IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

SPECIAL SECTION ON NEW TRENDS IN BRAIN SIGNAL
PROCESSING AND ANALYSIS

Received April 1, 2019, accepted April 21, 2019, date of publication April 25, 2019, date of current version May 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2913349

Deep Learning Approach for Software
Maintainability Metrics Prediction

SUDAN JHA'!, RAGHVENDRA KUMAR 2, LE HOANG SON "3, MOHAMED ABDEL-BASSET 4,
ISHAANI PRIYADARSHINI®, ROHIT SHARMAS, AND HOANG VIET LONG 78

!'School of Computer Engineering, KIIT University, Bhubaneswar, India

2Computer Science and Engineering Department, LNCT College, Bhopal, India
3VNU Information Technology Institute, Vietnam National University, Hanoi, Vietnam
“Department of Operations Research, Zagazig University, Zagazig, Egypt

SDepartment of Electrical and Computer Engineering, University of Delaware, Newark, DE, USA

SDepartment of Electronics and Communication Engineering, SRM Institute of Science and Technology, NCR Campus, Ghaziabad, India
"Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
8Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam

Corresponding author: Hoang Viet Long (hoangvietlong @tdtu.edu.vn)

ABSTRACT Software maintainability predicts changes or failures that may occur in software after it has
been deployed. Since it deals with the degree to which an application may be understood, repaired, or
enhanced, it also takes into account the overall cost of the project. In the past, several measures have been
taken into account for predicting metrics that influence software maintainability. However, deep learning
is yet to be explored for the same. In this paper, we perform deep learning for software maintainability
metrics’ prediction on a large number of datasets. Unlike the previous research works, we have relied
on large datasets from 299 software and subsequently applied various metrics and functions to the same;
29 object-oriented metrics have been considered along with their impact on software maintainability of
open source software. Several metrics have been analyzed and descriptive statistics of these metrics have
been pointed out. The proposed long short term memory has been evaluated using measures, such as
mean absolute error, root mean square error and accuracy. Five machine learning algorithms, namely, ridge
regression with variable selection, decision tree, quantile regression forest, support vector machine, and
principal component analysis have been applied to the original datasets, as well as, to the refined datasets.
It was found that this paper provides results in the form of metrics that may be used in the prediction of
software maintenance and the proposed deep learning model outperforms all of the other methods that were
considered. Furthermore, the results of experiment affirm the efficiency of the proposed deep learning model
for software maintainability prediction.

INDEX TERMS Deep learning, machine learning, software metrics, software maintainability, prediction.

I. INTRODUCTION

Nearly 70% of the time in software development is for main-
tenance and this involves huge costs for the developers [1].
New software these days are very complex and the size of
software has increased considerably, thereby making the soft-
ware increasingly difficult to maintain [2]. Software main-
tainability is directly related with the economic performance
and success of a product or an organization [3]. Using main-
tainability, we can predict what changes or failures that may
occur in software after it has been deployed. Maintainability
of the software is therefore a quality attribute for software

The associate editor coordinating the review of this manuscript and
approving it for publication was Victor Hugo Albuquerque.

that helps to determine the performance of the software [4].
Developers are assisted to determine probable amount of
change that might occur in software modules during the
maintenance phase [5], [6]. Owing to the correctness of the
maintainability predictions, the design of software can be
improved to determine changes that need to be made for
development of software modules in the future [7].

Software maintainability is a big challenge that the com-
puter industry is facing [8]. The reason behind is to make the
system automated. There have been many machine learning
and artificial intelligence approaches that have been used
till date [9]. In majority of the approaches, only a small
number of software has been used for testing [10]. It has been
observed from the previous works that there is no research

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

61840

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 7, 2019

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-1311-7585
https://orcid.org/0000-0001-6356-0046
https://orcid.org/0000-0001-6657-0653
https://orcid.org/0000-0002-2794-3936

S. Jha et al.: Deep Learning Approach for Software Maintainability Metrics Prediction

IEEE Access

for Software Maintainability Metrics Prediction using Deep
Learning. Besides, little enhancements can be seen in the soft-
ware maintenance predictability from those works. Indeed,
datasets are not sufficient enough to give conclusive results
which provide information regarding the input data of the
system [11]. The related work regarding Software Maintain-
ability Metrics Prediction in [12]-[29] are mainly based on
applying different machine learning algorithms like ridge
regression and artificial neural networks on two to three soft-
ware models and providing a comparative study between the
different software metrics and machine learning algorithms.

It has been observed from the previous works that there is
no research for Software Maintainability Metrics Prediction
using Deep Learning [30]. A review of the previous pub-
lished works in this area shows that very few enhancements
have been made in the study of the software maintenance
predictability. Most of the previous works in this area have
utilized artificial intelligence techniques such as machine
learning, soft computing, fuzzy networks and evolutionary
algorithms [31], [32]. Moreover, the datasets used in these
studies are small scale with a very small number of software.
Therefore, the testing process cannot be considered to be
accurate, and the results obtained may not necessarily reflect
actual systems in which a large number of software of differ-
ent sizes interacts with one another [33]. The existing works
in this area have also not addressed the issue of selecting the
most relevant metrics in a systematic manner using methods
such as the feature subset selection (FSS) algorithms. This
is a major flaw in the existing works as the selection of
relevant metrics for the computation process is an important
phase in the decision making process and has the potential to
significantly impact the results. This deficiency led us to use
to an analysis of a sufficiently large number of open source
software using deep learning algorithms [34].

Deep learning is one of the many techniques of machine
learning that are available in literature. Deep learning uses
data representation rather than task specific learning meth-
ods [35]. This method uses multiple layers of nonlinear
processing units which will be used for feature extraction.
The inputs from the earlier layers are used as the output
for each of the successive layers. The learning process can
be fully supervised (e.g. classification), semi-supervised or
unsupervised (e.g. pattern analysis), and this method uses
a hierarchy concept where each layer learns the multiple
levels of representation that correspond to different levels
of abstraction [36]. The network learns and remembers the
sequence of input data and in each layer, and subsequently
determines which data to remember and which data to forget.
In this way, at the end of the process, we are able to determine
which metrics will be added to software maintainability to
make accurate prediction.

In this paper, we propose a new Deep Learning based
method for Software Maintainability Metrics Prediction and
apply this method on a large number of datasets. Twenty-nine
object-oriented metrics have been considered and their
impact on software maintainability of open source software

VOLUME 7, 2019

has also been analyzed. The results based on the study high-
light several metrics that should be used in the prediction
of the software maintenance. Unlike the previous research
works that mostly use a small number of datasets, we have
chosen to use large datasets from 299 software to which
we have applied the selected metrics that was determined
using the deep learning algorithm. It has been proven that
our predictions are more accurate as it is validated through
experiments and systematic computation processes.

The rest of the paper is organized as follows. Section 2
introduces the related works and provides a background of
the topic of study. In Section 3, the research methodolo-
gies that are considered are explained and demonstrated.
Section 4 provides the results obtained through the experi-
mentation process, followed by a comprehensive discussion
of the experimental results. Finally, a summary of the overall
work and the issues learned in the implementation of the
investigated work are presented in Section 5. Concluding
remarks are presented in Section 6.

Il. RELATED WORK

Ahmed and Al-Jamimi [8] proposed a procedure for pre-
dicting software maintainability using fuzzy rationale based
straightforward quality forecast models. Li and Smidts [37]
dealt with consistently screen the software worked by end
clients, naturally gathering issues and prescribing conceiv-
able fixes to designers. A review of the various artificial
intelligence techniques used in the modeling of machining
processes [9] found that fuzzy logic is the most commonly
used artificial intelligence technique used for this purpose.
The review covered the abilities, limitations, and effectual
modifications of fuzzy logic in the modeling of machining
purposes. Kaur and Kaur [18] proposed statistical examina-
tion of displaying techniques for software viability forecast.
Ionescu et al. [16] presented a computerized answer for
software advancement exertion estimation based on content
depictions of errands and exercises, joined with accessible
measurements. Malhotra [34] examined machine learning
techniques for blame forecast. Elish et al. [11] assessed
diverse homogenous and heterogeneous outfit strategies in
anticipating software upkeep exertion and change inclination.
Radjenovi€ et al. [26] attempted to recognize software mea-
surements and to evaluate their pertinence in software blame
forecast and researched the impact of setting on measure-
ments’ determination and execution.

Malhotra [25] presented a survey for machine learning
methods for software blame expectation. Lin et al. [21]
proposed an improved Support Vector Machines (SVM)
based method by considering the complex literary and
semantic connection highlights based on a past SVM-based
discriminative plan (SVM-54). Yang et al. [29] proposed a
two-layer ensemble learning approach for just-in-time imper-
fection expectation. Iyer er al. [6] introduced a completely
data driven approach that uses end-to-end neural considera-
tion for deriving source codes. Francese et al. [13] exhibited
an instrument based on static examination of source code.

61841

IEEE Access

S. Jha et al.: Deep Learning Approach for Software Maintainability Metrics Prediction

Rahimi and Zargham [27] proposed vulnerabilities crying
for defenselessness disclosure expectation based on code
properties. Menzies [23] explored software ecosystems and
challenges of their maintenance and evolution.

