detecting known and unknown faults in automotive systems
using ensemble-based anomaly detection,’’ Knowl.-Based Syst., vol. 123,
pp. 163–173, May 2017.

[16] S. N. Narayanan, S. Mittal, and A. Joshi, ‘‘OBD_SecureAlert: An anomaly
detection system for vehicles,’’ in Proc. IEEE Int. Conf. Smart Com-
put. (SMARTCOMP), May 2016, pp. 1–6.

[17] K.-T. Cho and K. G. Shin, ‘‘Fingerprinting electronic control units for
vehicle intrusion detection,’’ in Proc. 25th USENIX Secur. Symp. (USENIX
Secur.). Berkeley, CA, USA: USENIX Association, 2016.

[18] M. Tayyab, A. Hafeez, and H. Malik, ‘‘Spoofing attack on clock based
intrusion detection system in controller area networks,’’ in Proc. NDIA
Ground Vehicle Syst. Eng. Technol. Symp., Aug. 2018, pp. 1–13.

[19] A. Taylor, S. Leblanc, and N. Japkowicz, ‘‘Anomaly detection in automo-
bile control network data with long short-termmemory networks,’’ inProc.
IEEE Int. Conf. Data Sci. Adv. Anal. (DSAA), Oct. 2016, pp. 130–139.

[20] H. Li, L. Zhao, M. Juliato, S. Ahmed, M. R. Sastry, and L. L. Yang,
‘‘POSTER: Intrusion detection system for in-vehicle networks using sen-
sor correlation and integration,’’ in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2017, pp. 2531–2533.

[21] A. Ganesan, J. Rao, and K. G. Shin, ‘‘Exploiting consistency among
heterogeneous sensors for vehicle anomaly detection,’’ SAE Tech. Paper
2017-01-1654, 2017.

[22] M. Pajic, J. Weimer, N. Bezzo, P. Tabuada, O. Sokolsky, I. Lee, and
G. J. Pappas, ‘‘Robustness of attack-resilient state estimators,’’ in Proc.
ACM/IEEE 5th Int. Conf. Cyber-Phys. Syst. (CPSWeek ICCPS), Apr. 2014,
pp. 163–174.

VOLUME 7, 2019 127591

http://dx.doi.org/10.1109/IOT.2014.7030108
http://dx.doi.org/10.1109/IOT.2014.7030108


O. Avatefipour et al.: Intelligent Secured Framework for Cyberattack Detection in Electric Vehicles’ CAN Bus Using Machine Learning

[23] M. Marchetti and D. Stabili, ‘‘Anomaly detection of CAN bus mes-
sages through analysis of ID sequences,’’ in Proc. IEEE Intell. Vehicles
Symp. (IV), Los Angeles, CA, USA, Jun. 2017, pp. 1577–1583, doi: 10.
1109/IVS.2017.7995934.

[24] I. Studnia, E. Alata, V. Nicomette, M. Kaâniche, and Y. Laarouchi,
‘‘A language-based intrusion detection approach for automotive embedded
networks,’’ Int. J. Embedded Syst., vol. 10, no. 1, pp. 1–11, 2018.

[25] A. Tomlinson, J. Bryans, S. A. Shaikh, andH. K. Kalutarage, ‘‘Detection of
automotive CAN cyber-attacks by identifying packet timing anomalies in
timewindows,’’ inProc. 48th Annu. IEEE/IFIP Int. Conf. Dependable Syst.
Netw. Workshops (DSN-W), Luxembourg City, Luxembourg, Jun. 2018,
pp. 231–238. doi: 10.1109/DSN-W.2018.00069.

[26] F. Martinelli, F. Mercaldo, V. Nardone, and A. Santone, ‘‘Car hacking
identification through fuzzy logic algorithms,’’ in Proc. IEEE Int. Conf.
Fuzzy Syst. (FUZZ-IEEE), Jul. 2017, pp. 1–7.

[27] H. Lee, S. H. Jeong, and H. K. Kim, ‘‘OTIDS: A novel intrusion detection
system for in-vehicle network by using remote frame,’’ in Proc. 15th Annu.
Conf. Privacy, Secur. Trust (PST), Aug. 2017, pp. 57–60.

[28] A. Taylor, N. Japkowicz, and S. Leblanc, ‘‘Frequency-based anomaly
detection for the automotive CAN bus,’’ in Proc. WCICSS, Dec. 2015,
pp. 45–49.

