
Received March 8, 2019, accepted March 17, 2019, date of publication March 29, 2019, date of current version April 13, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2908230

Optimally Efficient Secure Scalar Product With
Applications in Cloud Computing
BABAK SIABI1, MEHDI BERENJKOUB1, AND WILLY SUSILO 2
1Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran
2School of Computing and Information Technology, Institute of Cybersecurity and Cryptology, University of Wollongong, Wollongong, NSW, Australia

Corresponding author: Willy Susilo (wsusilo@uow.edu.au)

ABSTRACT Secure computation of scalar product is of considerable importance due to its central role
in many practical computation scenarios with privacy and security requirements. This paper includes new
results about the secure two-party scalar product. Specifically, a perfectly secure and universally composable
two-party split scalar product (SSP) protocol is proposed in the preprocessing model. In addition to full
security, the proposed SSP protocol enjoys the advantage of optimal efficiency. To show the optimality of this
SSP protocol, information theoretic lower bounds on the amount of communicated data in a secure two-party
computation in the preprocessing model are derived. These bounds are not limited to SSP functionality but
apply to a large class of two-party functionalities. A part of this paper is devoted to applications of the
proposed SSP protocol in secure cloud computing. Specifically, based on this protocol, a cloud-assisted
privacy-preserving profile-matching scheme and a secure remote health monitoring scheme are proposed.
Both of the solutions are highly efficient and significantly improve the previous work.

INDEX TERMS Secure computations, preprocessing model, optimal efficiency, privacy-preserving scalar
product, privacy-preserving profile-matching, secure remote health monitoring.

I. INTRODUCTION
Secure computations (SC) is an important research line in
modern cryptography that constitutes powerful solutions to
handle sensitive distributed computations. In such compu-
tation scenarios a number of mutually untrustworthy par-
ties need to compute a function on their private inputs to
acquire their possibly private outputs. Traditionally, such
computations have been carried out either with the help of a
trusted third party or by sacrificing a part of sensitive security
requirements.

The first study of secure computations was carried
out by Andrew C. Yao and resulted in a secure pro-
tocol for computing general two-party functionalities [1].
Subsequently, more fundamental possibility results were
proposed [2], [3], [4], [5], and [6]. These results show that
under appropriate conditions, it is possible for n parties
P1,P2, . . . ,Pn, each holding a private input xi, to distribu-
tively compute a function (y1, y2, . . . , yn) = f (x1, x2, . . . , xn)
so that at the end of the computation, Pi learns yi and
nothing else beyond it. Though brilliant in the theoretical

The associate editor coordinating the review of this manuscript and
approving it for publication was Malik Najmus Saqib.

sense, the fundamental possibility results are not adequately
efficient to be applied in most practical scenarios. Therefore,
researchers have put a constant effort into seeking efficient
solutions for secure computations. This has resulted in a
considerable body of literature.

From a practical point of view, it is important to take
a closer look at primitives and sub-protocols of SC proto-
cols. Most SC protocols are composed of simpler primitives
or sub-protocols such as oblivious transfer (OT), commit-
ment, multiplication, or comparison which will be called
repeatedly during the execution of the SC protocol. Conse-
quently, little efficiency improvements in these sub-protocols
will lead to considerable efficiency improvements in the
overall SC protocols.

In this paper, we deal with secure computation of
two-party scalar product. This operation constitutes the
central primitive for a wide range of practical SC scenar-
ios including pattern matching [7], dataset operations [8],
data mining [9], [10], scientific computations [11], statis-
tical analysis [12], optimization [13], [14], supply-chain
management [15], [16], trust computation [17], benchmark-
ing [18], [19] and secure cloud computing [20], [21]. It is also
the core building block of various fundamental operations

42798
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-1562-5105

B. Siabi et al.: Optimally Efficient Secure Scalar Product With Applications in Cloud Computing

in linear algebra (e.g. multiplication of matrices and solving
systems of equations [22]).

We consider secure computation in the preprocessing
model. This model is a relaxed setting for secure computa-
tions which comprises two separate phases: a preprocessing
phase followed by a computation phase. During the prepro-
cessing phase, each party receives a set of specific data,
pre-distributed data. In the computation phase, parties run
among themselves a secure computation protocol which uses
the pre-distributed data as auxiliary inputs. During recent
years, this model has become highly popular and been widely
utilized in secure computations because, on the one hand,
protocols in the preprocessing model are mostly simpler and
more efficient than their counterparts in the plain model, and,
on the other hand, this model can be exploited to achieve high
levels of security.

The main goal of using the preprocessing model is to
achieve efficiency. Typically, the pre-distributed data can be
arranged in such a way that make the computation phase
extremely simple and fast. It is worth to mention that prepro-
cessing model can be realized with or without a third party.
Specifically, for realization with a third party, pre-distributed
data may be produced and distributed by a semi-trusted entity,
often referred to as the initiator, or be purchased, in the form
of a commodity, on the Internet [23]. Nevertheless, the pre-
processing phase is an instance of secure computations and
can be computed distributively by parties themselves without
participation of any third party. A popular and effective idea
is to use variants of homomorphic encryption to produce and
distribute correlated randomness. This idea has been pro-
posed in [24] and adopted in various dishonest majority SC
protocols including [25], [26], [27]. In either form, the pre-
processing phase is off-line and can be held any time before
the main computation phase. Therefore, complexity of this
phase is not of vital importance.

In addition to the mentioned practical advantages,
preprocessing model helps to achieve higher levels of secu-
rity. In particular, in this model it is possible to have uncon-
ditionally secure and universally composeble protocols for
various functionalities [28], [29]. These security levels are
important in practice. Unconditional security has two distinct
advantages over computational security: (1) It is not based
on intractability assumptions, and (2) unconditionally secure
protocols impose less computational complexity in most
cases. Universal composability framework [30] is a theoreti-
cally firm and practically influential security model that guar-
antees a strong composability property: A protocol which
is composed of multiple UC secure protocols is UC secure.
It is important to note that there are theoretical impossibility
results on achieving these levels of security in the plain model
(the model without extra set-up assumptions which assumes
only pairwise private and authenticated channels between
parties) [2], [31], [32], [33].

In this paper, exploiting capacities of the preprocessing
model, we achieve unconditional security and universal com-
posability (UC) in computing two-party scalar product.

A. CONTRIBUTIONS
In this paper, we investigate secure two-party computation
in the preprocessing model with an special emphasis on
secure computation of two-party scalar product. In summary,
the contributions of this paper are as follows:

1) LOWER BOUNDS ON COMMUNICATIONS COMPLEXITY
It is valuable to understand limitations of secure computations
models to fully exploit capabilities of them. From this point
of view, important questions about the preprocessing model
arise. In particular, a relevant question is to what extent can
we improve efficiency of protocols in this model? As an effort
at addressing this open question, we derive lower bounds on
communicated bits during a two-party unconditionally secure
computation in the preprocessing model. The lower bounds
derived in this paper are generalizations of the work of [34]
where lower bounds have been extracted for two-party obliv-
ious polynomial evaluation (OPE). We stress that the results
of [34] only apply to a limited functionalities. Specifically,
these bounds only apply to two-party linear functionalities in
which only one of the parties receives output while the other
party has no output. Obviously, these bounds do not apply to
general functionalities, including SSP. The lower bounds that
we derive in this paper, although not general, hold for a wider
range of functionalities. In particular, the extracted bounds
apply to all (linear or nonlinear) functionalities in which
input-output pair of each party reveals no information about
the other party’s input or output. We term such functionalities
private-output and formally define the term in Section III.

2) A SECURE SSP PROTOCOL
We propose an efficient SSP protocol which is perfectly
secure, universally composable, and optimally efficient. Our
protocol is designed in the preprocessing model. We rely on
this model to achieve desired properties. Particularly, relying
on the facilities of this model, our protocol achieves (perfect)
unconditional security in the UC framework. The proposed
secure SSP protocol is also optimally efficient in terms of
communicated bits in both of the preprocessing and the
computation phases. In the preprocessing phase, each party
receives (k+1)σ bits of pre-distributed data from the initiator
where k denotes the length of input vectors and σ is the
number of bits required to represent the underlying field upon
which our protocol is constructed. In the computation phase,
each party sends kσ bits of data to the other party. We will
show that these values are optimal for two-party SSP pro-
tocol in the preprocessing model. In the proposed protocol,
each party sends a single message in the computation phase
independently from the other party’s message. Consequently,
the number of communication rounds is one which is optimal
as well.

In [22] and [35], various higher level privacy preserving
linear algebra protocols are proposed that the SSP protocol
is their fundamental building block. These higher level pro-
tocols use the SSP protocol as a black-box and, thus, they

VOLUME 7, 2019 42799

B. Siabi et al.: Optimally Efficient Secure Scalar Product With Applications in Cloud Computing

can be implemented using any universally composable secure
SSP protocol. Our SSP protocol (proposed in Section IV)
is UC perfectly secure and, therefore, it enables the privacy
preserving linear algebra protocols of [22] and [35].

3) SECURE CLOUD COMPUTING APPLICATIONS
We provide secure solutions for two cloud computation sce-
narios based on the proposed SSP protocol. The first solu-
tion is a cloud-assisted privacy-preserving profile-matching
(PPM) scheme with application in social media networks.
PPM schemes contain mechanisms to privately store and
maintain profile data of users on cloud servers while enabling
the servers to process the data and calculate measures of
matching without learning any information about user pro-
files. Therefore, they enable users to search for new friends
with similar interests, activities, locations and other factors.
Compared to relevant schemes, the proposed PPM scheme
improves efficiency and security level and also enables addi-
tional functionality features.

The other solution is a cloud-assisted secure remote health
monitoring (SRHM) scheme. Using SRHM schemes, cloud
servers store and process health data of users without learning
any information about them. Medical service providers can
also queries on health data to check users health condition.
The proposed SRHM scheme is unconditionally secure and
highly efficient.

B. RELATED WORK
Various forms of secure scalar product functionality are
defined and studied in the literature. These functionalities are
different regarding the number of parties, the arrangement
of parties providing inputs, or the arrangement of parties
receiving outputs. Here, we deal with two-party setting where
each party provides a private vector as its input and, at the
end of computation, receives a private additive share of the
resulting scalar product. This functionality, formally defined
in Fig. 1, is occasionally referred to as split scalar product
(SSP) [10] because of its shared output.

There are several attempts at secure realization of scalar
product functionalities in the literature. In [36], [37], [38]
and [39], the two-party SSP functionality is considered and
solutions without relying on a third party or intractable prob-
lems are targeted. Unfortunately, all of these solutions trade
off security for efficiency. Specifically, in these solutions an
amount of private information leaks during protocol runwhile
such an information leakage does not occur in the ideal SSP
functionality (see Fig. 1). Therefore these solutions deviate
from the ideal functionality and are insecure according to
rigorous standard security definitions (i.e.Definitions 1 and 2
of Section II). In fact, it has been proved that it is not pos-
sible to have secure two-party computation without relying
on intractable problems or relaxed computation models [4].
In light of this general fact, we can conclude that the attempts
of [36], [37], [38] and [39] have been condemned to fail-
ure from the beginning. Therefore, we do not discuss such
solutions further.

