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ABSTRACT Dynamic spectrum access (DSA) emerging as an effective way of improving the utilization of
the scarce spectrum has attracted great attention in the communication field. A key challenge in DSA is to
perform an efficient spectrum sensing and sharing mechanism. In this paper, aiming at achieving a maximal
spectrum utilization, we propose a privacy-aware crowdsourced spectrum sensing and multi-user sharing
mechanism for DSA. Particularly, in the sensing stage, the advanced mobile crowd sensing is adapted to
economically provide sufficient candidate sensing helpers for a sensing requestor. Considering the individual
rationality and energy consumption, an incentivemechanism based on bothmonetary and social motivation is
designed to motivate the finial participations of the sensing helpers. Moreover, with the increasing attention
to individual privacy, a social network and location-based k-anonymity grouping algorithm are proposed
to prevent each helper’s privacy being attacked by the malicious requestor or mobile users. Then, for a
sensing requestor, aiming at achieving a target detection performance with minimal payment, a truthful
reverse auction-based winning group selection algorithm is designed. Furthermore, in the transmitting stage,
a realistic scenario is considered where multiple transmitters may discover the same idle spectrum based
on sensing helpers’ detections and will transmit data simultaneously. Thus, we model this problem as a
potential-game-based multi-user transmission mechanism where all the transmitters act as game players
and will jointly adjust their transmission powers to maximize the global throughput. Accordingly, we also
take advantage of an improved differential evolution algorithm for obtaining a better equilibrium solution
in a decentralized way. Both the theoretical analysis and the simulation results prove the rationality and
superiority of our proposed algorithms.

INDEX TERMS Privacy aware, mobile crowd sensing, incentive mechanism, dynamic spectrum access,
game theory.

I. INTRODUCTION
With the increasingly scarce spectrum, dynamic spectrum
access [1] (DSA) has always been a significant technique
to improve the spectrum utilization. Numerous state-of-the-
art researches [2]–[4] have studied the DSA from various
aspects. One of the crucial challenges in DSA is to accurately
detect the status of the primary user (PU) and establish an
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efficient transmission scheme. In realistic scenario, the detec-
tion result from a single user is unreliable due to the deep
fading or shadow effect in wireless communications. Thus to
guarantee the detection performance, the cooperative spec-
trum sensing [5], [6] should be adopted, however, almost all
existing related works assume that there are sufficient sec-
ondary users (SU) to cooperate when a PU’s state is needed
to detect. Yet, it’s not rational enough in realistic scenario
where maybe only a limited number of SUs exist during the
current timeslot and will not sense the spectrum if they have
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no data transmitting, which will eventually incur a limited
sensing coverage, and finally degrade the cooperative sensing
performance. Mobile crowd sensing (MCS) [7] emerging as a
new sensing paradigm can provide sufficient candidate sens-
ing users in spatial domain, where not only the existing SUs
but also the widespread mobile users equipped with various
sensors can participate in the cooperative sensing process.

Yet considering the energy consumption and individually
rational property, idle mobile users may be unwilling to con-
tribute themselves to the cooperative sensing process unless
satisfied profits can be obtained to compensate their costs.
In another word, incentive mechanism [8] is necessary in
MCS to motivate the cooperative sensing participation of
the widely distributed mobile users. There have been plenty
of papers taking advantage of the incentive mechanism and
MCS to solve kinds of problems [9]–[13]. Papers [9] and [10]
adopt the monetary incentive mechanism to motivate the
crowd sensing users, where the participating users will be
paid a certain amount of monetary rewards [8]. Specifi-
cally, Ying et al. [9] design an expected utility maximization
based pricing mechanism aiming at motivating and selecting
users to perform the crowd-sensed radio mapping process.
And a geographical position conflicting MCS system with
two user-selection algorithms is proposed in [10] to prevent
the sensing platform buying duplicated sensory data with
multiple payments. Beyond that, with the rapid develop-
ment of communities and social networks, the nonmone-
tary incentive, namely the social network incentive [11], has
also emerged as another efficient way to motive a sufficient
number of participants. In particular, a sensing requestor can
recruit a crowd of reliable users within his social network,
i.e., the friends, to help complete crowdsourcing tasks. And
these friends are willing to join in the tasks mainly due
to the following achieved profits: developing relationships
with other members, obtaining good reputations, and get-
ting immediately identical helps in the future. A number
of works [12]–[14] have adopted the social incentive into
kinds of situations. Paper [12] proposes a credible crowd
sensing task assignment model based on social relationship
cognition and community detection. Paper [13] balances the
conflicts between sybil attack and heterogeneous effect of
participants in the proposed social network based crowd-
sourcing incentive mechanism. In research [14], the time-
sensitive and Sybil-proofness problems are considered in the
social network-based MCS system.

Nonetheless, to the best of our knowledge, there are few
applications of MCS and incentive mechanism in the DSA
field [15]–[17]. Ding et al. [15] focus on improving quality
of the spectrum sensing data obtained from crowd sensing
users. While Gao et al. [16] propose a two-tier game based
incentive mechanism where the database directly motivates
secondary users to participate in the spectrum sensing. And
in [17], a crowdsourcing-based spectrum sensing is utilized
to periodically collect the spectrum availability information
over a large geographic area and finally a radio environ-
ment map can be constructed and efficiently maintained.

Above researches consider only positive profit incentives,
i.e., extra monetary or social-network benefits, for mobile
sensing users in MCS based spectrum sensing. However,
with increasing attention to privacy preservation, the crowd
sensing users may still refuse to contribute their data in
the case that the information provided by themselves will
expose their individual privacies and even result in malicious
attacks. In a word, besides profits given to the participating
users, the protection of their individual privacy should also
be considered.

Recently, the privacy protection in MCS has attracted high
attention in numerous researchers [18]–[21]. Wang et al. [18]
utilize the k-anonymity to reduce the risk of location-privacy
disclosure for crowd sensing users. Yet the group aggrega-
tion is mainly based on users’ locations, and the existing of
malicious group members is not considered. Lin et al. [19]
propose two frameworks for privacy preservation in auc-
tion based incentive mechanism. Zhang et al. [20] design
an incentive mechanism to maximize the fusion center’s
aggregation accuracy by quantizing crowd sensing users’
privacy preserving levels and characterizing their impacts on
the aggregation accuracy. Paper [21] focuses on the loca-
tion privacy in the crowdsourced spectrum sensing scenario
and presents a novel framework, consisting of two different
schemes under distinct design objectives and assumptions,
for a service provider to select participants in a differen-
tially privacy-preserving manner. Above related works focus
on protecting a participant’s privacy only from either other
crowd sensing users or the service requestor, whereas an
integrated and more reliable privacy preservation mechanism
considering potential attacks from both mobile users and the
requestor should also be studied.

On the other hand, besides the study for cooperative spec-
trum sensing, there are also plenty of researches focusing
on the transmission scheme for dynamic spectrum sensing
[22], [23]. These works consider only one transmitter in
an idle spectrum and mainly concentrate on the individual
sensing time and transmission power optimization. However,
in realistic situation, there usually exist a certain number of
transmitters who discovery an idle spectrum at the same time
and will transmit data in the same transmitting time slot,
which will consequently incur inevitable interference among
these transmitters and at last degrade the global transmis-
sion performance. Thus some effective methods need to be
adopted to maximize the utilization of the idle channel.

Based on above analysis, in this paper, we propose a
privacy-aware crowdsourced spectrum sensing and multi-
user sharing mechanism for achieving an efficient spectrum
utilization in DSA. Specifically, aiming at achieving a maxi-
mal spectrum utilization, transmitters need to firstly acquire
the accurate status of the licensed user by recruiting a certain
number of mobile users. Thus in our paper, we adopt theMCS
to provide a spatial-domain guarantee for each transmitter,
so that he can select an optimal number of sensing helpers
from the widespread mobile users. Furthermore, consider-
ing the energy consumption and the risk of privacy leak,
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we propose an incentive mechanism based on both mone-
tary incentive and privacy preservation. Particularly, the pri-
vacy preservation mechanism is designed based on the
k-anonymity algorithm where the candidate sensing helpers
can protect their individual information from both mali-
cious sensing members and sensing requestor by forming
groups based on their social networks and relative locations.
Moreover, when stepping into the transmitting stage, a poten-
tial game based multi-user spectrum sharing mechanism is
proposed aiming at maximizing spectrum utilization and the
global throughput. The main contributions in this paper are
listed as follows:
• We adopt advanced MCS into cooperative spectrum
sensing scenario, where a widely spread mobile users
equipped with kinds of sensors can be regarded as
a sufficient number of candidate sensing helpers for
each sensing requestor. Beyond that, taking account of
inevitable sensing consumption and individual rational-
ity, we also propose a reverse auction based mone-
tary incentive mechanism to motivate the participation
of mobile users, where positive profits, i.e., a certain
amount of monetary reward, can be obtained by each
winning helper. Furthermore, the essential economic
properties of the reverse auction mechanism are proved.
Compared with existing works related to cooperative
spectrum sensing, our proposed mechanism provides
a spatial-domain guarantee for the accuracy of spec-
trum detection with less facility configuration costs and
greater flexibility.

