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ABSTRACT Cyber-physical systems (CPSs) were envisaged as a way to manipulate the objects in
the physical world through computer intelligence. This is usually done by providing a communication
bridge between actuation and computing elements. This sought after control is hampered not only by the
unavoidable certainty found in the physical world but also by the limitations of contemporary communication
networks. These limitations hamper fine-grained control of elements that may be separated by large-scale
distances. In this regard, soft computing is an emerging paradigm that can help to manage the unreliability of
CPS by using techniques, including fuzzy systems, neural networks, evolutionary computation, probabilistic
reasoning, and rough sets. We present a comprehensive contemporary review of soft computing techniques
for CPS dependability modeling, analysis, and improvement. This paper provides an overview of CPS
applications, explores the foundations of dependability engineering, and highlights the potential role of soft
computing techniques for CPS dependabilitywith various case studieswhile also identifying common pitfalls
and future directions. In addition, this paper provides a comprehensive survey of the use of various soft
computing techniques for making CPS dependable. This paper is timely due to the increasingly central role
that CPSs are beginning to play in modern societies and the need to leverage all the relevant methodologies
and tools (such as those provided by soft computing) for the development of highly dependable CPS.

INDEX TERMS Cyber-physical-systems, soft computing, machine learning, smart systems, communication
networks, dependability, reliability analysis, reliability optimization.

I. INTRODUCTION
The internet has transformed human life in all sorts of
beneficial ways. It has become an indispensable tool for
all kinds of operations in the fields of business, manufac-
turing, trade, education, and services. Despite the ubiquity
of high-speed data networks, the gap between the cyber
world, in which information is exchanged or processed, and
the physical world is not yet bridged [1]. This motivates

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiao-Sheng Si.

a Cyber-Physical System (CPS) vision that will inte-
grate computational resources into the physical world [2]
to allow for better control over processes that generate
and use information. A CPS can be envisioned as the
orchestration of physical entities and computers in which
embedded computing components control and monitor the
physical processes, typically through feedback loops, and
physical processes and computations interact with each other
closely [3]. Examples include autonomous unmanned aerial
vehicles (UAVs), self-driving cars, and home automation
systems.
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CPS began to emerge as an ‘‘engineering discipline’’
in 2006, although its intellectual roots date back consider-
ably further [4]. The terms ‘‘cyberspace’’, ‘‘cyber-physical
systems’’ share a common root with the term ‘‘cybernetics’’
that was coined by the influential American mathematician
Norbert Weiner in the 1940s as the name of a new field
that he founded which focused on the unification of physical
processes along with the computation and communication
using ideas from control systems theory. As discussed in [3],
CPS is now an important independent field of engineering
that demands its own techniques, theory, methods, and mod-
els. The ubiquitous presence of embedded systems and high-
speed data networks and the potential benefits of CPS has led
some leading thinkers to anticipate that the CPS revolution of
the 21st century will likely overshadow the IT revolution of
20th century [5].

The decreasing cost of complex embedded electronics, due
to which embedded technology is finding its way into all
kinds of everyday products, is heralding a vision of CPS with
virtually endless benefits [6] [7]. CPS already exist in many
forms including utility networks, transportation systems, and
underlie many different industries such as entertainment,
business, healthcare, manufacturing, and services [8]. More
generally, one can envision CPS as a broad field that encom-
passes trends such as the Internet of Things (IoT), sensor
networks, Machine-to-Machine (M2M), fog computing, and
‘‘Social Dispersed Computing’’ [9].

Some prominent CPS applications include the following
(a more detailed description follows in the next section):

1) factories can be operated much more efficiently allow-
ing us to cut down on greenhouse gas emissions;

2) autonomous vehicles, aware of other vehicles and
obstacles in their vicinity, will allow us to manage
urban problems like traffic congestion and to minimize
pollution;

3) self-aware integrated healthcare systems will allow us
to provide universal healthcare; and

4) the generation of electrical power can be managed
better through ‘‘smart grids’’;

5) the security of individuals can be improved through
intelligent surveillance and monitoring to reduce urban
crime and reduce terrorism thread.

The socioeconomic benefits of CPS technology have
been long recognized (decades before the coinage of term
CPS) [10]. But the true benefits envisioned with CPS have
yet to be unleashed [4]. Apprehension such as the lack of reli-
ability, predictability, and lack of real-time control in today’s
computing and networking technologies impedes the broad
adoption of CPS applications, especially for mission-critical
applications (such as automotive safety, traffic control, and
healthcare). For mission-critical applications, dependability
and reliability assumes paramount importance since CPS
must be robust enough to withstand unexpected conditions
in communication networks and capable of adapting to sub-
system failures [5]. In general, system dependability is often
a non-compromisable fundamental requirement of most CPS

applications due to the potential of great loss (financial
loss or even loss of life).

In the world of today, the underlying components (embed-
ded hardware and control sub-systems) of most CPS are
quite dependable. However, attempts to unify them through
network interconnection(s) introduce complexities and ele-
ments of uncertainty that can compromise their dependability.
CPS is still vulnerable since it may suffer from deficiencies
such as the lack of ‘temporal semantics’, and an inadequate
concurrency model. In fact, a failure or an attack on a single
component could initiate the cascading failure phenomenon
with detrimental consequences for the overall system. CPS
operations are marked by the faster operational time scales,
dynamic environments, heterogeneous components, and a
large number of mixed-initiative interactions [11]. All these
factors introduce a certain degree of imprecision and uncer-
tainty in the information required to undertake the necessary
computations. Hence, a computational framework that can
deal with all these factors is needed.

Soft computing techniques have emerged as an enabler
to make CPS more robust and adaptable. Soft comput-
ing techniques were invented to overcome the limitations
of traditional (‘hard’) computing techniques that rely on
deterministic analytic techniques that aim to exactly solve
problems while assuming full knowledge of the parameters
involved [12]. Unfortunately, such assumptions are not met in
practical real-life systems in which imprecision and unavail-
ability of exact prior knowledge is the norm rather than an
exception. Soft computing, in strict contrast to hard com-
puting, can work with imprecision, uncertainty, and incom-
plete information to achieve approximate ‘‘good enough’’
solutions to computationally hard problems at lower costs
[13], [14]. For example, soft computing can use com-
putational intelligence techniques to heuristically solve
intractable Non-deterministic Polynomial-time (NP-) com-
plete problems [15] to produce approximate ‘‘good enough’’
solutions. A comparison of hard and soft computing is pre-
sented in Table 1.