Jamshidi et al. [17] applied exchange learning on four
prevalent software frameworks, shifting software designs and
natural conditions. Chhabra [10] proposed a multi objec-
tive advancement to deal with enhancement of a protest
arranged framework with least conceivable development of
classes between existing packages of unique software mod-
ularization. Rattan er al. [38] distinguished 213 examina-
tions and displayed the outcomes in various measurements
like order of clone inquire about, code clone administration
as cross cutting space, sorts of clones, clone recognition
instruments, clone discovery approaches, inward portray-
als, subject frameworks, semantic clones and model clones.
Finlay et al. [12] studied the idea of using stream mining
techniques to determine the most useful metrics for predicting
build success or failure. The authors found that the Hoeffding
Tree method is more stable and robust compared to other
traditional data mining methods. Huo er al. [14] proposed
a convolution neural system which uses lexical data and
program structure data to learn together the highlights from
natural language and source code in programming language
for consequently finding the potential buggy source code
as indicated by bug report. Luo er al. [22] proposed an
arrangement for naturally discovering execution bottlenecks.
Tavakoli et al. [28] presented a fixation expectation and
saliency displaying system, whereas Haije et al. [15] investi-
gated viability of a machine translation approach to automatic
comment generation.

In view of the increasing popularity of deep learning
methods, there have been many review papers related to
the application of deep learning methods in various fields
and its superiority. LeCun et al. [39] presented a thorough
review of deep learning methods including the improve-
ments made through the application of deep learning meth-
ods in speech recognition, visual object recognition, drug
discovery and genomics. Druzhkov and Kustikova [40] pre-
sented an overview of deep learning methods such as auto-
encoders, restricted Boltzmann machines and convolutional
neural networks in the study of image classification and
object detection. The duo also presented a comparison of the
existing software packages for deep learning. Guo et al. [3]
presented a comprehensive state-of-the-art review of more
than 210 research papers related to the application of deep
learning algorithms in computer vision, image classification,
object detection, and image retrieval, as well as the future
trends and challenges in the study of deep learning methods.
Gulshan et al. [41] used a type of neural network called the
deep convolutional neural network which is optimized for
image classification for the detection of diabetic retinopathy
in retinal fundus photographs. Recognizing the increasing
use of deep learning algorithms in the analysis of medical
images, Li and Smidts [37] presented a review of 300 research
papers related to the application of deep learning methods in

61842

image classification and segmentation. Liu et al. [42] pre-
sented an overview of four deep learning architectures, and
its application in speech recognition, pattern recognition and
computer vision. Min, et al. [43] reviewed the progress made
in the application of deep learning methods in bioinformatics,
whereas Miotto et al. [44] reviewed the recent literature
related to the application of deep learning methods in the
domain of healthcare and biomedicine. Sun et al. [45] studied
the application of the deep neural network method in solving
problems related to fault diagnosis for induction motors.

Cheng et al. [46] presented a system for indicating, prepar-
ing, and assessing and conveying machine learning methods
focused on streamlining bleeding edge machine learning for
practitioners with a specific end goal to bring such advances
into creation. Nam et al. [47] proposed heterogeneous defect
prediction (HDP) to anticipate deserts crosswise over activi-
ties with heterogeneous metric sets. Tavakoli et al. [28] pre-
sented a novel obsession forecast and saliency demonstrating
system in light of inter-image similitude and ensemble of
Extreme Learning Machines (ELM). Singh and Chug [48]
analyzed the most popular & widely used machine learning
methods of Artificial Neural Network (ANN), Particle Swarm
Optimization (PSO), Decision Trees (DT), Naive Bayes (NB)
& Linear Classifier (LC) namely using KEEL tool & vali-
dated using k-fold cross validation techniques. The authors
found that the linear classifier method proved to be superior
to the other algorithms in terms of defect prediction accuracy.
Litjens et al. [49] presented CCLEARNER, the principal
exclusively token-based clone detection approach which uti-
lizes deep learning.

Fonton et al. [50] was in fact due to the specific dataset
employed rather than the actual capabilities of machine-
learning techniques for code smell detection. Liu et al. [51]
proposed to utilize the Historical Version Sequence of Met-
rics (HVSM) in consistent software versions as imperfection
predictors. Chen et al. [52] proposed a multi-target optimiza-
tion based supervised strategy MULTI to construct JIT-SDP
models. Miholca et al. [53] built up a novel supervised clas-
sification strategy called HyGRAR for software imperfec-
tion forecast. Krishna and Menzies [54] have undertaken a
detailed study of transfer learners known as ‘‘bellwethers”
which is a method that can be used to reduce conclusion
instability in the building of quality prediction models for
software projects.

lIl. METHODOLOGY

In this section, we present the steps to apply Deep Learn-
ing for Software Maintainability Metrics prediction. Firstly,
the data collection process including software metrics is
described in Section 3.1. Subsequently, the Deep Learning
architecture and evaluation metrics are shown in Sections 3.2
& 3.3, respectively.

A. DATASETS
Software metrics compute various aspects of software that
describe the functional and physical characteristics of a

VOLUME 7, 2019

S. Jha et al.: Deep Learning Approach for Software Maintainability Metrics Prediction

IEEE Access

TABLE 1. Software metrics.

No Metric Metric Suite Definition
1. | LOC - The total lines of code which is basically the size of a software program
Physical source lines of code and comprises of text of the program’s code along with comment
2. | SLOP-P - . ..
lines and blank lines in the code
3| wMmce C&K Weighted methods per class basically indicate the summation of McCabe’s complexities of all
local methods
4 CBO C&K Coupling between object classes gives a count of the efferent and afferent couplings to a
) specific class. High CBO values is undesirable for efficient class maintainability
It stands for response of a class. It calculates the cardinality of the response set of a class
5 RFC C&K wherein the response set includes all the local methods along with all the methods called by the
local methods
Normalized Change is the dependent variable which indicates the number of changed lines of
code per class. A Change could be an addition, deletion or a modified line which is considered
as an addition and a deletion. The value of Change has been normalized using the formula:
where max, maximum desired target value i.e. 100, and
6. | NChange - min,— minimum desired target value i.e. 0
max,— maximum value of actual variable
min, — minimum value of actual variable
V — Change
TABLE 2. Details of open source software systems.
o,
Software . No. of Number of Number of 7o of LOC of LOC of
Version Common Changed Common
Used Classes Classes Changed Changed Classes
Classes Classes Classes
antlr4 3.6.0 2506 2189 886 40.47 598976 352503
mcMMO 3.7.0 3599 2187 885 40.14 598974 352507
Junit 7.0.30 1734 1407 728 51.74 463780 336784
Mct 7.0.40 2447 1247 736 51.47 468522 336685
Mapdb 2.16.4 2376 1920 1085 56.51 217443 174263
Oryx 2.17.4 2604 1852 1078 52.78 217534 174532

component, process or project. The different metrics that have
been used for this empirical study are described in Table 1.

Different software’s have different numbers of classes. The
number of common classes is 2189, and this is the number of
classes that are common to all 29 open source OO projects.
Change in a common class is the total count of added, deleted
and modified lines. A modification may be counted as a
deletion and an addition. Out of 2189, 886 classes were
altered and 1303 were unaltered. Version 7.0.30 of Antlr4 was
released on 5th September, 2011 and its source code had
1734 classes, whereas version 7.0.40 was released on 9th
May, 2013 and consisted of 2447 classes.

Two versions of Antlr4 had 1407 common classes and
out of these 1407 classes, 728 classes were changed and the
remaining 679 were not changed. Version 2.16.4 of Junit was
released on 18th September, 2016 and its source code con-
sisted of 2376 classes. Similarly, version 2.17.4 was released
on 24th November, 2016 and its source code consisted
of 2604 classes. Two versions of Junit had 1920 common

VOLUME 7, 2019

classes. Out of 1920, 1085 classes were altered and 835 were
unaltered. These have been summarized in Table 2.

Table 3 describes the error prediction of Change on the
basis of subset of metrics acquired using FSS algorithms.
The results obtained after examining with smallest subset that
controls and determines the requirement of newer versions
of a project to enhance the structural quality were identi-
fied. The descriptive statistics of the dataset obtained from
Mapdb, McMMO and Mct are summarized in Tables 4, 5 and
6 respectively. The statistics describe the correlation of fea-
tures (software metrics) with NChange for Mapdb, McMMO
and Mct datasets, respectively. The dataset comprises of
twenty-nine class-level metrics with 28 dependent variables
and one normalized dependent variable NChange.

The following observations were noted from the descrip-
tive statistics of the dataset and the following measures were
taken accordingly: C & SLOC, HCLOC and HCWORD were
removed from all the three dataset because their values were
0 for all the classes. The mean value of NChange is the

61843

IEEE Access

S. Jha et al.: Deep Learning Approach for Software Maintainability Metrics Prediction

TABLE 3. Analysis of various metrics and the comparison results.