• With the increasing attention to individual information,
we propose a k-anonymity based privacy preservation
mechanism where each sensing helper can hide its indi-
vidual information within a k-size sensing group and
the sensing data can be reported in group rather than
directly to the requestor, which effectively prevents indi-
vidual privacy being attacked by a malicious requestor.
Furthermore, to avoid malicious members existing in a
sensing group, we exploit both social inventive and loca-
tion proximity as the grouping rule, where each sensing
helper will form a group firstly with the reliable ones
who are within its social network and the location prox-
imity rule is used to prune away surplus members or add
new members. Compared with existing works related to
k-anonymity privacy preservation, our proposed mech-
anism protects each sensing user’s individual privacy
from both malicious requestor and malicious members
within the same group by exploiting the social network
and location proximity based grouping rule.

• Compared with existing works that focus on the jointly
optimization of sensing time and transmission power
for one transmitter, we consider a realistic transmis-
sion scene where multiple transmitters may detect the
absence of the PU simultaneously and will transmit data
in the same idle spectrum. Aiming at decreasing the
mutual interference among transmitters and maximiz-
ing global throughput in current spectrum, a potential

game based multi-user spectrum sharing mechanism
is proposed, where all transmitters act as game play-
ers and need to jointly adjust their own transmission
power strategies to achieve the optimization objective.
Furthermore, in order to obtain a better Nash Equilib-
rium, we design an improved differential evolution algo-
rithm, where compared with the typical best response
dynamic algorithm, a larger scale of initial points and
candidate solutions can be searched and hence a better
equilibrium solution can be obtained.

The rest of the paper is organized as follows. Section II
describes the proposed system model. Section III gives a
detailed illustration about proposed privacy-aware crowd-
sourced spectrum sensing mechanism and section IV
analyses the multi-user transmitting mechanism. Then the
simulation results are presented in section V and the conclu-
sions are showed in section VI.

FIGURE 1. System model.

II. SYSTEM MODEL
As illustrated in Fig 1, there exist multiple transmitters (also
called requestors) N = {1, 2, . . . , l, . . . , n} and a crowd
of widespread mobile users in our proposed system model.
Ultimately, the objective is to achieve a maximal global
throughput for all transmitters simultaneously transmitting in
a utilized spectrum by scheduling their transmitting power.
Nevertheless, before accessing the spectrum, each transmitter
l,∀l ∈ N needs to firstly obtain an accurate status about
the PU with the cooperative helps of mobile users. While
for each idle mobile user j (also regarded as a candidate
sensing helper), who is interested in helping the transmitter l,
further incentives are needed for him to eventually participate
in the sensing process and contribute his sensing data, due
to the inevitable sensing costs and the risk of privacy leak.
Hence, in cooperative sensing part, the payment minimiza-
tion optimization is formulated where each transmitter aims
at achieving a target detection performance with minimal
payment to the cooperative sensing helpers. Note that we
assume a realistic scene with incomplete information where
each transmitter has no idea about the existence of other
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transmitters when he decides to sense or transmit in current
spectrum during the same transmission slot. As a result, in the
spectrum sensing part, transmitters cannot form a cooperative
sensing coalition and hence need to respectively recruit a
certain number of sensing helpers to achieve their own target
detection performance.

Specifically, we illustrate the system model as follows in
two parts. The first part is the privacy-aware crowdsourced
spectrum sensing model where for each mobile user, aim-
ing at protecting privacy by hiding individual information
among other users with similar characteristics, he will firstly
join or form a k-size sensing group. Hence the crucial infor-
mation, such as cost and detection data, will be reported in
groups rather than in individual. Consequently, the sensing
requestor cannot distinguish any user’s individual informa-
tion from the other members within the same k-size group.
Then based on the reported grouping information, the sens-
ing requestor will select an optimal set of winning groups
to achieve a target detection performance and meanwhile
provides each winning helper with a non-negative monetary
profit. This process can be formulated as a total payment
minimizing optimization problem subject to a target detection
performance constraint. Then the second part is the multi-
user spectrum sharing model where several transmitters may
utilize the same vacant spectrum to transmit their data in the
same time slot and inevitable interference exist among these
transmitters. Hence aiming at achieving a best utilization of
the idle spectrum by adjusting each transmitter’s transmission
power, a global throughputmaximizing optimization problem
is formulated. Before proceeding further, we list the main
notations used in the following sections in Table 1.

TABLE 1. List of main notations.

A. CROWDSOURCED SPECTRUM SENSING MODEL
During the spectrum sensing part, aiming at acquiring a better
detection performance, each transmitter l needs to recruit a
proper number of sensing helpers participating in the coop-
erative sensing process. As a result, each requestor l will
announce the sensing request to all mobile users within his
transmitting range. And when receiving the quest, the idle

mobile users who are interested in performing the cooperative
sensing task will be regarded as candidate sensing helpers
within the set Hl = {1, . . . , j, . . . ,ml}. In order to select an
optimal set of sensing winners from Hl , the transmitter l has
to acquire the individual information from each helper j, such
as the sensing cost and local sensing data. However, due to the
malicious probability of sensing requestor and the personal
privacy leakage risk, the sensing helpers will be reluctant to
report their own information directly to the requestor and even
drop out of the candidates set.

Hence in our proposed crowdsourced spectrum sensing
model, we adopt a k-anonymity [24] based privacy preser-
vation mechanism where at least k and no more than 2k − 1
helpers, who have similar characteristics, will form a sensing
group and then the sensing cost and sensing data will be
reported to the requestor in groups. Namely, the requestor
will obtain the necessary information from group rather than
directly from an individual helper, which means whether the
requestor is malicious or not, he cannot distinguish every
member’s privacy information from the others in the same
group. Furthermore, a bigger k means that each helper can
get more anonymous preservation from other members with
similar characteristics. As a result, the privacy preservation
of each sensing helper can be protected from the sensing
requestor. We design the grouping rule based on both social
network and users’ locations, where each sensing helper will
form a group firstly with the ones who are not only in its
social network, namely the friends, but also in the same setHl .
And if the number of friends is less than k , the existing
members will further consider the strangers who are nearest
and haven’t joined in any group yet. The details of grouping
algorithm will be illustrated in section III.

In particular, in this crowdsourced model, for each trans-
mitter l, all his sensing helpers in Hl , will firstly constitute
NGl candidate sensing groups CGl = {1, . . . , g, . . .NGl}
based on proposed grouping rule where the size of each group
satisfies k ≤ Ng ≤ 2k − 1. Then each group g will com-
pute the group sensing cost cg and group sensing detection
result, i.e., the cooperative detection probability Qdg and the

cooperative false alarm probability Qfg, and then report the
group information above to the requestor l. For each group g,
the group sensing cost cg in our proposed model is defined as
the maximal individual sensing cost cj,max multiplied by the
number of helpers Ng in this group:

cg = cj,max · Ng, j ∈ g (1)

The group detection performance, namely the group detection
probability and group false alarm probability based on OR
fusion rule, is presented as follows:

Qdg = 1−
∏
j∈g

(1− qdj ) (2)

Qfg = 1−
∏
j∈g

(1− qfj ) (3)
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where the qdj and qfj are respectively the local detection
probability and local false alarm probability of helper j ∈ g
based on the energy detection method [25]:

qdj = Q((
ε

σ 2 − γj − 1)

√
tsf

2γj + 1
) (4)

qfj = Q((
ε

σ 2 − 1)
√
tsf ) (5)

The standard Gaussian Q-function is defined as

Q(x) =
1
√
2π

∫
∞

x
exp(−t2/2)dt (6)

And ts represents the sensing time, f is sampling frequency,
σ 2 is variance of circularly symmetric complex Gaussian
noise, and ε is the detection threshold of energy detector. Note
that during the sensing slot of transmitter l, all its sensing
helpers will take the same time to perform the spectrum
sensing task.Meanwhile, γj =

wPUhPU ,j
σ 2

is the received signal-
to-noise ratio (SNR) over the link from primary user to user j,
where wPU is the transmission power of PU and hPU ,j is the
path loss between PU and user j.