A number of SSP protocols, e.g. [10], [40] and [41],
utilize homomorphic encryption to fulfill security require-
ments. A one-sided unconditionally secure SSP protocol has
been proposed in [10]. This protocol achieves unconditional
security only against one of the parties while it uses seman-
tically secure homomorphic encryption to establish secu-
rity against the other party. Therefore, its security depends
on security of the underlying homomorphic cryptosystem.
In [40], based on the idea of permutation protocol of [12],
a simple SSP protocol has been proposed. The core of this
protocol is the realization of permutation protocol in the
two-party setting with the help of homomorphic encryption.
The idea of [41] for implementing scalar product is to trans-
form secure scalar product into secure set intersection using
homomorphic encryption and to implement set intersection
using oblivious transfer. This method apply to binary vectors
of limited density (i.e. proportion of 1 elements in a binary
vector). We stress that among these protocols, only the one
from [10] has a security proof.

The protocols proposed in [12], [42], [43], [35], and [22]
are the most relevant to the work of this paper since they
focus on the case of unconditionally secure SSP protocols
in the relaxed computation models. In [12], an SSP protocol
in the OT-hybrid model has been proposed and claimed to
be unconditionally secure. Nevertheless, it has been shown
in [10] that the protocol of [12] is insecure if inputs are
binary vectors. In [42], a secret sharing-based SSP protocol
has been proposed which uses the idea of multiplication
on secret shared values of [4]. This protocol introduces a
third party to whom each party sends a share of its private
value. Then, the distributed addition and multiplication are
carried out on shares of the three parties. The multiplication
needs two communication rounds. In this protocol, multiple
parties can jointly perform the role of the third party to have
a distributed trust. In [43], [35], and [22] the approach of
relying on the preprocessing model is adopted to achieve
unconditionally secure SSP protocols. However, these pro-
posals do not completely solve the problem. The protocol
of [43], although seemingly secure, lacks a formal proof of
security. This protocol is directly extended to a secure matrix
multiplication protocol in the preprocessing model in [44].
The SSP protocol of [35] is not secure as discussed in [45].
The same insecurity arguments also apply to [22] which is the
extended version of [35].

It is relevant to note that every (composable) secure pro-
tocol for computing two-party multiplication (with the result
shared between parties) can be extended to an SSP protocol
by composing copies of it in parallel. For instance, we can
construct an SSP protocol in the preprocessing model using
Beaver’s pre-distributed multiplication triplets [46].

In previous studies it remains unaddressed that how effi-
cient could an SSP protocol be in the preprocessing model?
We answer this question by proposing lower bounds on the
communications complexity of secure SSP protocols in the
preprocessing model and also by proposing an optimal SSP
protocol in this model. Efficiency of other forms of scalar

42800 VOLUME 7, 2019

B. Siabi et al.: Optimally Efficient Secure Scalar Product With Applications in Cloud Computing

product in the preprocessing model has been investigated
in [47]. Specifically, in the case that just one party learns the
product and the other party has no output, it is showed that
unconditionally secure protocols exist in which the number
of bits communicated by each party (in computation phase) is
linear in its input length. The protocol proposed in [47] uses
an exponential (in input length) number of pre-distributed
random bits.

C. ORGANIZATION
We provide preliminary concepts, including security defini-
tions, in Section II. In Section III, we focus on efficiency
of secure two-party computations and derive lower bounds
on communications complexity of such computations. Then
we propose our SSP protocol and prove its security and
optimality in Section IV. The applications of the proposed
SSP protocol in secure cloud computation is demonstrated
in Section V. We draw our conclusions and discuss future
directions in Section VI.

II. PRELIMINARIES
In this section, we provide definitions of security model
as well as functionality. Specifically, we define two-party
perfect security and discuss its relation to the universal com-
posability framework. We also define split scalar product
functionality which will be dealt with in the subsequent
sections.

We use security definitions of [48, Ch. 7], [49, Ch. 2],
and [50] to define perfect security with abortion for two-party
secure protocols. The definitions are based on ideal/real
paradigm. In [48, Ch. 7] and [49, Ch. 2], based on this
paradigm, definitions of computational security with abortion
in the two-party setting are provided. In [50], perfect security
for the multiparty case is precisely defined.

A. NOTATIONS
We consider a two-party protocol to be a process of
computing a possibly probabilistic functionality f :

{0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ where, (x1, x2) =
(f1(x1, x2), f2(x1, x2)). In an execution of a two-party protocol
π on inputs (x1, x2), we denote the output and the view of
the ith party Pi by OUT πi (x1, x2) and VIEW

π
i (x1, x2) respec-

tively. We denote by OUT π (x1, x2) = (OUT π1 ,OUT
π
2) the

pair of outputs. The view is defined as VIEWπ
i (x1, x2) =

(xi, ri,m1, . . . ,ml) where xi is Pi’s private input, ri is its
internal random, and mj is the jth message that it receives
during the protocol execution.

Suppose that 8 and 9 are two ensembles of random vari-
ables. We denote by8 ≡ 9 the identicalness of distributions
of 8 and 9.
All values and computations throughout this paper are in a

field of characteristic p (a prime). We denote the underlying
field by Zp, the set Zp − 0 by Z∗p , and the number of bits
required for presenting the elements of Zp by σ . That is,
σ = log2 |p|. We also use over-bar lowercase letters to rep-
resent vectors in Zpk or Z∗p

k (e.g. ā represents a vector), and

uppercase letters to represent matrices in Zpk×k
′

or Z∗p
k×k ′

(e.g. A represents a matrix).

B. TWO-PARTY PERFECT SECURITY AGAINST
SEMI-HONEST ADVERSARY
Semi-honest adversaries follow the protocol instructions
faithfully. Hence, privacy is the only security aspect we are
worried about in this setting. In Definition 1 we define a
simulation-based privacy for two-party computations. The
definition is restricted to stand-alone executions and to static
adversaries. In this definition the simulator algorithm receives
the input and the output of the corrupted party and constructs
a view that is distributed the same as its view of the protocol
execution.
Definition 1 (privacy of Two-Party Protocols): Let f :

{0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a probabilistic
two-party functionality and let π be a protocol. We say
that π privately computes f if there exists a probabilistic
polynomial-time algorithm S such that for every I ∈ {1, 2},
and every (x1, x2) where |x1| = |x2|, it holds that:

{S(I , xI , fI (x1, x2)), f (x1, x2)}

≡ {(VIEWπ
I (x1, x2),OUT

π (x1, x2))}. (1)

C. TWO-PARTY PERFECT SECURITY (WITH ABORT)
AGAINST MALICIOUS ADVERSARIES
A malicious adversary may arbitrarily deviate from protocol
instructions. For instance, it may not use the actual input,
choose its input depending on the other party’s input, or cause
the output to be incorrectly distributed. Consequently, it does
not suffice to simulate the view of the corrupted party.

We consider malicious adversaries with abortion and we
use ideal/real paradigm based definition of security to analyze
the security of protocols in the presence of such adversaries.
We refer the reader to [49, Ch. 2] for details of the ideal world
execution of two-party functionalities. The only difference
between our model and the one of [49, Ch. 2] is the assump-
tion on the computational power of the adversary. Since we
are dealing with perfect security, we assume no limit on the
computational power of the adversary. We also note that the
security definition is restricted to stand-alone executions and
to static adversaries.

Let f be a two-party functionality and π be a two-party
protocol computing f . Let the real-world adversary A be an
arbitrary machine with auxiliary input z, and denote by S an
ideal-world adversary/simulator of comparable complexity
(that is, it runs in time polynomial in the running time of
A). We denote by REAL(π,A(z),I)(x1, x2) the outputs of the
adversary A and the honest party following an execution of π .
We also denote by IDEAL(f ,S(z),I)(x1, x2) the corresponding
outputs of the ideal-world adversary S and the honest party
after an ideal execution with a trusted party computing f .
Definition 2 (Security of Two-Party Protocols With Abor-

tion): Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a
two-party functionality and let π be a two-party protocol.

VOLUME 7, 2019 42801

B. Siabi et al.: Optimally Efficient Secure Scalar Product With Applications in Cloud Computing

We say that π securely computes f with abort in the presence
of malicious adversaries if for every probabilistic adversary
A in the real model, there exists a probabilistic adversary S
(of comparable complexity) in the ideal model with abortion,
such that for every I ∈ {1, 2}, and every (x1, x2) where
|x1| = |x2|, it holds that:

{IDEAL(f ,S(z),I)(x1, x2)} ≡ {REAL(π,A(z),I)(x1, x2)}. (2)

D. UNIVERSAL COMPOSABILITY FRAMEWORK
A protocol which is secure in the UC framework can be used
in conjunction with other UC protocols (including copies of
it) in any form of composition such as sequential, parallel,
or concurrent. In the UC framework, security is defined based
on protocol emulation paradigm. Loosely speaking, a pro-
tocol is said to emulate another one, if no environment can
distinguish the executions. Assume that protocol ρ∗ securely
computes functionality f . If protocol π emulates protocol ρ∗

such that no environment can tell them apart, then π is also
a secure protocol for computing functionality f . We refer the
reader to [30] for comprehensive formal discussions on UC
framework.

The direct methodology for proving a protocol UC secure
is to show that the protocol emulates the desired functionality
defined in the ideal world of UC framework. Here we adopt a
simple indirect proof procedure. Instead of working with UC
framework, we prove that stand-alone execution of the pro-
tocol is perfectly secure in the standard model. Then we take
advantage of the following result of [51], which guarantees
UC security for perfectly secure protocols.
Theorem 1: Let π be a protocol that computes function f

with perfect security with abort in the stand-alone model,
with a black-box straight-line simulator. Then, protocol π
computes f with perfect security under concurrent general
composition. This holds for both static and adaptive adver-
saries.

E. SPLIT SCALAR PRODUCT FUNCTIONALITY
Scalar product of two vectors x̄ and ȳ (of length k) is defined
as 〈x̄ ·ȳ〉 =

∑k
j=1 xjyj where xj and yj denote the jth element of

x̄ and ȳ respectively. In split scalar functionality we assume
that P1 and P2 hold private vectors x̄1 ∈ Zpk and x̄2 ∈ Zpk

respectively and intend to calculate w = 〈x̄1 · x̄2〉 such that for
i = 1, 2 party Pi receives an additive random share wi ∈ Zp
satisfying w1 + w2 = w.
In the ideal world, this functionality is handled by TTP as

illustrated in Fig. 1. Since TTP honestly follows the illustrated
procedure, output shares are uniformly distributed on Zp and
parties learn nothing about w or other party’s input.
Remark 1: It is of vital importance to note the difference

between SSP and conventional scalar product. In the latter,
parties always (even in the ideal world) can derive an equation
for the other party’s input using their own input and output.
Derivation of such an equation is not possible in the case of
SSP ideal functionality.

FIGURE 1. The ideal functionality of split scalar product with
abortion (FSSP).