Metrics — | Metrics —II | Metrics — | Metrics — | Metrics—V | Metrics - VI | Classification accuracy of Neural
1 11T v Network (NN) after wusing these
metrics
WMC CBO CBOI NII NOI RFC 0.82
CBO CBOI NII NOI RFC AD 0.79
CBOI NII NOI RFC AD CD 0.73
NII NOI RFC AD CD CLOC 0.89
NOI RFC AD CD CLOC DLOC 0.94
RFC AD CD CLOC DLOC PDA 0.73
AD CD CLOC DLOC PDA PUA 0.83
TABLE 4. Descriptive statistics of the mapdb dataset.
Metric Minimum Maximum Mean Median Standard Deviation Variance
LOC 1 12548 273.63 153 586.16 343574.90
SLOC-P 1 11468 195.51 90 508.15 258207.90
SLOC-L 0 6753 124.10 63 305.49 93321.67
MVG 0 944 22.53 10 50.62 2562.07
BLOC 0 2443 74.52 39 125.34 15708.74
C&SLOC 0 0 0 0 0 0
CLOC 0 414 3.61 0 14.73 216.98
CWORD 0 552 4.82 0 19.64 385.73
HCLOC 0 0 0 0 0 0
HCWORD 0 0 0 0 0 0
WMC 0 1078 25.16 8 66.36 4403.61
TABLE 5. Descriptive statistics of the Antlr4 dataset.
Metric Minimum | Maximum | Mean Median Stalgda.rd Variance
Deviation
LOC 1 4849 270.65 124 446.37 199250.26
SLOC-P 1 3077 153.45 51 290.18 84206.49
SLOC-L 0 2361 106.48 36 207.36 42997.09
MVG 0 455 24.04 5 52.20 2724.56
BLOC 0 1772 117.08 57 177.23 31408.92
C&SLOC 0 0 0 0 0 0

lowest for the Mapdb dataset amongst all the three datasets
which suggests that it is easy to maintain it as compared to
Antlr4 and Mct datasets. Cohesion is a measure of how well
the lines of source code within a module work together. The
mean value of LCOM is 2387.765 in Mapdb dataset, which
is undesirable as high LCOM value implies that the classes
are less cohesive and thus, are not efficiently encapsulated.
On the other hand, McMMO and Mct have lower values
of LCOM of 117.55 and 111.87, respectively which implies
comparatively good cohesion. Coupling is a measure of inter-
action between two classes indicated by the Ca, Ce, CBO, IC
and CBM metrics. The three datasets Mapdb, McMMO and
Mct have very low values of 0.09, 0.10 and 0.03, respectively,
which suggests that the new methods are not coupled with the
inherited methods, thus making it a good software design. The
median of NOC for the Mapdb and McMMO datasets is 0
which indicates that 50% or more classes do not have child

61844

classes. Table 4 gives the descriptive statistics of the Mapdb
dataset.

Low values of NOC are undesirable since it does not
promote reusability which is one of the key features of
object-oriented systems. Since the mean value of NOC is
highest for the Mct dataset with a value of 0.52, it indicates
that the code has been reused in it. It is preferred to have
minimum NPM as public as it means that the software can
be accessed by everyone which may lead to security issues.
It can be observed that the mean value of NPM is the highest
for Mapdb dataset with a value of 23.53769 and the lowest
for the Mct dataset with a value of 7.8 among the three-open
source software datasets.

Table 5 depicts the abrupt change in the behavior of the
variances where LOC has the highest value of 199250.26,
whereas MVG has a recorded variance of 2724.56,
which implies comparatively good coupling between the

VOLUME 7, 2019

S. Jha et al.: Deep Learning Approach for Software Maintainability Metrics Prediction

IEEE Access

TABLE 6. Descriptive statistics of the junit dataset.

Metric Minimum | Maximum | Mean Median Standard Deviation Variance
LOC 1 3120 113.25 67 166.44 27703.33
SLOC-P 1 1788 71.63 37 109.35 11957.01
SLOC-L 0 1253 49.03 25 74.81 5596.81
MVG 0 301 10.54 4 21.18 448 .44
BLOC 0 1670 41.39 29 63.39 4017.72
C&SLOC |0 0 0 0 0 0

CLOC 0 93 0.23 0 2.79 7.79
CWORD 0 441 0.65 0 11.87 140.86
HCLOC 0 0 0 0 0 0
HCWORD | 0 0 0 0 0 0

WMC 0 198 9.50 5 13.66 186.56
DIT 0 4 0.57 1 0.63 0.40
NOC 0 71 0.52 0 3.02 9.11
CBO 0 531 11.75 7 25.24 636.98
RFC 0 444 23.13 14 30.23 913.68
LCOM 0 19407 111.87 4 766.46 587454.72
Ca 0 529 5.83 2 24.05 578.46
Ce 0 108 6.42 4 7.79 60.76
NPM 0 184 7.87 4 12.30 151.41
LCOM3 0 2 1.12 0.85 0.72 0.51
LCO 0 4921 134 59 239.47 57343.67
DAM 0 1 0.60 1 0.48 0.23
MOA 0 26 0.66 0 1.47 2.16
MFA 0 1 0.03 0 0.15 0.02
CAM 0 1 0.49 0.44 0.27 0.07

IC 0 2 0.02 0 0.14 0.02
CBM 0 7 0.03 0 0.26 0.07
AMC 0 158.67 11.26 8.30 12.51 156.53
ECHANG 0 100 38.25 36.44 5.85 34.18

various classes. Here coupling refers to the measure of inter-
action between two classes.

Table 6 depicts the abrupt change in the behavior of vari-
ances for the Junit database. The simple Junit test operations
in Table 5 yields a very narrow range of variations in the
variances. This is because of simply “Junit test dropping”
and recreating the database between two operations is done
through the code where each instances of a class varies as
soon as an operation occurs. Secondly, data fetched from
the database makes the instance forcibly change its behavior
because it assumes the same class, but in reality the class
belongs to some other projects too. Hence, there is an abrupt
change in behavior. Coupling and cohesion helps in segregat-
ing two or more classes but we can see narrow variations in
this case in comparison to the values in Table 4.

B. DEEP LEARNING

In the Deep Learning method, we have taken three layers of
long short-term memory (LSTM) deep neural network and
one dense layer for getting the cumulative output. We have
divided it into two classes namely Defect or Not-Defect.
We chose to use the Recurrent Neural Network as it does

VOLUME 7, 2019

not only predict on the basis of current metrics but is also
able to use the metrics in previous states so that we can
predict how the inter-combination of metrics affects each
other. Except calculating the hidden layer output, all the high-
level operations of LSTM are the same as those in RNN. In the
training phase, a sequence of inputs is represented by Eq. (1):

X={x1x2, .c....... xr} (1)

The above equation depicts different input nodes i.e. xi,
X2, ... which represent various metrics that we have consid-
ered, and X7 is the input of the current time step. In short, this
equation gives the input nodes to the neural network. From the
given sequence above, we feed an input x; to the hidden layers
and calculate the hidden layer activations using Eq. (1):

he={R)h{ A)

In Eq. (1), &, is the activation function which is coupled
with the input nodes as explained in Eq. (1). Once h; is
acquired, we calculate the output y; and loss L; in the pre-
diction. Then, we back propagate ‘“‘the loss” through the
network.

ir = o (Wyix; + Wyihi—1 + b)) 3)

61845

IEEE Access

S. Jha et al.: Deep Learning Approach for Software Maintainability Metrics Prediction

Forget Gate

Memory Cell {Input)

Y

Self recurrent iz g: Connection
» Memory Cell (Output)

]

Input Gate

FIGURE 1. The forget gate.

Here, i; is the sigmoid function which holds W,; which is
a set of random weights and is coupled with x; , which is the
input of the current time step. The term 4;_1 is the output of
the previous state i.e. i, along with b; which is i bias of the
couple. In short, Eq. (3) takes the input to the hidden layer
which is a function of the previous state or the sequence.

Ji = o (Wypxy + Wiehy 1 + by) “4)

After getting sigmoid function, the f; which is a forget gate
is calculated to control the self-loop.

¢ = frcr—1 + lanh(Waexr + Wiehy—1 + be) (5

The forget gate is also sigmoid in nature which looks at x;
and x;_1 and gives output between 0 and 1 and for each num-
ber in the cell state between ¢,_1. Here ‘1’ will completely
represent ‘keep this(DO NOT STORE)’, whereas ‘0’ com-
pletely represents ‘reject this(STORE)’. Since our objective is
to extract out the valuable parameters that are actually affect-
ing the prediction, we used the tangent hyperbolic function
(tanh). Here, tanhtakes data of previous /,_; and the current
input x;, multiplied by the corresponding weights and added
by the bias. The tangent hyperbolic function is used in order to
achieve decisions from the characteristics curves in general.
Subsequently, i; as explained in Eq. (3) decides the sigmoid
layer. This layer decides which prediction value to be stored
and which not to be stored. Finally, ¢; creates a vector derived
from the values which was decided by i;.

At this stage (Fig. 1), we come to the state of finding out the
value of ¢; which is the vector that goes on rejecting the ¢,
and thus adding the new valuesi.e. i; and ¢;. Eq. (6) represents
the internal state of a LSTM cell where the conditional self
-loop gate is included.

0y = 0 (Wyoxy + Whohi—1 + by) (6)

Firstly, we run a sigmoid layer o, which decides what parts
of the cell state being outputs. Then we put the cell state
through fanh (to push the values to be between —1 to 1 and
multiply it by the output of the sigmoid gate. It should be
noted that Eq. (6) is the output of the external input gate.

h; = ostanh(cy) @)

61846

Qutput Gate

In Eq. (7), we put the cell state through fanh, and the output
of Eq. (7) is the output of the hidden layers.

Yi = Softmax (WhNyhﬁv + b)Y) ®)

Eq. (8) is the output of the dense layer and is the classi-
fication output. All the outputs from the hidden layers are
combined in a dense fully connected layer. The binary output
that is obtained will determine if it is defective or not. The
proposed LSTM algorithm is summarized in Table 7.