Aiming at achieving a threshold detection performance
with minimal expense, i.e., the incentive payment to all sens-
ing helpers, when receiving the sensing costs and detection
data from NGl groups, the requestor l needs to select an
optimal winning group subsetWGl from the candidate group
set CGl . Consequently, we can formulate the winning group
selection model as the following optimization problem:

0l(WGl) = min
∑

wg∈WGl

rwg

s.t. QdWGl ≥ Q
d
th

QfWGl ≤ Q
f
th (7)

where rwg is the reward paid to the winning sensing groupwg,
Q
d
th and Q

f
th is respectively the expected threshold detection

probability and threshold false alarm probability. QdWGl is
the global sensing detection probability obtained by all the
winning groups in WGl :

QdWGl = 1−
∏

wg∈WGl

(1− Qdwg) (8)

andQfWGl is the corresponding global false alarm probability:

QfWGl = 1−
∏

wg∈WGl

(1− Qfwg) (9)

where Qdwg and Q
f
wg is respectively the group detection prob-

ability and group false alarm probability of wg, ∀wg ∈ WGl .
Consequently, for each sensing helper wj in any winning

group wg, its utility function can be represented as follows:

uwj = rwj − cwj (10)

where rwj is the obtained sensing reward defined as:

rwj =
rwg
Nwg

, ∀wj ∈ wg (11)

Namely all the Nwg members in the group wg will share the
group reward rwg evenly. And cwj is the total cost of helper
wj considering both the sensing cost cswj and the privacy leak
cost cpywj which is inversely proportional to the number of the
members in the same group:

cwj = cswj + c
py
wj (12)

cswj = cswj0 · ts (13)

cpywj =
a
Nwg

(14)

where cswj0 is the unit sensing cost of wj and a is the privacy
preservation coefficient.

B. MULTI-USER SPECTRUM SHARING MODEL
When transmitter l makes a decision that the current spectrum
is vacant based on the cooperative sensing results from win-
ning helpers, he will immediately transmit his data. However,
in reality, there may exist other transmitters who also discover
this vacant channel and will transmit data at the same time,
which may incur to an inevitable interference between each
other and eventually degrades the overall performance of data
transmission. Thus in our proposed multi-user data transmit-
ting model, in order to realize a best utilization of the current
vacant spectrum, all of the transmitters will jointly adjust their
own transmission power until an optimal equilibrium power
profile is found to achieve the maximal global throughput of
the channel. Before formulating the model, we will firstly
give a detailed description about the interference relationship
among the transmitters.

For each transmitter, when he transmits data with a certain
power, the other ones within his transmitting range will be
interfered; and accordingly he will also be interfered by other
transmitters if he is located in their transmitting scales. Hence
for clarity, we define a correlation set for transmitter l as

Cl = Bl,− ∪ B−,l (15)

where Bl,− is the set of transmitters who are interfered by
user l and B−,l is the set of transmitters who have direct
interference on user l, namely user l is located right in their
transmitting ranges. Consequently, the non-correlation set of
user l, i.e., the other transmitters who have no relationship
with l, can be shown as

NCl = N\Cl (16)

where N = {l} ∪ Cl ∪ NCl .
A transmitter will transmit data if current spectrum is idle

and he successfully discoveries it with the probability of
(1 − QfWGl ) based on the detection results of his sensing
helpers. Thus based on cooperative detection results and the
interference analysis above, we can calculate the throughput
of transmitter l as follows:

THRl(pl,p−l) = E · (1− QfWGl ) · log2(1+
hl · pl

σ 2 + InfB−,l
)

(17)
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where pl and hl is respectively the transmitting power and
channel gain of user l and p−l is the power strategy profile of
all transmitters excluding pl . E is the channel’s bandwidth,
σ 2 is the noise level, and InfB−,l means the total interference
on transmitter l:

InfB−,l =
∑
i∈B−,l

hi · pi (18)

Considering our purpose of maximizing the global through-
put by jointly adjusting transmitters’ power, the optimization
problem can be formulated as:

5(p) = max
∑
l∈N

THRl(p) (19)

where p = {pl,p−l} = {p1, . . . pl, . . . pn} is power strategy
profile of all transmitters in the same vacant spectrum.

III. PRIVACY-AWARE CROWDSOURCED
SPECTRUM SENSING MECHANISM
In our proposed crowdsourced spectrum sensing model, aim-
ing at preserving privacy, each sensing helper j will firstly
form a sensing group with at least k − 1 helpers. Then the
requestor will select an optimal winning group subset based
on the reported group sensing cost and group detection perfor-
mance, so that he can achieve a target detection performance
with minimal total payment to the winning sensing groups.
As we can see, the proposed privacy-aware incentive mech-
anism mainly contains three parts: sensing helper grouping
part, winning group selection part and the payment calcu-
lation part. Particularly, we design our grouping algorithm
based on both social network and location proximity. And
we model a reverse auction to analyze the winning group
selection part and calculate the payment to winning helpers.
We will illustrate the three parts respectively as follows and
finally give a detailed proof about economic properties of the
proposed reverse auction mechanism.

A. SOCIAL NTEWORK AND LOCATION PROXIMITY
BASED GROUPING ALGORITHM
In order to solve the problem that sensing helpers may
be reluctant to contribute their data due to the requestor’s
malicious probability and the risk of individual information
leakage, we propose a k-anonymity based privacy-aware
mechanism where sensing helpers can form a number of
sensing groups whose size satisfy k ≤ Ng ≤ 2k − 1 and then
report both sensing data and sensing cost in groups rather than
directly to the requestor. Specifically, the requestor cannot
distinguish the individual information of any member from
the others in the same group. Apparently, the grouping rule
is the crucial point of the privacy preservation mechanism.
Existing k-anonymity based researches [26], [27] mainly
focus on the location-oriented user aggregation mechanism
but rarely consider that malicious members may disguise
themselves to join in a group by lying about their indi-
vidual information such as their location, which will incur
an inevitable attack to not only normal members’ privacy

but also the reported group data. Considering this issue,
we design a novel grouping algorithm in the k-anonymity
mechanism, where both social network and location prox-
imity are adopted to provide a double protection of helpers’
privacy information.

Specifically, in our proposed grouping mechanism, each
sensing helper j ∈ Hl , ∀l ∈ N will give the helpers who
are not only in the same helper set Hl but also in his social
network, namely the friends inHl , priorities to form a sensing
group with him, so that his privacy information will be pro-
tected among his reliable social circle and will not be attacked
by malicious users. Meanwhile, when choosing friends in
Hl , users’ locations will also be considered by helper j.
Concretely, the friend who is closest to j will be firstly com-
bined, which is meaningful to prevent the location-privacy
disclosure by hiding each helper in a location-proximity
group so that an adversary cannot distinguish any member’s
specific location from the whole group. And, if the number
of the friends is less than k , the other strange helpers (also in
the same set Hl) who are located at the minimum distance
with j and haven’t joined in any other groups yet, will be
welcomed to be the members of the current group, so that
at least k members in a group can be guaranteed. However,
for the sake of privacy security, any strange member within
a group must not be the head node to collect other members’
information or report group data to the requestor. Instead, the
only thing a stranger can do is report its information or sens-
ing data to the reliable head node. This mechanism provides
a necessary assurance to prevent the strangers tampering the
group data or even extracting individual privacy from other
reliable members’ information. In more details, we note that
the proposed grouping algorithm in our system model is a
self-organizing and cluster-based grouping process, where
each sensing helper decides to form or join in a sensing
group by himself based on the social relationship and rel-
ative locations with others. After that, when each sensing
group is formed, the head node within the group will collect
all members’ sensing data and then report to the sensing
requestor who further makes a decision whether access to the
spectrum or not.

We give a detailed example of our proposed grouping
mechanism in Fig 2 where the transmitter l, ∀l ∈ N,
announces his sensing request to all mobile users within his
transmission range, and the idle users who are interested in
participating in the sensing process will be seen as the candi-
date sensing helpers (i.e., the mobile user 1-13). We assume
two social networks (i.e., the user 1-5, user 7, user 10 are in
the first social network; the user 6 and user 8 are in the second
social network) and three separate users who are not in any
social network (i.e., user 9, user 12 and user13) in Fig 2.

