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More Than Privacy: Applying Differential Privacy
in Key Areas of Artificial Intelligence

Tianqing Zhu, Dayong Ye, Wei Wang, Wanlei Zhou and Philip S. Yu*

Abstract—Artificial Intelligence (AI) has attracted a great deal of attention in recent years. However, alongside all its advancements,
problems have also emerged, such as privacy violations, security issues and model fairness. Differential privacy, as a promising
mathematical model, has several attractive properties that can help solve these problems, making it quite a valuable tool. For this
reason, differential privacy has been broadly applied in AI but to date, no study has documented which differential privacy mechanisms
can or have been leveraged to overcome its issues or the properties that make this possible. In this paper, we show that differential
privacy can do more than just privacy preservation. It can also be used to improve security, stabilize learning, build fair models, and
impose composition in selected areas of AI. With a focus on regular machine learning, distributed machine learning, deep learning, and
multi-agent systems, the purpose of this article is to deliver a new view on many possibilities for improving AI performance with
differential privacy techniques.

Index Terms—Differential Privacy, Artificial Intelligence, Machine Learning, Deep Learning, Multi-Agent Systems
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1 INTRODUCTION

A RTIFICIAL Intelligence (AI) is one of the most prevalent
topics of research today across almost every scientific

field. For example, multi-agent systems can be applied to
distributed control systems [1], while distributed machine
learning has been adopted by Google for mobile users [2].
However, as AI becomes more and more reliant on data,
several new problems have emerged, such as privacy viola-
tions, security issues, model instability, model fairness and
communication overheads. As just a few of the tactics used
to derail AI, adversarial samples can fool machine learning
models, leading to incorrect results. Multi-agent systems
may receive false information from malicious agents. As a
result, many researchers have been exploring new and exist-
ing security and privacy tools to tackle these new emerging
problems. Differential privacy is one of these tools.

Differential privacy is a prevalent privacy preservation
model which guarantees whether an individual’s infor-
mation is included in a dataset has little impact on the
aggregate output. Fig. 1 illustrates a basic differential pri-
vacy framework using the following example. Consider two
datasets that are almost identical but differ in only one
record and that, access to the datasets is provided via a
query function f . If we can find a mechanism that can
query both datasets and obtain the same outputs, we can
claim that differential privacy is satisfied. In that scenario,
an adversary cannot associate the query outputs with either
of the two neighbouring datasets, so the one different record
is safe. Hence, the differential privacy guarantees that, even
if an adversary knows all the other records in a dataset
except for one unknown individual, they still cannot infer
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the information of that unknown record.
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Fig. 1. Differential privacy

Interest in differential privacy mechanisms not only
ranges from the privacy community to the AI community, it
has also attracted the attention of many private companies,
such as Apple1, Uber2 and Google [3].

The key idea of differential privacy is to introduce
calibrated randomization to the aggregate output. When
Dwork et al. [4] showed that applying differential privacy
mechanisms to test data in machine learning could pre-
vent over-fitting of learning algorithms, it launched a new
direction beyond simple privacy preservation to one that
solves emerging problems in AI [5]. We use two examples
to illustrate how those new properties can be applied.

1.1 Examples
The first example pertains to machine learning. As shown
in Fig. 2, machine learning suffers from several problems,
including privacy violations, over-fitting and unfair models.
Recent research has shown that differential privacy mecha-
nisms have the potential to tackle those problems. First, to
maintain fairness in a model, the training data can be re-
sampled from the data universe using a differential privacy

1. https://www.apple.com/au/privacy/approach-to-privacy/
2. https://www.usenix.org/node/208168
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mechanism [6]. Second, to preserve privacy, noise derived
from a differential privacy mechanism can be added to the
learning model [7]. Finally, calibrated noise can be applied
to generate fresh testing data to increase stability and avoid
over-fitting of the learning algorithm [4]. These success-
ful applications of differential privacy show that learning
problems can be solved by taking advantage of several
properties of differential privacy, such as randomization,
privacy preservation capability, and algorithm stability.
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Fig. 2. Learning example

The second example comes from the realm of multi-
agent systems, one of the traditional disciplines in AI. A
multi-agent system is a computerized system composed of
multiple interacting intelligent agents, such as sweeping
robots as shown in Fig. 3. The faces are agents and the
grid denotes the moving environment of all agents. An
agent can make decisions over its direction of movement
and can share that knowledge with other agents to help
them make their decisions. The goal is for the robots to
sweep all grids. Several problems exist in this multi-agent
system. First, as each agent observes a different environ-
ment, it is difficult to share their knowledge. The randomiz-
ing mechanism in differential privacy can help to transfer
the knowledge between agents. Second, communications
between agents should be restricted to limit power con-
sumption. Here, the privacy budget in differential privacy
can help the system control to overall communications [8].
Third, when a malicious agent is present, like the agent in
the red face, they may provide false knowledge. Differential
privacy mechanisms can help improve the security level of
communications by diminishing the impact of that agent.

Malicious Agent

(Randomization)

(Composition)

(Security)

Communication Overhead

Knowledge transferring

Fig. 3. Multi-agent example

Both these examples show how current research is ap-
plying differential privacy mechanisms to AI and how ran-
domization can bring several new properties to AI.

1.2 AI areas
In AI, there are no strict area disciplines. Researchers and in-
dustries have built a birds-eye view of AI in all its diversity.
Take the perspective of the Turing Test, for example. When
programming a computer that needs to act like a human, the

Fig. 4. AI areas in the view of acting humanly
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computer must have the following capabilities [9]: natural
language processing so it can successfully communicate
with a human; knowledge representation to store what it
knows or hears; automated reasoning to use the stored infor-
mation to answer questions and to draw new conclusions;
machine learning to adapt to new circumstances and to
detect and extrapolate patterns; computer vision to perceive
objects; and robotics to manipulate objects.

Based on this birds-eye view, we roughly categorize
three major technical fields in AI: machine learning, deep
learning and multi-agent system. Knowledge learning and
automated reasoning can be processed by a multi-agent
system; the other functions can be accomplished through
machine learning and/or deep learning. In the view of the
application, the AI area includes robotics, computer vision,
natural language processing (NLP), etc.–see Fig 4.

Here, we note that although deep learning was originally
a series of machine learning algorithms implemented in a
neural network architecture, it has rapidly developed into
a field of study in its own right with a huge number of
novel perspectives and technologies, such as GANs [10],
ResNets [11], etc. Therefore, we place deep learning in its
own category.

The purpose of this paper is to document how the dif-
ferential privacy mechanism can solve those new emerging
problems in the technical fields: machine learning, deep
learning and multi-agent systems. Applications such as
robotics, NLP and computer vision have taken advantage
of technologies such machine learning, deep learning and
multi-agent system, so we have no reviewed these applica-
tions in dedicated sections.

1.3 Differential privacy in AI areas
Calibrated randomization benefits some AI algorithms.
What follows is a summary of several properties derived
from randomization.

• Preserving privacy. This is the original purpose of
differential privacy. By hiding an individual in the
aggregate information, differential privacy can pre-
serve the privacy of participants in a dataset.

• Stability. Differential privacy mechanisms ensure
that the probability of any outcome from a learning



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3014246, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

algorithm is unchanged by modifying any individual
record in the training data. This property establishes
connections between a learning algorithm and its
ability to be generalized.

• Security. Security relates to malicious participants
in a system. Differential privacy mechanisms can
reduce the impact of malicious participants in AI
tasks. This property can guarantee security in AI
systems.

• Fairness. In machine learning, a given algorithm is
said to be fair, or to have fairness, if its results are
independent of sensitive attributes, like race and gen-
der. Differential privacy can help to maintain fairness
in a learning model by re-sampling the training data
from the universe.

• Composition. Differential privacy mechanisms can
guarantee that any step that satisfies differential pri-
vacy can construct a new algorithm that also satisfies
differential privacy. This property is referred to as
composition and is controlled by the privacy budget.
In AI, composition can be used to control the number
of steps, communication loads, etc.

Table 1 shows the properties that have been explored to
date for each of our three disciplines. In machine learning,
differential privacy has been applied to private learning,
stability and fairness. In deep learning, privacy is the major
concern, but distributed deep learning and federated learn-
ing have also been investigated. In multi-agent systems,
differential privacy has been used to guarantee privacy,
provide security, and ensure composition. Utility shows the
ultimate performance of the technology after adding dif-
ferential privacy. Normally, privacy-preserving comes with
a utility cost. However, if the differential privacy can con-
tribute to stability, or security, the utility may increase, such
as in federated learning or fairness.

Note, however, that blank cells do not mean we can not
apply differential privacy mechanisms to those areas. As
differential privacy has been proved to work well in many
AI areas, in the future, more problems might be solved with
the advantages of differential privacy.

The purpose of this paper is to highlight several possible
avenues to integrate AI with differential privacy mecha-
nisms, showing that differential privacy mechanisms have
several attractive properties that make it quite valuable
as a tool to AI beyond merely preserving privacy. The
contributions of the paper are listed as follows:

• We have summarized several properties of differen-
tial privacy mechanisms.

• We have shown that these properties can improve
diverse aspects of AI areas, including machine learn-
ing, deep learning and multi-agent systems.

• We explored new possibilities for taking advantage
of differential privacy to bring new opportunities.

2 PRELIMINARY

2.1 Differential privacy
Consider a finite data universe X . Let the variable r repre-
sent a record with d attributes sampled from the universe X ,
a dataset D is an unordered set of n records from domain

X . Two datasets D and D′ are neighbouring datasets if they
differ in only one record. A query f is a function that maps
a dataset D to an abstract range R: f : D → R.

The target of differential privacy is to mask the differ-
ences between the results to query f between the neighbour-
ing datasets to preserve privacy. The maximal difference is
defined as the sensitivity ∆f , which determines how much
perturbation is required for a private-preserving answer. To
achieve this goal, differential privacy provides a mechanism
M, which is a randomization algorithm that accesses the
database and implements some functionalities. A formal
definition of differential privacy follows.

Definition 1 (ε, δ-Differential Privacy [12]). A randomized
algorithm M gives ε-differential privacy for any pair of neigh-
bouring datasets D and D′, and, for every set of outcomes Ω, if
M satisfies:

Pr[M(D) ∈ Ω] ≤ exp(ε) · Pr[M(D′) ∈ Ω] + δ (1)

where Ω denotes the output range of the algorithmM.

In Definition 1, the parameter ε is defined as the privacy
budget, which controls the privacy guarantee level of mech-
anismM. A smaller ε represents stronger privacy. If δ = 0,
the randomized mechanism M gives ε-differential privacy
by its strictest definition. (ε, δ)-differential privacy provides
freedom to violate strict ε-differential privacy for some low
probability events.

Sensitivity is a parameter used in both mechanisms to
determine how much randomization is required:

Definition 2 (Sensitivity). For a query f : D → R, the
sensitivity of f is defined as

∆f = max
D,D′

||f(D)− f(D′)||1 (2)

Two prevalent randomization mechanisms, Laplace and
exponential, are used to satisfy the definition of differential
privacy, but there are others, such as Gaussian mechanism.
Each is explained next.

2.2 Randomization: Laplace mechanism

The Laplace mechanism is applied to numeric outputs [13].
The mechanism adds independent noise to the original
answer, as shown in Definition 3.

Definition 3 (Laplace mechanism). For a function f : D →
R over a dataset D, the mechanism M in Eq. 3 provides ε-
differential privacy.