TABLE 1. Hard vs Soft Computing (adapted from [13]).

Various studies, books, and review articles on the scope
and applications of CPS are available in existing literature
[5], [16]–[18], due to the enormous industrial and scien-
tific research in CPS. Similarly, soft computing techniques
for modeling, analysis, and optimization of specific CPS
problems or aspects have been heavily researched in the liter-
ature [19]–[22]. However, despite the vast literature, a com-
prehensive survey on the role of soft computing techniques
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TABLE 2. Comparison of our survey with existing surveys, review papers and books.

TABLE 3. List of abbreviations.

in dependable CPS is missing in the literature. This is high-
lighted in Table 2, where we compare our survey paper with
existing resources in the same space.

To summarize, the main highlights of our paper are as
follows: (1) this paper provides an overview of CPS and
their applications in real life; (2) concepts related to the
reliability of CPS are introduced in detail; (3) a detailed tax-
onomy of soft computing techniques is presented; (4) applica-
tions of soft computing techniques for modeling, analyzing,

FIGURE 1. The building blocks of a cyber-physical system (CPS).

and improving the dependability of CPS are discussed; (5)
insights are shared on the suitability of various soft computing
techniques for various CPS dependability modeling, analysis,
and optimization tasks, and finally (6) open issues and direc-
tions for future works are identified.

The rest of the paper is organized as follows. In section II,
we present application domains of CPS and motivate depend-
ability in CPS by highlighting various attacks in these
domains. In section III, a detailed survey of existing soft
computing techniques being used to improve or assess the
dependability of CPS is presented. Section IV discusses the
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FIGURE 2. A concept map of cyber-physical systems (extended from [4], additions marked*).

limitations of current research, open issues and directions for
future work. A list of abbreviations used frequently in the
paper, as related to soft computing or dependability analysis,
is also included (Table 3).

II. BACKGROUND: SOFT COMPUTING
FOR DEPENDABLE CPS
A. DEPENDABLE CPS BASED APPLICATION DOMAINS
CPS integrate physical processes with computation and net-
working. Figure 1 shows a typical CPS with the integration of
Control, Communication, and Computation. They are some-
times referred to as a Networked Control System (NCS),
Distributed Control System (DCS) and (variants of) Sensor
Actuator Networks (SANs) [25]. It is possible to conceptually
model a CPS as a temporally-integrated distributed control
system [3]. CPS allows the integration of multiple technolo-
gies that have applications spread over several engineering
disciplines as highlighted in Figure 2.

1) ELECTRICAL POWER GRID (SMART GRIDS)
The power grid is a complex and geographically distributed
collection of entities that generate, regulate, and utilize
power. A combined system of power generation, large-scale

distribution, and automated power management in the con-
sumer premises, form a CPS. Smart grids can perform real-
time distributed sensing, measurement, and analysis of the
production and distribution of electrical power [16]. This
optimizes resource utilization while also reducing green-
house gas emissions. Smart grids, however, are vulnerable to
cyber and cyber-physical attacks [26] over and above tradi-
tional elements of failure in complex systems.

2) WATER NETWORKS
Water networks are critical infrastructures that have national
importance. Water networks can be very complex consisting
of various sensing devices and their complexity is rapidly
increasing to meet the rising demands of big cities and indus-
tries. Like smart grids, they too are vulnerable to cyber and
cyber-physical attacks. Such threats are a real concern in the
modern age [27]. The integration of essential utility networks
into a CPS mandates a secure and dependable framework for
CPS operations.

3) INDUSTRIAL AUTOMATION
CPS can provide a broad control over complex and
larger industrial facilities by using network architecture
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that embodies heterogeneous sensors, processors and actua-
tors [28]. CPS in the industrial chain will result in unprece-
dented profits for industry and flexibility for consumers [29].
This convergence of automation in the industry with com-
puting and real-time networking is being hailed as the next
industrial revolution. This has the potential to optimize the
entire cycle of production from the supply chain, manu-
facturing, inventory management, storage, and trade. The
‘‘industrie 4.0’’ initiative [30] was taken by the German
government to bridge the gap between apparently disparate
elements in the supply and production chain. Standards and
protocols for communication between often heterogeneous
elements in the industrial process are being developed. The
introduction of intelligent systems in industrial automation
will make the industry more adaptive to customer require-
ments. Industrial systems are relatively closed environments
(compared to utility and transport networks) with well-
defined objectives. As such earlier soft computing techniques
like FL were traditionally applied in either design of reliable
industrial systems [31]–[33] or for improving their productiv-
ity under given design constraints. The same objectives were
later sought through the soft computing techniques discussed
in section 3 (i.e. EC, GA, ANN, PR, and RST, etc.) These
soft computing techniques are also used to improve system
security.

4) INTELLIGENT TRANSPORTATION SYSTEMS (ITS)
Context-aware vehicular CPSwith cloud support will provide
more convenience and better safety for pedestrians, passen-
gers, and drivers [34]. Such systems will minimize urban
traffic and parking problems. Smart transportation will assist
in times of disaster for emergency evacuation of urban popu-
lation [18]. Whereas the infrastructure and vehicles required
for truly smart transportation systems are in their infancy,
the aviation industry is far more mature in terms of technol-
ogy and communication networks. A failure in ITS can lead to
environmental impacts, time wastage, and the compromising
of public security. Such failures can come from a number of
security flaws in the system by designers or due to individual
components in ITS [35].

5) HEALTHCARE
In recent years, CPS are gaining considerable interest for
their promising applications in healthcare. Such systems can
integrate health monitoring devices such as sensors, actua-
tors, and cameras with cyber components and intelligence.
Recently various CPS architectures have been proposed to
enhance the healthcare facilities [36] including those based on
WSN-cloud frameworks and integration of cloud computing
and big data analytics [37], [38]. Integration of the healthcare
systems in a CPS can, however, make personal information
of patients vulnerable to criminal attacks as reported in the
2017 ransomware attack [39].

B. DEPENDABILITY BACKGROUND
Most of the applications discussed in the previous section
further emphasize the need to make CPS operations resilient

FIGURE 3. Dependability and security attributes.

and dependable. Because the applications and services pro-
vided by a CPS must be guaranteed and dependable in dif-
ferent contexts (i.e. local as well as global). In this section,
first, we discuss the notion of dependability in a more general
context and thereafter focus more specifically on the depend-
ability issues for CPS.