C. EVALUATION
The accuracy measures considered in this research for eval-
uating error in prediction of ‘NChange’ are described as

follows:
(i) Pearson’s Correlation Coefficient: The correlation

coefficient (r) indicates the degree of association and
is commonly referred to as Pearson’s correlation. The
values of r may lie in the interval [—1, 1]. Values
between [—1, 0) indicate a negative correlation, values
between (0, 1] indicate a positive correlation, whereas
a value of O indicates the absence of any correlation.
The formula for the correlation coefficient is given in
Eq. (9).

;= Z(Pj_P)(Aj_A) 9)

V(P =P) (=)

where P; and A; denotes the predicted value and the
actual value, respectively.

(ii)) Mean Absolute Error (MAE): The MAE is a measure
that calculates the closeness between the predicted
value and the eventual outcomes, and is defined as
given in Eq. (10).

N
1
MAE = ﬁ§|P,-—A,-| (10)

where N is the total number of instances.
(ili)) Root Mean Square Error (RMSE): The RMSE indicates
the spread of data around the regression line i.e. the

VOLUME 7, 2019

S. Jha et al.: Deep Learning Approach for Software Maintainability Metrics Prediction

IEEE Access

TABLE 7. The proposed LSTM algorithm.

Input: X={X, X; .. X}, W, b, h, x, by

Output: Classify into Defect and Not Defect (Change and No Change)

1 X= {X] X2

X,} // Enter the metric data under consideration

2 The data under consideration are computed as (W, * X,) + b,) and becomes the input to the first hidden layer

3 Internal process:

stored and are not required.

Ji= Sigmoid (W;* [h, x,] +bs) // In the hidden layer the forget gate is applied to forget the metrics that have been

i,= Sigmoid (W; * [h,; , x] +b;) // Decide the metrics that are to be added to the memory
C, = tanh (W/* [h, x] +by) // The decisions taken by i,are projected converted into a vector values
C,=C.; *f,+i,*C’//In the new hidden layer, the memory is updated

4 External process:
O,= Sigmoid (W, * [h.; , x] +b,)
H, = O, * tanh (C,)

Apply steps 3 and 4 to 3 hidden layers

Apply steps 3 and 4 to the fully connected dense layer

Use the softmax function for the output of the dense layer

Classify the achieved results into Defect or Not-Defect

Back propagation

~|INO|Co (N[N @

0 | End

standard deviation of errors, and is defined by Eq. (11).

N
RMSE = * 11\/2 (P —A;)
j=1

(1D

(iv) Accuracy: This function is an indication of how close
the measured value is to the true value, and is defined
in Eq. (12).

N
Accuracy = Il\] Z |Pj —Aj| x 100
j=1

(12)

where |Pj —Aj| < 1.
a. The novelty of the proposed approach

Most of the previous works that have been mentioned in
this paper has referred to Software Maintainability as ‘“‘the
ability to modify”’. However, in our methodology, we have
defined Software Maintainability in terms of the following
criteria/features:

(i) The method to detect and rectify the faults of any
Software Development Life Cycle (SDLC). Correc-
tive maintenance of software is only restricted to dis-
covering defects. It also takes into account reactive
modification of software product after the defect has
been discovered [55]. This is done so as to ensure that
software is still usable in a changed or changing envi-
ronment. The idea is to reduce the software corrective
maintenance effort. Therefore proper enforcement of
standards during each phase of SDLC is mandatory.

(i) The performance can be improved after analyzing
the precision and accuracy. Evaluation metrics like

VOLUME 7, 2019

precision, accuracy, Area under Curve etc. have
been popularly associated with machine learning
(Kaur et al, 2014). Since our study takes it a step further
to Deep Learning, which is concerned with better accu-
racy to perform exceptionally well, it is important that
the metrics exhibit good results. Improvising precision
and accuracy is one way of enhancing the performance
of software maintainability.

(ili) Various attributes can be well adapted if a particular
SDLC is converted into a new environment. In SDLC,
as a software progresses into different phases one after
the other, the environment may keep on changing.
With the changing environment, there may be new
attributes and they may have issues with adaptability
due to faults in various stages. Software maintenance
discovers and corrects faults, which may evade this
issue (Asghar et al, 2011).

(iv) No variations in the result even though data sets are
migrated from one to the other domain. Software main-
tainability resolves conflicts across various platforms.
With defects being identified and corrected, data sets
across different domains become more compatible.

On the other hand, maintainability also depends on how the
software is being used. This paper well describes the param-
eters such as programming languages, frameworks, coding
rules, and design patterns. As the majority of the time is
spent in the maintenance phase, efforts spent in increasing
its maintainability will affect the cost of the software in a
negative or positive manner. It is obvious to state that if the
software is customizable and maintainable, it will be very
much easier for the developers to modify the bugged module
at any time within a short period of time; thus enabling

61847

IEEE Access

S. Jha et al.: Deep Learning Approach for Software Maintainability Metrics Prediction

TABLE 8. Metrics subset obtained by FSS algorithms for the mapdb dataset.
Linear Correlation Rank Correlation OneR Relief Consistency
SLOC-P LCO CBM WMC LOC
SLOC-L DAM CLOC CBO SLOC-P
LOC AFC CWORD NPM SLOC-L
RFC RFC MFA SLOC-P MVG
LCO LCOM3 MOA NOC WMC
MVG DIT CBO Ca DIT
Ce Ca DAM LCOM CBO
WMC WMC DIT MFA RFC
NPM BLOC Ce IC LCOM
CBO NPM WMC CBM Ca
LCOM CAM Ca DAM Ce
BLOC Ce SLOC-L LOC NPM
CAM MOA NPM MOA LCOM3
DAM SLOC-L SLOC-P LOC LCO
CLOC CWORD LCOM SCOC-L DAM
TABLE 9. Metrics subset obtained by FSS algorithms for the Antir4 dataset.

Linear Correlation Rank Correlation OneR Relief Consistency

RFC LCO DIT Ce WMC

LOC RFC NOC WMC CBO

SLOC-L MVG IC NPM RFC

BLOC SLOC-P CBM DAM LCOM

SLOC-P SLOC-L MFA CBO Ca

LCO LOC Ce CAM Ce

MVG CAM SLOC-P LCO NPM

WMC AMC MOA Ca LCOM3

LCOM Ca DAM LCOM3 LCO

NPM BLOC LOC BLOC DAM

Ce Ce LCOM RFC MOA

DAM CBO CBO MOA CAM

CAM WMC SLOC-L MVG AMC

CBO MOA BLOC LCOM LOC

LCOM3 DIT SLOC-P SLOC-L SLOC-P

more efficient software management. The previous related
works indicate that the maintenance effort in most of the
SDLC ranges from 65% to 75% of total software develop-
ment time. In our proposed method and discussion, we have
clearly proven that the effort reduces to 45% to 50% i.e. the
maintainability feature of a software increases the quality
of it.

How does software maintainability prediction help in the
maintenance process and what would be the appropriate
associated metrics to be used for software maintainability
prediction?

Software maintainability predicts changes or failures
that may occur in software after it has been deployed.

61848

Therefore, it is necessary to predict software maintainability
in quantitative terms as early as the design phase. It also
helps in identifying those areas that may be the cause of
poor maintenance. Software maintenance is mainly depen-
dent on failure rate and repair time of the software. The
goal of the software maintainability process is to determine
the amount of time required for repairing system and main-
taining tasks, which may lead to improved performance of
the software. Moreover, early assessment of characteristics
maintainability in a system design progresses with differ-
ent phases of the software. Since tracking the maintenance
behavior of software is quite difficult, predicting cost and
risk associated becomes hard. Therefore it is important that

VOLUME 7, 2019

S. Jha et al.: Deep Learning Approach for Software Maintainability Metrics Prediction

IEEE Access

TABLE 10. Metrics subset obtained by FSS algorithms for the junit dataset.
Linear Correlation Rank Correlation OneR Relief Consistency
RFC SLOC-L NOC WMC WMC
LCO SLOC-P Ca NPM DIT
LOC LCO MFA DIT CBO
SLOC-L LOC IC BLOC RFC
Ce MVG CBM MOA LCOM
SLOC-P RFC CBO LOC Ce
MVG BLOC DAM NOC NPM
BLOC WMC MOA LCOM3 LCOM3
WMC AMC DIT MVG LCO
NPM NPM NPM RFC DAM
AMC CAM WMC SLOC-P MOA
CAM LCOM LOC LCOM CAM
LCOM Ce Ce Ca AMC
DAM CBO MVG Ce LOC
CBO MOA SLOC-L | SCOL-P SLOC-P

software maintainability is predicted and evaluated. This may
be done using machine learning algorithms. With the help of
the deep learning the process of software maintainability is
eased significantly. Early prediction of faults is quite useful in
improving software quality. Deep learning also gives a high
level of efficiency, which further plays an important role in
the maintenance of the software.

Maintainability may also take into account addition of
new features or functionalities or modifying the software
S0 as to meet new requirements. Software maintenance is
concerned with sustaining the software product throughout
its life cycle [56]. It is required when customer demands new
features and new functions in the software. It may be also
required when hardware of the system undergoes changes.
Since software maintenance deals with modification of soft-
ware product after delivery so as to correct faults, or to
improve performance, we may conclude that sustenance of
software depends on its flawlessness, which may be achieved
once the software is defect free. Software maintainability
prediction ensures defect free software’s and thus leads to
software maintenance. The maintenance phase in SDLC usu-
ally is responsible for identifying defects and fixing errors
in software. The data may be provided from either the cus-
tomers or testers who may identify defects or issues with
the software. Once the data is with the developers, they can
work on fixing the errors to ensure defect free software.