III. LOWER BOUNDS ON COMMUNICATIONS
COMPLEXITY
In this section, we consider a class of two-party functional-
ities and derive lower bounds on the amount of data com-
municated during the run of protocols that securely realize
these functionalities in the preprocessing model. Specifically,
we prove a lower bound on the amount of random bits that
each party receives in the preprocessing phase as well as a
lower bound on the total exchanged bits in the computation
phase.

The results of this section can be seen as a generalization
to the lower bounds of [34]. In [34], Tonicelli et al. have
derived lower bounds on the communications complexity of
secure oblivious polynomial evaluation (OPE) protocols in
the preprocessing model. They have also proved the tightness
of the bounds by proposing an OPE protocol secure against
malicious adversary which achieves the bounds. We empha-
size that the lower bounds presented in [34] only apply to
the class of linear sender-receiver functionalities which take
inputs from both parties and deliver an output only to the
receiver (e.g. OPE). We show that similar bounds hold for
a larger class of two-party functionalities including SSP and
OPE (see Definition 3).

We will consider the semi-honest adversarial model and
derive lower bounds in this setting. Since, for virtually all
functionalities, protocol complexity in the malicious setting
is not less than that in the semi-honest setting, we can say that
the derived bounds hold for malicious setting as well. Notice
that the derived bounds are not necessarily tight. For SSP

42802 VOLUME 7, 2019

B. Siabi et al.: Optimally Efficient Secure Scalar Product With Applications in Cloud Computing

functionality, we present a protocol, secure against malicious
adversary that achieves the bounds (see Section IV). This
proves tightness of the lower bounds for SSP functionality.

To reach our goal of deriving the intended lower bounds,
we need to restate the definition of unconditional security
of two-party computations in terms of information theoretic
conditions. Such conditions in the malicious adversary set-
ting have been given in [52]. Here we need to consider the
semi-honest adversarial model as we intend to derive lower
bounds for this setting.

A. INFORMATION THEORETIC MODELING OF
UNCONDITIONALLY SECURE TWO-PARTY
COMPUTATION
In the following we present information theoretic condi-
tions governing perfectly secure two-party protocols in the
semi-honest adversarial model.
Theorem 2: Let f be a probabilistic two-party functional-

ity and let π be a protocol. We say π securely computes f
perfectly in the presence of semi-honest adversary if and only
if the following conditions hold:
– Correctness: For every (x1, x2)

POπ1 Oπ2 |X1X2 = Pf1f2|X1X2 . (3)

– Privacy: For every I ∈ {1, 2}, and every (x1, x2) where
|x1| = |x2|,

H (XIOπI | V
π
J (x1, x2)O

π
J) = H (XIOπI | XJO

π
J). (4)

Proof: We show these conditions are necessary and
sufficient. Necessity of privacy and correctness is axiomatic
considering the security requirements of secure computation
in the presence of semi-honest adversary. So, we simply
need to explain why these requirements can be expressed
as above when dealing with perfect security. In the most
general case, which includes probabilistic functionalities,
perfect correctness can be formulated in terms of identical-
ness of distributions. Specifically, protocol π is correct if
the distribution of its output is identical to the distribution
of the functionality’s output. Mathematically, we can write
it as Oπ (x1, x2) ≡ f (x1, x2) and, regarding the definition of
distribution identicalness, we have

POπ1 Oπ2 |X1 X2 = Pf1 f2|X1 X2 .

Perfect privacy for PI requires that after protocol execu-
tion, PJ gains no information about xI and OπI beyond
what can be inferred from xJ and OπJ . In other words,
given xJ and OπJ , mutual information of PJ ’s view and PI ’s
input-output pair should be zero. We can write it in the form
of I (XIOπI ;V

π
J (x1, x2) | XJO

π
J) = 0 and thus,

H (XIOπI | V
π
J (x1, x2)XJO

π
J)− H (XIOπI | XJO

π
J) = 0.

Since XJ is a part of V πJ (x1, x2), we have

H (XIOπI | V
π
J (x1, x2)O

π
J) = H (XIOπI | XJO

π
J).

This completes the proof of necessity. To prove that the
correctness and privacy conditions are sufficient, we show

they together imply the simulation based security definition
(Definition 1). Specifically, we show that if protocol π is
correct and private as defined above, there is a simulator S
that can construct PI ’s view using its input-output pair only.
We can write privacy condition for PJ in the form of

conditional mutual information

I (XJOπJ ;V
π
I (x1, x2) | XIO

π
I) = 0.

This equation means that given XI and OπI , knowledge on XJ
andOπJ has no information about V πI (x1, x2). This implies the
view of PI can be constructed using PI ’s input-output pair
with no need for private values of PJ . Therefore, provided
privacy condition for PJ , there exists a simulator S such that
for every (x1, x2) it holds that:

S(I , xI ,OπI (x1, x2)) ≡ V πI (x1, x2).

This is not the end of the proof since we need to show identi-
calness of joint distributions of view and outputs. Moreover,
the simulator should be fed with fI instead of OπI . Consider
the following events:
– A = ‘‘S(I , xI , fI (x1, x2)) ≡ V πI (x1, x2)’’,
– and B = ‘‘f (x1, x2) ≡ Oπ (x1, x2)’’.

Thus,
– A | B = ‘‘S(I , xI ,OπI (x1, x2)) ≡ V πI (x1, x2)’’,
– and AB = {S(I , xI , fI (x1, x2)), f (x1, x2)}≡{(V πI (x1, x2),
Oπ (x1, x2))}.

It is clear that event B is equivalent to correctness and event
A | B is equivalent to privacy and the goal is to reach to
event AB. But, these events are related under chain rule (e.g.
Pr(AB) = Pr(A | B)Pr(B)) which is interpreted as stating
that provided correctness and privacy for PJ , there exists a
simulator S such that for every (x1, x2) it holds that:

{S(I , xI , fI (x1, x2)), f (x1, x2)} ≡ {(V πI (x1, x2),O
π (x1, x2))}.

B. REMARKS ON FUNCTIONALITIES AND ON
VIEWS OF PARTIES
We classify two-party functionalities into private-output
and non-private-output functionalities and consider private-
output functionalities in the remainder of this section. In an
ideal run of a private-output functionality, conditioned on
having access to input-output pair of one party, no infor-
mation is revealed about the other party’s input. Formally,
we have the following definition.
Definition 3 (Private-Output Functionality): We say that

f is private-output two-party functionality if for every I ∈
{1, 2} and J 6= I , H (xI | xJOπJ) = H (xI). Otherwise we say
that f is non-private-output two-party functionality.

From a technical perspective, assuming the functionali-
ties to be restricted to private-output enables us to prove
Proposition 3 of the next subsection. Without this assump-
tion, steps that we will take in the next subsection will result
in trivial bounds.

VOLUME 7, 2019 42803

B. Siabi et al.: Optimally Efficient Secure Scalar Product With Applications in Cloud Computing

Although not holding in general, the derived bounds cover
a large class of functionalities required in secure computa-
tions. In particular, all functions with shared output are in this
class.

Views of parties in a protocol in the preprocessing model
contain preprocessed data in addition to inputs, local ran-
domness and communicated messages. Therefore, we define
the view of party PI after execution of protocol π in the
preprocessing model as V πI (x1, x2) = (UI , xI ,RI ,CI), where
UI is the set of all values that PI receives in the preprocessing
phase andCI stands for the set of all messages thatPI receives
from PJ .

C. LOWER BOUNDS
In this section, we derive lower bounds on the communica-
tions complexity of secure two-party computation of general
private-output functionalities in the preprocessing model.
We start with showing the fact that protocol execution binds
each party’s input to its preprocessed data so that learning the
preprocessed data, reveals all information on the input.
Proposition 1: Let f be a two-party functionality and let

π be a two-party protocol computing f unconditionally pri-
vately in the preprocessing model. Assume that PI and PJ
execute an instance of protocol π . After protocol completion,
PI learns xJ if it has access to UJ . In mathematical terms,
H (xJ | CICJUIUJ) = 0.

Proof: After completion of the protocol (we will call it
the main run), having access to UJ , PI locally runs instances
of protocol π for all possible inputs of PJ (we will denote it
by x̂J) using the same values of xI , UI , and UJ which were
used in the main run of the protocol. PI then compares the
produced view of each local run to its view of the main run.
If the views are the same in the two runs, the corresponding
value used as x̂J is a candidate for PJ ’s input to the main pro-
tocol (xJ). Let E be the set of all candidates for xJ . To prove
H (xJ | CICJUIUJ) = 0, we need to show that E contains a
single member. We note that, on the one hand, E is not empty
since xJ is in it. On the other hand, because of information
theoretic privacy for PI , E cannot accept more than one
member. In terms of simulation based security, if |E | > 1,
there is no simulator being able to construct the view of PJ
only by accessing to xJ and OπJ . This is because the view of
PJ has a distinctive property which depends on xI and UI in
addition to xJ and OπJ . Specifically, for the given xI , UI , and
UJ , there are more than one xJ producing same views (note
that the simulator cannot find the values of these xJ s because
it does not know the xI).

In the following, using the privacy condition, we show
properties that the communications between parties should
possess in secure two-party computation of a general
private-output functionality in the preprocessing model.
Upon these properties we will build lower bounds on the
communications complexity.
Proposition 2: In an unconditionally secure two-party

protocol in the preprocessing model, I (xI ;CICJ) ≤

I (xI ; xJOπJ).

Proof:

I (xI ;CICJ) ≤ I (xI ;CICJUJxJOπJ)

= I (xI ; xJOπJ)+ I (xI ;CICJUJ | xJO
π
J)

= I (xI ; xJOπJ).

The I (xI ;CICJUJ | xJOπJ) = 0 holds due to the privacy
condition for PI .
Corollary 1: In an unconditionally secure two-party pro-

tocol computing a private-output functionality in the prepro-
cessing model, I (xI ;CICJ) = 0.

Proof: Due to Definition 3, for a private-output func-
tionality I (xI ; xJOπJ) = 0. Therefore, I (xI ;CICJ) = 0.
Proposition 3: In an unconditionally secure two-party

protocol computing a private-output functionality in the pre-
processing model, I (xIOπI ;CICJ) = 0.

Proof: Due to Corollary 1 we have that

I (xI fI ;CICJ) = I (xI ;CICJ)+ I (fI ;CICJ | xI)

= I (fI ;CICJ | xI).

Now we show that privacy for PI necessarily entails
I (fI ;CICJ | xI) = 0. Otherwise, after protocol completion,
PJ tries all possible values for xI in the following experiment:

For each value,
• it computes the functionality on the current xI and its
input xJ to get fI (x1, x2),

• it observes the communicated messages and extracts
information on fI conditioned on the current xI ,

• it excludes the current xI and puts it in a set E , if the
extracted information is not consistent with functionality
output.

Note that since we have assumed I (fI ;CICJ | xI) 6= 0,
set E is not empty. Furthermore, inconsistency indicates
that excluded values could not be used by PI as input to
the protocol execution. But, this contradicts privacy con-
dition for PI because such information on PI ’s input can-
not be deduced from xJ and OπJ as I (xI ; xJOπJ) = 0.
Therefore, I (xI fI ;CICJ) = 0 and considering correctness,
I (xIOπI ;CICJ) = 0.
Proposition 4: In an unconditionally secure two-party

protocol computing a private-output functionality in the pre-
processing model, H (xIOπI |CICJUJ) = H (xIOπI).