Dependability is a system property that encompasses
attributes like ‘‘reliability, availability, survivability, safety,
maintainability and security’’ [40]. It essentially borrows
important concepts from various technologies and merges
them into one term [41]. International Standards Organi-
zation (ISO) defines dependability as ‘‘the collective term
used to describe the availability performance and its influ-
encing factors: reliability, performance, maintainability per-
formance and maintenance support performance’’ [42]. The
International Electrotechnical Commission (IEC) defines
dependability in terms of the percentage of availability [42].
In computing, dependability is a property of a computing
entity or system that enables the user to place reliance on the
service it delivers [43]. An alternate definition for dependabil-
ity as laid out by the leading researchers in the field is ‘‘the
ability to avoid service failures that are more frequent and
more severe than is acceptable’’ [42]. The term dependability
carries different meanings in different scenarios. The comple-
mentary attributes of dependability, highlighted in Figure 3,
include:

• availability: readiness for correct service;
• reliability: continuity of correct service;
• safety: absence of catastrophic consequences on the
environment or users;

• confidentiality: absence of unauthorized disclosure of
information;

• integrity: absence of improper system state alterations;
• maintainability: ability to undergo repairs and
modifications.

These attributes are difficult to quantify in the absolute
sense [40]. Real systems can never be totally available, reli-
able or safe: treats are inevitable in real systems. In CPS
paradigm, typically we consider two different types of threats,
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including random faults and failures, and strategic threats
consisting of attacks by an adversary with an objective
to maximally disrupt the CPS operations. A dependable
computing system may require a combination of multiple
techniques that can provide threat prevention, threat toler-
ance, threat removal, and threat forecasting. The concept of
dependability must be explored in terms of threats to depend-
ability and means to attain it.

In order for a system to be dependable, it must support the
following:

• Threat prevention: prevention of the occurrence or intro-
duction of threats;

• Threat tolerance: delivery of correct service in the pres-
ence of threats;

• Threat removal: reduction in the number or severity of
threats;

• Threat forecasting: estimation of the present count,
future incidence and possible consequences of threats

Embedded systems electronics, in general, are far more
predictable and reliable than general-purpose computing [5].
CPS should increase the reliability of embedded systems.
Reliability and predictability of CPS are mandatory for their
deployment in critical applications like healthcare, air traffic
control, and automotive safety [3]. Other attributes like secu-
rity must also be dealt with. The ever-increasing integration
of new information technologies means that modern CPS
face uncertainties both from the physical world and from the
system’s cyber components [44]. These vulnerabilities in the
CPS can disclose the system to various potential risks and
threats from attackers which can lead to intensive damages.
Hence, it is crucial to consider both physical and cyber uncer-
tainties while designing a reliable and robust CPS.

The robustness of CPS is its strength to resist a known
range of uncertain disturbances, while its security represents
the ability to withstand unanticipated and malicious events,
and be protected against them. These two properties are pre-
event: the CPS is designed to be robust and secure. The
designing of robust and secure CPS is very costly and it is
impossible to have complete security and robustness [44].
Consequently, it becomes necessary to analyze the resilience
of the system (post-event), which is the system’s ability to
achieve recovery from disruptive events.

The concept of security comes in handy while describing
the dependability of communication or computing systems.
Security has been recognized as the composite of integrity,
confidentiality, and availability [42]. Figure 3 depicts the
relation between security and dependability in terms of the
principal attributes of dependability. The development of a
resilient CPS requires a deep understanding of disruptions
caused by cyber attacks. This requires an evaluation of CPS
dependability on its cyber component and its ability to with-
stand the failures events [45].

CPSes represent complex systems and have many loops of
operation working at different scales of time and space [46].
The reliability of a complete system can (often) be esti-
mated from the reliability of its components. The probability

of failure for a system with no redundant components is
more than the probability of failure of any of its individual
components. The properties of a CPS depend on both the
component properties as well as the system architecture [46].
The subject of reliability and dependability analysis gen-
eralizes these truths and encapsulates them into applicable
frameworks. Reliability and dependability analysis of CPS is
usually based on traditional techniques for systems reliability
analysis [47]. Some contributions in reliability analysis of
CPS include [48]–[50] and [51]. Comprehensive research
on the dependability of CPS is still needed to predict their
reliability and formulate methods to improve dependability.
This is where concepts from traditional reliability analysis
and reliability modeling must be used or extended.
Reliability analysis allows us to identify problems in

telecommunication networks as well as to determine the par-
ticular redundancy requirement of a particular network [52].
Reliability modeling comes before analysis in the design
phase. This is followed by reliability analysis in later design
stages when we have more precise details about the imple-
mentation [53]. Reliability modeling is the development of a
model to predict the reliability or vulnerability of a system
from information available. Reliability modeling allows us
to calculate dependability metrics for a system. It can be
achieved by combinatorial models: Reliability Block Dia-
gram (RBD), Fault Tree (FT), etc or through state-based
stochastic models such as Markov Chains (MC) and Stochas-
tic PetriNets (SPN) [54]. Combinatorial models allow us
to represent system reliability in terms of the reliability of
components and provide closed-form equations. Their com-
plexities increases with addition of components (e.g., state-
space explosion [55]). Therefore other models are needed for
more complex systems. More recently Graphical Stochastic
models like Bayesian Networks (BNs) have been employed
for reliability modeling, either directly or by mapping fault
trees into them [55], [56].

Once a model is developed, it can be examined using
traditional analytical modeling techniques or through simu-
lation tools. Formal methods are now gaining attention as
a useful tool for modeling reliability and validating mod-
els [52]. Analytical models rely on the abstraction, simplifica-
tion and unrealistic assumptions of the complex system. This
can make them error-prone, particularly in the case of large
complex systems. Formal methods are a rigorous method
for analysis compared to traditional analytic and simulation
techniques. Reliability assessment, analysis, and modeling of
networks are beyond the scope of this paper. The reader can
find a comprehensive study on reliability analysis in a paper
by Ahmed et al. [52].