VOLUME 7, 2019

Some of the metrics for Software Maintainability Prediction
are recall, precision and Area under curve (AUC) of ROC
curve [18].

IV. RESULTS AND DISCUSSION

Firstly, we identify the set of metrics that can best predict
the value of NChange to enhance the structural quality of
the software. Tables 8-10 give the set of the most signifi-
cant metrics obtained by applying five Feature Subset Selec-
tion (FSS) algorithms (Linear Correlation, Rank Correlation,
OneR, Relief and Consistency) for the Mapdb, McMMO and
Mct datasets.

According to Linear Correlation, SLOC-P, SLOC-L, LOC,
RFC, LCO, MVG, Ce, WMC, NPM, CBO, LCOM, BLOC,
CAM, DAM and CLOC are the most significant metrics
for Mapdb, RFC, LOC, SLOC-L, BLOC, SLOC-P, LCO,
MVG, WMC, LCOM, NPM, Ce, DAM, CAM, CBO and
LCOM3 for Antlr4. After applying Linear Correlation for
Junit RFC, LCO, LOC, SLOC-L, Ce, SLOC-P, MVG, BLOC,
WMC, NPM, AMC, CAM and LCOM are found to be more
significant than others.

Rank Correlation gives LCO, DAM, AMC, RFC, LCOM3,
DIT, Ca, WMC, BLOC, NPM, CAM, Ce, MOA and SLOC-L
as the most relevant metrics for Mapdb, whereas LCO, RFC,
MVG, SLOC-P, SLOC-L, LOC,CAM, AMC, Ca, BLOC, Ce,

61849

IEEE Access

S. Jha et al.: Deep Learning Approach for Software Maintainability Metrics Prediction

TABLE 11. Comparison (red values denote the results of the proposed method).

ML FSS Mapdb McMMO Junit
Algorithm Algorithm r MaA RM Acc. r MA | RMS Acc. r MAE | RMSE | Acc.
E SE E |E
gzti‘s‘:t‘l 050 | 1.59 | 556 | 6675 | 015 |198 522 [6974 |020 |196 |4.05 70.02
Ridge -
Regression Linar 055 | 135 [394 | 7245 | 033 |164 463 |7376 |037 |154 |3.08 72.10
with Correlation
Variable Rank 0.58 | 122 |3.48 |73.67 | 021 |154|428 |7683 031 | 154 |373 72.10
Selection Correlation
OneR 056 | 1.33 | 3.16 | 69.10 | 020 | 1.53 | 3.76 | 7589 | 035 | 1.63 | 3.59 74.52
Relief 0.63 | 1.30 | 3.62 | 69.86 | 0.41 | 1.36 | 3.02 | 77.81 042 | 150 |3.10 75.14
Consistency | 0.60 | 1.32 | 3.12 | 75.36_| 036 | 1.45 | 3.85 | 7636 | 032 | 1.76_ | 3.85 69.32
Original 048 | 153 | 441 |8265 |028 |1.94 504 [7021 [027 |193 |4.57 70.88
Dataset
» Linear 061 [1.24 |3.40 | 8295 | 044 | 140|361 |7778 |045 |123 |2.64 76.08
Decision Correlation
Tree Rank 0.60 | 1.20 |3.30 | 8447 |042 |154|3.74 |77.54 035 | 140 |3.08 75.74
Correlation
OneR 055 | 1.27 | 3.64 | 84.63 | 056 | 1.61 | 3.73 | 7778 | 039 | 1.54 | 3.10 75.04
Relief 054 | 1.41 | 405 | 8593 | 049 | 120 | 3.68 | 7920 |040 | 142 |2.72 75.91
Consistency | 0.65 | 1.23 | 2.84 | 87.93 | 0.58 | 1.16 | 3.40 | 8238 | 042 | 123 |2.46 78.08
Original 0.69 | 1.00 |5.67 |88.89 |03 |122[385 |[86.76 |-0.01 |136 |[428 |77.30
Dataset
. Linear
Quantile . 0.70 | 099 |5.65 | 8858 |0.17 | 1.16 |4.16 |8842 |001 |142 |430 77.12
. Correlation
Regression Rank
Forest . 0.69 | 099 |5.65 | 8889 |030 |1.07 328 |87.94 002 |137 |426 77.82
Correlation
OneR 069 | 1.01 | 5.66 | 88.74 | 023 | 121 | 337 | 86.05 003 | 120 |3.96 79.68
Relief 069 | 1.03 | 5.65 | 88.13 | 0.19 | 1.12 | 3.74 | 88.18 | 001 | 1.40 | 432 77.99
Consistency | 0.70 | 0.99 | 5.63 | 89.74 | 031 | 1.04 | 325 |88.99 |0.02 | 137 | 4.4 78.64
Original 043 | 129 |5.11 |80.37 |034 | 1.18 | 456 |8298 [023 |1.67 |4.89 74.35
Dataset
Linear
Support . 0.61 | 1.17 | 4.17 | 8554 |0.65 [0.79 |28 [87.00 |038 |1.16 |3.45 78.34
Correlation
Vector Rank
Machine . 062 | 1.11 |4.19 | 8691 |0.69 |072 278 |8534 |035 |1.12 |3.74 77.12
Correlation
OneR 069 | 1.08 | 3.00 | 87.96 | 0.70 | 0.73 | 229 | 88.42 | 042 | 1.05 | 3.45 79.65
Relief 060 | 1.17 | 3.96 | 8371 | 0.60 | 0.89 | 3.13 | 88.18 | 031 | 1.17 | 3.84 78.51
Consistency | 0.63 | 1.09 | 3.62 | 85.84 | 048 | 1.01 | 3.89 | 86.05 032 | 1.09 |3.43 79.03
Original 027 | 143 | 470 |73.06 |023 |1.92]498 |[7021 [032 |1.78 |4.29 71.23
Dataset
. Linear 0.60 | 1.32 |3.48 | 7656 | 035 | 148|400 |7825 041 | 141 |282 74.35
Principal Correlation
Component | Rank 056 [132 [332 | 7686 | 028 |1.70 |4.69 |7565 |038 |137 |258 72.96
Analysis Correlation
OneR 045 | 136 | 338 | 68.04 | 038 | 137 | 330 | 7896 | 038 | 1.41 | 3.03 74.35
Relief 043 | 132 | 3.49 | 6834 | 033 | 133 | 3.49 | 78.01 042 | 139 | 280 76.70
Consistency | 0.58 | 1.31 | 3.10 | 7971 | 029 | 129 |3.09 |79.07 |043 | 130 |222 75.39
Original 068 | 1.3 |5.70 |90.06 |035 | 192|498 |9321 [042 |1.68 |3.29 89.23
Dataset
Lincar 0.60 | 1.33 |5.48 | 9256 | 038 | 148|400 |9225 045 | 151 |3.82 92.35
Correlation
LSTM Rank
. 056 | 132 | 589 |91.86 | 032 | 180|469 |91.65 |048 |1.47 |3.58 90.96
Correlation
OneR 045 | 136 | 587 | 92.04 | 031 | 1.77 | 430 |90.96 | 046 | 1.51 |3.33 93.35
Relief 043 | 138 | 556 | 9134 | 035 | 1.83 | 449 | 93.01 041 | 149 |3.80 92.70
Consistency | 0.58 | 1.36 | 5.76 | 94.00 | 037 | 1.89 | 409 | 94.07 | 045 | 140 |3.22 93.76

CBO, WMC, MOA and DIT are the most relevant metrics for
Antlr4, while SLOC-L, SLOC-P, LCO, LOC, MVG, RFC,

61850

BLOC, WMC, AMC, NPM, CAM, LCOM, Ce, CBO and
MOA are determined to be the most relevant metrics for

VOLUME 7, 2019

S. Jha et al.: Deep Learning Approach for Software Maintainability Metrics Prediction

IEEE Access

TABLE 12. Comparative analysis.
No. Authors Advantages Limitations
1 Cheng et.al. | Presented a system for indicating, preparing, assessing | Suggested model utilizing heterogeneous datasets.
[46] and conveying machine learning methods
2 Nam et.al. [47] | Proposed heterogeneous defect prediction (HDP) to | Need to investigate the attainability of building
anticipate deserts crosswise over activities with | different forecast.
heterogeneous metric sets.
3 Tavakoli et.al. | Exhibited the handiness of scene closeness in | Approval technique on the aftereffects of proposed
[28] anticipating the saliency roused by the impact of the | consider.
nature of a scene on the spectator's eye developments.
4 Singh and Chug | Performed detailed analysis & showed those Linear | Results can be further refined by using more
[48] classifiers are the most accurate & reliable among | number of datasets and comparison can be done
defect prediction methods. amongst more number of methods.
5 Lietal. [17] Proposed CCLEARNER, a deep learning-based clone | Need to try different methods with other machine
detection method. learning systems to investigate whether deep
learning is the best strategy to prepare a classifier
for clone identification.
6 Nucci et.al. [S8] | Exhibited a recreated investigation. Need to address the issues in assessing the effect of
dataset estimate
7 Liu et.al. [42] Proposed to utilize the Historical Version Sequence of | Need to apply distinctive procedures to HVSM or
Metrics (HVSM) in constant programming renditions | utilizing the data given by HVSM to enhance the
as imperfection indicators. execution of run of the mill strategies.
8 Chen et.al. [52] | Formalized JIT-SDP as a multi-target optimization | Need to optimize the performance of proposed
issue and afterward propose a novel technique MULTI | method by considering other MOAs
9 Miholca et.al. | Proposed an advanced supervised learning method | Need to extend the HyGRAR show by considering
[53] called HyGRAR to take care of the software deformity | other machine learning strategies for slow relations,
forecast issue. for example, SVM.
10 Krishna and | Undertook a detailed study of transfer learners called | Lacking feature selection in choosing the relevant
Menzies [54] the “bellwethers”. metrics for the analysis.
11. Proposed Proposed a model for software maintainability metrics | More datasets need to be used. A new measure of
Work prediction. A new measure of precision is introduced. | precision is introduced. More SDLC need to be
The proposed Deep Learning model outperforms all of | considered.
the other Machine Learning Techniques that were
considered.