M(D) = f(D) + Lap(
∆f

ε
) (3)

2.3 Gaussian mechanism

Compared to a Laplace mechanism, a Gaussian mechanism
adds noise that is sampled from a zero-mean isotropic
Gaussian distribution. The noise Z is sampled ∼ N (0, σ2)
to the L2 sensitivity ∆f = maxD,D′ ||f(D) − f(D′)||2 as
follows:
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TABLE 1
Properties of differential privacy in artificial intelligence

Selected AI areas Privacy Stability Fairness Security Composition Utility
Machine learning Private learning Yes Yes Decrease

Stability in learning Yes Increase
Fairness in learning Yes Increase

Deep learning Deep Learning Yes Decrease
Distributed deep learning Yes Yes Decrease
Federated learning Yes Yes Yes Decrease or Increase

Multi-agent system Reinforcement learning Yes Yes Yes Increase
Auction Yes Yes Decrease
Game theory Yes Decrease

Definition 4 (Gaussian mechanism). For a function f : D →
R over a dataset D, the mechanism M in Eq. 4 provides ε, δ-
differential privacy.

M(D) = f(D)+ ∼ N (0, σ2), (4)

σ = ∆f
√

2 log(1.25/δ)/epsilon.

2.4 Exponential mechanism

Exponential mechanisms are used to randomize the results
for non-numeric queries. They are paired with a score
function q(D,φ) that evaluates the quality of an output
φ. Defining a score function is application-dependent, so
different applications lead to various score functions [14].

Definition 5 (Exponential mechanism). Let q(D,φ) be a
score function of dataset D that measures the quality of output
φ ∈ Φ, ∆q represents the sensitivity of φ. The exponential
mechanismM satisfies ε-differential privacy if

M(D) =

(
return φ ∝ exp(

εq(D,φ)

2∆q
)

)
. (5)

2.5 Composition

Two privacy budget composition theorems are widely used
in the design of differential privacy mechanisms: sequential
composition [14] and parallel composition [15].

Theorem 1. Parallel Composition: Suppose we have a set of
privacy steps M = {M1, ...Mm}, if each Mi provides an εi
privacy guarantee on a disjointed subset of the entire dataset, the
parallel ofMwill provide max{ε1, ..., εm}-differential privacy.

Parallel composition corresponds to cases where each
Mi is applied to disjointed subsets of the dataset. The
ultimate privacy guarantee only depends on the largest
privacy budget.

Theorem 2. Sequential Composition: Suppose a set of privacy
steps M = {M1, ...Mm} are sequentially performed on a
dataset, and each Mi provides an ε privacy guarantee, M will
provide (m · ε)-differential privacy.

Sequential composition offers a privacy guarantee for a
sequence of differentially private computations. When a se-
ries of randomized mechanisms are performed sequentially
on a dataset, the privacy budgets are added up for each step.

3 DIFFERENTIAL PRIVACY IN MACHINE LEARNING

3.1 Private machine learning

Private machine learning aims to protect the individual’s
privacy in training data or learning models. Differential
privacy has been considered to be one of the most important
tools in private machine learning and has been heavily
investigated in the past decade.

The essential mechanisms in differential privacy all work
to extend current non-private machine learning algorithms
into differentially private algorithms. These extensions can
be realized by incorporating Laplace or exponential mecha-
nisms into non-private learning algorithms directly [16], or
by adding Laplace noise into the objective functions [7].

Starting with Kasiviswanathan et al.’s work [17], the line
of research presenting the details of private learning process
from privacy based on empirical risk minimization [18], [19],
to prediction [20], [21], Bayesian inference [22], [23], [24] and
the multi-armed bandit [25], [26].

Private machine learning is one of the most powerful
models accepted in this field. To avoid redundancy, this
paper will not dive into details of private machine learning.
A number of survey papers have discussed this field [16],
[27], [28], [29] thoroughly.

3.2 Differential privacy in learning stability

3.2.1 The overview of stability of learning

A stable learning algorithm is one in which the prediction
does not change much when the training data is modified
slightly. Bousquet et al. [30] have proved that stability is
linked to the generalization error bound of the learning
algorithm, indicating that a highly stable algorithm leads to
a less over-fit result. However, increasing the stability of the
algorithm is challenging when the size of the testing data
is limited. This is because the validate data sometimes are
reused and lead to an incorrect learning model. To preserve
statistical learning validity, analysts should collect new data
for a fresh testing set.

Differential privacy can be naturally linked to learning
stability. The concept of differential privacy ensures that the
probability of observing any outcome from an analysis is es-
sentially unchanged by modifying any single record. Dwork
et al. [4], [31] showed that differential privacy mechanisms
can be used to develop adaptive data analysis algorithms
with provable bounds for over-fitting, noting that certain
stability notions are necessary and sufficient for generaliza-
tion. Therefore, differential privacy is stronger than previ-
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ous notions of stability and, in particular, possesses strong
adaptive composition guarantees [32].

3.2.2 Differential privacy in learning stability

Dwork et al. [4] show that, by adding noise to generate fresh
testing data, differential privacy mechanisms can achieve
highly stable learning. For a dataset D, an analyst learns
about the data by running a series of analyses fi on the
dataset. The choice of which analysis to run depends on
the results from the earlier analyses. Specifically, the analyst
first selects a statistic f0 to query on D and observes a query
result y1 = f0(D). From the kth analysis, the analyst selects
a function fk based on the query result y1, ..., ...yk−1. To
improve the generalization capability of the adaptive sce-
nario, noise is added in each analysis iteration. For example,
yk = Lap(∆f

ε ) + fk−1(D) [31].
This type of adaptive analysis can be linked to machine

learning. The dataset D can be randomly partitioned into a
training set Dt and a testing (holdout) set Dh. The analyst
can access the training set Dt without restrictions but may
only accessDh through a differentially private interface. The
interface takes the testing and training sets as inputs and, for
all functions given by the analyst, provides statistically valid
estimates of each function’s results.

For a sufficiently large testing set, the differential privacy
interface guarantees that for function f : D → [0, 1], the
mechanism will return a randomized value vf . When vf is
compared to the query result y, we have |vf − y| ≤ τ with a
probability of at least 1 − β, where τ is the analyst’s choice
of error and β is the confidence parameter. The probability
space is over the data elements in Dh and Dt and the
randomness introduced by the interface. A multiplicative
weight updating mechanism [33] could also be included in
the interface to conserve the privacy budget.

3.2.3 Summary of stability of learning

The idea of adding randomization during data analysis to
increase stability has been widely accepted. MacCoun et
al. [34] believed: when deciding which results to report, the
analyst interacts with a dataset that has been obfuscated
through adding noise to observations, removing some data
points, or switching data labels. The raw, uncorrupted,
dataset is only used in computing the final reported values.
Differential privacy mechanisms can follow the above rules
to significantly improve learning stability.

3.3 Differential privacy in fairness

3.3.1 An overview of the fairness in learning

Fairness issues are prevalent in every facet of our lives
including education, job application, the parole of prisoners
and so on [35], [36], [37]. Instead of resolving fairness
issues, modern AI techniques, however, can amplify social
inequities and unfairness. For example, an automated hiring
system may be more likely to recommend candidates from
specific racial, gender or age groups [38], [39]. A search
engine may amplify negative stereotypes by showing arrest-
record ads in response to queries for names predominantly
given to African-American babies but not for other names
[40], [41]. Moreover, some software systems that are used to

measure the risk of a person recommitting crime demon-
strate a bias against African-Americans over Caucasians
with the same profile [42], [43]. To address these fairness
issues in machine learning, great effort has been placed on
developing definitions of fairness [44], [45], [46] and algo-
rithmic methods for assessing and mitigating undesirable
bias in relation to these definitions [47], [48]. A typical idea is
to make algorithms insensitive to one or multiple attributes
of datasets, such as gender and race.

3.3.2 Applying differential privacy to improve fairness
Dwork et al. [49] classified individuals with the goal of
preventing discrimination against a certain group while
maintaining utility for the classifier. The key idea is to
treat similar individuals similarly. To implement this idea,
these researchers adopted the Lipschitz property, which
requires that any two individuals, x and y, with a distance
of d(x, y) ∈ [0, 1] must map to the distributions M(x)
and M(y), respectively, such that the statistical distance
between M(x) and M(y) is at most d(x, y) [50]. In other
words, if the difference between x and y is d(x, y), the
difference of the classification outcomes of x and y is at
most d(x, y). A connection between differential privacy and
the Lipschitz property has been theoretically established, in
that a mapping satisfies differential privacy if, and only if,
this mapping satisfies the Lipschitz property [49].

Zemel et al. [51] extended Dwork et al.’s [49] prelim-
inary work by defining the metrics between individuals.
They learned a restricted form of a distance function and
formulated fairness as an optimization problem of finding
the intermediate representation that best encodes the data.
During the process, they preserved as much information
about the individual’s attributes as possible, while removing
any information about membership with other protected
subgroup. The goal was two-fold: first, the intermediate
representation should preserve the data’s original features
as much as possible. Second, the encoded representation is
randomized to hide whether or not the individual is from
the protected group.

Both ideas take advantage of randomization in differen-
tial privacy. Considering an exponential mechanism with
a carefully designed score function, the framework can
sample fresh data from the universe to represent original
data with the same statistical properties. However, the most
challenging part of this framework is designing the score
function. This is because differential privacy in fairness
assumes that the similarity between individuals is given;
however, estimating similarity between individuals in an
entire feature universe is a tough problem. In other words,
the evaluation of similarity between individuals is the key
obstacle of model fairness, making score function design an
obstinate problem. Therefore, differential privacy in model
fairness needs further exploration.

Recently, researchers have attempted to adopt differen-
tial privacy to simultaneously achieve both fairness and
privacy preservation [52], [53]. This research is motivated by
settings where models are required to be non-discriminatory
in terms of certain attributes, but these attributes may
be sensitive and so must be protected while training the
model [54]. Addressing fairness and privacy preservation
simultaneously is challenging because they have different
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aims [53], [55]. Fairness focuses on the group level and seeks
to guarantee that the model’s predictions for a protected
group (such as female) are the same as the predictions
made for an unprotected group. In comparison, privacy
preservation focuses on the individual level. Privacy preser-
vation guarantees that the output of a classification model
is independent of whether any individual record is in or out
of the training dataset. A typical solution to achieve fairness
and privacy preservation simultaneously was proposed by
Ding et al. [53]. Their solution is to add a different amount
of differentially private noise based on different polynomial
coefficients of the constrained objective function, where the
coefficients relate to attributes in the training dataset. There-
fore, privacy is preserved by adding noise to the objective
function, and fairness is achieved by adjusting the amount
of noise added to the different coefficients.

3.3.3 Summary of differential privacy in fairness
The best methods of similarity measurement and com-
position are open problems in fairness models. Further,
differential privacy in fairness models has been directed
toward classification problems. There are also some works
on fairness in online settings such as online learning, ban-
dit learning and reinforcement learning. However, how to
use differential privacy mechanisms to benefit those online
settings of fairness needs further investigation.

Composition fairness is also a big challenge. Here, fair-
ness means that if each component in the algorithm satisfies
the notion of fairness, the entire algorithm will satisfy the
same [6]. This composition property is essential for machine
learning, especially for online learning. Dwork et al. [56]
explored this direction, finding that current methods seldom
achieve this goal because classification decisions cannot
be made independently, even by a fair classifier. Also,
classifiers that satisfy group fairness properties may not
compose well with other fair classifiers. Their results show
that the signal provided by group fairness definitions under
composition is not always reliable. Hence, further study is
needed to figure out how to take advantage of differential
privacy to ensure composition.

