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ABSTRACT Participating in mobile services by synthesizing trajectories with consistent lifestyle and
meaningful mobility as actual traces are the most popular way to protect location privacy. However, recent
trajectory synthesizing techniques are still threatened by the information that the attacker inevitably obtains,
such as the locations of the accepted tasks in the crowdsourcing application. With this information and the
spatiotemporal correlation hidden in the user’s mobility, the attacker can infer the user’s actual location
and even future behaviors. It remains open to defend against such inferential attacks in the continual
crowdsourcing scenarios.
In this paper, we propose a mobility-aware differentially private solution, ConCrowd-DP, for achieving the
privacy-preserving continual crowdsourcing application. Specifically, before starting the application, we
first construct a spatiotemporal mobile model, STMarkov, to model the spatiotemporal correlation in users’
mobility. Then, a perturbed location is generated for the user to participate in the crowdsourcing application,
according to STMarkov and K-norm DP. Finally, we eliminate the privacy threat brought by the accepted
task based on K-norm DP and Bayesian posterior theorem. With ConCrowd-DP in place, a mobility-
aware differentially private trace is generated for the user to participate in the application continually.
Extensive experiments with real-world datasets demonstrate that ConCrowd-DP guarantees the usability of
the synthesized trajectory effectively, while providing the DP protection for defending against the inferential
attacks which stem from the multiple accepted tasks.

INDEX TERMS Location privacy preservation; trajectory prediction; inferential attacks; differential
privacy; continual location sharing.

I. INTRODUCTION

The increasing popularity of smartphones, mobile Internet,
and cloud computing has pushed human society into a new
perception and service model of the Internet of Things (IoT).
The most notable phenomenon is the vigorous development
of location-based service (LBS), and crowdsourcing is one of
its typical applications. The crowdsourcing platform (service
provider) launches location-related tasks and then recruits
the mobile participants. The mobile users participate in the
application and upload the location-related working reports
for obtaining the rewards. Mobile crowdsourcing provides
massive low-cost high-flexibility multi-source data. Accord-
ing to the perceived big data, the cloud platform provides
users with various data services [1], [2]. As a new type of data

perception and service model of IoT, mobile crowdsourcing
and cloud platform has been widely implemented in many
fields, including environmental monitoring, smart medical
treatment, intelligent transportation, social services, etc.

A. MOTIVATION AND CHALLENGES
The mobile users participate in the application as shown in
Fig. 2, where our ConCrowd-DP plays the role as a location
anonymizer. We will describe its detailed dataflow in Section
II-A. The continual crowdsourcing means that mobile users
participate in the application multiple times continually.

Privacy Threats Analysis. This paper considers the ser-
vice platform as the adversary, assuming that he (she) is
honest but curious. We do not take the cybersecurity issues
into consideration in this paper. To improve the quality of
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service, the crowdsourcing platform tries to infer the user’s
real-time actual position or even the future mobile behavior
based on the observed locations, such as the locations of the
LBS queries and the accepted tasks. As the obtained data
accumulates in the continual crowdsourcing application, the
platform can even analyze the users’ behavioral patterns and
become a strong attacker [3]. Because of various inferential
attacks that the adversary always launches, the information
of the user’s whereabouts directly or indirectly threatens the
user’s identity or other location-sensitive information [4].
Customized advertisements or other personalized services
may be pushed to the user without permission. It may even
result in serious threats to the safety of users’ life and
property.

Privacy-preserving Challenges for the Continual
Crowdsourcing. Inspired by the above privacy-threat anal-
ysis, we know that the main challenges come from the fol-
lowing two aspects. The first one is the user-related location
information observed by the platform in real-time applica-
tion, such as the locations of queries and the accepted tasks.
The second one is the spatiotemporal correlation hidden in
the users’ mobile behaviors which can be derived from the
historical mobile data. Generally, the users always perturb
their actual positions with existing privacy-preserving tech-
niques, and participate in the application with the perturbed
locations. As for the privacy risks brought by the perturbed
locations of the users’ queries, please refer to [5] for the
detailed privacy-preserving solution.

To achieve the spatiotemporal correlation-based privacy
protection, various techniques, such as statistical analysis,
hidden Markov model, Bayesian theorem, conditional ran-
dom field, etc., have been proposed to model the users’
dynamic mobilities. Statistical analysis [6] only represents
primary spatiotemporal correlations. The traditional Markov
model [7] reflects the spatial transfer relationship, but not
the temporal correlation, while the conditional random field
[8] has poor compatibility with the existing location privacy-
preserving mechanism (LPPM). Bayesian theorem considers
the influence of a specific factor in the system in the form of
conditional probability [9].