Due to the fact that grouping results are irrelevant to the
grouping order, without loss of generality, we assume that
the grouping process begins from the social network with
the most members (i.e., the first social network in Fig 2).
Moreover, we also assume that a head node of a group is set as
the one nearest to the requestor. This assume is based on the
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FIGURE 2. An example of proposed grouping mechanism with k = 3.

rationality that the nearest one can report his group detection
result to the requestor with the shortest transmission distance,
namely, with the least information loss. The head node within
a social network will decide with whom to form a sensing
group based on the social network size. There are three
cases:
Case 1: If the number of remaining ungrouping members

within a social network is less than k (i.e., the second social
network), the nearest strangers to the head node (i.e., user 8)
will be welcomed until the number of groupmembers reaches
to k (i.e., the user 11 will join in a group 3 with user 6 and
user 8).
Case 2: If the number of remaining ungroupingmembers is

more than 2k−1 (i.e., the first social network), the head node
(i.e., user 5) will form a k-size sensing group preferentially
with his social members who are nearest to him (i.e., the
user 3 and user 1). After completing a group within the
social network, the next head nodes among the remaining
ungrouping members is selected and uses the same rule to
form sensing group, until the number of remaining ungroup-
ing members is more than k and less than 2k − 1.
Case 3: If the number of remaining ungrouping members

is more than k and less than 2k − 1, all of them will form a
sensing group (i.e., the user 2, user 4, user 7 and 10 form a
group 2).

Finally, the rest candidate helpers who have not joined in
any sensing group can be seen as thememberswithin a special
network and they will use the same rule to form sensing
group (i.e., user 9, user 12 and user 13 form group 4). Note
that at last the number of remaining sperate users may less
than k , thus considering the reality, we assume that they will
make a decision, namely participate in the sensing process by
forming a new group with other sperate users or giving up the
sensing process, based on a random probability.

For all candidate sensing helpers of each transmitter l,
we describe the social network and location proximity based
grouping algorithm in Algorithm 1, where G_h is the set of
helpers who have been in some sensing group, R_h is the
remaining helpers who have not been in any group yet,CGl is

Algorithm 1 Social Network and Location Proximity Based
Grouping Algorithm
Initialization:

1. Rearrange the set Hl = {1, . . . , j, . . . ,ml} as Hl =
SN1 ∪ . . . SNi ∪ . . . SNn ∪ SNn+1, where SNi, 1 ≤ i ≤ n,
represents the ith social-network set, SNn+1 is the set of
helpers who are not in any social network;

2. Sort all social network sets with a descending order of
set size;

3. for i = 1 : n+ 1, do
sort the members within subset SNi with a descending

order of the distance to the requestor;
end for

4. CGl = ∅;

Grouping Operation:
5. for i = 1 : n+ 1, do
6. while |SNi| 6= 0, do
7. if (2 ≤ |SNi| < k)&(i ≤ n) == 1

for x = k − |SNi|
y = argmaxy∈SNn+1 d(y, SNi(1));
g = SNi ∪ {y}; SNn+1 = SNn+1\{y};

end for
SNi = ∅;
end if

8. if (2 ≤ |SNi| < k)&(i = n+ 1) == 1
α = rand(0, 1);
if α ≥ 0.5, g = SNn+1;
else break;
end if

end if
9. if k ≤ |SNi| ≤ 2k − 1,

g = SNi; SNi = ∅;
end if

10. if |SNi| > 2k − 1
g = {SNi(1 : k)}; SNi = SNi\g;

end if
11. g→ CGl ;
12. end while
13. end for
14. Return finial candidate sensing group set CGl .

the finial grouping results and the notation || represents the
number of the symbols within the given set. First, in ini-
tialization part, we organize the Hl as several existing social
network sets and a sperate user set (i.e., line1), and then rank
all social network sets with a descending order of set size
(i.e., line 2). Line 3 sorts members within each social network
with an ascending distance to requestor. Line 7 corresponds
to the case 1, line 8 is designed for the remaining members
within the set SNn+1. Line 9 and line 10 respectively corre-
spond to the case 3 and case 2. Finally, the eventual grouping
result CGl is achieved.

In a word, the social network and location proximity based
grouping algorithm achieves the privacy preservation not only
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by guaranteeing a reliable grouping circumstance where each
helper can form group firstly with his credible friends; but
also by considering users’ proximal locations when forming
a group with friends or a few strangers, which prevents a
malicious requestor distinguishing any member’s individual
information especially the location-privacy from the whole
group. Moreover, the behavioral restrictions to strange mem-
bers within a group also protect the reliable friend members’
privacies to some extent.

B. REVERSE AUCTION AND MARGINAL DETECTION
EFFICIENCY BASED GROUP SELECTION ALGORITHM
When sensing helpers form a candidate sensing group setCGl
out of privacy preservation, the corresponding requestor l will
then select an optimal winning group subset, i.e., theWGl =
{1, . . . ,wg, . . .}, to achieve a target cooperative detection
probability and meanwhile minimize his total payment to the
winning groups. This process has been modeled as a total
payment minimizing optimization problem in equation (7),
which is evidently a typical knapsack problem [28] and the
optimal solution is NP-hard to find due to its combinatorial
optimization property.

Thus in order to find a better sub-optimal solution,
we design a reverse auction based group selection algorithm
where each sensing group firstly calculate its group detection
probability Qdg and bring up a bidding group cost bcg =∑
j∈g

bcj, then given the provided information the requestor l

will select the winning groups based their marginal detection
efficiency MEg, namely if more MEg a sensing group can
obtain, the bigger probability it will be selected as the win-
ning groups. Specifically, the marginal detection efficiency
of group ∀g ∈ CGl is defined as follow:

MEg =
QdWGl ⊗ Q

d
g − Q

d
WGl

bcg
(20)

where QdWGl ⊗ Qdg means the global detection probability
when adding group g as a new winning group into current
winning group set WGl , ⊗ represents the operation in equa-
tion (2), whileQdWGl is the global detection probability of cur-
rent winning groups. Requestor l always selects groups into
the winning set in the order of descending marginal detection
efficiency, until its target global detection probability Q

d
th is

reached.
As we can see, the marginal detection efficiency based

selection standard not only considers the bidding cost of
a candidate sensing group but also takes account of the
improvement of global detection probability that a candi-
date sensing group can obtain, which is well-matched to the
requestor’s optimization goal, namely achieving the target
detection performance Qth with minimal total payment.
For each requestor l, ∀l ∈ N, the details of the reverse

auction and marginal detection efficiency based group selec-
tion algorithm is illustrated in Algorithm 2, where Bc is the
bidding group cost set of all candidate sensing groups, QdG
is the group detection probability set, and Qdwg is the group

Algorithm 2 Reverse Auction and Marginal Detection Effi-
ciency Based Group Selection Algorithm
Initialization:

1. For CGl =
{
1, . . . , g, . . . gNGl

}
, get: Bc ={

bc1, . . . , bcg, . . . bcgNGl

}
, QdG =

{
Qd1 , . . . ,Q

d
g , . . .Q

d
gNGl

}
2. WGl = ∅; ME = zeros(1,NGl); QdWGl = 0

Selection Operation:
3. for g = 1 : |CGl |, do

4. ME(g) =
QdWGl⊗Q

d
G(CG(g))−Q

d
WGl

Bc(CG(g)) ;
5. end for
6. Sort CG with descending order of ME ;
7. QdWGl_cache = QdWGl ; Q

f
WGl_cache = QfWGl ;

8. for g = 1 : |CGl |, do
QdWGl_cache = QdWGl_cache⊗ CGl(g);

QfWGl_cache = QfWGl_cache⊗ CGl(g);

9. if (QdWGl_cache < Q
d
th)&(QfWGl_cache < Q

f
th) == 1

CGl(g)→ wg;wg→ WGl;
CGl = CGl −WGl;
ME = zeros(|CGl |);QdWGl = QdWGl_cache;
break;

10. else
QdWGl_cache = QdWGl ;Q

f
WGl_cache = QfWGl ;

end if
end for

11. Return winning group set WGl .

detection probability of winning group wg. Line 3-6 calcu-
late marginal detection efficiencies of all candidate sensing
groups and sort them in descending order. Line 8-10 deter-
minewhether a candidate sensing group can be selected based
on the restrictions defined in equation (7). If satisfying the
conditions, it will be selected, otherwise the next candidate
sensing group will be considered.