Classical modeling and reasoning techniques are based on
Boolean logic, crisp classification, determinism, and analyt-
ical models. In the realm of modeling the system (or CPS)
is supposed to have complete and precise details to solve
the particular problem. In the real world, relevant informa-
tion is often available in the form of empirically acquired
prior knowledge and system behavior determined from past
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FIGURE 4. Taxonomy of soft computing (adapted from [12], [57]).

input-output data. In many instances, multiple solutions may
exist within a large scale solution space that can fit our
problem. Soft computing techniques encompass a set of
flexible computing tools that can deal with imprecise infor-
mation and search for approximate answers [60]. Multiple
soft computing techniques can be used in cyber-physical and
other complex systems to improve system dependability or to
model dependability. Unlike sensor networks, CPS perform
physical actions that are characterized by distributed control
loops which receive essential feedback from the environment.
In addition, the number of nodes and communication capabil-
ities in CPS vary significantly. Such an ecosystem of complex
smart systems leads to a hybrid system that makes use of
fuzzy sets, neural networks, and evolutionary computation in
different processes or stages [61].

C. SOFT COMPUTING FOR DEPENDABLE CPS
Soft computing is a collection of computing methodologies
that include Fuzzy Logic (FL), (Artificial) Neural Networks
(ANN), Evolutionary Computation (EC) as their principal
members [14]. The taxonomy of primary soft computing
techniques is shown in Figure 4. These methodologies are
complementary and symbiotic for the most part as evident
from the use of a combination of these methodologies in
intelligent systems [14]. Later Probabilistic Reasoning (PR),
Machine Learning (ML), Belief Networks (i.e. Bayesian Net-
works (BNs)), Chaos Theory, parts of Learning Theory and
Wisdom-based Expert Systems were subsumed under the
same umbrella [12]. Rough Set Theory (RST) is also con-
sidered by some researchers as a soft computing technique
[57], [62] since it extends concepts from fuzzy logic.

These soft computing techniques have been used for
the improvement in the dependability aspects like reliabil-
ity or security of complex systems. They have also been
used in modeling the reliability of complex systems and

computer networks. They are required in instances when
it is hard to obtain an analytical model to evaluate system
reliability [63] and also prove useful when Monte Carlo
simulations are not feasible to evaluate reliability. Soft com-
puting techniques can be a substitute for simulation models
(as meta-models) [63]. They are also useful in solving com-
plex optimization problems, particularly when information
is vague or incomplete. The strengths and weaknesses of
different soft computing techniques are listed in Table 4.
We will briefly introduce these soft computing techniques in
this section and will describe their applications in the context
of developing dependable CPS in the next section.

1) FUZZY SET THEORY AND FUZZY LOGIC
Fuzzy set theory has been incorporated into reliability theory
by altering the conventional assumptions about the reliability
of a component or system, i.e. binary state (success or fail-
ure) and probability measure of its reliability [64]. Fuzzy
Logic (FL) was designed to handle imprecision using approx-
imate reasoning [14]. It is a pioneering technology in granular
computing. It has been described as a form of computing with
words [65] since it mimics the human method of reasoning
with words by using linguistic variables and values. FL is
a generalization of Boolean logic [12] centered on fuzzy
sets. Any object belonging to a fuzzy set can have a degree
of membership (quantified as a real number between 0 and
1) for that particular set. Fuzzy inference maps inputs to
outputs using FL. This mapping can then be used to infer
patterns ormake decisions. This inference involves four steps,
namely fuzzification (real value to fuzzy membership values),
rule evaluation, aggregation (of rules) and finally defuzzifi-
cation [66]. A system’s states (i.e. success and failure) can
be represented by fuzzy states, and systems can be in one
of these two states to some extent. Further, the failure state
of the systems can be fully described by possibility measures
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TABLE 4. Strengths and weaknesses of various of soft computing techniques (derived from [12], [57]–[59]).

instead of probabilities. Fuzzy logic and possibility theory are
an alternative to probabilistic modeling [67]. Probability is
the degree of likelihood assumed from the frequency of occur-
rence of an event [68]. Whereas the possibility is defined as
the degree of feasibility or ease of attainment [67]. In practice,
it makes more sense to use possibility, particularly in the
design phase when actual frequency tables of a component’s
reliability are not available [68]. For small sample sizes,
the probability assumption is also not valid [69].

2) EVOLUTIONARY COMPUTATION (EC)
AND META-HEURISTICS
EC is a mechanism for systematic random search aimed at
finding an optimal solution to a given problem [65]. Genetic
Algorithm (GA) and other methods of genetic computing
are special cases of EC. GAs generate a population in terms
of candidate solutions to a particular problem by evaluating
them on a fitness function from which good solutions are
then selected. Similar to the natural evolution, surviving solu-
tions retain the fittest parts from previous generations [70].
The best solution in each population usually survives as an
elite individual and passes its characteristics to its offspring.
Genetic programming (GP) is an extension of genetic algo-
rithms. It is a technique to encode computer programs as
a set of genes that may evolve using an evolutionary algo-
rithm. EC techniques also include metaheuristic population-
based optimization algorithms with names inspired by nature.
Particle Swarm Optimization (PSO), Cuckoo Search (CS),
and Ant Colony Optimization (ACO) [71] are some promi-
nent EC algorithms. Metaheuristic optimization algorithms
like Simulated Annealing (SA) (a stochastic optimization
metaheuristic) [72], and Tabu Search (TS) [73] may also
be categorized in the same group as EC. Reinforcement
Learning (RL) is an adaptive (learning) search mechanism
that finds the best actions based on present and past infor-
mation. RL can solve the same problems solved by GA
and other metaheuristics. EC and metaheuristic optimization
algorithms are well suited for modeling or estimating the
dependability of systems.

3) ARTIFICIAL NEURAL NETWORKS
Based on their biological counterparts, Artificial Neural Net-
works (ANN) are massively parallel distributed systems for
information processing. ANNs are comprised of a large num-
ber of simple interconnected units that work in a parallel
manner to perform a global task. The units of an ANN can
learn and update the parameters as a response to an evolving
input [12]. ANNs learn from training examples. They update
previous estimates in light of newly available evidence [60].
ANNs are often used for supervised learning when training
data is available. In some systems where this is not the case,
RL can be used for training an ANN. The recent develop-
ments in deep learning have sparked a new interest in this
field and motivated its use as an alternative or extension to
other soft computing or machine learning methods. Deep
learning can be used offline for reliability analysis in the
design phase and also deployed in industrial systems for real-
time robustness.