The differential privacy (DP) [10] provides provable pri-
vacy guarantees by limiting the individual’s impact on the
output. K-norm DP [11]–[13] constructs the geometric con-
vex hull on the difference set of its anonymity set to formalize
the DP’s sensitivity, which quantifies the noise that needs
to be introduced into the system. This method is suitable
for the mobile application scenarios. More importantly, the
sensitivity hull K-norm DP builds provides finer noise control
than the l1-norm sensitivity [5], which achieves better per-
formance on a balance between location privacy protection
and data availability. Literature [5] provides a differentially
private solution to eliminate the privacy risks brought by the
perturbed locations of the users’ mobile queries. DPSense [4]
applies it in a crowdsourcing scenario.

To the best of our knowledge, there is no work studying the
privacy risks brought by the accepted tasks in crowdsourcing
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(b) The inferential attack brought by
the locations of multiple accepted tasks.

FIGURE 1. The privacy risks brought by the accepted tasks in continual
crowdsourcing.

applications. The positions of the accepted tasks may weaken
or even break the above-mentioned privacy protection. Con-
sider the following examples. We refer to the solid stars as the
accepted tasks in Fig. 1, the hollow stars as the unaccepted
tasks and the solid triangle as the locations of an anonymity
set.

I. In a general crowdsourcing application, mobile users
accept the tasks nearby, as shown in Fig. 1(a). Ac-
cording to an accepted task, we can draw a circle to
represent the effective area where the user may appear,
as described in the first inferential attack shown in Fig.
4(a). We know that the user’s actual position must be
included in the circular area, and may even be the
closest one to the accepted task (i.e., the center of the
circle) in the anonymity set. If the anonymity set is not
well considered, the actual location may be the only
position contained within the circular area.

II. In the continual crowdsourcing scenario, the multiple
accepted tasks may even expose the user’s future mobile
behavior, as shown in Fig. 1(b). After a user takes tasks
at locations A,B, the attacker may have obtained the
user’s actual locations at these two points. He (she) can
then infer that the user may appear at the location C
after analyzing the user’s dynamic behavioral pattern,
as stated in the inferential attack shown in Fig. 4(b).

B. OUR CONTRIBUTIONS

With these issues in mind, we aim to design a privacy-
preserving solution for the continual crowdsourcing appli-
cation. In the solution, we should fully consider the user’s
mobile spatiotemporal association and eliminate the privacy
risks brought by the accepted tasks.

The major contributions of this paper can be summarized
as follows:

• STMarkov. We introduce the time factor into the tradi-
tional Markov model, proposing an improved spatiotem-
poral Markov, STMarkov. It perceives and models the
spatiotemporal association hidden in the user’s mobility.
In our solution, STMarkov contributes the user’s time-
related transfer pattern and the steady-state distribution,
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TABLE 1. Parameter settings

Parameter Setting
U/ui The mobile user set / the ith user

S Location set
T P Time partitions set
LBS Location based service
x,y,z Single locations

t Timestamps
π Steady state distribution
M Transfer matrix
pt The probability distribution of the user at time tth

p− The prior probability distribution
p+ The posterior probability distribution

δ set Anonymity set of DP
ε Privacy degree of DP
K Sensitivity hull
KI Sensitivity hull in the isotropic position

Tr/T PIM transformation matrix

which outputs the locations that the user is most likely
to visit at the corresponding time.

• ConCrowd-DP. We build the mapping relationship be-
tween the accepted-task’s location and the location set
according to K-norm DP, and eliminate the privacy risks
caused by the accepted task based on the Bayesian
posterior theorem. Finally, connected by STMarkov,
the above methods form a closed-loop, formalizing the
ConCrowd-DP model.

• DP trace. We execute our ConCrowd-DP iteratively
for the user to participate in crowdsourcing application
securely and continually, generating a mobility-aware
DP trajectory. Our ConCrowd-DP achieves the privacy-
preserving continual crowdsourcing application.

The rest of the paper is structured as follows. Section
II clarifies the research problem of this paper. Section III
introduces the system architecture of our solution. Our
ConCrowd-DP is introduced in detail in Section IV. Section
V analyzes the performance of our solution on privacy and
complexity. Section VI demonstrates extensive experiments.
The suitable application modes of our ConCrowd-DP and fu-
ture work are discussed in Section VII. Section VIII reviews
the related works, and Section IX concludes this paper.

II. PROBLEM FORMALIZATION
This section presents a general application system, discusses
the adversary model, and describes our design goals to clarify
our research problem further. Table 1 illustrates the settings
of some important symbols.