Note that the bidding group cost bcg may be different from
the truthful group cost cg because group members are selfish
social and want to obtain more payment from the requestor
by reporting a higher cost. However, untruthful group costs
will incur a big loss to the benefit of the requestor due to a
higher total payment may be expended. Thus it’s necessary
to design a truthful payment calculation mechanism where
any sensing group cannot obtain more payment by biding a
higher group cost and consequently the requestor’s utility can
be guaranteed.

C. TRUTHFUL PAYMENT MECHANISM
In this part we design a requestor-centric paymentmechanism
where the requestor plays a dominant role in determining how
much eachwinning groupwill be paid. And then themembers
within a winning group will share the group reward evenly.
Particularly, in our proposed truthful payment mechanism,
the payment to awinning groupwg, ∀wg ∈ WGl , by requestor
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l is defined as:

rwg = (Qdwg/DeLG1
l
) · (1+

1QdWGl (wg)

bcwg
) (21)

where1QdWGl (wg) is the increment of global detection prob-
ability due to winning group wg:

1QdWGl (wg) = QdWGl − Q
d
WGl\wg (22)

DeLG1
l
is detection efficiency of the first group in losing group

set LG1
l :

DeLG1
l
=

Qd
LG1

l

bc1LGl
(23)

Namely, compared with other losing groups, the group LG1
l

has a marginal detection probability ranked only behind the
last winning group in WGl . And bcwg is the bidding group
cost of wg. Consequently, based on the novel k-anonymity
grouping rule, the winning group selection algorithm and the
proposed payment mechanism in equation (21), the optimiza-
tion problem constructed in equation (7) can be effectively
solved.

In a word, out of privacy preservation, the requestor l
will firstly allow all his sensing helpers to form a certain
number of candidate sensing groups based on both social
network and the location proximity. Then he will select an
optimal winning group subsetWGl to achieve a target global
detection probability with minimal total payment based on a
reverse auction mechanism consisting of a marginal detection
efficiency based winner selection algorithm and a truthful
payment algorithm. As we can see, in our proposed incentive
mechanism, not only monetary incentive but also privacy-
aware incentive is comprehensively considered to provide
a double-motivation for each sensing helper. And conse-
quently, a requestor l can obtain more opportunities to select
better winning sensing helpers and meanwhile each winning
helper wj in a winning group wg can obtain a satisfied profit
to compensate both its sensing cost cswj and the privacy leak
cost cpywj.

D. PROOF OF ECONOMIC PROPERTIES
A successful auction mechanism needs to satisfy the fol-
lowing favored economic properties: individual rationality,
computational efficiency and truthfulness. Thus in order to
declare the rationality and the effectiveness of our proposed
incentive mechanism, we analyze and prove the three proper-
ties respectively in details as follows.
Definition 1 (Individual Rationality): An auction mecha-

nism is individual rational if each winning group or winning
helper can obtain a nonnegative utility by participating in the
crowdsourced spectrum sensing and reporting truthful cost.
Lemma 1: The proposed reverse auction based incentive

mechanism is individual rational.
Proof: Firstly, we analyze the individual rationality of a

winning group wg whose utility is defined as follows:

uwg = rwg − cwg (24)

Due to the fact that requestor l selects winning group accord-
ing to equation (18), thus the marginal detection efficiency of
winning group wg is larger than the losing group LG1

l :

MEwg > MELG1
l

(25)

Namely,
Qdwg
bcwg

>
Qd
LG1l

bc
LG1l

, hence we can get

Qdwg/
Qd
LG1

l

bcLG1
l

> bcwg (26)

According to equation (22), we obtain

1QdWGl (wg)

bcwg
> 0 (27)

Consequently, we get

rwg = (Qdwg/
Qd
LG1

l

bcLG1
l

) · (1+
1QdWGl (wg)

bcwg
) > bcwg (28)

When winning group wg reports its truthful group cost, i.e.,
bcwg = cwg, we can get

uwg = rwg − cwg = rwg − bcwg > 0 (29)

Namely any winning group can obtain a nonnegative utility.
Next, we analyze the utility of each winning helper jwithin

a winning group wg. According to equation (1), we get the
group cost of winning group wg: cwg = cwj,max ·Nwg. Due to
equation (29), we can get

rwg > cwg

→
rwg
Nwg

>
cwg
Nwg

→
rwg
Nwg

> cwj,max

→
rwg
Nwg

> cwj, ∀wj ∈ wg (30)

Consequently, according to the equation (9), we can obtain

uwj = rwj − cwj =
rwg
Nwg
− cwj > 0 (31)

Namely, any winning sensing helper can obtain a nonnega-
tive utility. In a word, our proposed auction based incentive
mechanism is individual rational. �
Definition 2 (Computational Efficiency):An auctionmech-

anism is computationally efficient if it can be completed in
polynomial time.
Lemma 2: The reverse auction based incentive mechanism

is computationally efficient.
Proof: As we can see, the proposed incentive mech-

anism contains grouping stage, winning group selection
stage and payment calculation stage. For the grouping stage
in Algorithm 1, its computation complexity is bounded to
O (ml), where ml is the number of all sensing helpers of
requestor l. While in the winning group selection stage,
the for loop, i.e., the computation of seeking the largest
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marginal detection efficiency group is bounded to O (NGl),
where NGl is the number of candidate sensing groups. Thus
the computation complexity of algorithm 2 is bounded to
O
(
NG2

l

)
. As for the payment calculation stage, the compu-

tation complexity of finding the first losing group in the set
of LGl is bounded to O (NGl). Furthermore, due to the ml is
much larger than NGl , thus we get O (NGl) < O (ml) and
O
(
NG2

l

)
< O

(
m2
l

)
.

Consequently, the computation complexity of our
proposed incentive mechanism is bounded to

O (ml)+ O
(
m2
l

)
+ O (ml) = O

(
m2
l

)
(32)

Thus our proposed reverse auction based incentive mecha-
nism is computational efficient.
Definition 3 (Truthfulness): An auction mechanism is

truthful if each sensing helper cannot obtain more payment
by reporting a higher sensing cost.
Lemma 3: The reverse auction based incentive mechanism

is truthful.
Proof: Proving the truthfulness of an auctionmechanism

is equivalent to prove the auction is monotone and provides a
threshold payment [19], [29].

Firstly, we show that our proposed reverse auction is mono-
tone. Assuming that a sensing group g is selected as a winning
group with its bcg, and if the group g bids a lower group cost
bc′g, it will bring a higher marginal detection efficiency, i.e.,
MEg(bc′g) > MEg(bcg). Thus according to the algorithm 2,
group g will still win the auction. On the other side, if a
sensing user j within group g report a lower cost c′j, the group
cost will not get higher than before. Hence the both the group
g and the user j will still be selected in the auction process.
Consequently, the reverse auction is monotone.

Next, we prove the threshold payment in our proposed
reverse auction mechanism. For a sensing group g, when it
claims a higher group cost, there will be two cases happen.
The first case: if the bc′g brings group g a lower marginal
detection efficiency even than the marginal detection effi-
ciency of first losing group, i.e.,MEg(bc′g) < MELG1

l
, group g

will lose the auction. The second case: ifMEg(bc′g) ≥ MELG1
l
,

the payment to group g will remain the same as before. Thus,
the payment to group g, ∀g ∈ CGl is a threshold one.

As for a sensing helper jwithin group g, if it claims a higher
cost but still no more than the maximal individual cost in the
group, i.e., c′j ≤ cj,max, the group cost will not change and
hence the group g will still be selected in auction. Conse-
quently, according to the proposed payment mechanism and
equation (10), both the payment to group g and helper j ∈ g
will remain the same. On the contrary, if the helper j claims
a higher cost than cj,max, i.e., c′j > cj,max, the group cost
will be larger. And accordingly, the group g will lose the
auction or get a same payment as before, hence the helper
j ∈ g will also lose or obtains the same payment. Thus the
payment to helper j, ∀j ∈ g is still a threshold one. Therefore,
the proposed reverse auction mechanism provides threshold
payment to both sensing group and individual sensing helper.

In conclusion, our proposed reverse auction based incentive
mechanism is truthful. �

IV. POTENTIAL GAME BASED MULTI-USER
SPECTRUM SHARING MECHANISM
When transmitter l discoveries the spectrum being vacant
based on the reported detection data of winning group set
WGl , he will transmit his data immediately in this chan-
nel. However, there may exist other transmitters who also
detect the vacant spectrum and will transmit their data in
the same channel during the same transmitting time slot.
As a result, inevitable interference may exist among these
transmitters and finally incur to a degraded global through-
put in current channel. Thus in order to solve this prob-
lem, we design a game theory [30] based multi-user trans-
mission mechanism where all transmitters in the set N =
{1, 2, . . . , l, . . . , n} jointly adjust their transmission powers
to minimize mutual interference and eventually achieve a
maximal global throughput in current channel. Note that
in our proposed multi-user spectrum sharing mechanism,
we assume that the communications among transmitters
are based on a smart phone ad hoc networks [31] where
each transmitter leverages existing hardware and software in
his own smartphone to create multi-peer ad hoc networks
without relying on wireless access points, cellular carrier
networks or traditional network infrastructure. In a word,
transmitters’ individual devices spontaneously compose an
ad hoc network to communicate with each other directly
rather than going through a centralized access point.