4) PROBABILISTIC REASONING
Probabilistic Reasoning (PR), also referred to as probabilis-
tic inference and probabilistic logic in literature — deals
with uncertainty and belief propagation [14]. PR is a formal
mechanism based on probability theory and its subsidiary
techniques with the aim of making decisions under uncer-
tainty. It allows us to analyze stochastic systems and helps
in BN cluster analysis [65]. The term probabilistic in PR
hints at the reasoning mechanisms and probabilistic repre-
sentations grounded in probability theory [74] andDempster-
Shafer’s theory of evidence [75]. PR subsumes Chaos Theory,
Belief Networks, and parts of machine learning theory [76].
Graphical methods likeMarkov Logic Networks (MLN) (also
known as Markov Random Fields, MRF) also fall under this
category [77], [78].

5) ROUGH SET THEORY
Introduced in 1982, Rough Set Theory (RST) is a relatively
new method for data analysis and inference in the pres-
ence of vagueness and uncertainty [86]. They are a form of
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TABLE 5. Applications of fuzzy logic in improving system performance and system dependability modeling of CPS.

unsupervised learning that can learn structure in data. RS
theory is a method for analyzing uncertain systems and is
gaining interest as a technique for knowledge discovery [59],
data mining, classification and image processing. It provides
a systematic framework for dealing with vagueness caused by
indiscernibility when complete information about a system
is not available [87]. RS need minimal model assumptions
and can usually determine all parameters from within the
observed data [88]. This alleviates the need for other infor-
mation like the membership grade or the possibility values
required by the fuzzy set theory [89]. RS theory can help
in the construction of models that represent the underlying
domain theory from a set of data alone [76]. Rough and
Fuzzy set theories are different approaches to handle vague-
ness that attempt to remedy the difficulties with classical set
theory [90]. They were an attempt at the generalization of
classical set theory so that vagueness and uncertainty could
be modeled [87]. RS based analysis provides a self-contained
framework that can potentially obviate the need for external
information such as a priori distributions in statistical anal-
ysis, model assumptions, or membership grade in fuzzy set
theory. The core of RST is to weigh attributes by importance
and reduce their total number [91].

III. APPLICATION OF SOFT COMPUTING TECHNIQUES
FOR DEVELOPING DEPENDABLE CPS
In this section, a summary of applications of soft computing
techniques for CPS dependability is provided. This work is

broadly focused on CPS, and for completeness, we have
included works on all components of CPS including works
that have addressed the dependability of software systems,
complex systems, computer networks, or any other CPS com-
ponent.

A. FUZZY SET THEORY AND FUZZY LOGIC
Fuzzy inference is relatively simple to implement and has
found extensive use in contemporary control systems and
even in consumer appliances since the 1980s. FL has been
used in the analysis of structural reliability, fault detection,
probist systems (characterized by a binary state and proba-
bility of failure [92]), software reliability, safety, security and
risk engineering [93]. Application of Fuzzy Set Theory and
FL in CPS reliability analysis and improvement is presented
in Table 5. It can be seen from the Table 5 that FL has
mainly been used in fault diagnosis, Resource Allocation
Problems (RAP), software reliability evaluation, safety &
security assessment and intrusion detection [93].

The popularity and practicality of fuzzy logic in control
applications motivated researchers to investigate and even
apply it for large scale industrial or control systems in the
1990s. Traditional reliability modeling techniques are based
on statistics of the past performance of a system or compo-
nents. Sometimes it is not feasible to obtain such long-term
data for statistical analysis. Classical reliability treatment also
involves human judgment to some extent [94]. Fuzzy proba-
bilities or possibilities [95] provide a flexible and efficient
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means for modeling such systems [81]. FL was traditionally
focused on reliability analysis of components or systems—
but there are also cases where fuzzy set theory has been
used for global optimization of reliability [64]. Mahapatra
et al. have discussed the optimization of reliability for series
and complex systems with (conflicting) reliability and cost
objectives. They have used a multi-objective optimization
method and fuzzy parameters [33]. In another paper, the same
authors have used intuitionistic fuzzy optimization for the
reliability of complex systems [96].

FL is also used in conjunction with or to aid other tech-
niques for reliability modeling improvement or optimization.
Huang et al. [97] have used GAs to estimate boundary values
of the fuzzy membership functions, and ANNs to estimate
fuzzy parameters for their Bayesian model for reliability
analysis. Toosi and Kahani [80] have devised an Intrusion
Detection System (IDS) built upon an FL aided by ANNs.
They have used GAs to optimize parameters for their fuzzy
classifier. Knezevic and Knezevic [81] have used Lambda-
Tau method with the aid of fuzzy logic to calculate reliability
indices like availability, Mean Time To Failure (MTTF),
Mean Time To Recovery (MTTR), etc. They have used fuzzy
arithmetic with SPNs to model reliability with the benefit
of increased flexibility and requirement of a smaller data
set of prior reliability. Garg et al. [31] have presented a
similar method to calculate reliability indices for industrial
systems using Lambda-Tau technique with FL and artifi-
cial bee colony algorithm to calculate fuzzy membership
degrees. Tyagi and Sharma [85] used an adaptive neuro-
fuzzy inference system (ANFIS) to calculate the reliability of
component-based software systems. For reliable communica-
tion network design, Lin andGen [98] used FLwithGA. They
have used FL for tuning the probabilities of genetic operators.
FL is used as a classifier in the IDS by Cho [83] for computer
networks.

B. EVOLUTIONARY COMPUTATION
AND META-HEURISTICS
EC has seen rapid growth in terms of applications for
CPS reliability. GAs are a family of heuristic optimization
techniques and used to find optimal solutions to diverse
problems. However, optimality is not guaranteed. Because
GA’s ability to dig up good solutions mostly depends upon
proper customization of the fitness functions, encoding, and
breeding operators for the specific problem [100]. Opti-
mization approaches like integer programming, Dynamic
Programming (DP), Mixed Integer Non-Linear Programming
(MINLP), and other heuristics are used to determine optimal
solutions. GAs have been used to solve various complex
problems from the engineering domain. They are suited to
solve combinatorial optimization problems within complex
search spaces. However, there are relatively few examples of
their use in the field of reliability analysis. Over the past two
decades, GAs have been used in diverse ways in CPS or CPS
like systems. These applications include optimization
of maintenance scheduling [101], [141]–[144], general

redundancy allocation problem [145], [146], automated sys-
tem design of fault-tolerant structures [99], smart grids [102],
detection of sensor faults [107], software reliability analy-
sis [106].