the Junit dataset. Similarly, CBM, CLOC, CWORD, MFA,
MOA, CBO, DAM, DIT, Ce, WMC, Ca, SLOC-L, NPM,
SLOC-P and LCOM are found to be the more important
metrics by OneR in the case of Mapdb dataset, whereas DIT,
NOC, IC, CBM, MFA, Ce, SLOC-P, MOA, DAM, LOC,
LCOM, CBO and SLOC-L are the most important metrics
for the Antlr4 database, whereas NOC, Ca, MFA, IC, CBM,
CBO, DAM, MOA, DIT, NPM, WMC, LOC and Ce are the
most important metrics in the case of the Junit dataset.

The key metrics obtained by Relief for the Mapdb dataset
are WMC, CBO, NPM, SLOC-P, NOC, Ca, LCOM, MFA,
IC, CBM, DAM, LOC and MOA, the key metrics for the
Antlr4 dataset are WMC, NPM, DAM, CBO, CAM, LCO,
Ca, LCOM3, BLOC, RFC, MOA, MVG, LCOM and SLOC-
L, whereas the key metrics for the Junit dataset are WMC,
NPM, DIT, BLOC, MOA, LOC, NOC, LCOM3, MVG, RFC,
SLOC-P, LCOM, Ca and Ce. According to Consistency,
the most important metrics for the Mapdb dataset are the
LOC, SLOC-P, SLOC-L, MVG, WMC, DIT, CBO, RFC,

VOLUME 7, 2019

LCOM, Ca, Ce, NPM, LCOM3, LCO and DAM, and the most
important metrics for the McMMO dataset are the WMC,
CBO, RFC, LCOM, Ca, Ce, NPM, LCOM3, LCO, DAM,
MOA, CAM, AMC, LOC, SLOC-P and MVG, whereas DIT,
CBO, RFC, LCOM, Ce, NPM, LCOM3, LCO, DAM, MOA,
CAM, AMC, LOC, SLOC-P and SLOC-L are the most essen-
tial metrics for the Mct dataset.

Secondly, we identify the most efficient algorithm on
the basis of different prediction accuracy parameters. Five
machine learning algorithms namely Ridge Regression with
Variable Selection, Decision Tree, Quantile Regression For-
est, Support Vector Machine and Principal Component Anal-
ysis were applied on the original datasets and those obtained
by the five selected FSS algorithms. The evaluation results of
different prediction accuracy measures consisting of values
of r (correlation coefficient), MAE, RMSE and Accuracy of
the original datasets (without any feature reduction), and the
best combination of FSS and machine learning algorithms for
the three datasets are presented in Table 11.

61851

IEEE Access

S. Jha et al.: Deep Learning Approach for Software Maintainability Metrics Prediction

For the three open source datasets, the LSTM algorithm
gave the best results with an accuracy of 94%. The FSS
algorithm consistency gave the best results when applied on
the LSTM deep neural network. The correlation coefficient r
of the data had a range from 0.45 to 0.68, and the MAE was
considerably less for the datasets on which it was applied. The
RMSE was high for the Mapdb dataset but for the MCMMO
and Junit databases the RMSE was comparably lower. The
LSTM algorithm when applied on the metrics selected
by FSS algorithm Consistency gave a considerably good
result.

In all the cases, we can observe that the machine learn-
ing algorithms and the LSTM perform better after the FSS
algorithms have been applied on the dataset. This implies that
the FSS algorithms can help to filter out the relevant metrics
that are required to increase the accuracy of the prediction.
Among the machine learning algorithms, the quantile regres-
sion performs best on the datasets giving an average accuracy
of 89%.

V. LIMITATIONS OF THE RELATED WORK IN
COMPARISON TO OUR PROPOSED WORK

Following are some of the relevant limitations of the related
works in comparison to our proposed work:

1. There is a lack of proper measure of precision.
We thought of applying the Neural System because
in common classes in several open source projects,
simple neural systems have been used as models of
central variations generation. Such insatiable behavior
has been investigated in the SDLC (Software Develop-
ment Life Cycles), and presented in this paper. As in
the isolated sequence case, it is desirable to use the
dynamical behavior of each of those classes in these
more complex sequence problems to measure the preci-
sion that we have achieved in this paper in future. There
have been many recent works related to software main-
tainability metrics prediction, but none of these works
have provided any measure to determine the accuracy
of the precision [11]. Here we have proposed a forget
layer which helps in enhancing the precision measure
as opposed to the previous published works in this area
that have not done proper precision measurements.

2. In order to increase the precision, and decrease the
complexity, this paper deals with multi layers of LSTM
networks. In the previous works [11], concurrency and
recurrence were taken into consideration when dealing
with huge datasets, and the different software cycles
i.e. the SDLC of different platforms were not taken
into consideration when dealing with huge datasets. So,
in order to get a higher precision level, we intend to
use 299 projects, and the results have thus far indicated
that we have been successful in producing results with
a higher level of precision accuracy compared to the
previous works [57].

3. Asshown in Table 11, the proposed LSTM model gives
a very high level of accuracy compared to all of the

61852

other methods. This further verifies our initial claims
that the deep learning model gives better prediction
results compared to other conventional machine learn-
ing algorithms such as Decision Tree, Support Vector
Machine.

VI. COMPARATIVE STUDY

In this section, we present a comparative analysis of our
proposed work and existing works in the literature. This is
summarized in Table 12.

In this study, we have proposed a model for software main-
tainability metrics prediction. Moreover, we have introduced
anew measure of precision. It has been found experimentally
that the proposed Deep Learning model outperforms all of
the other Machine Learning Techniques that were considered.
With more datasets we may achieve better results. We may
also consider more SDLC for the same.

VIi. CONCLUSION
This paper addresses the research gaps in the study of soft-
ware maintainability metrics prediction. From the previously
published works and the experiments, it is clear that our
proposed LSTM algorithm outperforms the other machine
learning algorithms. It can likewise be seen that in most of
the other works, machine learning calculations neglect to
indicate which measurements influence the product viabil-
ity, whereas our LSTM algorithms measures this accurately.
In this paper, the measurements of twenty-nine projects have
been considered and their effect on programming practicality
of open source programming has been studied. On applying
the proposed algorithms on the chosen datasets, we found
that the LSTM algorithm should be used for the optimal
prediction of software maintenance. Furthermore, we found
that the FSS algorithm gives the best results in determining
the most relevant metrics to be considered for prediction.
Future work in this area include using a fluffy profound
neural system, and studying if the precision of the results
obtained via this method is comparable to results obtained via
other methods. We could also apply a blend of CNN (Con-
current Neural Network) profound net, followed by layers
of LSTM profound net. Furthermore, we can also study the
impact of taking the recurrence of a model into consideration
on the imperfections and the timing of these imperfections,
as well as on the frequency and seriousness of the deformity.

REFERENCES

[1] R.Malhotra and A. Chug, “Software maintainability: Systematic literature
review and current trends,” Int. J. Softw. Eng. Knowl. Eng., vol. 26, no. 8,
pp. 1221-1253, 2016.

[2] Q. Huang, E. Shihab, X. Xia, D. Lo, and S. Li, “Identifying self-admitted
technical debt in open source projects using text mining,” Empirical Softw.
Eng., vol. 23, no. 1, pp. 418-451, 2018.

[3] J. Guo et al., “Data-efficient performance learning for configurable sys-
tems,” Empirical Softw. Eng., vol. 23, no. 3, pp. 1826-1867, 2018.

[4] 1. Boussaid, P. Siarry, and M. Ahmed-Nacer, “A survey on search-
based model-driven engineering,” Automated Softw. Eng., vol. 24, no. 2,
pp. 233-294, 2017.

[5] I. Gondra, “Applying machine learning to software fault-proneness pre-
diction,” J. Syst. Softw., vol. 81, pp. 186-195, Feb. 2008.

VOLUME 7, 2019

S. Jha et al.: Deep Learning Approach for Software Maintainability Metrics Prediction

IEEE Access

[6]

[71

[8]

191

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, ‘“Summarizing source
code using a neural attention model,” in Proc. Annu. Meeting Assoc.
Comput. Linguistics, vol. 1, 2016, pp. 2073-2083.

S. Mishra and A. Sharma, ‘“Maintainability prediction of object oriented
software by using adaptive network based fuzzy system technique,” Int. J.
Comput. Appl., vol. 119, no. 9, pp. 24-27, 2015.