A. PRIVACY-PRESERVING CROWDSOURCING SYSTEM
Participating in location-based crowdsourcing threatens the
mobile users’ location privacy, as analyzed in Section I pre-
viously. Therefore, the privacy-preserving system is widely
needed in various crowdsourcing applications. Here, we
present a general architecture of the privacy-preserving
crowdsourcing in Fig. 2. To protect the location privacy, the
mobile user sends the crowdsourcing platform a perturbed
position or anonymity set to apply for the crowdsourcing
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FIGURE 2. The application scenario. It aims to achieve the privacy-preserving
crowdsourcing.

task. Afterwards, he (she) corrects the reward’s deviation
caused by privacy protection according to the actual location.
We describe its detailed dataflow as follows.

Dataflow. 1. The mobile user sends a location-related
query; 2. The Anonymizer protects the query’s position by
generating a perturbed location or anonymity set, and sends
it to the crowdsourcing platform; 3. The Server responds
to the query with crowdsourcing tasks and corresponding
rewards; 4. If an anonymity set is sent out by the mobile
user in Step 2, the Result Filter picks out the exact response
corresponding to the actual location; or the Result Corrector
corrects the response’s deviation, if the perturbed position is
selected; 5. The accepted task or the reward’s deviation is fed
back to the Platform; 6. Finally, the mobile user obtains the
corresponding reward.

Note. The anonymity set is composed of the actual posi-
tion and several fake locations. The crowdsourcing platform
responds one task to each location of the anonymity set.
Therefore, the user only needs to feedback on the accepted
task in Step 5. While, if the user sends out a perturbed
location, the platform responds only one task and the cor-
responding reward. Then, the reward’s deviation needs to be
fed back.

B. THE ADVERSARY MODEL
This paper assumes the attacker is a normal adversary or
even the crowdsourcing platform [14]. Generally speaking,
the platform owns more users’ information, such as the user’s
historical trajectory data (may be noisy and incomplete), than
normal adversaries. It means that the platform has much
stronger power to launch attacks. Therefore, we take the
platform as the major defensive target in this paper. Typically,
we assume that the platform is honest but curious. He (she)
seeks to get the users’ location information as accurately as
possible to improve the service quality.

We exhibit a general architecture of the adversary model,
as shown in Fig. 3. It presents the crowdsourcing platform’s
detailed knowledge and the way he (she) launches the attacks.
During the application process, the platform observes the mo-
bile user’s location-related information, such as the service
queries and the accepted tasks, and accumulates constantly.
Therefore, he (she) can model the user’s spatiotemporal
mobile-behavioral pattern based on historical mobile data.
According to the mobile pattern and the real-time informa-
tion, such as the accepted tasks, the platform may launch the
inferential attacks to infer the user’s actual location and even
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FIGURE 3. The adversary attack. It models the user’s spatiotemporal mobility
based on the historical traces, and launches the inferential attacks to infer the
user’s following action according to the locations of the tasks accepted by the
user in the application process.

the following mobile behavior.
In the following, we illustrate the inferential attacks that

the adversaries commonly adopt in mobile crowdsourcing, as
shown in Fig. 4. Such as the inferential attacks based on the
crowdsourcing elements and the spatiotemporal association
in mobility. We refer to the solid stars as the accepted tasks
and the hollow stars as the unaccepted tasks.

The inferential attacks based on crowdsourcing ele-
ments [4]. The attacker takes the location of an accepted task
as the center and draws a circle with the maximum distance
radius (i.e., the maximum distance for accepting tasks). The
area within the circle represents the effective area for the user
to participate in the crowdsourcing. It also means that the user
must appear in this area while taking the task. The attacker
can perform such inferential attack by combining the impacts
of multiple tasks together, as shown in Fig. 4(a). The above
subfigure presents the attack launched from the multiple tasks
accepted at the same time. The intersection of the three
circles is the area where the user is most likely to appear.
The bottom subfigure corresponds to the scenario in which
the user participates in the application with an anonymity
set. The Server dispatches one task to each location of the
anonymity set, and the user accepts one task but rejects the
others. The shaded part represents the area where the user
may appear.

The inferential attacks based on the spatiotemporal
association in user’s mobility [15]. In the mobile crowd-
sourcing, the strong attacker owns a large amount of users’
mobile trajectories and can perform the dynamic behavioral
analysis to infer the user’s coming behavior. As shown in Fig.
4(b), the actual location 1 may be picked out by the adversary,
although protected with the anonymity set {1− 5}. Because
it may be the location where the user is most likely to visit
given the previously accepted tasks {A,B,C}, after perform-
ing the mobile behavioral analysis. Several methods can be
used to perform such mobile behavioral analysis, including
the Hidden Markov model [16], Conditional Random Field
[8], etc.
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(a) Inferential Attacks vs Crowdsourc-
ing Elements
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(b) Inferential Attacks vs Spatiotempo-
ral Correlation of user’s mobility

FIGURE 4. The inferential attacks in crowdsourcing scenarios.