3.4 Summary of differential privacy in machine learn-
ing

Table 2 summarizes the papers that apply differential pri-
vacy to learning stability and fairness. From this summary,
we can see that differential privacy can not only preserve
privacy but also improve the stability and fairness in ma-
chine learning. The key idea of achieving stability is derived
from allowing an analyst to access the testing set only in
a differentially private manner. Likewise, the main idea
of achieving fairness is also derived from randomly re-
sampling fresh data from the data universe in a differentially
private manner. The two examples show that the sampling
from the data universe can improve the machine learning
performance to some extent.

Even though differential privacy has been proven to
guarantee privacy, stability and fairness in machine learn-
ing, there are still some open research issues. First, to
preserve privacy, the utility of learning models is sacrificed
to some extent. Thus, how to obtain an optimal trade-off

between the privacy and the utility still needs further explo-
ration. Second, current differentially private stable learning
is suitable only for the learning models where loss func-
tions do not have regularization. Differential privacy can
provide additional generalization capability to the learning
models who has limited regularization. Hence, improving
generalization capability for regularized loss functions will
be helpful. Third, the re-sampling in current fair learning is
typically based on the exponential mechanism. Exponential
mechanism requires the knowledge of the utility of each
sample. This knowledge, however, may not be available
or hardly be defined in some situations. Thus, new mech-
anisms are needed for today’s fair learning.

Research on differential privacy in machine learning
can be broadened to address other non-privacy issues. For
example, differential privacy mechanisms may be able to
generate new data samples based on existing ones by prop-
erly adding noise to the values of attributes in existing sam-
ples. These newly-generated samples may not be suitable
for training data, but they can be used as testing data.
Another example is that differential privacy mechanisms
can be used for sampling. Sampling is an important step in
deep reinforcement learning and batch learning. The small
database mechanism may be a good tool for sampling in
machine learning, as it can guarantee the desired accuracy
while sampling only a small set of samples.

4 DIFFERENTIAL PRIVACY IN DEEP LEARNING

Deep learning originated from regular neural networks but
thanks to the availability of large volumes of data and
advancements in computer hardware, implementing many-
layered neural network models has become feasible, and
these models significantly outperforms their predecessors.
The latest deep learning algorithms have been successfully
applied to many applications such as natural language
processing, image processing, and speech and audio pro-
cessing [57]. Differential privacy has been broadly used in
deep learning to preserve data and model privacy. Thus, in
this section, we mainly focus on analyzing the differential
privacy in general deep neural networks, distributed deep
learning [58] and federated learning [59].

4.1 Deep neural networks: attacks and defences
4.1.1 Privacy attacks in the deep neural networks
One of the most common privacy attacks is an inference
attack where the adversary maliciously infers sensitive fea-
tures and background information about a target individual
from a trained model [60]. Typically, there are two types of
inference attacks in deep learning.

The first type is a membership inference attack. The aim
here is to infer whether or not a given record is in the
present training dataset [61]. Membership inference attacks
can be either black-box or white-box. Black-box means that
an attacker can query a target model but does not know any
other details about that model, such as its structure [62].
In comparison, white-box means that an attacker has full
access to a target model along with some auxiliary infor-
mation [63]. The attack model is based on the observation
that machine learning models often behave differently on
training data versus the data they “see” for the first time.
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TABLE 2
Summary of differential privacy in machine learning

Papers Research areas Techniques used Research aims Advantages Disadvantages

Dwork et al. [4], [31] Stable learning Laplace
mechanism Improve stability Improve stability

with little overhead
Limited access

to testing dataset

Dwork et al. [49] Fairness in learning Concept of
differential privacy Improve fairness

Not only enforce
fairness but also
detect unfairness

An available similarity
metric is assumed

a prerequisite

Zemel et al. [51] Fairness in learning Concept of
differential privacy Improve fairness Simultaneously encode

and obfuscate data Representation dependent

Xu et al. [52] Fairness in learning Laplace
mechanism

Improve fairness and
preserve privacy

Achieve both fairness
and privacy

For logistic
regression only

Jagielski et al. [54] Fairness in learning Laplace
mechanism

Improve fairness and
preserve privacy

Achieve both
fairness and privacy Need large dataset

Ding et al. [53] Fairness in learning Functional
mechanism

Improve fairness and
preserve privacy

Achieve both fairness
and privacy

For logistic
regression only

The second type of attack is an attribute inference at-
tack. The aim of an attribute inference attack is to learn
hidden sensitive attributes of a test input given access to the
model and information about the non-sensitive attributes
[64]. Fredrikson [64] describes a typical attribute inference
attack method, which attempts to maximize the posterior
probability estimate of the sensitive attributes based on the
values of non-sensitive attributes.

4.1.2 Differential privacy in deep neural networks

Some of the properties of differential privacy are naturally
resistant to membership and attribute inference attacks. An
intuitive way to resist inference attacks is to properly add
differentially private noise to the values of the sensitive
attributes before using the dataset to train a model. In a
typical deep learning algorithm, there are four places to
add noise, as shown in Figure 5. The first place is the
training dataset, where the noise is derived from an input
perturbation mechanism. This operation occurs before the
training starts and is usually done to resist attribute infer-
ence attacks.

x y

w Loss Function L(w, x)

SGD Solution of L(w,x)

min L(w,x)

Differential privacy1

1

2 3

4

5

Fig. 5. Differential privacy in deep learning

The second place is the loss function, which yields an
objective perturbation mechanism. This operation occurs
during training and is usually done to resist membership
inference attacks.

The third place is the gradients at each iteration, i.e., a
gradient perturbation mechanism. Gradients are computed
using the loss function to do partial-derivative against the
weights of the deep neural network. Likewise, this oper-
ation occurs during training and is usually done to resist
membership inference attacks.

The fourth place is the weights of the deep neural
network, constituting the learned model, called an out-
put perturbation mechanism. This operation happens once

training is complete. The operation is easy to implement
and can resist both membership and attribute inference
attacks. However, directly adding noise to the model may
significantly harm its utility, even if the parameter values in
differential privacy have been carefully adjusted.

Of these four places, adding noise to the gradients is
the most common method. However, because the gradient
norm may be unbounded in deep learning, a bound must be
imposed before applying gradient perturbation. A typical
way is to manually clip the gradient at each iteration [65].
Such a clipping can also provide a sensitivity bound with
differential privacy. Table 3 summarizes the properties of
the mentioned attacks and their defence strategies.

From Table 3, we can see that adding noise to a dataset
can defend against attribute inference attacks. Since the
aim of attribute inference attacks is to infer the values of
sensitive attributes, directly adding noise to these values is
the most straightforward and efficient method of protecting
them. However, this method may significantly affect the
utility of the learned model, because it is heavily dependent
on the values of the attributes in the training dataset, and
using a dataset with modified attribute values to learn a
model is similar to using a “wrong” dataset.

By comparison, adding noise to the loss function or
gradient only slightly affects the utility of the learned model.
This is because the noise is added during the training
process and the model can be corrected by taking the noise
into account. Adding noise to the loss function or gradient
can resist membership inference attacks, which can be guar-
anteed by the properties of differential privacy. However,
adding noise to the loss function or gradient does not offer
much resistance to attribute inference attacks. As mentioned
before, a typical attribute inference attack needs two pieces
of information: 1) the underlying distribution of the training
dataset; and 2) the values of non-sensitive attributes. These
two pieces of information are not modified when adding
noise to the loss function or gradient.

Finally, adding noise to the weights or classes of a neural
network can resist both membership and attribute inference
attacks. This is because adding noise to the weights will
modify the learned model and both of these types of attacks
need to access the learned model to launch an attack. The
downside is that adding noise to a learned model after
training may drastically affect its utility, and retraining the
model will not correct the problem as noise simply needs
to be added again. Noise could be added to the weights
in each iteration of training. However, this method might
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TABLE 3
Attacks and defense in deep learning

Noise Membership inference attack Attribute inference attack Privacy guarantee Performance impact

Dataset [66] X very strong high
Loss function [67] X strong low

Gradient [65], [68], [69] X strong low
Weights [70], [71] X X very strong very high

Classes [72], [73], [74] X X very strong low

affect convergence, since the output of the algorithm is
computed based on the weights. Hence, if noise is added to
each weight, the total amount of noise might become large
enough to make the loss never convergent. Adding noise to
the classes has the similar disadvantage for the same reason.

4.2 Differential privacy in distributed deep learning
4.2.1 Overview of distributed deep learning
Conventional deep learning is limited to a single-machine
system, where the system has all the data and carries out
the learning independently. Distributed deep learning tech-
niques, however, accelerate the learning process. Two main
approaches are applied in distributed deep learning: data
parallelism and model parallelism [58]. In data parallelism,
a central model is replicated by a server and distributed to
all the clients. Each client then trains the model based on
her own data. After a certain period of time, each client
summarizes an update on top of the model and shares
the update to the server. The server then synchronizes the
updates from all the clients and improves the central model.
In model parallelism, all the data are processed with one
model. The training of the model is split between multiple
computing nodes, with each computes only a subset of
the model. As data parallelism can intrinsically protect the
data privacy of clients, most research on distributed deep
learning focuses on data parallelism.

4.2.2 Differential privacy in distributed deep learning
As mentioned in the previous subsection, differentially pri-
vate noise can be added to five places in a deep neural
network. The following review is divided into methods
based on adding noise.

Adding noise to input datasets. Heikkila et al. [66] pro-
posed a general approach for privacy-preserving learning in
distributed settings. Their approach combines secure multi-
party communication with differentially private Bayesian
learning methods so as to achieve distributed differentially
private Bayesian learning. In their approach, each client i
adds a Gaussian noise to her data and divides them and
the noise into shares. Each share is then sent to a server. In
this way, the sum of the shares discloses the real value, but
separately they are just random noise.

Adding noise to loss functions. Zhao et al. [67] proposed a
privacy-preserving collaborative deep learning system that
allows users to collaboratively build a collective learning
model while only sharing the model parameters, not the
data. To preserve the private information embodied in the
parameters, a functional mechanism, which is an extended
version of the Laplace mechanism, was developed to per-
turb the objective function of the neural network.

Adding noise to gradients. Shokri and Shmatikov [68]
designed a system that allows participants to independently
train on their own datasets and share small subsets of their
models’ key parameters during training. Thus, participants
can jointly learn an accurate neural network model without
sharing their datasets, and can also benefit from the models
of others to improve their learning accuracy while still
maintaining privacy.

Abadi et al. [65] developed a differentially private
stochastic gradient descent algorithm for distributed deep
learning. At each iteration during the learning, Gaussian
noise is added to the clipped gradient to preserve privacy
in the model. In addition, their algorithm also involves a
privacy accountant and a moment accountant. The privacy
accountant computes the overall privacy cost during the
training, while the moment accountant keeps track of a
bound on the moments of the privacy loss random variable.

Cheng et al. [69] developed a privacy-preserving algo-
rithm for distributed learning based on a leader-follower
framework, where the leaders guide the followers in the
right direction to improve their learning speed. For effi-
ciency, communication is limited to leader-follower pairs.
To preserve the privacy of leaders, Gaussian noise is added
to the gradients of the leaders’ learning models.

Adding noise to weights. Jayaraman et al. [70] applied
differential privacy with both output perturbation and gra-
dient perturbation in a distributed learning setting. With
the output perturbation, each data owner combines their
local model with a secure computation and adds Laplace
noise to the aggregated model estimator before revealing
the model. With the gradient perturbation, the data owners
collaboratively train a global model using an iterative learn-
ing algorithm, where, at each iteration, each data owner
aggregates their local gradient within a secure computation
and adds Gaussian noise to the aggregated gradient before
revealing the gradient update.