[29] H.-J. Xing and M. Ji, ‘‘Robust one-class support vector machine with
rescaled hinge loss function,’’ Pattern Recognit., vol. 84, pp. 152–164,
Dec. 2018.

[30] A. Hafeez, H. Malik, O. Avatefipour, P. R. Rongali, and S. Zehra, ‘‘Com-
parative study of can-bus and flexray protocols for in-vehicle communica-
tion,’’ SAE Tech. Paper 2017-01-0017, 2017.

[31] J. Kennedy and R. Eberhart, ‘‘Particle swarm optimization,’’ in Proc. Int.
Conf. Neural Netw., vol. 4, Nov./Dec. 1995, pp. 1942–1948.

[32] H. Zhi and S. Liu, ‘‘Face recognition based on genetic algorithm,’’ J. Vis.
Commun. Image Represent., vol. 58, pp. 495–502, Jan. 2019.

[33] X.-S. Yang and A. H. Gandomi, ‘‘Bat algorithm: A novel approach
for global engineering optimization,’’ Eng. Comput., vol. 29, no. 5,
pp. 464–483, 2012.

[34] S. Yilmaz, E. U. Kucuksille, and Y. Cengiz, ‘‘Modified bat algorithm,’’
Elektronika ir Elektrotechnika, vol. 20, no. 2, pp. 71–79, 2014.

[35] O. Avatefipour and A. Nafisian, ‘‘A novel electric load consumption pre-
diction and feature selection model based on modified clonal selection
algorithm,’’ J. Intell. Fuzzy Syst., vol. 34, no. 4, pp. 2261–2272, 2018.

[36] F. T. Liu, K. Ting, and Z.-H. Zhou, ‘‘Isolation forest,’’ in Proc. 8th IEEE
Int. Conf. Data Mining, Dec. 2008, pp. 413–422.

[37] The University of Tulsa. Crash Reconstruction Research Consortium.
Accessed: May 5, 2019. [Online]. Available: http://tucrrc.utulsa.edu

[38] Dearborn Group. Gryphon G2. Accessed: May 5, 2019. [Online]. Avail-
able: https://www.dgtech.com/gryphon-g2/

[39] Dearborn Group. Hercules Software. Accessed: May 5, 2019. [Online].
Available: https://www.dgtech.com/software/#Hercules

[40] H. Lee, S. H. Jeong, and H. K. Kim. (2017). OTIDS: A Novel
Intrusion Detection System for in-Vehicle Network by Using Remote
Frame. PST (Privacy, Security and Trust). [Online]. Available:
http://ocslab.hksecurity.net/Dataset/CAN-intrusion-dataset

[41] S. Nürnberger and C. Rossow, ‘‘-vatiCAN-Vetted, Authenticated CAN
Bus,’’ in Proc. Int. Conf. Cryptograph. Hardw. Embedded Syst. Berlin,
Germany: Springer, Aug. 2016, pp. 106–124.

OMID AVATEFIPOUR received the master’s degree in computer engi-
neering from the University of Michigan–Dearborn. He has work experi-
ence at Vector CANTech Company, as an Embedded Software Engineer.
He has also worked as a Researcher in Information System, Security, and
Forensics (ISSF) Laboratory, Department of Electrical and Computer Engi-
neering (ECE), University of Michigan–Dearborn. Additionally, he was a
primary Researcher with the Laboratory of Control and Robotics, Institute
of Advanced Science and Technology, IRAN SSP Research and Develop-
ment Center. He is currently with Valeo North America Inc., as a System
Engineer with the Research and Development Group. His research interests
include in-vehicle network communication protocol security, autonomous
vehicles, embedded systems, machine learning, intelligent control systems,
and robotics.

AMEENA SAAD AL-SUMAITI received the B.Sc. degree in electrical
engineering fromUAEUniversity, UAE, in 2008, and theM.A.Sc. and Ph.D.
degrees in electrical and computer engineering from the University ofWater-
loo, Canada, in 2010 and 2015, respectively. She was a Visiting Assistant
Professor with MIT, Cambridge, USA, in 2017. She is currently an Assistant
Professor with the Department of Electrical and Computer Engineering,
Khalifa University, UAE. Her research interest includes intelligent systems.

AHMED M. EL-SHERBEENY received the master’s and Ph.D. degrees in
mechanical engineering from West Virginia University (WVU), in 2001 and
2006, respectively, where he was a Graduate Teacher and a Research
Assistant. He has been an Assistant Professor with the Industrial Engi-
neering Department, since 2010, was the former Head of the Alumni and
Employment Unit, College of Engineering, King Saud University, from
2013 to 2018. His research interests include human factors engineering,
manufacturing engineering, and engineering education.