In section II, we have modeled the global through-
put maximizing optimization (GTMO) problem as equa-
tion (19). However, according to the reduction algorithm
[32], [33], the proposed optimization problem can be deduced
as the reduction from the typical travelling salesman prob-
lem (TSP), which means the finding of its globally optimal
solution is NP-hard and general optimization methods cannot
be directly adopted. Thus in this section, we take advantage
of the potential game theory [34] to provide a distributed
solution of the problem (19) and obtain the game equilibrium
based on an improved differential evolution algorithm.

A. POTENTIAL GAME MODEL
In this part, we construct above GTMO problem as a game
model8 = (N,p,UG), whereN is the set of players (i.e., the
transmitters), p = {pl,p−l} is the strategy profile of all play-
ers, and UG(p) =

∑
l∈N

THRl(p) is the global utility, namely

the sum of all players’ throughputs.
Generally, in game situation, out of selfishness and ratio-

nality, each player l will seek for a best strategy p∗l to
maximize its own utility given others’ power strategies,
namely

p∗l = argmax ul(pl,p−,l) (33)

where ul is the utility of player l. Due to existing mutual
interference, the strategy adjustment of player l not only
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changes its own utility but also has impact on the utility of
its neighbors within the set Bl,−, thus we define the utility
function of each player l as follows:

ul(pl,p−l) = THRl(pl,p−l)+
∑
i∈Bl,−

THRi(pl,p−l) (34)

where THRl(pl,p−l) is the throughput of player l defined in
equation (17).

As we can see, the search for p∗l is a distributed solving
process for each individual player. While in our proposed
game based multi-user transmission mechanism, the jointly
optimization of p is a complex combinational optimization
process. Thus if we can prove that the proposed global
throughput optimization game is an exact potential game
where the variation in individual utility ul caused by strategy
adjustment of player l is equal to the change in potential
function, then we can efficiently solve the problem (19) in
a distributed method.
Definition 4 (Exact Potential Game): A game is an exact

potential game if there exists an exact potential function
9(p1, . . . pl, . . . pn), ∀l ∈ N:

ul(p′l,p−l)− ul(pl,p−l) = 9(p′l,p−l)−9(pl,p−l) (35)

Lemma 4: The proposed GTMO game8 is an exact poten-
tial game.

Proof: The following proof is inspired by the
idea in [35].

(1) Firstly, we construct a potential function:

9(pl,p−l) =
∑
l∈N

THRl(pl,p−l) (36)

As a result of N = {l} ∪ Cl ∪ NCl , the equation (35) can
be rewritten as

9(pl,p−l) = 9(pl,pCl ,pNCl )

= THRl(pl,p−,l)+
∑
i∈Cl

THRi(pl,p−,l)

+

∑
i∈NCl

THRi(pl,p−,l) (37)

where pCl = {pi,∀i ∈ Cl} is the strategy profile of players
within the correlation set Cl and pNCl = {pi,∀i ∈ NCl}
is the strategy profile of players within the non-correlation
set NCl .
Furthermore, due to Cl = Bl,− ∪ B−,l , equation (37) also

can be extended as

9(pl,p−l) = 9(pl,pBl,− ,pB−,l ,pNCl )

= THRl(pl,p−,l)+
∑
i∈Bl,−

THRi(pl,p−,l)

+

∑
i∈B−,l

THRi(pl,p−,l)+
∑
i∈NCl

THRi(pl,p−,l)

(38)

When any user l within N adjusts its power strategy from
pl to p′l , the corresponding change in the potential function

can be shown as :

9(p′l,p−,l)−9(pl,p−,l)

= 9(p′l,pBl,− ,pB−,l ,pNCl )−9(pl,pBl,− ,pB−,l ,pNCl )

=

∑
l∈N

THRl(p′l,p−,l)−
∑
l∈N

THRl(pl,p−,l)

= THRl(p′l,p−,l)− THRl(pl,p−,l)

+

∑
i∈Bl,−

THRi(p′l,p−,l)−
∑
i∈Bl,−

THRi(pl,p−,l)

+

∑
i∈B−,l

THRi(p′l,p−,l)−
∑
i∈B−,l

THRi(pl,p−,l)

+

∑
i∈NCl

THRi(p′l,p−,l)−
∑
i∈NCl

THRi(pl,p−,l) (39)

For the reason that the strategy adjustment of player l only
have impacts on the throughputs of its own and the others who
are within its transmission range, i.e., the players within the
set Bl,−, thus we can get∑

i∈B−,l

THRi(p′l,p−,l)−
∑
i∈B−,l

THRi(pl,p−,l) = 0 (40)

∑
i∈NCl

THRi(p′l,p−,l)−
∑
i∈NCl

THRi(pl,p−,l) = 0 (41)

Combining equation (39), (40) and (41), we obtain

9(p′l,p−,l)−9(pl,p−,l)

= THRl(p′l,p−,l)− THRl(pl,p−,l)

+

∑
i∈Bl,−

THRi(p′l,p−,l)−
∑
i∈Bl,−

THRi(pl,p−,l) (42)

(2) Secondly, the strategy adjustment of user l can also
bring its utility a variation as follows:

ul(p′l,p−l)− ul(pl,p−l)

= THRl(p′l,p−l)− THRl(pl,p−,l)

+

∑
i∈Bl,−

THRi(p′l,p−l)−
∑
i∈Bl,−

THRi(pl,p−l) (43)

As we can see from equation (42) and (43):

9(p′l,p−,l)−9(pl,p−,l) = ul(p′l,p−,l)− ul(pl,p−,l)

(44)

which means the variation in individual utility caused by the
strategy adjustment of any player is equivalent to the variation
in the potential function.

Thus, according to the definition 1, the proposed GTMO
game8 is an exact potential game, where the potential func-
tion is 9(p) =

∑
l∈N

THRl(p) = UG(p), namely the global

utility function. �

B. ANALYSIS AND SOLUTION OF NASH EQUILIBRIUM
Nash Equilibrium (NE) is a crucial property proving whether
a game model is reasonable and can obtain a stable solution.
Thus in order to analyze the NE in our proposed GTMO
game, we give following definition and lemma.
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Definition 5 (Nash Equilibrium): A strategy profile p∗ ={
p∗l ,p

∗
−l

}
is a pure NE if and only if no player can improve its

utility by unilaterally deviating its current strategy, namely

ul(p∗l ,p
∗
−l) > ul(pl,p∗−l), ∀l ∈ N (45)

Lemma 5:The proposed GTMOproblem8 has at least one
pure NE.

Proof: According to [35], exact potential game owns an
excellent property that is every exact potential game has at
least one pure strategy NE solution. Meanwhile, in lemma 4,
we have proven our proposed optimization game8 is an exact
potential game, thus 8 has at least one pure NE. And the
equilibrium strategy profile p∗ maximizing the utility ul of
player l, ∀l ∈ N, is also the optimal equilibrium solution to
the global utility UG. �

Proving the GTMO game being an exact potential game
has simplified the combinatorial optimization problem as a
distributed NE solving process. Existing equilibrium solv-
ing methods mainly based on the typical best response
dynamic [36], fictitious play [37] and so on. However,
these methods easily trapped in an undesirable equilibrium.
Recently, with the rise of machine learning and artificial intel-
ligence, the differential evolution (DE) algorithm [38] has
attracted significant attention due to its robustness and strong
search capability. Consequently, in this paper, we propose
an improved DE algorithm where the differential weight is
randomly-adjustable and thus the search capability is increas-
ing. Furthermore, a better solution of 8 can be obtained
through stochastic exploration in the search space. The details
of the improved DE algorithm are illustrated in Algorithm 3.