Phan et al. [71] proposed a heterogeneous Gaussian
mechanism to preserve privacy in deep neural networks.
Unlike a regular Gaussian mechanism, this heterogeneous
Gaussian mechanism can arbitrarily redistribute noise from
the first hidden layer and the gradient of the model to
achieve an ideal trade-off between model utility and pri-
vacy loss. To obtain the property of arbitrary redistribution,
a noise redistribution vector is introduced to change the
variance of the Gaussian distribution. Further, it can be
guaranteed that, by adapting the values of the elements in
the noise redistribution vector, more noise can be added to
the more vulnerable components of the model to improve
robustness and flexibility.

Adding noise to output classes. Papernot et al. [72] de-
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veloped a model called Private Aggregation of Teacher
Ensembles (PATE) which has been successfully applied to
generative adversarial nets (GAN) for privacy guarantees
[75]. PATE consists 1) an ensemble of n teacher models; 2)
an aggregation mechanism; and 3) a student model. Each
teacher model is trained independently on a subset of pri-
vate data. To protect the privacy of data labels, Laplace noise
is added to the output classes, i.e., the teacher votes. Last,
the student model is trained through knowledge transfer
from the teacher ensemble with the public data and privacy-
preserving labels. Later, Papernot et al. [73] improved the
PATE model to make it applicable to large-scale tasks and
real-world datasets. Zhao [74] also improved the PATE
model by extending it to the distributed deep learning
paradigm. Each distributed entity uses deep learning to
train a teacher network on private and labeled data. The
teachers then transfer the knowledge to the student network
at the aggregator level in a differentially-private manner by
adding Gaussian noise to the predicted output classes of
the teacher networks. This transfer uses non-sensitive and
unlabeled data for training.

4.2.3 Summary of differential privacy in distributed deep
learning
Although a number of privacy-preserving methods have
been proposed for distributed deep learning, there are still
some challenging issues that have not yet been properly
addressed. The first issue is synchronization. If data paral-
lelism has too many training modules, it has to decrease
the learning rate to ensure a smooth training procedure.
Similarly, if model parallelism has too many segmentations,
the output from the nodes will reduce training efficiency
[58]. Differential privacy offers potential for solving this
issue. Technically, the challenge is a coordination problem,
where modules or nodes collaboratively perform a task, but
each has a privacy constraint. This coordination problem
can be modeled as a multi-player cooperative game, and
differential privacy has been proven as effective for achiev-
ing equilibria in this game [76].

The second issue is collusion. Most of the existing meth-
ods assume non-collusion between multiple computation
parties. This assumption, however, may fail in some situ-
ations. For example, multiple service providers may collude
to obtain a user’s private information. Joint differential
privacy may be able to address this issue, as it has been
proven to successfully protect any individual user’s privacy
even if all the other users collude against that user [77].

The third issue is privacy policies. Most existing methods
rely on privacy policies that specify which data can be used
by which users according to what rules. However, there
is no guarantee that all the users will strictly follow the
privacy policies. Differential privacy may be available to
deal with this issue, as differential privacy can guarantee
users will truthfully report their types and faithfully follow
the recommendations given by the privacy policies.

4.3 Differential privacy in federated learning
4.3.1 Overview of federated learning
Federated learning enables individual users to collabora-
tively learn a shared prediction model while keeping all the

Smart 

device

Smart 

device

Smart 

device

Training centre

...

Personalised models

General model

PP P

MaintainCommunication

Fig. 6. Federated Learning Framework

training data on the users’ local devices. Federated learning
was first proposed by Google in 2017 as an additional
approach to the standard centralised machine learning ap-
proaches [78], and has been applied to several real-world
applications [79].

Fig. 6 shows the structure of a simple federated learning
framework. First, the training centre distributes a general
learning model, trained on general data, to all the smart
devices in the network. This model is used for general pur-
poses, such as image processing. In a learning iteration, each
user downloads a shared model from the training centre
to their local device. Then, they improve the downloaded
model by learning from their own local data. Once complete,
the changes to each user’s local model are summarized as a
small update, which is sent to the training centre through
a secure communication channel. Once the cloud server
receives all the updates, the shared model is improved
wholesale. During the above learning process, each user’s
data remain on their own device and is never shared with
either the training centre or another user.

However, although private user data cannot be directly
obtained by others, it may be indirectly leaked through the
updates. For example, the updates of the parameters in an
optimization algorithm, such as stochastic gradient descent
[80], may leak important data information when exposed
together with data structures [81]. Differential privacy can,
however, resolve this problem, as explained next.

4.3.2 Applying differential privacy in federated learning
Although no training data is transferred from mobile de-
vices to the cloud centre in federated learning, simply
keeping data locally does not provide a strong enough
privacy guarantee when conventional learning methods are
used. For example, adversaries can use differential attacks
to discover what data was used during training through
the parameters of the learning model [2]. To protect against
these types of attacks, several algorithms that incorpo-
rate differential privacy have been proposed that ensure
a learned model does not reveal whether the data from a
mobile device was used during training [82].

Adversaries can also interfere with the messages ex-
changed between communicating parties, or they can col-
lude among communicating parties during training to at-
tack the accuracy of the learning outcomes. To ensure
the resulting federated learning model maintains accept-
able prediction accuracy, approaches using both differential
privacy mechanisms and secure multiparty computation
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frameworks have been created, providing formal data pri-
vacy guarantees [83].

Geyer et al. [2] incorporated differential privacy mech-
anisms into federated learning to ensure that whether an
individual client participates in the training cannot be iden-
tified. This approach protects the entire data of an individual
client. To achieve this aim, in each communication round,
a subset of the total clients is randomly selected. Then,
the difference between the central model and each of the
selected client’s local model is calculated, and Gaussian
noise is added to the difference.

Shi et al. [84] investigated a distributed private data
analysis setting, where multiple mutually distrustful users
co-exist and each of them has private data. There is also
an untrusted data aggregator in the setting who wishes to
compute aggregate statistics over these users. The authors
adopted computational differential privacy to develop a
protocol, which can output meaningful statistics with a
small total error even when some of the users fail to re-
spond. Also, the protocol can guarantee the privacy of hon-
est users, even when a portion of the users are compromised
and colluding.

Agarwal et al. [85] combined two aspects of distributed
optimization in federated learning: 1) quantization to reduce
the total communication cost; and 2) adding Gaussian noise
to the gradient before sending the result to the central
aggregator to preserve the privacy of each client.

4.3.3 Summary of differential privacy in federated learning
The main advantage of the federated leaning model is that
none of the training data needs be transferred to the cloud
centre which satisfies the basic privacy concerns of mobile
device users can be satisfied. However, federated learning
has some unique challenges, mainly in the following three
respects:

• Issues related to attacks on various vulnerabilities of
the federated learning model and the countermea-
sures to defend against these attacks. For example,
adversaries can use differential attacks to determine
which mobile users have been included in the learn-
ing process [86]; messages can be tampered with; and
adversaries can use model poisoning attacks to cause
the model to misclassify a set of chosen inputs with
high confidence [87], [88].

• Issues related to the learning algorithms, such as the
requirements of accuracy, scalability, efficiency, fault-
tolerance, etc. [78], [89].

• Issues related to the structure of the federated learn-
ing system, including its communication efficiency,
the computational and power limitation of the mo-
bile devices, the reliability of the mobile devices
and communication system, etc. [86]. This issue can
potentially be tackled through the composition prop-
erty of differential privacy by fixing the privacy
budget and forcing all communications to consume
that budget.

To effectively use federated learning in various applica-
tions, we first need to overcome the challenges related to
attacks, the system structures, and the learning algorithms.
Therefore, intensive research addressing these challenges

will be required in the near future. The second future
development will be to explore the power and benefits of
federated learning for both new and existing applications,
especially now that mobile devices are ubiquitous. The third
future development will be the automation of tools that use
federated learning and the emergence of companies provid-
ing such services to meet the various needs of business and
individual customers.

4.4 Summary of differential privacy in deep learning

Table 4 summarizes the papers that apply differential pri-
vacy to distributed deep learning and federated learning.
In this summary, we can see that most of these papers
make use of the Gaussian mechanism. This is because the
probability density function of the Gaussian distribution is
differentiable, and this property is necessary for calculating
the gradient of a learning model. The Laplace mechanism
does not have this property, so that it was seldom to be
applied in deep learning.

It is worth pointing out that simply using differential
privacy mechanisms during a learning process may not
provide enough security to protect the privacy of a learning
model or the training data. This is because an adversary,
who is pretending to be an honest participant, can use a
GAN [10] to generate prototypical samples of a victim’s
private training dataset, and because the generated samples
have the same distribution as the victim’s training dataset,
the adversary can bypass the protection of differential pri-
vacy [90]. A potential solution against this security issue is
to use local differential privacy. Unlike regular differential
privacy which takes into account all users’ data in a dataset,
local differential privacy add randomization on single user’s
data [91]. Thus, local differential privacy has a finer granu-
larity and stronger privacy guarantee. Even if an adversary
has the access to the personal responses of an individual
user in the dataset, the adversary is still unable to learn
accurate information about the user’s personal data.

Moreover, there are two urgent research problems which
need further investigation. The first direction is model inver-
sion attack and its defense [92], [93]. Model inversion attacks
aim to infer the training data from a target model’s pre-
dictions. To implement model inversion attacks, a popular
method is to train a second model called attack model [93].
The attack model takes the target model’s predictions as
input and outputs reconstructed data which are expected to
be very similar to the training data of the target model. Most
of existing defense methods focus only on membership in-
ference attacks so that their effectiveness on model inversion
attacks is still unclear. A potential defense method against
model inversion attacks is to adopt differential privacy to
modify the target model’s predictions. The major reason
of the success of model inversion attacks is owning to
the redundant information contained in the target model’s
predictions. Thereby, if this redundant information can be
destroyed, the attacks can be effectively defended.