EMAD MAHROUS AWWAD is currently pursuing the Ph.D. degree with
the Electrical Engineering Department, King Saud University. He graduated
and employed as a Teaching Assistant at Industrial Electronics and Con-
trol Engineering Department, Faculty of Electronic Engineering, Menofia
University, Egypt. He developed his researches in the field of design, con-
trol, and implementation of autonomous mobile robot. He is interested in
modeling, optimization, observer design, and MPC controller of vehicle
dynamics under the wheel-terrain interaction slippage phenomenon. He is
also interested in artificial intelligent, machine learning, and deep learning
related to the field of robotics and image processing.

MOHAMMED A. ELMELIGY received the B.Sc. degree in information
technology from Menoufia University of Egypt, in 2005. He has been a
Software Engineer with King Saud University, Riyadh, Saudi Arabia, since
2009. His research interests include Petri nets, supervisory control of discrete
event systems, database software, and network administration.

MOHAMED A. MOHAMED (M’16) received the B.Sc. and M.Sc. degrees
from Minia University, Minia, Egypt, in 2006 and 2010, respectively, and
the Ph.D. degree from King Saud University, Riyadh, Saudi Arabia, in 2016.
He joined the College of Electrical Engineering and Automation, Fuzhou
University, China, as a Postdoctoral Research Fellow, in 2018. He has been
a Faculty Member with the Department of Electrical Engineering, College
of Engineering, Minia University, Minia, Egypt, since 2008. He has super-
vised multiple M.Sc. and Ph.D. theses, worked on a number of technical
projects, and published various articles and books. His current research
interests include the areas of renewable energy, energy management, power
electronics, power quality, optimization, and smart grids. He has also joined
the editorial board of some scientific journals and the steering committees of
many international conferences.

HAFIZ MALIK is currently an Associate Professor with the Electrical
and Computer Engineering (ECE) Department, University of Michigan–
Dearborn. He has published more than 70 articles in leading journals, confer-
ences, and workshops. His research in cyber-security, multimedia forensics,
information security, wireless sensor networks, steganography/steganalysis,
pattern recognition, information fusion, and biometric security is funded by
the National Academies, National Science Foundation and other agencies.
Dr. Malik is also on the Review Board Committee of the IEEE Technical
Committee onMultimedia Communications (MMTC). He organized Special
Track on Doctoral Dissertation in Multimedia, in the 6th IEEE International
Symposium on Multimedia (ISM) 2006. He is also organizing a special
session on ‘‘Data Mining in Industrial Applications’’ within the IEEE Sym-
posium Series on Computational Intelligence (IEEE SSCI) 2013. He is
serving as a Vice Chair for the IEEE SEM, Chapter 16, since 2011. He is
also serving on several technical program committees, including the IEEE
AVSS, ICME ICIP, MINES, ISPA, CCNC, ICASSP, and ICC. He is serving
as an Associate Editor for the IEEE TRANSACTIONS ON INFORMATION FORENSICS

AND SECURITY, since August 2014 and for the Springer Journal of Signal,
Image, and Video Processing (SIVP), in May 2013.

127592 VOLUME 7, 2019

http://dx.doi.org/10.1109/IVS.2017.7995934
http://dx.doi.org/10.1109/IVS.2017.7995934
http://dx.doi.org/10.1109/DSN-W.2018.00069

	INTRODUCTION
	RELATED WORK
	CAN BUS PROTOCOL – AN OVERVIEW
	PROPOSED ANOMALY DETECTION MODEL AND FORMULATION
	PROPOSED CAN BUS ANOMALY DETECTION METHOD
	ONE-CLASS SUPPORT VECTOR MACHINE (OCSVM)
	MODIFIED BAT ALGORITHM (MBA)

	RESULTS AND DISCUSSION
	PERFORMANCE EVALUATION OF MODIFIED BAT ALGORITHM
	PERFORMANCE EVALUATION OF PROPOSED MBA-OCSVM
	COMPUTATIONAL TIME EVALUATION

	CONCLUSION
	REFERENCES
	Biographies
	OMID AVATEFIPOUR
	AMEENA SAAD AL-SUMAITI
	AHMED M. EL-SHERBEENY
	EMAD MAHROUS AWWAD
	MOHAMMED A. ELMELIGY
	MOHAMED A. MOHAMED
	HAFIZ MALIK