Proof: Due to Proposition 3, xIOπI and CICJ are inde-
pendent. Therefore, we can apply I (xIOπI ;CICJ |UJ) = 0 in
the following

I (xIOπI ;CICJUJ) = I (xIOπI ;UJ)+ I (xIO
π
I ;CICJ |UJ)

= I (xIOπI ;UJ).

From the definition of preprocessing model, pre-distributed
data is independent of inputs. Specifically, I (xI ;UJ) =
I (xJ ;UJ) = I (xI xJ ;UJ) = 0. Using privacy condition for
PI we have

I (xI xJ ;UJ) = I (xI fI xJ fJ ;UJ)

= I (xI fI ;UJ |xJ fJ)+ I (xJ fJ ;UJ)

= I (xJ fJ ;UJ).

42804 VOLUME 7, 2019

B. Siabi et al.: Optimally Efficient Secure Scalar Product With Applications in Cloud Computing

Now, considering I (xJ fJ ;UJ) = 0, we can rewrite
I (xI xJ ;UJ) as

I (xI xJ ;UJ) = I (xI fI xJ fJ ;UJ)

= I (xJ fJ ;UJ |xI fI)+ I (xI fI ;UJ)

= I (xI fI ;UJ).

Putting things together and applying the correctness con-
dition, we conclude I (xIOπI ;CICJUJ) = 0 and hence
H (xIOπI |CICJUJ) = H (xIOπI).
Theorem 3: Let f be a private-output functionality and let

π be an unconditionally secure two-party protocol computing
f in the preprocessing model. The following lower bound
holds on the size of the data pre-distributed to PI in the
protocol π :

H (UI) ≥ H (xI)+ H (OπI |xI). (5)
Proof:

H (UI) ≥ I (UI ; xIOπI |CICJUJ)

= H (xIOπI |CICJUJ)− H (xIOπI |CICJUIUJ)

= H (xIOπI |CICJUJ)

= H (xIOπI)

= H (xI)+ H (OπI |xI).

In the third line, we have applied H (xIOπI |CICJUIUJ) = 0
from Proposition 1 and in the fourth line, we have used
H (xIOπI |CICJUJ) = H (xIOπI) from Proposition 4.
Theorem 4: Suppose that π is an unconditionally secure

two-party protocol in the preprocessing model and for I ∈
{1, 2}, CI is a random variable representing communications
in the computation phase sent to PJ by PI . Then we have
the following bound on communications in the computation
phase:

H (CI)+ H (CJ) ≥ H (xI)+ H (xJ). (6)
Proof:

H (xI)+ H (xJ) = H (xI xJ)

= I (xI xJ ;UIUJCICJ)

= I (xI xJ ;UIUJ)+ I (xI xJ ;CICJ |UIUJ)

= I (xI xJ ;CICJ |UIUJ)

≤ H (CICJ |UIUJ)

≤ H (CICJ) ≤ H (CI)+ H (CJ).

We have used known identities and inequalities along
with independence of xI and xJ to write the first line,
Proposition 1 to reach the second line and the independence
of pre-distributed data and inputs (that is, I (xI xJ ;UIUJ) = 0)
to reach the fourth line.

IV. OPTIMALLY EFFICIENT AND UNIVERSALLY
COMPOSABLE SSP PROTOCOL
In this section, we present an SSP protocol in the preprocess-
ing model. We prove that the proposed protocol is perfectly
secure and universally composable in the presence of mali-
cious adversary. We also discuss efficiency of the proposed

protocol and show its optimality based on the lower bounds
derived in Section III. Therefore, the proposed SSP protocol
implies the tightness of lower bounds of Section III in the case
of SSP functionality.

A. THE PROPOSED SSP PROTOCOL
Fig. 2 depicts the proposed SSP protocol (we will refer to
this protocol as πSSP). In this protocol, P1 and P2 provide
input vectors x̄1 and x̄2 respectively. We assume that an
ideal preprocessing functionality, FPre, distributes correlated
randomness to the players (through secure channels) in the
preprocessing phase. This includes (r̄1 ∈ Zpk , r3 ∈ Zp) for P1
and (r̄2 ∈ Zpk , r4 ∈ Zp) forP2 where r3+r4 = 〈r̄1·r̄2〉. During
the computation phase, Pi generates message v̄i = x̄i+ r̄i and
sends it to the other party. After this single communication
round, parties will be able to calculate their outputs.

FIGURE 2. The proposed split scalar product protocol (πSSP).

B. REALIZATION OF PREPROCESSING PHASE
As mentioned before, preprocessing model can be realized
with or without a third party (initiator). To realize the pre-
processing phase of πSSP with the help of a third party,
the initiator runs the following instructions:

1) Choose two vectors r̄1 and r̄2 randomly from Zpk and a
scalar r3 randomly from Zp.

2) Compute r4 = 〈r̄1 · r̄2〉 − r3.
3) Send (r̄1, r3) to P1 through a secure channel with P1.
4) Send (r̄2, r4) to P2 through a secure channel with P2.

VOLUME 7, 2019 42805

B. Siabi et al.: Optimally Efficient Secure Scalar Product With Applications in Cloud Computing

Under the assumption that the initiator does not collude with
the parties, the above procedure provides the required corre-
lated randomness with perfect security.

On the other hand, parties can run any secure two-party
SSP protocol to compute the required pre-distributed data
without the help of a third party. Let π∗ be a secure SSP
protocol. Party Pi runs the following instructions to compute
(r̄i, ri+2):
1) Choose a random vector r̄i from Zpk .
2) Participate in a run of protocol π∗ with the other party.

Use r̄i as your input.
3) Receive your output share from the protocol π∗ and set

ri+2 equal to the received share.
We can employ homomorphic encryption-based SSP proto-
cols (e.g. the SSP protocol of [10]) in the above procedure.
The important point is that the preprocessing phase is off-
line, and therefore complexity of the employed protocol is
not a major problem to be considered. It is also relevant to
note that multiple instances of the above procedure can be
executed in parallel and therefore advantages of parallelism
can be utilized. For example, in parallel executions of the SSP
protocol of [10], it suffices to perform a single setup step and
use the result in all executions.

C. SECURITY ANALYSIS
In this section we show that Protocol πSSP is perfectly UC
secure. With this end in view, in Theorem 5 we show that
Protocol πSSP is perfectly secure in the stand-alone standard
model. We prove Theorem 5 using straight line simulators.
Therefore, Theorem 5 will immediately result in UC perfect
security of Protocol πSSP due to Theorem 1.
Correctness of Protocol πSSP is easily verifiable:

w1 + w2 = (〈−r̄1 · v̄2〉 + r3)+ (〈x̄2 · v̄1〉 + r4)

= 〈−r̄1 · (x̄2 + r̄2)〉 + r3 + 〈x̄2 · (x̄1 + r̄1)〉

+ 〈r̄1 · r̄2〉 − r3
= 〈x̄1 · x̄2〉

To formally show the security of Protocol πSSP, we prove
the following theorem.
Theorem 5: Protocol πSSP computes FSSP in the prepro-

cessing model with perfect security in the presence of static
malicious adversary.

Proof: We use the ideal/real paradigm based on
Definition 2. The ideal scenario is the TTP aided computation
of FSSP (as depicted in Fig. 1). We construct an ideal world
simulator S which invokes the real world adversary A and
uses it in an ideal execution of FSSP such that the outputs
of this ideal run is identically distributed to the outputs of a
run of protocol πSSP in the presence of A. We consider two
cases regarding the corrupted party. (Note that if both parties
are malicious or if both parties are honest, Protocol πSSP is
trivially secure. The latter is true due to correctness.)
Case 1 (Corrupted P1): The simulator for corrupted P1 is

illustrated in Fig. 3. We need to show that for every x̄1, x̄2 ∈
Zpk , the joint distributions of outputs in the two executions

FIGURE 3. The simulation in the case that P1 is corrupted.

FIGURE 4. The simulation in the case that P2 is corrupted.

are identical. We discuss three cases based on the adversary’s
action in sending the protocol specified message (v̄1):

1) A does not respond: The real protocol outputs are
(w1,w2) = (r, abort1) where r = 〈−r̄1 · v̄2〉 + r3
is uniformly distributed on Zp. In the simulated ideal
scenario, the outputs are (w′1,w

′

2) = (r ′, abort1) where
r ′, chosen by TTP, is a random variable uniformly
distributed on Zp. Thus, w′1 ≡ w1 and w′2 = w2 which
indicates that {(w′1,w

′

2)} ≡ {(w1,w2)}.
2) A sends an invalid v̄′1 /∈ Zpk : The argument is similar

to above except that in this case w′2 = w2 = λ.

42806 VOLUME 7, 2019

B. Siabi et al.: Optimally Efficient Secure Scalar Product With Applications in Cloud Computing

3) A sends a valid v̄′1 /∈ Zpk : The real protocol outputs are
(w1,w2) = (r, 〈x̄ ′1 ·x̄2〉−r) where r = 〈−r̄1 ·v̄2〉+r3 is
a random variable uniformly distributed on Zp and x̄ ′1 is
the adversary’s input to the protocol. In the simulated
scenario, the simulator extracts the adversary’s input,
x̄ ′1, and sends it to TTP. Therefore, the outputs of
the simulated ideal scenario are (w′1,w

′

2) = (r ′, 〈x̄ ′1 ·
x̄2〉 − r ′) where r ′, chosen by TTP, is a random vari-
able uniformly distributed on Zp. This indicates that
{(w′1,w

′

2)} ≡ {(w1,w2)}.
Case 2 (Corrupted P2): The security proof is very similar

to Case 1. The simulator for this case illustrated in Fig. 4.
Similar to the previous argument, we discuss the equality of
the joint distributions in three cases based on the adversary’s
action in sending the protocol specified message (v̄2):
1) A does not respond: The real protocol outputs are

(w1,w2) = (abort2, r) where r = 〈x̄2 · v̄1〉 + r4
is uniformly distributed on Zp. In the simulated ideal
scenario, the outputs are (w′1,w

′

2) = (abort2, r ′) where
r ′, chosen by TTP, is a random variable uniformly
distributed on Zp. Thus, w′1 ≡ w1 and w′2 = w2 which
indicates that {(w′1,w

′

2)} ≡ {(w1,w2)}.
2) A sends an invalid v̄′2 /∈ Zpk : The argument is similar

to above except that in this case w′1 = w1 = λ.
3) A sends a valid v̄′2 /∈ Zpk : The real protocol outputs are

(w1,w2) = (〈x̄1 ·x̄ ′2〉−r, r) where r = 〈x̄ ′2 ·v̄1〉+r4 is a
random variable uniformly distributed on Zp and x̄ ′2 is
the adversary’s input to the protocol. In the simulated
scenario, the simulator extracts the adversary’s input,
x̄ ′2, and sends it to TTP. Therefore, the outputs of
the simulated ideal scenario are (w′1,w

′

2) = (〈x̄1 ·
x̄ ′2〉 − r ′, r ′) where r ′, chosen by TTP, is a random
variable uniformly distributed on Zp. This indicates that
{(w′1,w

′

2)} ≡ {(w1,w2)}.