The second direction is the client accuracy in federated
learning. In regular federated learning, the server takes the
updates from all clients equally, aiming to minimize an
aggregate loss function in general. However, minimizing an
aggregate loss function cannot guarantee the accuracy of
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TABLE 4
Summary of differential privacy in deep learning

Papers Research areas Techniques used Research aims Advantages Disadvantages

Papernot et al. [72] Deep learning Laplace
mechanism Preserve privacy Independent of

learning algorithms
Suitable only for
small-scale tasks

Papernot et al. [73] Deep learning Gaussian
mechanism Preserve privacy Suitable for

large-scale tasks
Need two

aggregators

Shokri et al. [68] Distributed
deep learning

Sparse
vector technique Preserve privacy

Preserve the privacy of
participants without

sacrificing the accuracy of
resulting models

Vulnerable to Generative
Adversarial Network

-based attacks [90]

Abadi et al. [65] Distributed
deep learning

Gaussian
mechanism Preserve privacy

Preserve the privacy of
deep neural networks

with non-convex
objectives

Effective in
a limited number of

deep neural networks

Heikkila et al. [66] Distributed
deep learning

Gaussian
mechanism Preserve privacy Achieve DP in

distributed settings
Sacrifice

learning performance

Cheng et al. [69] Distributed
deep learning

Gaussian
mechanism Preserve privacy

Low differential
privacy budget and

high learning accuracy

High communication
overhead

Zhao [74] Distributed
deep learning

Gaussian
mechanism Preserve privacy

Use the teacher-student
paradigm to improve
learning performance

High communication
overhead

Jayaraman et al. [70] Distributed
deep learning

Zero-concentrated
DP mechanism Preserve privacy

Both output and gradient
are protected with

reduced noise

Data owners’ utility
cannot be maximized

Zhao et al. [67] Distributed
deep learning

Exponential and
Laplace mechanism

Preserve privacy and
improve stability

Preserve the privacy
of collective deep

learning systems with
the existence of

unreliable participants

Accuracy is less than
the centralized methods

Phan et al. [71] Distributed
deep learning

Gaussian
mechanism Preserve privacy Achieve tight

robustness bound
Model accuracy

is sacrificed

Geyer et al. [2] Federated learning Gaussian
mechanism Preserve privacy

Balance tradeoff
between privacy loss

and model performance

Model performance
depends on the

number of clients

Shi et al. [84] Federated learning Concept of
differential privacy Preserve privacy No P2P communication

and fault tolerance
Focus only on

multi-input functions

Agarwal et al. [85] Federated learning Gaussian and
binomial mechanisms Preserve privacy

Achieve both
communication efficiency
and differential privacy

The analysis of
binomial mechanism

may not be tight

individual clients in the federated network [94], [95], which
is unfair to the clients. To improve the learning accuracy of
the clients, Li et al. [95] introduce an aggregate re-weighted
loss function in federated learning, where different clients
are allocated different weights. A limitation in this type of
method is that the server still need to send all the clients
the same model update. This limitation could be overcome
by enabling the server to send different model updates to
different clients according to each client’s requirements. The
server could use joint differential privacy [76] to differenti-
ate the model updates in federated learning.
5 DIFFERENTIAL PRIVACY IN MULTI-AGENT SYS-
TEMS

A multi-agent system is a loosely coupled group of agents,
such as sensor networks [96], power systems [97] and cloud
computing [98], interacting with one another to solve com-
plex domain problems [99], [100]. An agent is an intelligent
entity that can perceive its environment and act upon the
environment through actuators. Currently, multi-agent sys-
tems face challenges with privacy violation, security issues
and communication overhead.

In Mcsherry et al.’s early work [14], differential pri-
vacy mechanisms were applied to auctions to diminish the
impact of untrusted participants. In multi-agent systems,
differential privacy mechanisms can also avoid malicious
agents through a similar mechanism. There is an increasing
trend to apply differential privacy techniques to multi-
agent systems so as to preserve the agents’ privacy [101] or
improve the agents’ performance [102]. This section focuses
on some key sub-areas of multi-agent systems, including
multi-agent learning, auction, and game theory.

5.1 Differential privacy in multi-agent reinforcement
learning

Multi-agent learning is generally based on the reinforcement
learning [103]. Normally, an agent learns proper behavior
through the interactions with their environment and other
agents in a trial-and-error manner. Every time an agent
performs an action, they receive a reward which tells them
how good that action was for accomplishing the given
goal. Importantly, agents can and do change their strategy
to get or better rewards. Therefore, the aim of the agent
is to maximize its long-term expected reward by taking
sequential actions.

For example, Figure 7 shows a set of sweeper robots
(the agents with smiling or crying faces) who are collecting
rubbish from a grid (the red diamonds). When a robot plans
to move to the corner of the grid, it may try to move to the
right first. However, if it bumps into the wall, it receives a
very low reward; thus, the robot learns that moving to the
right from its current location is not a good idea.

Standard multi-agent learning approaches may need a
large number of interactions between agents and an en-
vironment to learn proper behaviors [104]. Therefore, to
improve agent learning performance, agent advising was
proposed, where agents are allowed to ask for advice from
each other [105]. For example, the robot in position (1, 1)
in Fig. 7 can ask its neighbor in (2, 2) for advice and may
obtain the knowledge that it cannot move to the left from its
current location.

Existing agent advising approaches, however, suffer
from malicious agents who may provide false advice to
hinder the performance of the system, and heavy communi-
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cation overheads [106], [107] because agents are allowed to
broadcast to all their neighboring agents for advice [106],
[107]. For example, in Figure 7, the malicious robot (the
crying face) may provide false information to the other
robots so that the rubbish is not collected in time.

Agent 1

Agent 2 S: {coordination in the grid}

R: {high, low, negative}

A: {north, south, east, west}

Malicious

Fig. 7. A multi-agent learning example

5.1.1 Differential privacy to improve the security of the re-
inforcement learning
Differential privacy mechanisms can provide a security
guarantee that a malicious agent being in or out of a multi-
agent system has little impact on the utility of other agents.
As the probability of selecting neighbors to ask for advice
is based on the reward history provided by neighbors,
exponential or Laplace mechanisms can be applied to this
step to diminish the impact of malicious agents on security
purpose. Moreover, the composition of the privacy budget
can naturally control the communication overhead, namely
by limiting the amount of advice allowed throughout the
whole system.

Ye et al. [8] proposed a differentially private framework
to deal with malicious agents and communication overhead
problems. Using Fig. 7 as an example, suppose each agent
in the grid environment wants to move to the corner and
has the moving knowledge that can be shared with others.

Advice request

Advice 1

Advice 2

Adjust chosen 

probability based on dp 

Agent 1 Agent 2 Malicious Agent

Advice request

Fig. 8. Differentially private multi-agent system

Fig. 8 illustrates the process of agent interaction in this
example. Agent 2 send out an advice request to its neigh-
bors. Agent 1 and the malicious agent would give advice
to agent 2. Agent 1’s advice will include the best action in
agent 2’s state according to agent 1’s knowledge. However,
the malicious agent will always give false advice. After
receiving advice from both neighbors, agent 2 performs
a differentially private adviser selection algorithm, which
applies an exponential mechanism to adjust the chosen
probabilities. Because the malicious agent always provides
false advice, the exponential mechanism may filter its advice

with a high probability. So that the impact of the malicious
agent will be diminished. The system will stop communicat-
ing when the privacy budget is used up, so that the privacy
budget can be used to control the communication overhead.

5.1.2 Summary of differential privacy in reinforcement
learning
Differential privacy technology has been proven to improve
the performance of agent learning in addition to its use as
a privacy-preservation tool. Compared to the benchmark
broadcast-based approach, the differential privacy approach
achieves a better performance (normally evaluated by the
total reward of the system and the convergence rate) with
less communication overhead when malicious agents are
present. However, further exploration of differential privacy
technique in new environments, such as a dynamic or an
uncertain environment, would be worthwhile.

5.2 Differential privacy in auction
Auction-based approaches are effective in multi-agent sys-
tems for task and resource allocation [108]. Normally, there
are three parties in an auction, including a seller, an auc-
tioneer and a group of buyers. The auctioneer presents the
item and receives bids from the buyers following a pre-
established bidding convention. This convention determines
the sequence of bids as well as the way to decide the winner
and the price. The current privacy-preserving mechanisms
are mainly based on cryptography and multi-party secure
computation. However, there may still be privacy leaks if
one infers their sensitive information from the auction’s out-
comes. Differential privacy techniques can help to combat
this issue [109]. The current differentially private auction
mechanisms are mostly designed for spectrum allocation
in wireless communication. Radio spectrum is a scarce re-
source and thus, the allocation of it needs to be managed
carefully. However, communication also comes with a high
desirability for security, resulting in several private spec-
trum auction mechanisms.

Zhu et al. [110] proposed a differentially private spec-
trum auction mechanism with approximate revenue max-
imization. Their mechanism consists of three steps. First,
the auctioneer partitions the bidders into groups and sub-
groups. Second, the auctioneer initializes the set of prices
and calculates the probability distribution over these prices
using the exponential mechanism. Finally, based on the
probability distribution, the auctioneer randomly selects a
price as the auction payment, and the corresponding bid-
ders are pronounced the winners.

Zhu and Shin [111] alternative achieves strategy-
proofness and is polynomially tractable. The mechanism
performs an auction in four steps. The auctioneer first
partitions bidders into groups. The auctioneer then creates
virtual channels for bidders based on their geographical
locations and a conflict graph. Next, the auctioneer com-
putes the probability of selecting each bidder as the winner.
Finally, the auctioneer selects the winner based on an ex-
ponential mechanism and determines the payment for the
winner.

Wu et al. [112] developed a differentially private auction
mechanism which guarantees bid privacy and achieves ap-
proximate revenue maximization. In their mechanism, the
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auctioneer first groups bidders based on their conflict graph,
and next determines the price for winners in each group
using an exponential mechanism. Finally, the auctioneer
selects the winner based on sorted group revenues.

Chen et al. [109] designed a differentially private double
spectrum auction mechanism. Their mechanism is a uniform
price auction mechanism, where all sellers are paid with
a selling clearing price and all buyers groups are charged
with a buying clearing price. They apply an exponential
mechanism twice, once to select a selling clearance price
and again to select a buying clearance price.

In addition to spectrum allocation, differentially private
auction mechanisms have also been developed for resource
allocation in cloud computing. Xu et al. [113] proposed a
differentially private auction mechanism for trading cloud
resources, which preserves the privacy of individual bid-
ding information and achieves strategy-proofness. Their
mechanism iteratively progresses through a set of rounds,
where each round consists of four steps. The auctioneer first
uses the exponential mechanism to compute the probability
distribution over the set of current bids. Next, the auctioneer
randomly selects a bid from the set as the winner in the cur-
rent round. The auctioneer then creates a payment scheme
for the winner. Finally, the winner is removed from the set.

5.2.1 Summary of differential privacy in auctions
Although differential privacy in auctions has been widely
accepted, these approaches typically assume a seller or an
auctioneer can directly interact with all potential buyers.
This assumption, however, may not be applicable to some
real situations, where sellers and buyers are organized in a
network, e.g., social networks [114], [115]. Auctions in social
networks introduce new challenging privacy issues.

The first issue is the bidding propagation. In a social
network, a bid from a buyer cannot be sent directly to the
seller but has to be propagated by other agents to the seller.
These intermediate agents may be potential buyers and are
thus competitive to that buyer. Therefore, the bid value of
that buyer is private and cannot be disclosed to others. An
intuitive way to protect the privacy of that buyer is to add
Laplace noise to the bid value. However, this does not stop
the problem of a seller receiving a fake bid and making a
wrong decision.

The second issue is social relationships. During bid prop-
agation, a trajectory forms which indicates who is engaged
in the propagation. By investigating this trajectory, the seller
may learn things about the buyer’s social relationships.

5.3 Differential privacy in game theory

Game theory is a mathematical model used to study the
strategic interaction among multiple agents or players [116].
Game theory has been broadly studied and applied in
various domains, e.g., economic science [117], social science
[116] and computer science [118]. Most of these studies,
however, overlook the privacy of agents, the malicious
agents or the stability of the game playing process. To
tackle these issues, differential privacy techniques have been
introduced into game theory [119], [120], [121].

Differential privacy-based game theory research can be
roughly classified into two categories: 1) using differential

privacy to improve the performance of game theory, e.g.,
stability and equilibrium, and 2) applying differential pri-
vacy to preserve the privacy of agents in games.

5.3.1 Differential privacy to improve the performance
Kearns et al. [76] developed a differentially private rec-
ommender mechanism for incomplete information games.
Thanks to differential privacy techniques, their mechanism
achieves equilibria of complete information games even
with a large number of players and any player’s action
only slightly affects the payoffs for other players. Their
mechanism offers a proxy that can recommend actions to
players. Players are free to decide whether to opt in to
the proxy, but if players do opt in, they must truthfully
report their types. In addition to satisfy the game-theoretic
properties, the mechanism also guarantees player privacy,
namely that no group of players can learn much about the
type of any player outside the group.