Meta-heuristic optimization techniques that fall under EC,
have been used for reliability optimization and reliabil-
ity analysis of various systems. ACO is a comparatively
new probabilistic technique that solves combinatorial opti-
mization search problems by selecting good paths through
graphs [147]. Liang et al. have applied for optimal solutions
of RAP in series-parallel systems [111]. Zhao et al. [112]
have developed a multi-objective Ant Colony System (ACS)
meta-heuristic for the same problem of redundancy allo-
cation. PSO is a meta-heuristic used in reliability analy-
sis as well as for optimization of electrical power systems.
Robinson [109] have used PSO to identify critical elements
in an electrical grid system. Their method is applicable for
performing the reliability analysis of bulk supply systems.
Mitra et al. have used PSO in calculating an optimal load
reconfiguration strategy for the power system in an electric
ship [108]. Bashir et al. have used PSO in the calculation of
weights for their adaptive ANN that predicts hourly electric
load demand in a grid. Khan et al. [19] have used PSO
in optimizing their autopilot system for aerospace CPS to
improve resilience against faults.

TS is a metaheuristic optimization technique that attempts
to iterate through local optima efficiently with the aim of
finding a better optimum in the process. It employs the con-
cept of adaptive memory programming [73] and is suited
for large scale problems in reliability analysis where exact
solutions are not viable. TS offers an efficient solution
for the general optimization of reliability in RAPs [114].
Caserta and Uribe [113] have used TS for software reli-
ability optimization. Other noteworthy uses of TS in CPS
related areas can be found in [115] and [116]. CS is a rel-
atively recent [71] optimization algorithm inspired by the
parasitic breeding among cuckoos. It is gaining significance,
especially for solving redundancy allocation and reliability
optimization problems [117]. Teske et al. have used CS
in locating faults in parallel and distributed systems [118].
Applications of EC in improving system dependability or in
modeling dependability are summarized in Table 6. This
table reveals that GAs have been used for solving various
problems in optimization in addition to the modeling of CPS
dependability. Notable applications in Table 6 include param-
eter estimation for dependability optimization, redundancy
allocation problems, electrical grid reliability optimization,
and fault prediction.

SA is an algorithm of iterative search that was influ-
enced by the physics of annealing of metals [148]. It is a
probabilistic inference technique [72] that can approximate
the global optimum of functions. This technique is espe-
cially suited to find a solution from a large search space.
Instead of iterating through combinations, it can randomly
jump to potential new solutions in an efficient manner.
Attiya and Hamam [120] have discussed task allocation
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TABLE 6. Applications of evolutionary computation (EC) and metaheuristics for improving system performance and system dependability
modeling of CPS.

in a heterogeneous distributed system to maximize system
reliability using simulated annealing. Similar work by Ravi
et al. have discussed the same problem using non-equilibrium
SA [149]. Jeon et al. have used an SA based algorithm to
optimize power distribution systems [150]. Fushuan et al.
have applied the same technique for fault section estima-
tion in power systems [151]. Pai and Hong [119] have

used SA to calculated parameters for their support vector
machine (SVM) for forecasting software reliability.

Reinforcement learning, which is an extension of dynamic
programming, can also be considered in the same class
as GA since both solve similar kinds of problems. It can
find paths and solutions efficiently from a larger space by
using a training mechanism built upon rewards of actions.
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The inclusion of deep neural networks in the RL process—
using deep reinforcement learning (DRL)—opens new possi-
bilities for solving all kinds of problems efficiently and CPS
dependability is no exception. RL has been applied for the
detection of attacks in smart grids [121]–[123], security in
healthcare CPS [124] and security in vehicular CPS [125].

C. ARTIFICIAL NEURAL NETWORKS
ANNs have been used in the analysis and optimization of
reliability. They have been applied for parameter estimation
for other algorithms. Their learning and prediction capa-
bility make them an indispensable tool in robust control
and reliability optimization of CPS. Altiparmak et al. [127]
have used ANNs to model the reliability of communi-
cation networks with links that have identical reliability.
The node and link can vary in size in their model.
Srivaree-ratana et al. [132] have used ANNs to learn from
existing topologies and predict network reliability in an all-
terminal network. Bhowmik et al. [133] have used ANNs in
conjunction with discrete wavelet transform (DWT) to pre-
dict and classify transmission line faults. Zhang et al. [135]
have used ANNs to forecast load demand in smart grids.
Mora et al. [134] have used neuro-fuzzy classifiers for locat-
ing faults in smart grids. ANNs have been used to ana-
lyze and forecast software reliability. Cai et al. [128] have
discussed the effectiveness of neural networks for handling
dynamic software reliability data. Other noticeable works in
this domain include Su et al. [129], Hu et al. [130], [131],
Singh and Kumar [159]. ANNs have been used in combina-
tion with optimization techniques (e.g., GAs) to predict initial
values for optimization. Lee et al. [160] have proposed a
hybrid GA/ANN with FL controller for RAP.

The learning capability of ANN makes them particularly
suited for IDS. They also have found multiple applications
in computer networks, SCADA systems, smart grids, and
other CPS-related systems. Gao et al. [136] discussed an
IDS for smart utilities that use a three-stage back-propagation
ANN. Linda et al. [137] have used a supervised ANN
based IDS for power grid applications. Youbiao He et al.
have used deep belief networks to detect false data injec-
tion in smart grids [161]. Kang and Kang [126] have used
DeepNeural Network (DNN) structure for intrusion detection
in order to improve the security of in-vehicular networks
(e.g., CAN: Controller AreaNetwork).Moya et al. [138] have
used Self OrganizingMaps (SOM) for improving the security
of sensor data in SCADA systems. In recent years Long
Short-Term Memory (LSTM) Neural Networks are being
used to predict future values in time series data. Since they
can model complex multivariate sequences and learn long-
term correlations in data, they can also predict anomalies in
time series data [162]. Jonathan Goh et al. have used LSTMs
to predict anomalies and cyber attacks against CPS [139].
Zhenyu Wu et al. have applied LSTMs for fault prediction
in CPS [140]. Jongho Shin et al. have used them to identify
sensor attacks in automotive CPS [163]. Cheng Feng et al.
have used LSTMs to detect anomalies and cyber attacks in

Industrial control systems [164]. The application of ANN
and DNN to detect intrusions in computer network traf-
fic (Network IDS or NIDS) is an active area of research
where cutting-edge research from image processing is being
applied. This is in part due to their potential to detect zero-
day attacks [165]. Niu et al. [166] have also used ANNs
for fault prediction in Network Controlled Systems. Autoen-
coders are becoming a promising technique for IDS in IoT
networks with the potential to detect attacks with an accuracy
of 99 percent [167]. Applications of ANN for dependability
analysis or optimization in CPS are summarized in Table 7.
A glance at Table 7 indicates that ANNs have been used
mainly for early fault prediction, fault localization, and intru-
sion detection.