M. A. Ahmed and H. A. Al-Jamimi, ‘“Machine learning approaches for
predicting software maintainability: A fuzzy-based transparent model,”
IET Softw., vol. 7, no. 6, pp. 317-326, 2013.

M. R. H. A. Mohd, A. Sarkheyli, A. M. Zain, and H. Haron, “Fuzzy logic
for modeling machining process: A review,” Artif. Intell. Rev., vol. 43,
no. 3, pp. 345-379, 2015.

Amarjeet and J. K. Chhabra, “Improving package structure of object-
oriented software using multi-objective optimization and weighted
class connections,” J. King Saud Univ.-Comput. Inf. Sci., vol. 29,
no. 3, pp. 349-364, 2017. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1319157815001093#!

M. O. Elish, H. Aljamaan, and I. Ahmad, “Three empirical studies on pre-
dicting software maintainability using ensemble methods,” Soft Comput.,
vol. 19, no. 9, pp. 2511-2524, 2015.

J. Finlay, R. Pears, and A. M. Connor, “Data stream mining for predicting
software build outcomes using source code metrics,” Inf. Softw. Technol.,
vol. 56, no. 2, pp. 183-198, 2014.

R. Francese, M. Risi, G. Scanniello, and G. Tortora, ‘“Proposing and
assessing a software visualization approach based on polymetric views,”
J. Vis. Lang. Comput., vol. 34, pp. 11-24, Jun. 2016.

X. Huo, M. Li, and Z. H. Zhou, ““Learning unified features from natural
and programming languages for locating buggy source code,” in Proc. 25th
Int. Conf. Artif. Intell. (IJCAI), 2016, pp. 1606-1612.

T. Haije, B. O. K. Intelligentie, E. Gavves, and H. Heuer, ‘“Automatic
comment generation using a neural translation model,” Inf. Softw. Technol.,
vol. 55, no. 3, pp. 258-268, 2016.

V.-S. Ionescu, H. Demian, and I. G. Czibula, “Natural language processing
and machine learning methods for software development effort estima-
tion,” Stud. Inform. Control, vol. 26, no. 2, pp. 219-228, 2017.

P. Jamshidi, N. Siegmund, M. Velez, C. Kistner, A. Patel, and Y. Agarwal,
“Transfer learning for performance modeling of configurable systems:
An exploratory analysis,” in Proc. 32nd IEEE/ACM Int. Conf. Automated
Softw. Eng., 2017, pp. 497-508.

A. Kaur and K. Kaur, “Statistical comparison of modelling methods
for software maintainability prediction,” Int. J. Softw. Eng. Knowl. Eng.,
vol. 23, no. 6, pp. 743-774, 2013.

L. Li, H. Feng, W. Zhuang, N. Meng, and B. Ryder, “CCLearner: A deep
learning-based clone detection approach,” in Proc. IEEE Int. Conf. Softw.
Maintenance Evol. (ICSME), Sep. 2017, pp. 249-260.

I. H. Laradji, M. Alshayeb, and L. Ghouti, “Software defect prediction
using ensemble learning on selected features,” Inf. Softw. Technol., vol. 58,
pp. 388402, Feb. 2015.

M.-J. Lin, C.-Z. Yang, C.-Y. Lee, and C.-C. Chen, “Enhancements for
duplication detection in bug reports with manifold correlation features,”
J. Syst. Softw., vol. 121, pp. 223-233, Nov. 2016.

Q. Luo, A. Nair, M. Grechanik, and D. Poshyvanyk, “FOREPOST: Find-
ing performance problems automatically with feedback-directed learning
software testing,” Empiricals Softw. Eng., vol. 22, no. 1, pp. 6-56, 2017.
T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” IEEE Trans. Softw. Eng., vol. 33,
no. 1, pp. 2-13, Jan. 2007.

R. Malhotra and M. Khanna, “An exploratory study for software change
prediction in object-oriented systems using hybridized techniques,” Auto-
mated Softw. Eng., vol. 24, no. 3, pp. 673-717, 2017.

R. Malhotra, “A systematic review of machine learning techniques for
software fault prediction,” Appl. Soft Comput., vol. 27, pp. 504-518,
Feb. 2015.

D. Radjenovic, M. Heri¢ko, R. Torkar, and A. Zivkovi&, “Software fault
prediction metrics: A systematic literature review,” Inf. Softw. Technol.,
vol. 55, no. 8, pp. 1397-1418, 2013.

S. Rahimi and M. Zargham, ‘‘Vulnerability scrying method for software
vulnerability discovery prediction without a vulnerability database,” IEEE
Trans. Rel., vol. 62, no. 2, pp. 395-407, Jun. 2013.

H. R. Tavakoli, A. Borji, J. Laaksonen, and E. Laaksonen, “Exploiting
inter-image similarity and ensemble of extreme learners for fixation predic-
tion using deep features,”” Neurocomputing, vol. 244, pp. 10-18, Jun. 2017.

VOLUME 7, 2019

(29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

(371

(38]

(391

[40]

[41]

(42]

(43]

[44]

(45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

X. Yang, D. Lo, X. Xia, and J. Sun, “TLEL: A two-layer ensemble learning
approach for just-in-time defect prediction,” Inf. Softw. Technol., vol. 87,
pp. 206-220, Jul. 2017.

O. Araque, 1. Corcuera-Platas, J. F. Sanchez-Rada, and C. A. Iglesias,
“Enhancing deep learning sentiment analysis with ensemble techniques
in social applications,” Expert Syst. Appl., vol. 77, pp. 236-246, Jul. 2017.
C.-M. Wang and Y.-F. Huang, ““Self-adaptive harmony search algorithm
for optimization,” Expert Syst. Appl., vol. 37, no. 3, pp. 2826-2837, 2010.
A. Chug and R. Malhotra, “Benchmarking framework for maintainability
prediction of open source software using object oriented metrics,” Int. J.
Innov. Comput., Inf. Control, vol. 12, no. 2, pp. 615-634 , 2016.

E. Chong, C. Han, and F. C. Park, “Deep learning networks for stock
market analysis and prediction: Methodology, data representations, and
case studies,” Expert Syst. Appl., vol. 83, pp. 187-205, Oct. 2017.

R. Malhotra, “Comparative analysis of statistical and machine learning
methods for predicting faulty modules,” Appl. Soft Comput., vol. 21,
pp. 286-297, Aug. 2014.

F. De Smedt, L. Struyf, S. Beckers, J. Vennekens, G. De Samblanx, and
T. Goedemé, “Faster and more intelligent object detection by combining
OpenCL and KR,” J. Ambient Intell. Humanized Comput., vol. 5, no. 5,
pp. 635-643,2014.

M. Staron, W. Meding, and B. Soderqvist, ‘A method for forecasting defect
backlog in large streamline software development projects and its industrial
evaluation,” Inf. Softw. Technol., vol. 52, no. 10, pp. 1069-1079, 2010.
M. Li and C. S. Smidts, “A ranking of software engineering measures
based on expert opinion,” [EEE Trans. Softw. Eng., vol. 29, no. 9,
pp. 811-824, Sep. 2003.

D. Rattan, R. Bhatia, and M. Singh, “Software clone detection: A sys-
tematic review,” Inf. Softw. Technol., vol. 55, no. 7, pp. 1165-1199,
2013.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436444, May 2015.

P. N. Druzhkov and V. D. Kustikova, “A survey of deep learning methods
and software tools for image classification and object detection,” Pattern
Recognit. Image Anal., vol. 26, no. 1, pp. 9-15, 2016.

V. Gulshan et al., “Development and validation of a deep learning algo-
rithm for detection of diabetic retinopathy in retinal fundus photographs,”
J. Amer. Med. Assoc., vol. 316, no. 22, pp. 2402-2410, 2016.

W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A survey of
deep neural network architectures and their applications,” Neurocomput-
ing, vol. 234, pp. 11-26, Apr. 2017.

S. Min, B. Lee, and S. Yoon, “Deep learning in bioinformatics,” Briefings
Bioinf., vol. 18, no. 5, pp. 851-869, 2017.

R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, “Deep learning
for healthcare: Review, opportunities and challenges,” Briefings Bioinf.,
vol. 19, no. 6, pp. 1236-1246, 2017.

‘W. Sun, S. Shaoa, R. Zhaob, R. Yana, X. Zhangc, and X. Chen, “A sparse
auto-encoder-based deep neural network approach for induction motor
faults classification,” Measurement, vol. 89, pp. 171-178, Jul. 2016.

H. T. Cheng et al., “Tensorflow estimators: Managing simplicity vs. Flex-
ibility in high-level machine learning frameworks,” in Proc. 23rd ACM
SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2017, pp. 1763-1771.
J.Nam, W. Fu, S. Kim, T. Menzies, and L. Tan, “Heterogeneous defect pre-
diction,” IEEE Trans. Softw. Eng., vol. 44, no. 9, pp. 874-896, Sep. 2018.
doi: 10.1109/TSE.2017.2720603.

P. D. Singh and A. Chug, “Software defect prediction analysis using
machine learning algorithms,” in Proc. 7th IEEE Int. Conf. Cloud Comput.,
Data Sci. Eng.-Confluence, Jan. 2017, pp. 775-781.

G. Litjens et al., “A survey on deep learning in medical image analysis,”
Med. Image Anal., vol. 42, pp. 60-88, Dec. 2017.