Rogers and Roth [122] improved the performance and
defense of malicious users by expanding on Kearns et al.’s
work [76] to allow players to falsely report their types even
if the players opt in to the proxy. They theoretically show
that by using differential privacy to form an approximate
Bayes-Nash equilibrium, players have to truthfully report
their types and faithfully follow the recommendations.

Pai et al. [102] improved game performance as well. They
studied infinitely repeating games of imperfect monitoring
with a large number of players, where players observe
noisy results, generated by differential privacy mechanisms,
about the play in the last round. The authors find that,
theoretically, folk theorem equilibria may not exist in such
settings, which concern all the Nash equilibria of an in-
finitely repeated game. Based on this finding, they yield an-
tifolk theorems [123], where restrictions are imposed on the
information pattern of repeated games such that individual
deviators cannot be identified [124].

Lykouris et al. [125] increased game stability by an-
alyzing the efficiency of repeated games in dynamically
changing environments and population sizes. They draw
a strong connection between differential privacy and the
high efficiency of learning outcomes in repeated games with
frequent change. Here, differential privacy is used as a tool
to find solutions that are close to optimal and robust to
environmental changes.

Han et al. [126] developed an approximately truthful
mechanism to defend against malicious users in an appli-
cation to manage the charging schedules of electric vehicles.
To ensure users to truthfully report their specifications, their
mechanism takes advantage of joint differential privacy
which can limit the sensitivity of the scheduling process
to changes in user specifications. Therefore, any individ-
ual user cannot benefit from misreporting his specification,
which results in truthful reports.

5.3.2 Applying differential privacy to preserve the privacy
Hsu et al. [127] modelled the private query-release problem
in differential privacy as a two-player zero-sum game be-
tween a data player and a query player. Each element of the
data universe for the data player is interpreted as an action.
The data player’s mixed strategy is a distribution over her
databases. The query player has two actions for each query.
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The two actions are used to penalize the data player, when
the approximate answer to a query is too high or too low. An
offline mechanism, based on the Laplace mechanism, is then
developed to achieve the private equilibrium of the game.

Zhang et al. [77] developed a general mobile traf-
fic offloading system. They used the Gale-Shapley algo-
rithm [128] to optimize the offloading station allocation plan
for mobile phone users. In this algorithm, to protect users’
location privacy, they proposed two differentially private
mechanisms based on a binary mechanism [129]. The first
mechanism is able to protect the location of privacy of
any individual user when all the other users are collud-
ing against this user, but the administrator is trusted. The
second mechanism is stronger than the first mechanism
because it assumes that even the administrator is untrusted.

Zhou et al. [130] adopted an aggregation game to model
spectrum sharing in large-scale and dynamic networks,
where a set of users compete for a set of channels. They
then applied differential privacy techniques to guarantee
the truthfulness and privacy of the users. Specifically, they
use a Laplace mechanism to add noise to the cost threshold
and users’ costs to protect this information. Moreover, they
use an exponential mechanism to decide the mixed strategy
aggregative contention probability distribution for each user
so as to preserve the privacy of users’ utility functions.

5.3.3 Summary of differential privacy in game theory
The current research on differential privacy in game theory
has mainly focused on static environments. These same
issues in dynamic environments are generally still open. Of
the little research that does consider dynamic environments
[125], only changes in population are considered while
overlooking changes in other areas, such as the strategies
available to each agent or the utility of each of those
strategies. Studying game theory with changing available
strategies is a challenging issue, as these types of changes
may result in no equilibria between agents. This is because
no matter which strategy is taken by an agent, other agents
may always have strategies to defeat that agent. In other
words, other agents are incentivized to unilaterally change
their strategies. However, since differential privacy can be
used to force agents to report truthfully, it may also be used
to force agents to reach equilibria.

5.4 Summary of multi-agent systems

Table 5 summarizes the papers that apply differential pri-
vacy to multi-agent systems. In this summary, three im-
portant facts are involved. First, some of these papers use
differential privacy not to preserve the privacy of agents
but for other aims, e.g., avoiding malicious agents and
improving agents’ performance. This implies that the dif-
ferential privacy technique is able to achieve other research
aims besides privacy preservation. In keeping with this
spirit, more potential applications of differential privacy are
worthy of research. Second, by using differential privacy,
the common disadvantage is that only approximate optimal
results can be achieved. Thus, more efficient differential
privacy mechanisms need to be developed.

Third, most of these papers involve agent interaction;
and differential privacy is adopted to guarantee the privacy

of interaction information. Therefore, other multi-agent re-
search, which involves agent interaction, may also enjoy
the benefits of differential privacy and deserves further
investigation. For example, multi-agent negotiation enables
multiple agents to alternatively provide offers to reach
agreements on given events or goods [131]. However, offers
may explicitly or implicitly contain agents’ sensitive infor-
mation, e.g., commercial secrets, which should be protected.
Another example is multi-agent resource allocation. To allo-
cate resources fairly, agents have to reveal their preference
over different types of resources to others [132]. The prefer-
ence, however, might be what the agents incline to hide. In
summary, differential privacy has a great potential to solve
diverse problems in multi-agent system.

6 FUTURE RESEARCH DIRECTIONS

6.1 Private transfer learning

In addition to introducing differential privacy into stan-
dalone machine learning, differentially private transfer
learning has also been investigated [133], [134]. Transfer
learning aims to transfer knowledge from source domains
to improve learning performance in target domains [134].
It is typically used to handle the situation that data are not
stored in one place but distributed over a set of collaborative
data centers [135], [136]. For example, transfer learning can
be used in speech recognition to transfer the knowledge
of connectionist temporal classification model to the target
attention-based model to overcome the problem of limited
speech resource in the target domain [137]. Transfer learning
can also be used in recommendation systems to address the
data-sparsity issue by enabling knowledge to be transferred
among recommendation systems [138]. Instead of transfer-
ring raw data, the intermediate computation results are
transferred from source domains to target domains. How-
ever, even the intermediate results are potentially vulnerable
to privacy-breach [139], which is the motivation of privacy-
preserving transfer learning.

6.2 Deep reinforcement learning

Deep reinforcement learning is a combination of reinforce-
ment learning and deep learning [140], and could be used
to solve a wide range of complex decision-making prob-
lems that were previously beyond the capability of regu-
lar reinforcement learning. The learning process of deep
reinforcement learning is similar to regular reinforcement
learning in that both are based on trial-and-error. However,
unlike regular reinforcement learning which may use a
reward value table (Q-table) to store learned knowledge,
deep reinforcement learning uses a deep Q-network instead.
One of the advantages of using a deep Q-network is that
deep reinforcement learning can take high-dimensional and
continuous states as inputs, which is close to unfeasible with
regular reinforcement learning.

Differential privacy in deep reinforcement learning has
not been researched thoroughly. Wang and Hegde [141]
applied differential privacy to deep reinforcement learn-
ing to protect the value function approximator by adding
Gaussian to the objective function, but their work still
focuses on the “deep learning” aspects of the approach
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TABLE 5
Summary of differential privacy in multi-agent systems

Papers Research areas Techniques used Research aims Advantages Disadvantages

Ye et al. [8] Multi-agent learning Laplace
mechanism

Avoid
malicious agents

Avoid malicious agents
with low communication

and computation overhead

Malicious agents
cannot be identified

Zhu et al. [110] Auction in spectrum Exponential
mechanism Preserve privacy

Guarantee both the
truthfulness of bidders’

valuations and
their privacy

Only approximate
revenue maximization

Zhu and Shin [111] Auction in spectrum Exponential
mechanism Preserve privacy

Preserve the privacy of
both bidders and

the auctioneer together

Only near optimal
revenue achieved

Wu et al. [112] Auction Exponential
mechanism Preserve privacy Guarantee both

bid privacy and fairness
Only approximate

revenue maximization

Chen et al. [109] Auction in spectrum Exponential
mechanism Preserve privacy

Preserve the privacy
of bidders in

double spectrum auctions

Only approximate social
welfare maximization

Xu et al. [113] Auction in
cloud computing

Exponential
mechanism Preserve privacy

Preserve the privacy of
consumers in

cloud environments

Only approximate
truthfulness and revenue
maximization guarantees

Hsu et al. [127] Game theory in
databases

Laplace
mechanism Preserve privacy

Preserve the privacy of
both individuals and

analysts of
database systems

Achieve only nearly
optimal error rates

Kearns et al. [76] Game theory Concept of
differential privacy

Preserve privacy and
Improve performance

Implement equilibria of
complete information
games in settings of

incomplete information

The type of a player
is still possible
to be revealed

Rogers and Roth [122] Game theory Concept of
differential privacy

Preserve privacy and
avoid malicious agents

Implement equilibria of
complete information
games in settings of

incomplete information
even if players

are lying

The type of a player
is still possible
to be revealed

Zhang et al. [77] Game theory in
mobile communication

Binary
mechanism Preserve privacy

Preserve each user’s
location privacy even if

other users collude

The system administrator
is required to be

honest or semi-honest

Zhou et al. [130] Game theory in
spectrum sharing

Laplace and
exponential
mechanisms

Preserve privacy
Guarantee both

truthfulness and privacy
of users

Achieve only
approximate Nash

equilibrium

Pai et al. [102] Game theory Concept of
differential privacy Improve performance Quantify limit results

for repeated games
Achieve only

approximate equilibria

Lykouris et al. [125] Game theory Concept of
differential privacy Improve stability

Connect differential
privacy with learning

efficiency in
dynamic games

The solution is
approximate optimal

Han et al. [126] Game theory in
electric vehicles

Laplace
mechanism Avoid malicious agents Reduce the incentive

of user misreporting
Achieve only

approximate truthfulness

rather than the “reinforcement learning” parts. Compared
to standard reinforcement learning and deep learning, deep
reinforcement learning has some unique features. First, the
training samples are collected during learning rather than
pre-assembled before learning. Second, the training samples
may not be independent but rather highly correlated. Third,
the training samples are not usually labelled. Thus, to avoid
overfitting with deep reinforcement learning, experience
replay is required, which means randomly selecting a set
of samples for training in each iteration. As discussed in
the previous sections, differential privacy can improve the
stability of learning. Therefore, it may be interesting to
research whether introducing differential privacy into deep
reinforcement learning can help to avoid overfitting.

6.3 Meta-learning
Meta-learning, also known as ‘learning to learn’, is a learn-
ing methodology that systematically observes how different
machine learning approaches perform on a wide range
of learning tasks and then learning from these observa-
tions [142], [143], [144]. In meta-learning, the goal of the
trained model is to quickly learn a new task from a small
amount of new data. Also, the trained model should be able
to learn on a number of different tasks [145], [146], but this
opens the risk of breaching the privacy of the different task
owners [147].

Recently, Li et al. [147] introduced differential privacy
into meta-learning to preserve the privacy of task owners.
Specifically, they use a certified (ε, δ)-differential privacy
stochastic gradient descent [148] with each task, which guar-
antees that the contribution of each task owner carries global
differential privacy guarantees with respect to the meta-
learner. However, to guarantee global differential privacy,
the number of tasks has to be known beforehand. This
is hard to know in some situations, such as online meta-
learning where tasks are revealed one after the other in a
dynamic manner [149]. Therefore, it would be worthwhile
developing a new differential privacy-based algorithm to
preserve the privacy of task owners in online meta-learning,

6.4 Generative adversarial networks
Generative adversarial networks (GANs) [10] are a frame-
work for producing a generative model by way of a two-
player minimax game. One player is the generator who
attempts to generate realistic data samples by transforming
noisy samples drawn from a distribution using a trans-
formation function with learned weights. The other player
is the discriminator who attempts to distinguish between
synthetic data samples created by the generator.