D. PROBABILISTIC REASONING
The emerging paradigm of probabilistic programming and
probabilistic programming languages provide a formal
framework to apply probabilistic inference to uncertainty
related problems [175]. Recent literature reveals a growing
interest in reliability modeling using BNs, particularly to
complex systems [176]. BNs estimate the distribution prob-
abilities of a given set of variables by observing of some
variables and using prior knowledge of others. BNs allow us
to merge knowledge of diverse nature into a single data [55].
This is particularly suitable for complex systems. BNs estab-
lish cause-effect relationships and model their interactions.
Weber et al. [55] have reviewed applications of BNs in
dependability and risk analysis and maintenance. They report
an 800% increase in interest in the use of BNs for dependabil-
ity analysis.

BNs can be used to represent local dependencies as well as
for predictive and diagnostic reasoning. BNs are superior to
classical methods like FT analysis of complex systems [177].
Bobbio et al. [56] presented an algorithm for mapping FTs
into BNs. Montani et al. [178] have developed software
for this purpose. A formal analysis of this conversion for
dynamic fault trees was discussed in [179]. In most engi-
neering problems, known statistics about the reliability of
a component or systems are insufficient for predicting their
random behavior. Further subjective human analysis needs to
be considered.Wang et al. [155] have used BNs for reliability
modeling and prediction with subjective data sets with insuf-
ficient or incomplete information.

Weber and Jouffe [152] have introduced Dynamic Object
Oriented Bayesian Networks (DOOBNs) as an alternative
technique to conventional reliability analysis tools like MC
and FTA for modeling the reliability of complex industrial
systems. An object-oriented version of BN allows for an ele-
gant, smaller representation of the otherwise complex BNs.
BNs are suitable to model the propagation of failures in a
complex system [152] because of the way they capture cause
and effect relationships. Weidl et al. [153] have used Object
Oriented Bayesian Networks (OOBNs) for isolation of faults
in complex industrial systems and for decision support. They
have used BNs to handle uncertainty in measured sensor data.
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TABLE 7. Applications of ANN for improving system performance and system dependability modeling of CPS.

TABLE 8. Applications of PR for improving system performance and system dependability modeling of CPS.

McNaught and Zagorecki [154] have discussed dynamic
BNs in the prognostic modeling of a component’s state.
Liu and Ji [156] have used BNs to model network fail-
ure. BNs show dependencies among different link failures
explicitly. An MLN, or Markov Random Field (MRF), is a
probabilistic logic that applies the concepts of a Markov Net-
work (MN) to first-order logic. It is similar to a BN in the rep-
resentation of dependencies. However, BNs are acyclic and
directed, whereas MNs may even be cyclic and undirected.
An MN can, therefore, constitute cyclic dependencies, some-
thing not possible with a BNs. On the flip side, it cannot
represent dependencies such as induced dependencies that

are possible with BN. Queiroz et al. [157] have used MN to
model and quantify the overall resilience of networked sys-
tems on the basis of their adaptation and inter-dependencies
of services. Applications of PR in terms of system depend-
ability modeling and optimization are summarized in Table 8.
The table shows that BNs are by far the most used
PR technique. PR has also been used to model the depend-
ability and for the prediction of faults in a variety of systems.
MC and its continuous extension have been used to model the
dependability of systems. Lalropuia and Gupta [158] have
used semi-Markov Process, stochastic games and continuous
time Markov processes to estimate dependability measures
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TABLE 9. Applications of rough set theory for improving system performance and system dependability modeling of CPS.

like reliability, availability and condentiality. Their state-
based model captures the dynamics between the attacker and
a compromised CPS system and then predicts the behavior
of the attacker. Chen et al. [180] have used MCs to model
attacks in smart grids.

E. ROUGH SET THEORY
RST has been exploited to analyze the dependability of
various systems. It has been used for reliability analysis
of electrical power systems and mechanical systems. More
recently RST has found applications in dependability anal-
ysis of software systems. Li and Cao [91] have presented a
comprehensive evaluation model for software dependability
using RS. The earlier fuzzy model required objective weight
calculation from statistical data on software dependability.
In a newer method proposed by Li et al., an approach is
proposed that uses a combinationweight that takes an expert’s
subjective knowledge as well in addition to objective data.
In particular, objective weight is calculated from statistical
data using RST.

RST is used as a tool for knowledge extraction, to learn
from and analyze past fault diagnosis records, expert diag-
nosis, and to extract minimal diagnostic rules. RS are then
also used to rank or order these faults [172]. Joslyn [173]
has discussed RS analysis to calculate random intervals from
simple multi-intervals. Such intervals are required for some
reliability analysis techniques [181], [182]. The aim of such
analysis is to find the system failure probability interval from
available statistical parameter intervals of the underlying
variables [181]. Random intervals offer the advantage of
representing randomness via probability theory while
imprecision and non-specificity via intervals at the same
time. This can complement probabilistic analysis with other
techniques such as FL, plausibility and belief measure [173].
RST allows researchers to construct representations of com-
plex random intervals and also to elicit ‘‘simple multi-
interval information’’ [173]. Other applications of RST
include the prediction of feeder faults and localization in
smart grids [168] and safety-critical software systems [170].

Applications of RST in CPS dependability analysis and
optimization are summarized in Table 9. This table shows that
RST has been used mainly for modeling of dependability and
also as a data analysis technique for fault prediction.