As we can see, the proposed improved DE algorithm con-
sists of six parts, namely, the input, initialization, improved
mutation operation, crossover operation, greedy selection and
Output. Specifically, in the input part, dimension n repre-
sents the number of transmitters, population Np represents
the search scale of candidate strategies for each transmit-
ter and generation Gm is the total iteration rounds of the
whole algorithm. In the initialization part, we firstly define
a rational value range for the power strategy of each player
l, i.e., pl ∈ [pmin, pmax] and then generate an Np · n initial
power strategy matrix (i.e., line 4) where each player l has Np
initial candidate strategies. Or in another word, we can start
the search for optimal solution from the Np initial strategy
profiles, which is an effective way to prevent the algorithm
running into an unsatisfied local optimization solution.

Then we turn to the improved mutation operation part
where Fmeans the differential weight. In this paper, we adopt
a dynamic mechanism to obtain the differential weight,
namely

F = d ∗ rand(0, 1) (46)

where d is an constant coefficient. Compared with the exist-
ing works with constant differential weight, the adopted
improved DE algorithm can randomly update the differen-
tial weight, which further brings a dynamic mutation step

Algorithm 3 Improved DE Based NE Solution Algorithm in
GTMO Game
Input: Population: Np; Dimension: n; Generation: Gm

Initialization:
1. gm← 1; pmin← 0; pmax← P
2. for i = 1 to Np, do
3. for l = 1 to n, do
4. pgmi,l = pmin + rand(0, 1) · (pmax − pmin);
5. end
6. end
While gm ≤ Gm, do
Mutation Operation:
7. for i = 1 to Np, do
8. for j = 1 to n, do
9. son = pgmx1,l + F · (pgmx2,l − pgmx3,l), ∀x1, x2, x3 ∈
[1, 2, . . . ,Np], x1 6= x2 6= x3;
10. if 0 < son < P,
11. tgmi,p _next_1 = son;
12. else
13. pgmi,l _next_1 = pmin + rand(0, 1) · (pmax − pmin);
14. end if
15. end for
16. end for
Crossover Operation:
17. for i = 1 to Np, do
18. for l = 1 to n, do
19. if CR ≥ rand(0, 1) or l == lrand ,
20. pgmi,l _next_2 = pgmi,l _next_1;
21. else
22. pgmi,l _next_2 = pgmi,l ;
23. end if
24. end for
25. end for
Greedy Selection:
26. for i = 1 to Np, do
27. for l = 1 to n, do
28. if ul(p

gm
i,l _next_2) > ul(p

gm
i,l )

29. pgmi,l ← pgmi,l _next_2;
30. else
31. pgmi,l ← pgmi,l ;
32. end
33. end
34. compute UG(p

gm
i );

35. end
36. (pgm)opt ← argmax

pgmi

UG(p), i = 1, 2, . . . ,Np;

37. gm← gm+ 1;
end while
Output: The best strategy profile popt

38. Sort {UG((pgm)opt ),∀gm = 1, 2, . . . ,Gm} in descend-
ing order and extract all Generation indexes into the vector
best = {v|v ∈ [1,Gm]};
39. popt ← pbest(1);
40. Obtain the optimal equilibrium strategy profile popt
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(seen in line 9) and consequently can achieve a larger search-
ing scale and a better equilibrium solution. Then based
on three randomly selected candidate strategies and the
improved mutation method, line 9 generates a new strategy
(i.e., the son) for each player based on the updated differential
weight in equation (46) and lines 10-13 guarantee the son
within the rational value range. Next in the crossover oper-
ation, lines 19-22 update a next_2 strategy for each player
based on the crossover probability CR and the another condi-
tion l = lrand = rand(1, . . . , l, . . . , n), specifically,. Finally,
in the stage of greedy selection, for each player, the individual
utility respectively based on the next_2 strategy and initial
strategy will be compared in lines 28-34, and the strategy that
can obtain a better utility will be selected. Then line 36 obtain
the best strategy profile among Np options during current
iteration gm. When all Gm iterations finished, the output part
will calculate the optimal NE strategy profile popt of the
GTMO game.

V. SIMULATION RESULTS
In this section, we provide sufficient simulation results to
evaluate the performance of our proposed mechanisms and
algorithms. Specifically, at first, we illustrate the performance
of our proposed privacy preservation mechanism (i.e., the
k- anonymity) by comparingwith the non-preservationmech-
anism where all sensing helpers will not form any sens-
ing groups and the requestor will directly select individual
helpers based on the marginal detection efficiency defined
in equation (20). Furthermore, in contrast with equation
(12) – (14), the total cost of any winning helper wj in non-
preservation mechanism is defined as

cwj,no−k = cswj,no−k + c
py
wj,no−k = cswj0 · ts + a (47)

Secondly, the properties of the proposed reverse auction are
further confirmed by simulation results. Then, we analyze the
performance of proposedmulti-user transmission mechanism
where the adopted improved DE algorithm is compared with
the typical best response dynamic (BR) and another DE
algorithm in recent work to show its advantage in obtaining a
better NE of the GTMO problem.

A. SIMULATION SETUP
Our simulation results are achieved inMatlab R2015 environ-
ment and the network topology is setup as follows. A crowd
number of transmitters and idle mobile sensing users are
randomly located in a 3 km × 3 km region, where each
transmitter needs to recruit an optimal number of sensing
helpers to perform a cooperative spectrum sensing and out
of privacy preservation, the candidate sensing helpers will
firstly form several sensing groups to hide their individ-
ual information. Similar to [22], for each sensing helper j,
we assume that its sensing cost T subjects to uniformly
distribution ranging from 0 to 1, and the channel gain hj,PU
is exponentially distributed with mean value as 0.1. While
for each transmitter, the value range of its power strategy is
set as [pmin, pmax] = [0, 200] mW, and the channel gain hl

TABLE 2. List of simulation parameters.

FIGURE 3. Average cost of winning helpers vs. the number of sensing
helpers in k-anonymity and non-preservation mechanism.

is also subjected to an exponential distribution with the mean
value as 0.2. Moreover, other simulation parameters are listed
in Table 2 as follows.

B. PERFORMANCE OF PRIVACY
PRESERVATION MECHANISM
In this section, we focus on the performance analysis of our
proposed k- anonymity privacy preservation mechanism by
comparing with the non-preservation mechanism. Without
loss of generality, Fig. 3 - Fig. 7 are achieved by considering
one transmitter (or requestor) l,∀l ∈ N and a crowd of sens-
ing helpers Hl he needs to recruit for a cooperative spectrum
sensing process.

Specifically, Fig. 3 and Fig. 4 respectively show the aver-
age cost of winning helpers and the total payment of requestor
versus the number of participating sensing helpers (i.e.,ml) in
both k- anonymity and non-preservation mechanism, where
wPU = 200mW and a = 2.

As we can see from Fig. 3, with the increasing number
of participating sensing helpers, the average cost of winning
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FIGURE 4. Total payment vs. the number of sensing helpers in
k-anonymity and non-preservation mechanism.

FIGURE 5. Average cost of winning helpers vs. the power of PU in
k-anonymity and non-preservation mechanism.

helpers decreases in both two mechanisms. The reason is
that the more participating helpers, the more opportunities
to form a better sensing group for each helper ∀j ∈ Hl ,
and consequently the more chance for requestor to select
better winning groups (namely, the groups with higher group
detection probability and lower group cost) based on the
marginal detection efficiency defined in equation (20). While
given a same number of sensing helpers, the average cost of
winning helpers in our proposed k - anonymity mechanism
(where k = 4) is evidently lower than and non-preservation
mechanism. The result can be explained by equation
(12)-(14) and the equation (47). Specifically, in k-anonymity
mechanism, the privacy leak cost of each winning helper is
lower than in non-preservation mechanism due to the privacy
preservation by hiding individual information in a sensing
group. Thus the total cost of each winning helper trend to be
lower with k - anonymity privacy preservation mechanism.

FIGURE 6. Total payment vs. the power of PU in k-anonymity and
non-preservation mechanism.

FIGURE 7. Total payment vs. a in k-anonymity and non-preservation
mechanism.

Fig 4 shows that in both k-anonymity and non-preservation
mechanisms, the requestor’s total payment decreases with
the increasing number of sensing helpers due to the more
chances to select better sensing groups. In more details,
the requestor can expend a less total payment in our pro-
posed k-anonymity mechanism for the reason that the pri-
vacy preservation mechanism decreases both the cost of each
winning helper and each sensing group compared with the
non-preservation mechanism. Thus when all sensing helpers
report their truthful cost, based on the payment mecha-
nism, the requestor can pay a less payment to winning
helpers.