Corollary 2: Protocol πSSP is perfectly secure against
dynamic malicious adversary in the UC framework.

Proof: The proof is straightforward since the require-
ments of Theorem 1 are satisfied for Protocol πSSP. Specif-
ically, on the one hand, Protocol πSSP is perfectly secure in
the stand-alone standard model based on Theorem 5, and on
the other hand the simulator that is constructed in order to
prove the security in the standard model (see Fig. 3 or Fig. 4)
is straight line.
Remark 2: Protocol πSSP is UC secure against semi-

honest adversary as well. We omit the proof.

D. EFFICIENCY AND COMPARISON
In this section we analyze Protocol πSSP from the efficiency
point of view. First, using the lower bounds extracted in
Section III, we show that Protocol πSSP is of optimal com-
munications complexity. Furthermore, we compare the com-
plexity of Protocol πSSP to other relevant SSP protocols.
Theorem 6: Protocol πSSP is optimal regarding
a) the number of bits pre-distributed to each party in the

preprocessing phase, and

b) the number of bits communicated between parties in the
computation phase.
Proof: a) In SSP functionality, for I ∈ {1, 2} we

have H (OπI |x̄I) = H (OπI), since the output is a random
value uniformly chosen from Zp. Consequently, based on
Theorem 3, for a secure SSP protocol in the preprocessing
model H (UI) ≥ H (x̄I) + H (OπI) where UI is the data
pre-distributed to party PI . On the other hand, H (x̄I) = kσ
for a vector of length k whose elements are from Zp and
H (OπI) = σ for a random share uniformly distributed on Zp
(where σ = log2 |p|). Therefore, for a secure SSP protocol
on input vectors of length k in the preprocessing model we
have that

H (UI) ≥ (k + 1)σ

In protocol πSSP, party PI receives r̄I and rI+2 in the prepro-
cessing phase where r̄I is a random vector from Zpk and rI+2
is a random scalar from Zp. Thus, (k+ 1)σ bits are enough to
pre-distribute the required randomness to each party.
b) Based on Theorem 4, for a secure SSP protocol in the

preprocessing modelH (CI)+H (CJ) ≥ H (x̄I)+H (x̄J) where
CI is the total massages sent by party PI in the computation
phase. For a random vector x̄ of length k that its elements are
in Zp, we have H (x̄) = kσ . Thus

H (CI)+ H (CJ) ≥ 2kσ.

In protocol πSSP, party PI needs to send to the other party a
single message (v̄I) which is a random vector from Zpk rep-
resented with kσ bits. Thus, in total, 2kσ bits are exchanged
during computation phase.
In Table 1 we compare the concrete efficiency of proposed

SSP protocol with SSP protocols of [43], [22], [42], and a
direct extension of Beaver’s multiplication triplets [46]. The
latter SSP protocol comprises parallel runs of two-party mul-
tiplication of [46] to multiply the corresponding elements of
input vectors. All of these protocols are in the preprocessing
model except the one from [42].

In the preprocessing phase, the proposed protocol and
the protocol of [43] reach the optimal amount of total
pre-distributed bits, while the extension of [46] is ineffi-
cient. A notable observation is that in the SSP protocol
of [22], the amount of pre-distributed bits is less than the
optimal value implied by the corresponding lower bound
(see Theorem 3). This indicates excessive correlation of
pre-distributed data which in fact is the origin of insecurity
of the protocol (see [45]).

In the computation phase, the proposed protocol and the
extension of [46] reach the optimal amount of communicated
bits. Moreover, the proposed protocol runs in a single com-
munication round thus is optimal in this sense too.

The SSP protocol of [42] uses a third party but not in
an efficient manner. This protocol requires 4kσ bits to be
communicated in order to share the input vectors among the
three parties (e.i. the participants and the third party) and
6kσ bits to compute multiplications. This protocol requires 2
communication rounds.

VOLUME 7, 2019 42807

B. Siabi et al.: Optimally Efficient Secure Scalar Product With Applications in Cloud Computing

TABLE 1. Efficiency comparison SSP protocols.

V. APPLICATIONS
The proposed SSP protocol can be applied in various practical
computation scenarios. In this section, we present two appli-
cations of this protocol in secure cloud computing. Before
describing the applications, we briefly explain secure compu-
tation on signed integers which will be needed in the remain-
der of this section. To achieve notation clarity, in this section,
we will use superscripts to denote shares. Specifically, x i will
denote the ith share of x or vUj will denote Uj’s share of
vector v.

A. COMPUTATION ON SIGNED INTEGERS
The set of l-bit signed integers is defined as Z〈l〉 = {x ∈ Z |
−2l−1+1 ≤ x ≤ 2l−1−1}. The first step to securely compute
on signed integers is to map them to members of a field Zp
where p > 2l . We do it as x̃ = x mod p. To reconstruct a
signed value from the corresponding field value, inverse map
should be computed. Aftermapping to a fieldmember, we can
secret share the resulting field element.We use additive secret
sharing. To share x ∈ Zp, a random number, r1 ∈R Zp is
selected and shares are set to x1 = r1 and x2 = x− r1 mod p.
Addition, subtraction and multiplication of two secret signed
values can be performed securely on corresponding shared
values as long as the result of computation lies in Z〈l〉 [53].
The same argument holds for addition, subtraction and
multiplication of a secret value by a public value (both
from Z〈l〉) [53].

B. APPLICATION I: PRIVACY-PRESERVING
PROFILE-MATCHING
Social networks provide users with various fascinating
features. Searching for new friends is one of the interesting
features of social networks. When searching for a new friend,
users naturally look for similarities in interests, activities,
personality or even location. Therefore, they need to per-
form profile-matching to find out how much their interests
match to other users’ interests. However, there are seri-
ous concerns about privacy and efficiency of performing
profile-matching in social networks. On the one hand, per-
forming profile-matching requires the network to collect,
maintain and process private personal information about
users. Therefore, privacy-preserving profile-matching (PPM)
solutions are necessary to deal with this issue. On the other
hand, since users are mostly equipped with devices of limited
resources, PPM solutions should be adequately efficient so

that they do not cause users to store or communicate large
amounts of data or to perform intensive computations.

Outsourcing storage and processing to cloud servers,
is a promising solution to alleviate efficiency issues of
profile-matching. However, it may introduce new privacy
concerns. In this section, we describe the application of
the proposed SSP protocol, πSSP, in achieving an efficient
cloud-assisted PPM solution. Profile-matching functionality
is closely related to scalar product. In profile-matching, user
profiles are typically quantized and represented as vectors,
known as profile vectors (PVs), and the profile-matching
functionality is modeled as computing scalar product of
PVs [21].

1) SYSTEM AND FUNCTIONALITY MODEL
Our assumptions and system model are similar to [21]. Fig. 5
depicts the system model where n users (Uj, j = 1, 2, . . . , n)
and two cloud servers (CS1 and CS2) are assumed. Users
can communicate with servers through secure channels while
we do not assume communication between users. Cloud
servers are also able to securely communicate with each other.
We assume that each user has a personal profile which reflects
personal interests of that user and can be quantized and
represented by a vector v = (v1, v2, . . . , vk). The dimension
k is the number of attributes and is the same for all users. It is
supposed that values of attributes are limited to an arbitrary

FIGURE 5. Profile-matching with two cloud servers.

42808 VOLUME 7, 2019

B. Siabi et al.: Optimally Efficient Secure Scalar Product With Applications in Cloud Computing

range (e.g. [0, 10] in [21]) and are mapped to the set of l-bit
signed integers, Z〈l〉 where the value of l is selected properly
to guarantee an arbitrary precision. Therefore, vi ∈ Z〈l〉 for
i = 1, 2, . . . , k . In this model, the scalar product 〈v · w〉 =∑k

i=1 viwi is regarded as the quantitativemeasure ofmatching
for profile vectors v and w. That is, profile vector v matches
to profile vector w1 better than profile vector w2 iff 〈v ·w1〉 >

〈v · w2〉. We suppose that adversary controls only one of the
cloud servers while there is no restriction on the number of
users under control of the adversary. Therefore, the cloud
servers will never collude with each other.

2) DESCRIPTION OF THE PROPOSED SCHEME
The proposed PPM scheme comprises of profile data
uploading and query submission phases followed by
profile-matching phase as represented in Fig. 6. In the profile
data uploading phase, users secret share their PVs (after

FIGURE 6. The proposed privacy-preserving profile-matching scheme
(πPPM).

mapping them to a prime field Zp where p > 2l). Users
send the corresponding shares to CS1 and CS2 through secure
channels. In the query submission phase, if UQ wishes to
examine how much her profile is matched with UT ’s profile,
sends a simple query message, (query,UQ,UT), to CS1 and
CS2. Upon receiving a query message (query,UQ,UT),
CS1 and CS2 obtain IDs UQ and UT from it, fetch cor-
responding shares of vQ and vT , and run two instance of
protocol πSSP to compute shares of 〈vQ · vT 〉. They send the
resulted shares to UQ.
The proposed scheme supports more complex queries. The

case of batch profile-matching queries, where UQ requests
servers to perform profile-matching with multiple users, will
be easily handled if UQ includes the IDs of users in the
query message. The case of partial profile-matching queries,
where UQ requests the servers to compute profile-matching
on a subset S ⊆ {1, 2, . . . , k} of profile attributes, is also
supported. In this case, servers run two instances of πSSP
to compute shares of z =

∑
i∈S viwi (v and w are the

corresponding profile vectors) and send them to UQ. Partial
profile-matching allows profile-matching as fine as desired.

3) CORRECTNESS
It is straightforward to verify that z = w1 + w2 = 〈vQ · vT 〉.
Therefore, UQ receives the correct response to her query.

4) SECURITY
Under the trust assumption that cloud servers do not collude
with each other, a server can learn no information about
secret shared profile vectors since the employed secret shar-
ing scheme is information theoretically secure. Note that the
privacy of Uj’s profile information will be preserved even if
the server colludes with an arbitrary number of users (obvi-
ously exceptUj). A related observation is that, users also learn
no information about uploaded data of other users even if they
collude with one of the servers.

Privacy is also preserved during the query submission and
profile-matching phases due to universally composable secu-
rity of Protocol πSSP. Particularly, privacy is preserved in the
following cases:
• Against each of the cloud servers (which do not collude
with each other)

• Against the requesting user, UQ
• In the case that a cloud server colludes with the request-
ing user.

Security against cloud servers is trivial as they receive
no messages containing private information except messages
interacted in the two runs of πSSP which is UC secure. The
requesting user,UQ, receives two shares at the end of protocol
that summation of them gives the expected scalar product
z = 〈vQ · vT 〉. But this is not violating the privacy since UQ
learns nothing more than what the functionality requires her
to learn (i.e. UQ should receive the result).

The latter case is the worst case regarding security of
query submission and profile-matching phases. In this case,
the adversary controls UQ and one of the cloud servers and

VOLUME 7, 2019 42809

B. Siabi et al.: Optimally Efficient Secure Scalar Product With Applications in Cloud Computing

TABLE 2. Security and functionality of privacy-preserving profile-matching protocols.