The GAN framework is one of the most successful learn-
ing models and has been applied to applications such as im-
itating expert policies [150] and domain transfer [151]. More



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3014246, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 16

recently, GANs have been extended to accommodate mul-
tiple generators and discriminators so as to address more
complex problems. Like other learning models, GAN frame-
works also suffer from the risk of information leaks. More
specifically, the generator model estimates the underlying
distribution of a dataset and randomly generates realistic
samples, which means the generator, through the power of
deep neural networks, remembers training samples. Now,
when the GAN model is applied to a private or sensitive
dataset, the privacy of the dataset may be leaked. To deal
with this problem, Xu et al. proposed a GAN-obfuscator
[152], i.e., a differentially private GAN framework, where
carefully designed Gaussian noise is added to the gradients
of learning models during the learning procedure. By using
the GAN-obfuscator, an unlimited amount of synthetic data
can be generated for arbitrary tasks without disclosing the
privacy of training data. However, although the framework
can guarantee the privacy of training data, there is only one
generator and one discriminator in this framework. There-
fore, a useful direction of future research might be to extend
these principles to multiple generators and discriminators
to address more complex problems.

6.5 Multi-agent systems

6.5.1 Multi-agent advising learning

When an agent is in an unfamiliar state during a multi-
agent learning process, it may ask for advice from another
agent [106]. These two agents then form a teacher-student
relationship. The teacher agent offers advice to the student
agent about which action should be taken. Existing research
is based on a common assumption that the teacher agent
can offer advice only if it has visited the same state as the
student agent’s current state. But this assumption might be
relaxed by using differential privacy technique.

The property of differential privacy can be borrowed to
address the advice problem. Two similar states are inter-
preted as two neighbouring datasets. The advice generated
from the states is interpreted as the query result yielded
from datasets. Since two results from neighbouring datasets
can be considered approximately identical, two pieces of
advice generated from two similar states can also be con-
sidered approximately identical. This property can thus
guarantee that advice created in a state can still be used
in another similar state. Hence, this may be an interesting
way to improve agent learning performance.

6.5.2 Multi-agent transfer learning

When agents transfer knowledge between each other to
improve learning performance, a key problem discussed is
that privacy needs to be preserved [107]. Existing methods
are typically based on homomorphic cryptosystems [153],
[154], [155]. However, homomorphic cryptosystems have a
high computation overhead and, therefore, may not be very
efficient in resource-constrained systems, e.g., wireless sen-
sor networks. Differential privacy, with its light computation
overhead, therefore, could be a good alternative in these
situations.

6.5.3 Multi-agent reasoning

Reasoning is an ability that enables an agent to use known
facts to deduce new knowledge. It has been widely em-
ployed to address various real-world problems. For ex-
ample, knowledge graph-based reasoning can be used in
speech recognition to parse speech contents into logical
propositions [156], and case-based reasoning can be adopted
to address the data-sparsity issue in recommendation sys-
tems by filling in the vacant ratings of the user-item matrix
[157]. A typical reasoning method is based on the Belief,
Desire and Intention (BDI) model [158]. An agent’s beliefs
correspond to information the agent has about the world.

Reasoning is a powerful tool in AI especially when it is
combined with deep neural networks. For example, Mao
et al. [159] has recently proposed a neuro-symbolic con-
cept learner which combines symbolic reasoning with deep
learning. Their model can learn visual concepts, words and
semantic parsing of sentences without explicit supervision
on any of them. As reasoning requires querying known facts
which may contain private information, privacy preserva-
tion becomes an issue in reasoning process. Tao et al. [160]
propose a privacy-preserving reasoning framework. Their
idea is to hide the truthful answer from a querying agent
by providing the answer “Unknown” to a query. Then, the
querying agent cannot distinguish between the case that
the query is being protected and the case that the query
cannot be inferred from the known facts. However, simply
hiding truthful answers may seriously hinder the utility
of querying results. Differential privacy, with its theoretical
guarantee of utility of querying results, may be a promising
technique for privacy-preserving reasoning.

Recently, there have been great efforts to combine dif-
ferential privacy with reasoning [161], [162], [163]. These
works, however, aim to take advantage of reasoning to
prove differential privacy guarantees of programs, in-
stead of using differential privacy to guarantee privacy-
preserving reasoning. Therefore, a potential direction of
future research may be introducing differential privacy into
reasoning process to guarantee the privacy of known facts.

6.6 Combination of machine learning, deep learning
and multi-agent systems

A novel research area by combining machine learning, deep
learning and multi-agent systems is the multi-agent deep
reinforcement learning (MADRL) [164]. In MADRL, multi-
agent system technique is used to coordinate the behaviors
of agents; machine learning technique is responsible for
guiding the learning process of agents; and deep learning
is employed by agents to learn efficient strategies.

One of the current research directions along MADRL is
the action advising [165], [166], [167]. Action advising in
regular multi-agent reinforcement learning allows a teacher
agent to offer only an action as advice to a student agent
in a concerned state. By comparison, action advising in
MADRL usually allows a student agent to query a teacher
agent’s knowledge base to receive action suggestions [167].
However, as the number of states in MADRL is very large,
an agent’s knowledge base may contain the agent’s very
rich private information that should be protected. Privacy-
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preservation in MADRL is still an open research problem
which may be addressed by using differential privacy.

7 CONCLUSION

In this paper, we investigated the use of differential privacy
in selected areas of AI. We described the critical issues
facing AI and the basic concepts of differential privacy,
highlighting how differential privacy can be applied to
solving some of these problems. We discussed the strengths
and limitations of the current studies in each of these areas
and also pointed out the potential research areas of AI
where the benefits of differential privacy remain untapped.
In addition to the three areas of focus in this article –
machine learning, deep learning and multi-agent learning
– there are many other interesting areas of research in
AI that have also leveraged differential privacy, such as
natural language processing, computer vision, robotics, etc.
Surveying differential privacy in these areas is something
we intend to do in future work.

REFERENCES

[1] X. Ge, Q.-L. Han, D. Ding, X.-M. Zhang, and B. Ning, “A survey
on recent advances in distributed sampled-data cooperative con-
trol of multi-agent systems,” Neurocomputing, vol. 275, pp. 1684–
1701, 2018.

[2] R. C. Geyer, T. Klein, and M. Nabi, “Differentially Private Fed-
erated Learning: A Client Level Perspective,” in Proc. of NIPS
Workshop on Machine Learning on the Phone and other Consumer
Devices, 2017.

[3] Úlfar Erlingsson, V. Pihur, and A. Korolova, “Rappor: Ran-
domized aggregatable privacy-preserving ordinal response,” in
Proceedings of the 21st ACM Conference on Computer and Communi-
cations Security, Scottsdale, Arizona, 2014.

[4] C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, and
A. Roth, “The reusable holdout: Preserving validity in adaptive
data analysis,” Science, vol. 349, no. 6248, pp. 636–638, 2015.

[5] T. Zhu and P. S. Yu, “Applying differential privacy mechanism in
artificial intelligence,” in 2019 IEEE 39th International Conference
on Distributed Computing Systems (ICDCS), 2019, pp. 1601–1609.

[6] A. Chouldechova and A. Roth, “The frontiers of fairness in
machine learning,” CoRR, vol. abs/1810.08810, 2018.

[7] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate, “Differentially
private empirical risk minimization,” Journal of Machine Learning
Research, vol. 12, pp. 1069–1109, 2011.

[8] D. Ye, T. Zhu, W. Zhou, and P. S. Yu, “Differentially Private Mali-
cious Agent Avoidance in Multiagent Advising Learning,” IEEE
Transactions on Cybernetics, p. DOI: 10.1109/TCYB.2019.2906574,
2019.

[9] S. Russell and P. Norvig, “Artificial intelligence: a modern ap-
proach,” 2002.

[10] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative Adver-
sarial Nets,” in Proc. of NIPS, 2014, pp. 2672–2680.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, pp. 770–778.

[12] C. Dwork, “Differential privacy,” in ICALP’06: Proceedings of the
33rd international conference on Automata, Languages and Program-
ming. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 1–12.

[13] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating
noise to sensitivity in private data analysis,” in TCC’06: Proceed-
ings of the Third conference on Theory of Cryptography. Berlin,
Heidelberg: Springer-Verlag, 2006, pp. 265–284.

[14] F. McSherry and K. Talwar, “Mechanism design via differential
privacy,” in 48th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS’07), Oct 2007, pp. 94–103.

[15] F. McSherry, “Privacy integrated queries: an extensible platform
for privacy-preserving data analysis,” Commun. ACM, vol. 53,
no. 9, pp. 89–97, 2010.

[16] T. Zhu, G. Li, W. Zhou, and P. S. Yu, “Differentially private
data publishing and analysis: A survey,” IEEE Transactions on
Knowledge and Data Engineering, vol. 29, no. 8, pp. 1619–1638, Aug
2017.

[17] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova,
and A. Smith, “What can we learn privately?” in 2008 49th Annual
IEEE Symposium on Foundations of Computer Science, 2008, pp. 531–
540.

[18] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate, “Differentially
Private Empirical Risk Minimization,” Journal of Machine Learning
Research, vol. 12, pp. 1069–1109, 2011.

[19] D. Wang, M. Ye, and J. Xu, “Differentially Private Empirical Risk
Minimization Revisited: Faster and More General,” in Proc. of
NIPS, 2017.

[20] C. Dwork and V. Feldman, “Privacy-preserving Prediction,” in
Proc. of COLT, 2018.

[21] Y. Dagan and V. Feldman, “PAC learning with stable and private
predictions,” https://arxiv.org/pdf/1911.10541.pdf, 2019.

[22] J. Foulds, J. Geumlek, M. Welling, and K. Chaudhuri, “On the
Theory and Practice of Privacy-Preserving Bayesian Data Analy-
sis,” in Proc. of UAI, 2016, pp. 192–201.

[23] G. Bernstein and D. R. Sheldon, “Differentially Private Bayesian
Inference for Exponential Families,” in Proc. of NIPS, 2018.

[24] G. Bernstein and D. Sheldon, “Differentially Private Bayesian
Linear Regression,” in Proc. of NIPS, 2019.

[25] A. C. Y. Tossou and C. Dimitrakakis, “Algorithms for Differen-
tially Private Multi-Armed Bandits,” in Proc. of AAAI, 2016, pp.
2087–2093.

[26] A. C. Tossou and C. Dimitrakakis, “Achieving Privacy in the
Adversarial Multi-Armed Bandit,” in Proc. of AAAI, 2017, pp.
2653–2659.

[27] P. Mohassel and Y. Zhang, “SecureML: A System for Scalable
Privacy-Preserving Machine Learning,” in IEEE Symposium on
Security and Privacy, 2017, pp. 19–38.

[28] M. Al-Rubaie and J. M. Chang, “Privacy-Preserving Machine
Learning: Threats and Solutions,” IEEE Security & Privacy Maga-
zine, vol. 17, no. 2, pp. 49–58, 2019.

[29] B. Jayaraman and D. Evans, “Evaluating Differentially Private
Machine Learning in Practice,” in Proc. of the 28th USENIX
Security Symposium, 2019, pp. 1895–1912.

[30] O. Bousquet and A. Elisseeff, “Stability and generalization,”
Journal of machine learning research, vol. 2, no. Mar, pp. 499–526,
2002.

[31] C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, and A. L.
Roth, “Preserving statistical validity in adaptive data analysis,”
in Proceedings of the Forty-seventh Annual ACM Symposium on
Theory of Computing, ser. STOC ’15. New York, NY, USA: ACM,
2015, pp. 117–126.