Fig 5 and Fig. 6 respectively illustrate the average cost of
winning helpers and the total payment versus the transmission
power of PU in both k - anonymity and non-preservation
mechanisms, where the number of sensing helpers ml = 40
and a = 2.
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In Fig. 5, we see that the average cost of winning helpers
decreases with the increasing transmission power of the PU,
which is because that a higher wPU means a higher local
detection probability for each sensing helper. Hence given
the sensing time slot ts, the requestor can select a crowd of
helpers, who have lower unit sensing cost, to reach the target
detection probability Q

d
th . Consequently, the average cost of

winning helpers gets lower. While given the power of PU,
Fig. 5 shows that our proposed privacy preservation mecha-
nism obtains a lower average cost for all winning helpers due
to that eachwj can get a lower privacy leak cost cpywj by joining
a sensing group.

In Fig. 6, the total payment also decreases with the incre-
mental PU’s transmission power due to the selection of a
better winning group set. Moreover, for the reason that k
- anonymity mechanism decreases each group’s cost, thus
based on our proposed truthful payment mechanism, a lower
total payment can be achieved by the sensing requestor, which
further proves that our proposed privacy-aware crowdsourced
spectrum sensing mechanism can obtain a better solution for
the optimization problem in equation (7).

In Fig. 7, we consider the impacts of privacy preservation
coefficient a and k on the total payment in two mechanisms,
where wPU = 200mW , ml = 40. As we can see, the total
payment increases with the privacy preservation coefficient in
both k- anonymity and non-preservation mechanism, which
can be easily explained by the increasing privacy leak cost
of each sensing helper in equation (14). Consequently, each
group’s total cost will also increase and thus the requestor has
to expend a higher total payment.

Beyond that, when given the coefficient a, we can get
that a higher k gives rise to a higher total payment for the
requestor. The reason is that a higher k brings about more
sensing helpers in a sensing group where someone who has
higher individual cost may be included. Thus according to the
equation (1), the group cost will increase and ultimately incur
to a higher total payment for the requestor. In more details,
we can see that the total payment in non-preservation mech-
anism is always higher than in k = 3 and k = 4 anonymity
mechanisms, but tends to be lower than k = 5 anonymity
mechanism when the privacy preservation coefficient a is
less than a certain value. This phenomenon illustrates that
when each sensing helper pays more attention to its privacy
preservation, or in another word, when the privacy leak cost
takes a larger fraction in each helper’s total cost, our proposed
k- anonymity mechanism can obtains a better performance in
solving the total payment minimizing optimization problem
due to the lower privacy leak cost of each winning helper and
the lower group cost.

C. PROPERTIES OF PROPOSED REVERSE
AUCTION MECHANISM
In addition to the theoretical proofs about our proposed
reverse auction in section III. D, in this part, we also corre-
spondingly provide some credible simulation results to fur-
ther confirm that our proposed reverse auction based payment

FIGURE 8. The property of individual rationality.

mechanism can satisfy the essential economic properties,
i.e., the individual rationality and the truthfulness.

In particular, Fig. 8 proves the individual rational property
in our proposed reverse auction mechanism by plotting the
utility of each participating sensing helpers, where wPU =
200mW ,ml = 50, a = 2. As we can see, the winning helpers,
such as helper 10, helper 30 and helper 50, all can obtain
a positive utility by participating and winning in the coop-
erative spectrum sensing process. While for other candidate
sensing helpers, who lose in the winning helper selection part,
such as helper 3, helper 31 and helper 35, due to the non-
consumption of sensing cost and unnecessity of reporting
individual data, they will obtain a zero utility rather than a
negative utility, which eventually proves the individual ratio-
nality of our proposed reverse auction mechanism.

FIGURE 9. The property of truthfulness.

Fig 9 proves the truthfulness in our proposed payment
mechanism by comparing with an untruthful mechanism
where we assume that a random number of helpers winning
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in the truthful mechanism will report higher individual costs.
As we can see from the simulation result, when a sensing
helper report an untruthful individual cost, such as the helper
41, 42 and 48, he cannot obtain a higher utility than reporting
its truthful cost, even he can also win in the winner selection
process. Consequently, our proposed payment can achieve
the truthful property and eventually offer a higher utility to
all winning sensing helpers when they all claim their truthful
individual costs.

D. ALGORITHM COMPARISON IN MULTI-USER
TRANSMISSION MECHANISM
In this section, we focus on the proposed potential game based
multi-user transmission mechanism and specifically analyze
the performance of the improved DE algorithm by comparing
with the typical best response dynamic algorithm and the
DE algorithm proposed in [39].

FIGURE 10. Global throughput vs. the number of iterations in different
algorithms.

Fig 10 shows the global throughput obtained by our
improved DE algorithm verse the number of iterations
and simultaneously compared with BR algorithm and the
DE algorithm in [39]. As shown in the simulation result,
the BR algorithm converges faster but obtains a lowest global
throughput compared with our improved DE algorithm and
the DE algorithm in [39]. The reason is that the DE algorithm
possesses numerous advantages including a strong search
capability and the robustness. Furthermore, compared with
the DE algorithm in [39], the simulation results show that
our proposed improved DE algorithm can achieve a better
global throughput, which eventually proves that our improved
differential weight is benefit to search more candidate equi-
librium solutions and thus obtain a better performance. On the
other hand, due to the large search scale, it will take a longer
run time for DE algorithm to converge, but in return, a better
equilibrium solution, namely a higher global throughput, can
be achieved in the GTMO problem. In future works, we will
focus on proposing an updated differential evolution algo-
rithm with both better convergence performance and higher
global throughput.

FIGURE 11. Global throughput vs. the threshold of global false alarm
probability in different algorithms.

Fig. 11 analyzes the impact of k-anonymity based crowd-
sourced spectrum sensing on multi-user transmission mech-
anism where the global throughput in different algorithms
versus the threshold of global false probability for each
transmitter, i.e., Q

f
th, is plotted. As we can see, the higher

the Q
f
th, the lower the global throughput. This is out of the

reason that a high Q
f
th means a high probability that a sensing

user may detect a false existence of the PU when actually
the spectrum is vacant, and which further indicates a low
accuracy about the spectrum status. Inmore details, the higher
Q
f
th may eventually degrade the spectrum access performance

for each transmitter and at last the global throughput becomes
degraded. The reason for Fig. 11 can also be seen from the
equation (17) and (19), where the individual throughput of
each transmitter will decrease with the high Q

f
th and thus

the global throughput in equation (19) will also be low.
Moreover, the simulation results also prove that our proposed
improved DE algorithm can achieve a better global perfor-
mance compared with the other two algorithms. In conclu-
sion, the Fig. 11 shows that a better detection performance,
obtained by each transmitter, can give a better guarantee
for both individual throughput and the global throughput,
which further certifies that it’s meaningful to recruit a proper
number of sensing helpers participating in the cooperative
sensing process.

VI. CONCLUSION
In this paper, we propose a privacy-aware crowdsourced spec-
trum sensing and multi-user sharing mechanism in dynamic
spectrum access networks. To guarantee the detection per-
formance from spatial-domain, in spectrum sensing stage,
we take advantage of the mobile crowd sensing to provide
a sufficient number of candidate sensing helpers for each
transmitter. Considering the individual rationality and sens-
ing consumption, we not only propose a reverse auction
based monetary incentive but also a k-anonymity privacy

32986 VOLUME 7, 2019



X. Li et al.: Privacy-Aware Crowdsourced Spectrum Sensing and Multi-User Sharing Mechanism in DSA Networks

preservation mechanism to motivate the sensing participa-
tions of mobile users. While for each requestor (i.e., each
transmitter) in the sensing stage, aiming at achieving a target
detection performance with minimal payment, he will select
an optimal winning group set based on the marginal detection
efficiency ordering. At last, we also give a detailed proof for
the essential economic properties of the proposed reverse auc-
tion mechanism. Furthermore, in the data transmission stage,
we consider a more realistic scenario where based on sensing
data from a crowd of sensing helpers, multiple transmitters
may discovery an idle spectrum at the same time and will
simultaneously transmit their data in current spectrum. Thus
in order to achieve a maximum utilization of the spectrum,
we propose a potential game based multi-transmission mech-
anismwhere all transmitters are regarded as game players and
will jointly adjust their transmission power to maximize the
global throughput. Then we adopt an improved differential
evolution algorithm to obtain a better equilibrium solution
in this game. Finally, sufficient simulation results prove the
better performance of our proposed mechanism. Considering
that spectrum varies dramatically over time, in future works,
we will concentrate both spatial and temporal impacts on
the dynamic spectrum access networks to achieve a better
spectrum utilization.
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