TABLE 3. Communications complexity of privacy-preserving profile-matching protocols.

TABLE 4. Total storage and computation of privacy-preserving profile-matching protocols.

learns z = 〈vQ · vT 〉. Note that the goal of PPM functionality
is to provide UQ with z. However, the adversary is not able
to learn any information more than what UQ can solely learn
observing vQ, and the result of scalar product, i.e. z. There-
fore, the collusion is useless for adversary.

5) EFFICIENCY AND COMPARISON
In Table 2, 3 and 4 we present security aspects, function-
ality features and efficiency of the proposed PPM scheme.
We also compare our scheme to the PPM scheme of [21]
which is based on a system model identical to ours. In [21]
the profile-matching functionality is modeled as computing
scalar product and a cloud-assisted PPM scheme is proposed.
The PPM scheme of [21] suggests outsourcing scalar product
computations to two non-colluding cloud servers and utiliz-
ing the additive homomorphic proxy re-encryption of [54] to
perform privacy preserving profile-matching.

As shown in Table 2, both schemes rely on the same trust
assumption (i.e. access to two non-colluding cloud servers)
while the proposed PPM scheme achieves information theo-
retic security. Our scheme also does not require any set-up
phase or key management operation.

The proposed PPM scheme provides important features
with regard to functionality and usability. Specifically,
it avoids user-to-user communication, thus eliminating rel-
evant complications. The proposed PPM scheme also sup-
ports more complex queries including batch profile-matching
queries and partial profile-matching queries as explained
previously. Batch queries allow a user to request multiple
profiles to be processed for matching in a single query. On the

other hand, partial matching queries allow a user to search
for finer similarities in profile-matching process. The PPM
scheme of [21] cannot support partial-matching unless users
provide O(2k) extra information in data uploading phase.

In Table 3, we present the amount of communicated data
in each phase of PPM protocols (for profile vectors with k
attributes and a filed with σ bits representation). The pro-
posed PPM scheme does not involve any set-up phase while
in the PPM scheme of [21], each user interacts with one of the
cloud servers (say CS2) to generate her re-encryption key and
sends it to the other server (CS1). In data uploading phase,
the proposed PPM scheme instructs users to send shares of
their profile vectors to cloud servers where each share is of
the same size as profile vectors (i.e. kσ bits). In the PPM
scheme of [21], a user encrypts her profile vector and an
auxiliary value and sends them to CS1. Since the encryption
scheme used in [21] doubles the size of cipher-text, user sends
2(k + 1)σ bits in this phase. The proposed PPM scheme does
not require any data transfer in the query submission phase
as all data needed for profile-matching are the shares of
profile vectors which have been uploaded to the cloud previ-
ously. In a single profile-matching process, the proposed PPM
scheme involves two runs of Protocol πSSP, hence transfer of
4kσ bits of data. This process involves only one communi-
cation round. The PPM scheme of [21] needs interaction of
4(k + 1)σ bits in 4 communication rounds.
Table 4 reflects efficiency of the proposed PPM scheme

in terms of storage and computation requirements. In the
proposed PPM scheme, users do not need to store any data
while each cloud server stores a share of profile vector per

42810 VOLUME 7, 2019

B. Siabi et al.: Optimally Efficient Secure Scalar Product With Applications in Cloud Computing

user. Therefore, in a network of n users, knσ bits of memory
will be required on each server. In the PPM scheme of [21],
users should securely save their private keys. One of the cloud
servers (say CS1) needs to store encrypted profile vectors and
re-encryption keys which require (2k + 3)nσ bits together.
The other cloud server only needs to store its private key.

The proposed PPM scheme completely avoids public key
operations while the PPM scheme of [21] imposes intensive
computations not only on cloud servers but also on users. Per
submitted query, the requesting user, encrypts her profile vec-
tor and decrypts the result which requireO(k) modular power
operations. The computation complexity of cloud servers is
not balanced. One of the servers which acts as a proxy, CS1 in
Table 4, computes O(k) modular power operations plus O(k)
bilinear map operations per query. The other server com-
putes O(k) modular power operations and O(1) bilinear map
operations per query. Note that, computation complexity is
critical for cloud servers, since the rate of query submissions
is proportional to the size of network thus typically high.

C. APPLICATION II: SECURE REMOTE HEALTH
MONITORING
In remote health monitoring, the process of analyzing health
data with respect to pre-defined criteria is outsourced to
cloud servers. Users upload their own health data to cloud
where dedicated servers analyze the data and send results
to medical service provider (MSP) which will do proper
actions correspondingly. Due to the high availability of cloud
servers, users can upload their health data to cloud in regular
time intervals to let their health be continuously monitored.
From security perspective, cloud servers should not learn
information about users health condition.

In this section, we present a secure remote health moni-
toring (SRHM) scheme based on the proposed SSP protocol,
πSSP. The proposed SRHM scheme is unconditionally secure
and highly efficient.

1) SYSTEM AND FUNCTIONALITY MODEL
Fig. 7 illustrates a simplified setting of the system.We assume
a network of n users, (Uj, j = 1, 2, . . . , n), a medical
service provider (MSP) and two cloud servers (CS1 and
CS2). Each user is typically equipped with multiple sensors
which measure various health factors of her. Sensors send the
measured data to a central device which is responsible for
arranging health data in a predefined appropriate format and
sending them to the cloud. This device is securely connected
to the cloud servers. Therefore, the assumptions about com-
munication in the system is as follows. Users are connected
to cloud servers through secure channels. The connection
between MSP and each cloud server is secure too. Further-
more, the cloud servers are able to securely communicate
with each other. There is no need for user-to-user or user-to-
MSP communications.

We assume that health data of user Uj are arranged
in the form of the so called health data vector (HDV),
hj = (h1, h2, . . . , hk). The dimension k is the number of

factors measured by sensors and is the same for all users.
It is supposed that values of factors are limited to an arbitrary
range and are mapped to the set of l-bit signed integers, Z〈l〉.
The value of l is selected properly to guarantee an arbitrary
precision. Therefore, hi ∈ Z〈l〉 for i = 1, 2, . . . , k .

To enable secure remote health monitoring, given j, d , θ1
and θ2, the MSP should be able to find out whether the ith
element of hj, i.e. hd , lies in the valid range [θ1, θ2] or not
(while the cloud servers learn no information about hj, θ1
or θ2). This is equivalent to providing theMSPwith the ability
of securely checking both the inequalities hd ≥ θ1 and hd ≤
θ2. We model this functionality as computing z = hd − θ1
and z = θ − hd and observing the sign of z. Specifically,
the MSP inputs the tuple (j, d, α, op) and receives z = hd −α
if op = ‘‘Lower’’ or z = α − hd if op = ‘‘Upper’’ while the
servers do not learn d , α or op. If z < 0, the MSP should act
properly.

We suppose that adversary controls only one of the cloud
servers while there is no restriction on the number of users
under control of the adversary. Therefore, we assume that the
cloud servers will never collude with each other.

2) DESCRIPTION OF THE PROPOSED SCHEME
Assuming the system setting of Fig. 7, the protocol of Fig. 8
realizes remote health monitoring functionality. Suppose that
hj = (h1, h2, . . . , hk) is the health data vector of user Uj
where hi ∈ Z〈l〉 are l-bit signed integers. To securely upload
the health data vector to the cloud, Uj constructs extended
data vector h

e
j = (h1, h2, . . . , hk , 1). Then, Uj maps h

e
j to

h
∗

j = (h1 mod p, h2 mod p, . . . , hk mod p, 1) and
secret shares h

∗

j element by element using additive secret
sharing scheme of Section V-A. Specifically, Uj selects k+ 1
random values, ri ∈R Zp, and constructs shares h − jCS1 =
(r1, r2, . . . rk+1) and h

CS2
j = (r ′1, r

′

2, . . . r
′

k+1) where r
′
i =

hi − ri mod p. Uj sends each share (along with her ID) to the
corresponding cloud server. Cloud servers save the received
shares and IDs.

FIGURE 7. Remote health monitoring with two cloud servers.

VOLUME 7, 2019 42811

B. Siabi et al.: Optimally Efficient Secure Scalar Product With Applications in Cloud Computing

FIGURE 8. The proposed secure remote health monitoring scheme
(πSRHM).

For each element of HDV, the MSP needs to check if it is
in a specific healthy range. Therefore, the MSP needs com-
parison queries (both ’≥’ and ’≤’) which compare elements
of HDV with secret thresholds. To compare the d th element
of HDV to a threshold α, the MSP constructs the query vector
y as follows:

y =

{
(0, . . . , 0,−1, 0, . . . , 0, α), if α is upper bound
(0, . . . , 0, 1, 0, . . . , 0,−α), if α is lower bound

where the d th element of y is filled with ’1’ or ’-1’ corre-
spondingly. Then, the MSP maps y to Zp and achieves y∗,
secret shares it as yCS1 and yCS2 and sends each share (along
with the ID of the queried user) to the corresponding cloud
server.

The cloud servers run two instances of protocol πSSP on
shares of h

∗
and y∗ to compute z = 〈h

∗
· y∗〉. Each server

achieves a share of z. They can either send the shares to MSP
or reconstruct z and inform MSP if z < 0.

3) CORRECTNESS
Protocol πSRHM is correct because

z = w1 + w2 = 〈(h
CS1
+ h

CS2
) · (yCS1 + yCS2)〉

= 〈h
∗
· y∗〉

=

{
α − hd mod p, if op = ‘Upper’
hd − α mod p, if op = ‘Lower’

Therefore, z < 0 iff hd violates queried threshold, α.

4) SECURITY
We discuss two cases regarding the action of the cloud servers
at the last step. The first case is when the servers send the final
shares to MSP. Obviously, in this case, Protocol πSRHM is
secure under the assumption that cloud servers do not collude.
The intuition is that Protocol πSRHM only uses Protocol πSSP
which is UC secure. Furthermore, CS1 and CS2 only see
additively hidden values during the protocol execution.

The other case is when the cloud servers reconstruct z and
inform MSP if z < 0. In this case, the cloud servers only
learn the value of z = hd − α (or z = α − hd) while
the query type, d , α and hi for 1 ≤ i ≤ k are perfectly
hidden. The amount of information leakage due to learning z
by servers is arguable. As it is needed to process repeated
queries on health data of different users, a curious server can
run various analyses on the set of results. However, notice
that using appropriate preprocessing on data and query (e.g.
proper offset and scaling), it is possible to transform all values
to a specific range to make the distribution of z uniform.
This increases ambiguity since adversary (i.e. curious cloud
server) cannot distinguish the results of different queries.