C. OUR DESIGN GOALS
As described in the above adversary model and the examples
in Section I-A, two challenges need to be overcome to
achieve the privacy-preserving continual crowdsourcing. In
the application at single timestamps, the attacker may launch
the first inferential attack to discover the user’s actual loca-
tion based on the information of crowdsourcing elements. In
a continual crowdsourcing scenario, he (she) may infer the
user’s following mobile behavior according to the multiple
accepted tasks. We name it the second inferential attack.

For the application at single timestamps, Fig. 4(a) has
shown that the ways of accepting multiple tasks at the same
time and participating in the application with an anonymity
set both bring serious location-privacy risks. Therefore, we
suggest the mobile user participate in the application with
a perturbed location, and the Server signs one task to each
query. During this process, the platform observes no other
positions except the accepted task and the perturbed location.
According to the accepted task, he (she) can only have a
circular area with a diameter of 10 km, assuming 5 km as
the maximum distance for taking the tasks [4]. It is a fairly
large area. Besides, the perturbed location should also be well
designed to avoid bringing in the direct privacy risks to the
user’s actual location.

To defend against the second inferential attack, we should
prevent the multiple accepted tasks from contributing to the
spatiotemporal-mobility modeling which can be operated by
the adversary in the continual-crowdsourcing scenario. For
this purpose, we should eliminate the effect of the accepted
task on the user’s time-related distribution on location-set,
which is the information carrier to model the user’s dynamic
behavioral pattern.

III. SYSTEM ARCHITECTURE
For achieving the privacy-preserving continual crowdsourc-
ing, we propose our ConCrowd-DP solution. In this section,
we present its system architecture and discuss its rationality.

A. ARCHITECTURE DESIGN
We first construct a STMarkov model to perceive the user’s
dynamic mobile patterns. Then, according to STMarkov
and K-norm DP, a mobility-related perturbed location is
generated for the user to participate in the crowdsourcing.
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This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3058211, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

STMarkov

Bayesian 

Posterior 

Theorem 
K

-n
o

r
m

 D
P

Crowdsourcing 

Server

Task

Mobile User

qi δ, qi 

p( S | ltask)

p(ltask |li)

ConCrowd-DP

li

ltask

qi'u1

(t1, ri)

(t2, rj)

P(t1, ri , t2, rj)

FIGURE 5. A glimpse of ConCrowd-DP.

After completing the task, we build a mapping relationship
between the location-set and the accepted task based on K-
norm DP, and further eliminate the impact of the accepted
task on the user’s distribution with the help of STMarkov and
Bayesian theorem. Finally, these steps form a circular opera-
tion for the user to continually participate in the application
by executing ConCrowd-DP iteratively.

B. A GLIMPSE OF CONCROWD-DP
We show the overview of ConCrowd-DP vividly in Fig. 5.
Before a mobile user participates in the application, we first
build the STMarkov model. When the user sends an LBS
request qi, STMarkov outputs the δ -location set from the
user’s time-related distribution on location-set (named the
user’s distribution for short). According to qi and δ -location
set, K-norm DP generates a perturbed position q′i, and sends
it to the platform. The Server responds to the request and
assigns the crowdsourcing task. Then, K-norm DP is reused
to generate the mapping relationship between the position-
set and the assigned-task’s location, p(ltask|li). The Bayesian
posterior theorem updates the user’s distribution based on the
accepted task, p(L|ltask). Finally, the STMarkov transforms
the user’s posterior distribution into the prior values corre-
sponding to the next moment, getting ready for the user to
participate in crowdsourced applications again.

C. RATIONALITY ANALYSIS
To fully simulate the attacker’s capability on the
spatiotemporal-association perception, we first need to model
the user’s mobile behavioral patterns. As we all know, the
traditional Markov model has its limitations. We propose a
spatiotemporal Markov model, STMarkov, by bringing the
time factor into the Markov model to tackle these limita-
tions. The STMarkov models the user’s dynamic behavioral
pattern, constructing a spatiotemporal-transfer matrix and
outputting a time-related steady-state distribution of the user
on location-set. Its transfer matrix not only has the probabil-
ity of the spatial transition but also records the time when
the transition happens. Furthermore, the user’s probability
distribution on location-set can be driven from the time-
related steady-state distribution at each corresponding time.