N. Fenton et al., “Predicting software defects in varying development
lifecycles using Bayesian nets,” Inf. Softw. Technol., vol. 49, pp. 32-43,
Jan. 2007.

Y. Liu, Y. Li, J. Guo, Y. Zhou, and B. Xu, “Connecting software metrics
across versions to predict defects,” in Proc. IEEE 25th Int. Conf. Softw.
Anal., Evol. Reeng. (SANER), Mar. 2018, pp. 232-243.

X. Chen, Y. Zhao, Q. Wang, and Z. Yuan, “MULTI: Multi-objective effort-
aware just-in-time software defect prediction,” Inf. Softw. Technol., vol. 93,
pp. 1-13, Jan. 2018.

D.-L. Miholca, G. Czibula, and I. G. Czibula, “A novel approach for soft-
ware defect prediction through hybridizing gradual relational association
rules with artificial neural networks,” Inf. Sci., vol. 441, pp. 152-170,
May 2018.

61853

IEEE Access

S. Jha et al.: Deep Learning Approach for Software Maintainability Metrics Prediction

[54] R. Krishna and T. Menzies, “Bellwethers: A baseline method for transfer
learning,” IEEE Trans. Softw. Eng., to be published. doi: 10.1109/TSE.
2018.2821670.

[55] M. Asghar, I. A. Khan, W. Anwar, and B. Ahmad, “Systemized approach
for software corrective maintenance effort reduction,” J. Basic Appl. Sci.
Res., vol. 1, no. 10, pp. 1356-1362, 2011.

[56] T. M. Pigoski, Software Maintenance. Pensacola, FL, USA: Technical
Software Services, 2011.

[57] J. Herndndez-Orallo, “Evaluation in artificial intelligence: From task-
oriented to ability-oriented measurement,” Artif. Intell. Rev., vol. 48, no. 3,
pp. 397-447, 2017.

[58] D. Di Nucci, F. Palomba, D. A. Tamburri, A. Serebrenik, and A. De Lucia,
“Detecting code smells using machine learning techniques: Are we there
yet?” in Proc. 25th IEEE Int. Conf. Softw. Anal., Evol. Reeng. (SANER).
Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers,
Mar. 2018, pp. 612-621.

SUDAN JHA was born in Kathmandu, Nepal.
He received proficiency in certificate level from
the Saint Xavier’s College, Kathmandu and the
B.E. degree in electronics engineering from the
Motilal Nehru Regional College, Allahabad, Uttar
Pradesh, India, in 2001. He joined as a Lecturer
with the Nepal Engineering College (nec), one of
the premium and largest engineering college and
the first one in the private domain in Nepal, where
he got full sponsorship from the employer (nec) to
pursue master’s degree in computer science. He was an Assistant Professor
with the Department of Computer Science and Engineering after completion
of his master’s degree and no sooner than later, he became the Head of
the Computer Science and Engineering Department, Nepal Engineering
College. In due course of time, he chaired and organized five international
conferences, and some of the proceedings of those conferences had been
published by Springer Verlag, World Science Series, and Imperial Press
London.

RAGHVENDRA KUMAR received the B.Tech.
degree in computer science and engineering from
SRM University Chennai, Tamil Nadu, India,
the M.Tech. degree in computer science and
engineering from KIIT University, Bhubaneswar,
Odisha, India, and the Ph.D. degree in computer
science and engineering from Jodhpur National
University, Jodhpur, Rajasthan, India. He is cur-
rently an Assistant Professor with the Computer
Science and Engineering Department, L.N.C.T
Group, College Jabalpur, India. He has published 86 research papers in inter-
national/national journals and conferences, including the IEEE, Springer, and
ACM. He serves as the Session Chair, the Co-Chair, a Technical program
Committee Member in many international and national conferences and
as a Guest Editor in many special issues from reputed journals (indexed
by: SCOPUS and ESCI). He also received the Best Paper Award in the
IEEE Conference 2013 and the Young Achiever Award 2016 from the IEAE
Association for his research work in the field of distributed database. His
research interests include computer networks, data mining, cloud computing
and Secure multiparty computations, theory of computer science, and design
of algorithms. He has authored 12 computer science books in the field
of data mining, robotics, graph theory, and turing machine published by
IGI Global Publication, USA, IOS Press Netherland, Lambert Publication,
Scholar Press, Kataria Publication, Narosa, Edupedia Publication, S. Chand
Publication, and Laxmi Publication.

61854

LE HOANG SON received the Ph.D. degree in
mathematics and informatics from the VNU Uni-
versity of Science, Vietnam National University
(VNU), in 2013. He has been an Associate Profes-
sor in information technology, since 2017. He was
a Senior Researcher and the Vice Director of the
Center for High Performance Computing, VNU
University of Science, Vietnam National Univer-
sity, from 2007 to 2018. Since 2018, he has been
the Head of the Department of Multimedia and
Virtual Reality, VNU Information Technology Institute, VNU. His major
fields include artificial intelligence, data mining, soft computing, fuzzy com-
puting, fuzzy recommender systems, and geographic information systems.
Dr. Son is a member of the International Association of Computer Science
and Information Technology (IACSIT), Vietnam Society for Applications of
Mathematics, Vietnam, and the Key Laboratory of Geotechnical Engineering
and Artificial Intelligence, University of Transport Technology, Vietnam.
He serves on the Editorial Board of Applied Soft Computing (ASOC) in
SCIE, International Journal of Ambient Computing and Intelligence (1JACI)
in SCOPUS, and Vietnam Journal of Computer Science and Cybernetics
(JCC). He is an Associate Editor of the Journal of Intelligent & Fuzzy
Systems (JIFS) in SCIE, IEEE Access in SCIE, Neutrosophic Sets and
Systems (NSS), Vietnam Research and Development on Information and
Communication Technology (RD-ICT), VNU Journal of Science: Computer
Science and Communication Engineering (JCSCE), and Frontiers in Artifi-
cial Intelligence.

MOHAMED ABDEL-BASSET received the B.Sc.,
M.Sc., and Ph.D. degrees in information systems
and technology from the Faculty of Computers and
Informatics, Zagazig University, Egypt. He has
published more than 150 articles in international
journals and conference proceedings. His current
research interests include optimization,
operations research, data mining, computational
intelligence, applied statistics, decision support
systems, robust optimization, engineering opti-
mization, multi-objective optimization, swarm intelligence, evolutionary
algorithms, and artificial neural networks. He is working on the application of
multi-objective and robust meta-heuristic optimization techniques. He is also
an Editor or a Reviewer in different international journals and conferences.
He holds the program chair in many conferences in the fields of decision
making analysis, big data, optimization, complexity and the Internet of
Things, as well as, editorial collaboration in some journals of high impact.

ISHAANI PRIYADARSHINI received the B.Tech.
degree in computer science and engineering from
KIIT University, and the double master’s degree
in information security from KIIT University
and in cybersecurity from the University of
Delaware, USA, where she is currently pursuing
the Ph.D. degree in electrical and computer engi-
neering (cybersecurity). Her current research inter-
ests include cryptography, network security, and
machine learning.

VOLUME 7, 2019

S. Jha et al.: Deep Learning Approach for Software Maintainability Metrics Prediction

IEEE Access

ROHIT SHARMA received the B.Tech. degree
in electronics and communication engineering
from Uttar Pradesh Technical University, Luc-
know, India, the M. Tech. degree in communication
engineering from Shobhit University, India, and
the Ph.D. degree in electronics and communica-
tion engineering from Teerthanker Mahaveer Uni-
versity, Moradabad, India. His Ph.D. thesis was
entitled Evolution in RFID Security to Building
It in the Global Environment. He is currently an
Assistant Professor of electronics and communication engineering with
SRM University, Delhi NCR Campus, Ghaziabad, India. He joined SRM
University, in 2011. He has a teaching experience of over seven years
at SRM University and Dewan V.S. Group of Institutions, India. He has
published about 38 research papers in international/national journals and
about nine research papers in international/national conferences. He is an
Active Member of the ISTE, ICS, IAENG, and IACSIT. He is an Editorial
Board Member and a Reviewer of more than eight international journal and
conferences. He has been an Editor of the 2nd International Conference on
Microelectronics and Telecommunication.

VOLUME 7, 2019

HOANG VIET LONG received the Ph.D. Diploma
degree in computer science from the Hanoi Uni-
versity of Science and Technology, in 2011, where
he defended his thesis on fuzzy and soft computing
field. He is the Head of the Faculty of Information
Technology, People’s Police University of Tech-
nology and Logistics, Bac Ninh, Vietnam. He is
currently a Researcher of the Institute for Com-
putational Science, Ton Duc Thang University, Ho
Chi Minh City, Vietnam. He has been an Associate

Professor in information technology, since 2017. Recently, he has been
concerning in cybersecurity, machine learning, bitcoin, and block chain and
published more than 20 papers in ISI-covered journal.

61855

	INTRODUCTION
	RELATED WORK
	METHODOLOGY
	DATASETS
	DEEP LEARNING
	EVALUATION

	RESULTS AND DISCUSSION
	LIMITATIONS OF THE RELATED WORK IN COMPARISON TO OUR PROPOSED WORK
	COMPARATIVE STUDY
	CONCLUSION
	REFERENCES
	Biographies
	SUDAN JHA
	RAGHVENDRA KUMAR
	LE HOANG SON
	MOHAMED ABDEL-BASSET
	ISHAANI PRIYADARSHINI
	ROHIT SHARMA
	HOANG VIET LONG