5) EFFICIENCY AND COMPARISON
In Table 5, security and functionality of the proposed SRHM
scheme is compared to the scheme of [55]. In [55] Dong et al.
have proposed a secure continuous remote health monitor-
ing (SCRHM) system based on asymmetric scalar-product-
preserving encryption (ASPE) scheme of [56]. In SCRHM
system of [55], each user encrypts her health data vec-
tor (HDV) using ASPE scheme with the secret key that she
have shared with the MSP in the setup phase. Then, the user
uploads encrypted data vector to the cloud server. For each
element of the encrypted data vector, cloud server can check
arbitrary range queries provided that the value of query is
properly encrypted using ASPE scheme (with the same key)
and sent to the could server. The cloud server can learn neither

42812 VOLUME 7, 2019

B. Siabi et al.: Optimally Efficient Secure Scalar Product With Applications in Cloud Computing

TABLE 5. Security and functionality of secure remote health monitoring protocols.

TABLE 6. Communications complexity of secure remote health monitoring protocols.

TABLE 7. Query and storage complexity of secure remote health monitoring protocols.

the HDV nor the queried range while it can find out whether
the element lies in the queried range or not.

The proposed scheme is based on two non-colluding
servers while the scheme of [55] is based on secure
pre-shared keys. Therefore, an advantage of the proposed
scheme is that users and the MSP do not need to deal with the
issues of sharing and management of secret keys. The other
advantage of the proposed scheme is that it achieves uncon-
ditional security since the underlying SSP protocol (πSSP)
is unconditionally UC secure. On the other hand, the ASPE
encryption used in [55] limits the security to computational.

Both schemes have the advantage of not needing user-
to-user or user-to-MSP communication. Furthermore, both
schemes support continuous monitoring where users contin-
uously collect and send their health data to cloud where dedi-
cated servers run predefined queries on the received data and
inform the MSP of anomalies. Additionally, The proposed
SRHM scheme provides the batch query feature. That is,
a single query can be applied on health vectors of all users or a
bunch of users. This feature has a direct impact on efficiency
of the scheme.

Communications complexity of the proposed SRHM
scheme is compared to the scheme of [55] in Table 6. In this
table, the communicated bits at each step of the schemes is
presented for a single user and a single query. The complexity
of uploading health data is the same in both schemeswhile the
complexity of a query in our scheme is less than the scheme
of [55] by a factor of 2. The proposed scheme requires com-
munication between cloud servers while the scheme of [55]
is based on a single server.

Table 7 reflects efficiency improvements of the proposed
SRHMscheme in a full practical scenario. For a remote health
monitoring systemwith n users, the amount of communicated
data to query all elements of all HDVs is reduced by a factor
of n. This improvement is due to the batch query feature of
the proposed scheme. Efficiency improvement in terms of
data storage is also considerable. In the proposed scheme,
users and MSP do not need to save and manage secret keys.
This is a considerable advantage especially in the MSP side.
Notice that in the scheme of [55], the MSP needs to store and
manage n secure keys which requireO(nk2σ) bits of memory.
Furthermore, in the proposed SRHM scheme, cloud servers
need O(nkσ) bits of memory to save their corresponding
shares of HDVs while in the scheme of [55] the cloud server
needs O(nk2σ) bits of memory.

VI. CONCLUSION AND FUTURE WORK
In this paper, we proposed a secure two-party protocol for
computing split scalar product of private vectors. The pro-
posed SSP protocol works in the preprocessing model. In this
model, parties are provided with proper sets of correlated ran-
domness before deciding their inputs and thus before starting
the computation. Owing to this model, our protocol is super
efficient and unconditionally secure. This protocol is also
secure in the universal composability framework. Therefore,
its security is guaranteed when being used along with other
UC protocols. The proposed SSP protocol is applicable in
various secure computation scenarios as well as MPC general
constructions (as a sub-protocol for distributed multiplication
in the latter case).

VOLUME 7, 2019 42813

B. Siabi et al.: Optimally Efficient Secure Scalar Product With Applications in Cloud Computing

We also showed that our SSP protocol is optimal in terms
of the size of pre-distributed randomness as well as the size
of communicated messages. In order to show the optimality
of our protocol, we derived lower bounds on the size of
pre-distributed randomness and the size of communicated
messages in unconditionally secure two-party computations
in the preprocessing model. The lower bounds derived in
this paper are restricted to a class of two-party functional-
ities. Our results can be regarded as a step forward toward
understanding the limits and capabilities of the preprocessing
model. It would be valuable and also quite challenging to
study the possibility of extending these bounds to the general
case of two-party unconditionally secure computation in the
preprocessing model.

Cloud computing scenarios typically require computation
on private data and therefore can be directly mapped to
secure computation scenarios. We presented two applications
of the proposed SSP protocol in secure cloud computing.
Particularly, we proposed a cloud-assisted privacy-preserving
profile-matching scheme and a secure remote health moni-
toring scheme based on our SSP protocol. We also discussed
security, functionality features and efficiency of the proposed
schemes and demonstrated that both of the proposed schemes
are secure and highly efficient.

REFERENCES
[1] A. C. Yao, ‘‘Protocols for secure computations,’’ inProc. 23rd Annu. Symp.

Found. Comput. Sci., Nov. 1982, pp. 160–164.
[2] O. Goldreich, S. Micali, and A. Wigderson, ‘‘How to play any mental

game,’’ in Proc. 19th Annu. ACM Symp. Theory Comput., Jan. 1987,
pp. 218–229.

[3] D. Chaum, I. Damgård, and J. van de Graaf, ‘‘Multiparty computations
ensuring privacy of each party’s input and correctness of the result,’’ in
Advances in Cryptology—CRYPTO. New York, NY, USA: Springer, 2006,
pp. 87–119.

[4] M. Ben-Or, S. Goldwasser, and A. Wigderson, ‘‘Completeness theorems
for non-cryptographic fault-tolerant distributed computation,’’ in Proc.
10th Annu. ACM Symp. Theory Comput., Jan. 1988, pp. 1–10.

[5] D. Chaum and C. Crépeau, and I. Damgard, ‘‘Multiparty uncondition-
ally secure protocols,’’ in Proc. 9th Annu. ACM Symp. Theory Comput.,
Jan. 1988, pp. 11–19.

[6] T. Rabin and M. Ben-Or, ‘‘Verifiable secret sharing and multiparty pro-
tocols with honest majority,’’ in Proc. 21st Annu. ACM Symp. Theory
Comput., Feb. 1989, pp. 73–85.

[7] J. Baron, K. E. Defrawy, K. Minkovich, R. Ostrovsky, and E. Tressler,
‘‘5pm: Secure pattern matching,’’ in Security and Cryptography for Net-
works. New york, NY, USA: Springer, 2012, pp. 222–240.

[8] L. Kissner and D. Song, ‘‘Privacy-preserving set operations,’’ in
Advances in Cryptology—CRYPTO. New York, NY, USA: Springer, 2005,
pp. 241–257.

[9] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu, ‘‘Tools for
privacy preserving distributed data mining,’’ ACM SIGKDD Explorations
Newslett., vol. 4, no. 2, pp. 28–34, Dec. 2002.

[10] B. Goethals, S. Laur, H. Lipmaa, and T. Mielikäinen, ‘‘On private scalar
product computation for privacy-preserving data mining,’’ in Information
Security and Cryptology—ICISC. New York, NY, USA: Springer, 2004,
pp. 104–120.

[11] W. Du and M. J. Atallah, ‘‘Privacy-preserving cooperative scientific com-
putations,’’ in Proc. CSFW, vol. 1, Jun. 2001, pp. 273–239.

[12] W. Du and M. J. Atallah, ‘‘Privacy-preserving cooperative statistical
analysis,’’ in Proc. 17th Annu. Comput. Secur. Appl. Conf., Dec. 2001,
pp. 102–110.

[13] O. Catrina and S. DeHoogh, ‘‘Secure multiparty linear programming using
fixed-point arithmetic,’’ in Computer Security—ESORICS. New York, NY,
USA: Springer, 2010, pp. 134–150.

[14] J. Dreier and F. Kerschbaum, ‘‘Practical privacy-preserving multiparty
linear programming based on problem transformation,’’ in Proc. IEEE 3rd
Int. Conf. Privacy, Secur., Risk Trust, Oct. 2011, pp. 916–924.

[15] F. Kerschbaum et al., ‘‘Secure collaborative supply-chain
management,’’ IEEE Comput., vol. 44, no. 9, pp. 38–43, Sep. 2011.
doi: 10.1109/MC.2011.224.

[16] R. Pibernik, Y. Zhang, F. Kerschbaum, and A. Schröpfer, ‘‘Secure collab-
orative supply chain planning and inverse optimization The JELS model,’’
Eur. J. Oper. Res., vol. 208, no. 1, pp. 75–85, Jan. 2011.

[17] J.-G. Dumas, P. Lafourcade, J.-B. Orfila, andM. Puys, ‘‘Dual protocols for
private multi-partymatrixmultiplication and trust computations,’’Comput.
Secur., vol. 71, pp. 51–70, Nov. 2017.

[18] F. Kerschbaum, ‘‘Secure and sustainable benchmarking in clouds,’’ Bus.
Inf. Syst. Eng., vol. 3, no. 3, pp. 135–143, Jun. 2011.

[19] A. Schroepfer, A. Schaad, F. Kerschbaum,H. Boehm, and J. Jooss, ‘‘Secure
benchmarking in the cloud,’’ in Proc. 18th ACM Symp. Access Control
Models Technol., Jun. 2013, pp. 197–200.

[20] P. Li et al., ‘‘Multi-key privacy-preserving deep learning in cloud comput-
ing,’’ Future Generat. Comput. Syst. vol. 74, pp. 76–85, Sep. 2017.

[21] C.-Z. Gao, Q. Cheng, X. Li, and S.-B. Xia, ‘‘Cloud-assisted privacy-
preserving profile-matching scheme under multiple keys in mobile social
network,’’ Cluster Comput., vol. 5, pp. 1–9, Feb. 2018.

[22] B. David, R. Dowsley, J. van de Graaf, D. Marques, A. C. Nascimento,
and A. C. Pinto, ‘‘Unconditionally secure, universally composable privacy
preserving linear algebra,’’ IEEE Trans. Inf. Forensics Security, vol. 11,
no. 1, pp. 59–73, Jan. 2016.

[23] D. Beaver, ‘‘Commodity-based cryptography,’’ in Proc. 19th Annu. ACM
Symp. Theory Comput., May 1997, pp. 446–455.

[24] R. Bendlin, I. Damgård, C. Orlandi, and S. Zakarias, ‘‘Semi-homomorphic
encryption and multiparty computation,’’ in Advances in Cryptology—
EUROCRYPT. New York, NY, USA: Springer, 2011, pp. 169–188.

[25] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, ‘‘Multiparty computation
from somewhat homomorphic encryption,’’ in Advances in Cryptology—
CRYPTO. New York, NY, USA: Springer, 2012, pp. 643–662.

[26] I. Damgård and S. Zakarias, ‘‘Constant-overhead secure computation
of Boolean circuits using preprocessing,’’ in Theory Cryptography.
New York, NY, USA: Springer, 2013, pp. 621–641.

[27] E. Larraia, E. Orsini, and N. P. Smart, ‘‘Dishonest majority multi-party
computation for binary circuits,’’ in Advances in Cryptology—CRYPTO.
New York, NY, USA: Springer, 2014, pp. 495–512.