IV. OPEN ISSUES AND FUTURE WORKS
An extensive study of literature (summarized in Tables 5–9)
reveals that among the attributes of dependability, relia-
bility and availability have found the most applications.
This is followed by maintainability (i.e. fault tolerance and
repairability) and confidentiality (security). It was also noted
that soft computing techniques have been used mostly for the
optimization of performance or reliability of systems. Soft
computing has been used in aiding reliability and dependabil-
ity analysis of systems as well. Soft computing cannot be a
substitute for other rigorous methods of reliability analysis.
In most instances, soft computing has been used in classi-
fication or to dig out extra information about the depend-
ability of a system or to approximate reliability measures.
The application of soft computing in reconfiguring a failing
system or exploring a viable action from a partially collapsed
system still needs to be investigated. While there is plenty of
literature on dependability analysis of electrical, mechanical
and even networked systems that make up a CPS, we find
a general lack of literature specific to dependability analysis
of CPS or synthesis of reliability analysis for CPS in terms
of its components. The need for such work will increase
as efforts to standardize the architecture for CPS gathers
momentum [30]. Following are a few facets of CPS that are
not addressed satisfactorily in literature.

A. LACK OF A UNIFIED MODELING OR
ANALYSIS FRAMEWORK
The design of CPS is challenging in terms of physical
systems and hardware, and even in a programming lan-
guage to implement the desired level of computational
behavior. A unified framework is required for consis-
tent component-level modeling of CPS. Such a framework
should be interoperable with existing simulation and verifi-
cation tools [183]. This will cause an effective modeling of
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asynchronous dynamics by integrating event and time-based
computation.

B. DESIGN METHODOLOGIES
CPSes are being deployed on a wide scale in diverse kinds
of applications. Many systems including smart homes and
power systems are being operated in new ways that were
never intended for them [20]. Novel design methodologies
are required for their seamless integration with new systems
while avoiding disruption in new systems, and also to ensure
dependable operation while providing new extensions of
capabilities. The design of a reliable communication middle-
ware is also an important consideration for time-sensitive
CPS. This can be done through the addition of a middle-ware
that actively monitors the communicating nodes and adapts
them dynamically and also provides valid parameters for the
design of these elements [184].

C. SECURITY
One of the major obstacles that CPS must overcome is ensur-
ing security while maximizing mutual coordination among
cyber and physical components. Reliability and security are
very crucial in mission-critical CPS like healthcare, smart
power grids, and networking systems. Future CPS must oper-
ate with enhanced security and reliability. There is a crucial
need to develop such intelligent architectures that can ensure
real-time security-state monitoring and remediation. Security
performance metrics must be developed and standardized
to evaluate the security of the systems. Security in CPS is
a real concern since the feedback loop signals and control
commands are often transported over the public networks
and use open standards [185] in order to minimize costs.
Intrusion Detection Systems (IDS) is a hot area of research
in CPS dependability. Researchers plan to improve the CPS
survivability by modeling and predicting attacks using game
theory [48].

D. NETWORK INDUCED CONSTRAINTS
To the best of our knowledge, except a couple of new
contributions [186], [187], little or no work exists that
addresses or models the dependability of entire CPS under
network constraints. Reliability in large-scale and com-
plex network control systems (NCS) is often very difficult
to model because of unpredictable random delays in the
underlying communication links. Current control, commu-
nications, and software theory have not matured enough
to solve problems caused by the heterogeneity in CPS.
CPS can contain control loops separated by geographical
scale distances. The impact that the communication net-
work can have on closed-loop system performance [188],
stability [189], and ultimately on reliability, is another area
that remains to be looked at. The significance of combining
control specifications and communication constraints has not
been addressed [188]. NCS must cope with network induced
constraints. Five different types of constraints induced by
the network have been identified in the literature. These
include time-variation in transmission intervals, competition

among different nodes for accessing the same network, time
delays, data quantization delays, and packet losses and dis-
order [190]. Delays in networked control systems cannot
be modeled using conventional delay systems since data is
transmitted in packets and scheduled through a system that
is generally designed to package large amounts including
the sequence of control commands. Comprehensive studies
combining these constraints are not available [190]. The role
of the network in closed-loop system performance [188], sta-
bility [189] and ultimately reliability remains to be explored
in depth. Inserting a network in a control loop may cause
deteriorated system performance or even instability [190].
In this regard, a unified theory on heterogeneous control and
communication systems would help [28]. Efforts to this end
must also contend with the complicated security challenges
posed by CPS.

E. SOFT COMPUTING IN THE CONTROL LOOP
Soft computing is being used in improving the stability and
fault tolerance of control systems. Control reconfiguration
is an active approach for fault tolerant control of dynamic
systems [191]. Soft computing techniques like FL and ANNs
have been used in control of such adaptive systems while
GAs have been used to design fault-tolerant systems. Fault-
tolerant control impacts the reliability modeling and assess-
ment of systems [192]. A discussion on soft computing
directly in the control loop is another avenue to improve CPS
dependability.

F. DISTRIBUTED COLLABORATIVE CONTROL
Distributed collaborative control in an unreliable wireless
network [193] is yet another area where reliability analysis
could be explored. The merger of reliability analysis and
soft computing with modern research on distributed control
systems would aid in designing more dependable CPS.

G. PROBABILISTIC COMPUTING AND CPS
The new paradigm of probabilistic computing offers a host of
tools that will eventually facilitate reliability analysis. While
the proponents of probabilistic programming have pointed
out its use for this purpose [175], the literature on the subject
is almost non-existent.

H. STANDARDIZATION REQUIREMENTS
The applications of CPS depend on various advanced tech-
nologies from different industries. This calls for standard-
ization of different protocols that work across different
CPS environments. This requirement for standardization is
more than the requirement for the development of stan-
dards for traditional technologies [194]. These standardiza-
tion efforts must inevitably address the stringent Quality of
Service (QoS) and dependability requirements for CPS.

Soft computing can help in alleviating the shortcomings
of CPS. They can predict uncertain behavior, plan for contin-
gencies, and even assist in the design phase. Their importance
in the CPS paradigm is bound to increase with the passage
of time.
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V. CONCLUSION
In this paper, we provide a comprehensive in-depth review
of the applications of soft computing for dependability anal-
ysis and dependability improvement of CPS and similar
systems. We summarize applicable domains and scenarios
where one or more soft computing technique has been used
in reliability analysis or optimization. This study reveals a
significant lack of literature available on comprehensive reli-
ability analysis or optimization of CPS. Given the tremendous
opportunities CPS will offer in the foreseeable future and
given the interest in the applications of soft computing in
recent years, it is only natural to conclude that interest in the
subject explored in this survey will only grow with time.
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