[32] M. Hardt and J. Ullman, “Preventing false discovery in interac-
tive data analysis is hard,” in Proceedings of the 2014 IEEE 55th
Annual Symposium on Foundations of Computer Science, ser. FOCS
’14. Washington, DC, USA: IEEE Computer Society, 2014, pp.
454–463.

[33] M. Hardt, K. Ligett, and F. Mcsherry, “A simple and practical
algorithm for differentially private data release,” in Advances in
Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc.,
2012, pp. 2339–2347.

[34] R. MacCoun and S. Perlmutter, “Blind analysis: Hide results to
seek the truth,” Nature, vol. 526, pp. 187–189, 10 2015.

[35] R. Binns, “Fairness in Machine Learning: Lessons from Political
Philosophy,” Proceedings of Machine Learning Research, vol. 81, pp.
1–11, 2018.

[36] K. Holstein, J. W. Vaughan, H. D. III, M. Dudik, and H. Wallach,
“Improving Fairness in Machine Learning Systems: What Do
Industry Practitioners Need,” in Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems, 2019, pp.
Paper600:1–16.

[37] T. Zhang, T. Zhu, J. Li, M. Han, W. Zhou, and P. Yu, “Fairness
in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination,” IEEE Transactions on Knowledge and Data Engi-
neering, p. DOI: 10.1109/TKDE.2020.3002567, 2020.

[38] S. Wachter-Boettcher, “AI Recruiting Tools Do Not Elim-
inate Bias,” https://time.com/4993431/ai-recruiting-tools-do-
not-eliminate-bias/, 2017.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3014246, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 18

[39] V. Giang, “The Potential Hidden Bias in Automated Hiring Sys-
tems,” https://www.fastcompany.com/40566971/the-potential-
hidden-bias-in-automated-hiring-systems, 2018.

[40] BBC, “Google Searches Expose Racial Bias, Says Study
of Names,” https://www.bbc.com/news/technology-21322183,
2013.

[41] S. U. Nobel, Algorithms of Oppression: How Search Engines Reinforce
Racism. NYU Press, 2018.

[42] J. Angwin, J. Larson, S. Mattu, and L. Kirchner, “Ma-
chine Bias,” https://www.propublica.org/article/machine-bias-
risk-assessments-in-criminal-sentencing, May 2016.

[43] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Gal-
styan, “A Survey on Bias and Fairness in Machine Learning,”
https://arxiv.org/abs/1908.09635, 2019.

[44] R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork, “Learning
Fair Representation,” in Proc. of ICML, 2013.

[45] M. Hardt, E. Price, and N. Srebro, “Equality of Opportunity in
Supervised Learning,” in Proc. of NIPS, 2016, pp. 3315–3323.

[46] C. Dwork and C. Ilvento, “Fairness under Composition,” in Proc.
of ITCS, 2019, pp. 33:1–20.

[47] M. Kusner, J. Loftus, C. Russell, and R. Silva, “Counterfactual
Fairness,” in Proc. of NIPS, 2017, pp. 4066–3076.

[48] A. Agarwal, A. Beygelzimer, M. Dudik, J. Langford, and H. Wal-
lach, “A Reductions Approach to Fair Classification,” in Proc. of
ICML, 2018.

[49] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel,
“Fairness through Awareness,” in Proc. of ITSC, 2012, pp. 214–
226.

[50] K. Dixit, M. Jha, S. Raskhodnikova, and A. Thakurta, “Testing the
lipschitz property over product distributions with applications
to data privacy,” in Theory of Cryptography Conference. Springer,
2013, pp. 418–436.

[51] R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork, “Learning
fair representations,” in ICML, vol. 28, no. 3, 17–19 Jun 2013, pp.
325–333.

[52] D. Xu, S. Yuan, and X. Wu, “Achieving Differential Privacy and
Fairness in Logistic Regression,” in Proc. of WWW, 2019, pp. 594–
599.

[53] J. Ding, X. Zhang, X. Li, J. Wang, R. Yu, and M. Pan, “Differ-
entially Private and Fair Classification via Calibrated Functional
Mechanism,” in Proc. of AAAI, 2020.

[54] M. Jagielski and et al., “Differentially Private Fair Learning,” in
Proc. of ICML, 2019.

[55] R. Cummings, V. Gupta, D. Kimpara, and J. Morgenstern, “On
the Compatibility of Privacy and Fairness,” in Proc. of the 27th
Conference on User Modeling, Adaptation and Personalization, 2019,
pp. 309–315.

[56] C. Dwork and C. Ilvento, “Fairness under composition,” CoRR,
vol. abs/1806.06122, 2018.

[57] S. Dargan, M. Kumar, M. R. Ayyagari, and G. Kumar, “A Survey
of Deep Learning and Its Applications: A New Paradigm to Ma-
chine Learning,” Archives of Computational Methods in Engineering,
pp. DOI:https://doi.org/10.1007/s11 831–019–09 344–w, 2019.

[58] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P. Reyes,
M. Shyu, S. Chen, and S. S. Iyengar, “A Survey on Deep Learn-
ing: Algorithms, Techniques, and Applications,” ACM Computing
Surveys, vol. 51, no. 5, pp. 92:1–36, 2018.

[59] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated Machine Learn-
ing: Concept and Applications,” ACM Transactions on Intelligent
Systems and Technology, vol. 10, no. 2, pp. 12:1–19, 2019.

[60] M. Gong, K. Pan, Y. Xie, A. K. Qin, and Z. Tang, “Preserving
differential privacy in deep neural networks with relevance-
based adaptive noise imposition,” Neural Networks, vol. 125, pp.
131–141, 2020.

[61] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive Pri-
vacy Analysis of Deep Learning: Passive and Active White-box
Inference Attacks against Centralized and Federated Learning,”
in S & P, 2019, pp. 739–753.

[62] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
Inference Attacks Against Machine Learning Models,” in Proc. of
IEEE Symposium on Security and Privacy, 2017, pp. 3–18.

[63] S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha, “Privacy Risk in
Machine Learning: Analyzing the Connection to Overfitting,” in
Proc. of IEEE 31st Computer Security Foundations Symposium, 2018,
pp. 268–282.

[64] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart,
“Privacy in Pharmacogenetics: An End-to-End Case Study of

Personalized Warfarin Dosing,” in Proc. of the 23rd USENIX
Security Symposium, 2014, pp. 17–32.

[65] M. Abadi, A. Chu, and I. Goodfellow, “Deep Learning with
Differential Privacy,” in Proc. of CCS, 2016, pp. 308–318.

[66] M. Heikkila, E. Lagerspetz, S. Kaski, K. Shimizu, S. Tarkoma,
and A. Honkela, “Differentially Private Bayesian Learning on
Distributed Data,” in Proc. of NIPS, 2017.

[67] L. Zhao, Q. Wang, Q. Zou, Y. Zhang, and Y. Chen, “Privacy-
Preserving Collaborative Deep Learning with Unreliable Partici-
pants,” IEEE Transactions on Information Forensics and Security, p.
DOI: 10.1109/TIFS.2019.2939713, 2019.

[68] R. Shokri and V. Shmatikov, “Privacy-Preserving Deep Learn-
ing,” in Proc. of CCS, 2015, pp. 1310–1321.

[69] H. Cheng, P. Yu, H. Hu, F. Yan, S. Li, H. Li, and Y. Chen,
“LEASGD: an Efficient and Privacy-Preserving Decentralized
Algorithm for Distributed Learning,” in Proc. of NIPS Workshop
on Privacy Preserving Machine Learning, 2018.

[70] B. Jayaraman, L. Wang, D. Evans, and Q. Gu, “Distributed
Learning without Distress: Privacy-Preserving Empirical Risk
Minimization,” in Proc. of NIPS, 2018.

[71] N. Phan, M. N. Vu, Y. Liu, R. Jin, D. Dou, X. Wu, and M. T. Thai,
“Heterogeneous Gaussian Mechanism: Preserving Differential
Privacy in Deep Learning with Provable Robustness,” in Proc.
of IJCAI, 2019, pp. 4753–4759.

[72] N. Papernot, M. Abadi, U. Erlingsson, I. Goodfellow, and K. Tal-
war, “Semi-supervised knowledge transfer for deep learning
from private training data,” in Proc. of ICLR, 2017.

[73] N. Papernot, S. Song, I. Mironov, A. Raghunathan, K. Talwar, and
U. Erlingsson, “Scalable Private Learning with PATE,” in Proc. of
ICLR, 2018.

[74] J. Zhao, “Distributed Deep Learning under Differential Privacy
with the Teacher-Student Paradigm,” in Proc. of the Workshops of
AAAI, 2018, pp. 404–407.

[75] J. Jordon, J. Yoon, and M. van der Schaar, “PATE-GAN: Generat-
ing Synthetic Data with Differential Privacy Guarantees,” in Proc.
of ICLR, 2019.

[76] M. Kearns, M. M. Pai, A. Roth, and J. Ullman, “Mechanism
Design in Large Games: Incentives and Privacy,” in Proc. of ITCS,
2014, pp. 403–410.

[77] Y. Zhang, Y. Mao, and S. Zhong, “Joint Differentially Private Gale-
Shapley Mechanisms for Location Privacy Protection in Mobile
Traffic Offloading Systems,” IEEE Journal on Selected Areas in
Communications, vol. 34, no. 10, pp. 2738–2749, 2016.

[78] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.
y Arcas, “Communication-Efficient Learning of Deep Networks
from Decentralized Data,” in AISTATS, vol. 54. PMLR, 20–22
Apr 2017, pp. 1273–1282.

[79] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine
learning: Concept and applications,” ACM Trans. Intell. Syst.
Technol., vol. 10, no. 2, Jan. 2019. [Online]. Available:
https://doi.org/10.1145/3298981

[80] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.
y Arcas, “Federated Learning of Deep Networks using Model
Averaging,” arXiv:1602.05629, Tech. Rep., 2017.

[81] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai,
“Privacy-preserving Deep Learning via Additively Homomor-
phic Encryption,” IEEE Transactions on Information Forensics and
Security, vol. 13, no. 5, pp. 1333–1345, 2018.

[82] R. C. Geyer, T. Klein, and M. Nabi, “Differentially private
federated learning: A client level perspective,” CoRR, vol.
abs/1712.07557, 2017.

[83] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, and
R. Zhang, “A hybrid approach to privacy-preserving federated
learning,” CoRR, vol. abs/1812.03224, 2018.

[84] E. Shi, T. H. H. Chan, E. Rieffel, and D. Song, “Distributed Private
Data Analysis: Lower Bounds and Practical Constructions,” ACM
Transactions on Algorithms, vol. 13, no. 4, pp. 50:1–38, 2017.

[85] N. Agarwal, A. T. Suresh, F. Yu, S. Kumar, and H. B.
McMahan, “cpSGD: Communication-Efficient and Differentially-
Private Distributed SGD,” in Proc. of NIPS, 2018.

[86] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Fed-
erated multi-task learning,” in Advances in Neural Information
Processing Systems, 2017, pp. 4424–4434.

[87] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo, “Analyzing
federated learning through an adversarial lens,” arXiv preprint
arXiv:1811.12470, 2018.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3014246, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 19

[88] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo, “Analyz-
ing federated learning through an adversarial lens,” in Proceed-
ings of the 36th International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, K. Chaudhuri and
R. Salakhutdinov, Eds., vol. 97. Long Beach, California, USA:
PMLR, 09–15 Jun 2019, pp. 634–643.
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