[28] R. Rivest, ‘‘Unconditionally secure commitment and oblivious transfer
schemes using private channels and a trusted initializer,’’ Tech. Rep., 1999.

[29] B. Barak, R. Canetti, J. B. Nielsen, and R. Pass, ‘‘Universally composable
protocols with relaxed set-up assumptions,’’ in Proc. 45th Annu. IEEE
Symp. Found. Comput. Sci., Oct. 2004, pp. 186–195.

[30] R. Canetti, ‘‘Universally composable security: A new paradigm for crypto-
graphic protocols,’’ in Proc. 42nd IEEE Symp. Found. Comput. Sci., 2001,
pp. 136–145.

[31] R. Canetti, ‘‘Security and composition of cryptographic protocols: A
tutorial (part i),’’ ACM SIGACT News, vol. 37, no. 3, pp. 67–92,
2006.

[32] V. Goyal and J. Katz, ‘‘Universally composable multi-party computation
with an unreliable common reference string,’’ in Theory Cryptography.
New York, NY, USA: Springer, 2008, pp. 142–154.

[33] R. Canetti, E. Kushilevitz, and Y. Lindell, ‘‘On the limitations of uni-
versally composable two-party computation without set-up assumptions,’’
J. Cryptol., vol. 19, no. 2, pp. 135–167, Jun. 2006.

[34] R. Tonicelli et al., ‘‘Information-theoretically secure oblivious polynomial
evaluation in the commodity-basedmodel,’’ Int. J. Inf. Secur., vol. 14, no. 1,
pp. 73–84, 2015.

[35] R. Dowsley, J. Van De Graaf, D. Marques, and A. C. Nascimento, ‘‘A two-
party protocol with trusted initializer for computing the inner product,’’ in
Information Security Applications. New York, NY, USA: Springer, 2010,
pp. 337–350.

[36] J. Vaidya and C. Clifton, ‘‘Privacy preserving association rule mining in
vertically partitioned data,’’ in Proc. 8th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Feb. 2002, pp. 639–644.

[37] Y. Zhu and T. Takagi, ‘‘Efficient scalar product protocol and its privacy–
preserving application,’’ Int. J. Electron. Secur. Digit. Forensics, vol. 7,
no. 1, pp. 1–19, 2015.

[38] Y. Zhu, T. Takagi, and L. Huang, ‘‘Efficient secure primitive for privacy
preserving distributed computations,’’ in Advances in Information and
Computer Security. New York, NY, USA: Springer, 2012, pp. 233–243.

42814 VOLUME 7, 2019

http://dx.doi.org/10.1109/MC.2011.224

B. Siabi et al.: Optimally Efficient Secure Scalar Product With Applications in Cloud Computing

[39] Y. Zhu, Z. Wang, B. Hassan, Y. Zhang, J. Wang, and C. Qian, ‘‘Fast secure
scalar product protocol with (almost) optimal efficiency,’’ in Collaborative
Computing: Networking, Applications, and Worksharing. New York, NY,
USA: Springer, 2015, pp. 234–242.

[40] A. Amirbekyan and V. Estivill-Castro, ‘‘A new efficient privacy-preserving
scalar product protocol,’’ in Proc. 6th Australasian Conf. Data Mining
Analytics, Dec. 2007, pp. 209–214.

[41] C. Dong and L. Chen, ‘‘A fast secure dot product protocol with application
to privacy preserving association rule mining,’’ in Advances in Knowl-
edge Discovery and Data Mining. New York, NY, USA: Springer, 2014,
pp. 606–617.

[42] M. Shaneck and Y. Kim, ‘‘Efficient cryptographic primitives for private
data mining,’’ in Proc. 43rd Hawaii Int. Conf. Syst. Sci., Jan. 2010, pp. 1–9.

[43] W. Du and Z. Zhan, ‘‘A practical approach to solve secure multi-party com-
putation problems,’’ in Proc. Workshop New Secur. Paradigms, Sep. 2002,
pp. 127–135.

[44] M. D. Cock, R. Dowsley, A. C. Nascimento, and S. C. Newman, ‘‘Fast,
privacy preserving linear regression over distributed datasets based on
pre-distributed data,’’ in Proc. 8th ACM Workshop Artif. Intell. Secur.,
Oct. 2015, pp. 3–14.

[45] B. Siabi andM. Berenjkoub. (2018). ‘‘On the security of an unconditionally
secure, universally composable inner product protocol.’’ [Online]. Avail-
able: https://arxiv.org/abs/1809.08441

[46] D. Beaver, ‘‘Efficient multiparty protocols using circuit randomization,’’
in Proc. Annu. Int. Cryptol. Conf., 1991, pp. 420–432.

[47] Y. Ishai, E. Kushilevitz, S. Meldgaard, C. Orlandi, and
A. Paskin-Cherniavsky, ‘‘On the power of correlated randomness in
secure computation,’’ in Theory Cryptography. New York, NY, USA:
Springer, 2013, pp. 600–620.

[48] O. Goldreich, Foundations of Cryptography: Basic Applications.
Cambridge, U.K.: Cambridge Univ. Press, 2009.

[49] C. Hazay and Y. Lindell, Efficient Secure Two-Party Protocols: Technology
Constructions. New York, NY, USA: Springer, 2010.

[50] G. Asharov and Y. Lindell, ‘‘A full proof of the BGWprotocol for perfectly
secure multiparty computation,’’ J. Cryptol., vol. 30, no. 1, pp. 58–151,
Aug. 2017.

[51] E. Kushilevitz, Y. Lindell, and T. Rabin, ‘‘Information-theoretically secure
protocols and security under composition,’’ SIAM J. Comput., vol. 39,
no. 5, pp. 2090–2112, Sep. 2010.

[52] C. Crëpeau, G. Savvides, C. Schaffner, and J. Wullschleger, ‘‘Information-
theoretic conditions for two-party secure function evaluation,’’ inAdvances
in Cryptology—EUROCRYPT. New York, NY, USA: Springer, 2006,
pp. 538–554.

[53] O. Catrina and A. Saxena, ‘‘Secure computation with fixed-point
numbers,’’ in Proc. Int. Conf. Financial Cryptography Data Security.
May 2010, pp. 35–50.

[54] B. K. Samanthula, Y. Elmehdwi, G. Howser, and S. Madria, ‘‘A secure
data sharing and query processing framework via federation of cloud
computing,’’ Inf. Syst., vol. 48, pp. 196–212, Mar. 2015.

[55] Q. Dong, Z. Guan, K. Gao, and Z. Chen, ‘‘Scrhm: A secure continuous
remote health monitoring system,’’ Int. J. Distrib. Sensor Netw., vol. 11,
no. 12, 2015, Art. no. 392439.

[56] W. K. Wong, D. W.-L. Cheung, B. Kao, and N. Mamoulis, ‘‘Secure KNN
computation on encrypted databases,’’ in Proc. ACM SIGMOD Int. Conf.
Manage. Data, May 2009, pp. 139–152.

BABAK SIABI received the B.Sc. degree in
electrical engineering from the Iran University of
Science and Technology and the M.Sc. degree in
electrical engineering from the Isfahan University
of Technology, where he is currently pursuing the
Ph.D. degreewith theDepartment of Electrical and
Computer Engineering. His main research interest
includes secure computation, with a focus on effi-
ciency enhancement of critical subprotocols and
primitives.

MEHDI BERENJKOUB received the Ph.D. degree
from the Department of Electrical and Computer
Engineering, Isfahan University of Technol-
ogy (IUT), in 2000. The title of his disserta-
tion is two-party key distribution protocols in
cryptography. He started his career as an Assistant
Professor with the Department of Electrical and
Computer Engineering, Isfahan University of
Technology, where he taught fundamentals of
cryptography, cryptographic protocols, network

security, and intrusion detection. He has supervised dozens of M.Sc. students
and Ph.D. candidates in related areas. He established a research group on
Security in Networks and Systems in IUT along with his colleagues. He is
also responsible for an established academic CSIRT, IUT, where he is cur-
rently anAssociate Professor. His current research interests include advanced
security protocols, wireless network security, authentication protocols, and
intrusion detection systems. He was also one of the founder members of the
Iranian Society of Cryptology, in 2001. He has continued his cooperation
with the society as an active member.

WILLY SUSILO received the Ph.D. degree
in computer science from the University of
Wollongong, Australia. He is currently a Professor
and the Head of the School of Computing and
Information Technology and the Director of the
Institute of Cybersecurity and Cryptology (iC2),
University of Wollongong. He has published more
than 500 research papers in the area of cyberse-
curity and cryptology. His main research interests
include cybersecurity, cryptography, and informa-

tion security. His work has been cited more than 13 000 times in Google
Scholar. He was previously awarded the prestigious ARC Future Fellow
by the Australian Research Council (ARC) and the Researcher of the Year
Award by the University of Wollongong, in 2016. He has served as a
Program Committee Member in dozens of international conferences. He is
currently serving as an Associate Editor in several international journals,
including the IEEE Transactions in Dependable and Secure Computing,
Computer Standards and Interface (Elsevier), and the International Journal
of Information Security (Springer). He is the Editor-in-Chief of Information
journal.

VOLUME 7, 2019 42815

	INTRODUCTION
	CONTRIBUTIONS
	LOWER BOUNDS ON COMMUNICATIONS COMPLEXITY
	A SECURE SSP PROTOCOL
	SECURE CLOUD COMPUTING APPLICATIONS

	RELATED WORK
	ORGANIZATION

	PRELIMINARIES
	NOTATIONS
	TWO-PARTY PERFECT SECURITY AGAINST SEMI-HONEST ADVERSARY
	TWO-PARTY PERFECT SECURITY (WITH ABORT) AGAINST MALICIOUS ADVERSARIES
	UNIVERSAL COMPOSABILITY FRAMEWORK
	SPLIT SCALAR PRODUCT FUNCTIONALITY

	LOWER BOUNDS ON COMMUNICATIONS COMPLEXITY
	INFORMATION THEORETIC MODELING OF UNCONDITIONALLY SECURE TWO-PARTY COMPUTATION
	REMARKS ON FUNCTIONALITIES AND ON VIEWS OF PARTIES
	LOWER BOUNDS

	OPTIMALLY EFFICIENT AND UNIVERSALLY COMPOSABLE SSP PROTOCOL
	THE PROPOSED SSP PROTOCOL
	REALIZATION OF PREPROCESSING PHASE
	SECURITY ANALYSIS
	EFFICIENCY AND COMPARISON

	APPLICATIONS
	COMPUTATION ON SIGNED INTEGERS
	APPLICATION I: PRIVACY-PRESERVING PROFILE-MATCHING
	SYSTEM AND FUNCTIONALITY MODEL
	DESCRIPTION OF THE PROPOSED SCHEME
	CORRECTNESS
	SECURITY
	EFFICIENCY AND COMPARISON

	APPLICATION II: SECURE REMOTE HEALTH MONITORING
	SYSTEM AND FUNCTIONALITY MODEL
	DESCRIPTION OF THE PROPOSED SCHEME
	CORRECTNESS
	SECURITY
	EFFICIENCY AND COMPARISON

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	BABAK SIABI
	MEHDI BERENJKOUB
	WILLY SUSILO