We redesign the PIM based K-norm DP [5], [11] and
formalize the ConCrowd-DP, combining with the STMarkov

and Bayesian posterior theorem. When a user sends an
LBS query, STMarkov outputs a time-related δ -location set,
composed of the places that the user is most likely to visit
at the corresponding time. According to the DP principle,
K-norm DP generates a perturbed location from δ -location
set, making the perturbed position indistinguishable from the
above places [5]. After the user completes the application,
we need to eliminate the impact of the accepted task on
the user’s time-related probability distribution, getting ready
for the user to participate in the application again. In order
to control the system’s computational complexity, K-norm
DP is reused to build the mapping relationship between the
location-set and accepted task. Then, Bayesian posterior the-
orem updates the user’s distribution, taking the accepted task
as the conditional probability. After STMarkov transforms
the user’s posterior distribution to be the prior distribution
at the next corresponding time, the user can then participate
in the application securely and continually.

To improve our solution’s practical feasibility, we can
further reduce the computational burden of the local client,
by handing over the task of building STMarkov to the
platform’s server. The platform is our assumed adversary.
He (she) can model the users’ spatiotemporal mobility. It
is for this reason that we incorporate this attack capa-
bility into our privacy-preserving solution. ConCrowd-DP
constructs DP protection based on this function module. It
anonymizes the perturbed position with the user’s locations
most likely to visit, making them indistinguishable. There-
fore, it doesn’t matter who builds the STMarkov. In other
words, the STMarkov model produced by the Server will not
threaten the privacy-preserving performance of ConCrowd-
DP. Furthermore, there is another advantage of building
STMarkov on the server-side. It can build different kinds
of STMarkovs, building popular STMarkov based on public
users’ mobile data or producing a personal one according to
the individual data. We will describe it in detail below.

In order to further expand the suitable scope of ConCrowd-
DP, we design two ways of building the STMarkov. It can
be trained based on the individual mobile data, creating
a personal spatiotemporal transfer matrix. It can also be
produced from the public users’ data, constructing a popular
transfer model. These two matrices make different senses.
The personal one offers individual-related mobile patterns.
The DP protection, based on it, introduces more considerable
noise, generating much stronger perturbance. Therefore, the
perturbed location is relatively far away from the actual site,
leading to low data availability. On the other hand, the public
transfer matrix provides DP with the popular mobile patterns.
It introduces the weaker disturbances, resulting in the higher
data availability. We will evaluate the different performances
of these two matrices in the experimental section.

IV. MOBILITY-AWARE PRIVACY PROTECTION
This section presents the detailed solution of our ConCrowd-
DP, as shown in Fig. 6. It describes how ConCrowd-DP
models the user’s spatiotemporal mobility and how to further
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FIGURE 6. The detailed design of ConCrowd-DP.

eliminate the impact of the accepted tasks.
We divide it into three parts. The first one is STMarkov’s

spatiotemporal-mobility perception. The second one is the
generation of the perturbed location for participating in the
application at a specific moment, as shown in the process
marked by the solid arrows in Fig. 6. The third one is
eliminating the privacy risk caused by the accepted task
after completing the participation, and preparing for the next
participation, as shown in the process marked by the hollow
arrows in Fig. 6.

A. SPATIOTEMPORAL MOBILITY PERCEPTION,
STMARKOV
We propose the STMarkov model for perceiving users’ mo-
bile behaviors, as shown in Fig. 7.

1) A New Markov Transfer Model
To break the Markov model’s limitations, we redesign it
by introducing the time factor into the traditional one and
propose STMarkov, a time-related spatial transfer model.
Here, we characterize the time factor by making use of the
time-partitioning concept according to LPM2 [17].

We add the time element into the state variable of the
Markov model in the manner of time-partitioning. As shown
in Fig. 7(a), STMarkov replaces the state variable (x) with
(t,x), representing the state of the location x with the corre-
sponding timestamp t. The transfer model turns out to be the
transfer probability from the state (t1,xi) to (t2,x j), replacing
Pi j with P(t1,xi, t2,x j). A spatiotemporal transfer matrix is
generated. It not only represents the probability of spatial
transition, but also records the time when the transition
happens.

2) STMarkov: Spatiotemporal-mobility Modeling
To build the STMarkov model, we need to do some prepara-
tory work. Determine the target geographic area and time-
period. That is, to determine that in what area and within
what time-period the user’s transfer mobility occurs, which
we want to model.

We first select an active area and collect the involved PoIs,
S. The area can be set in multiple ways, such as business
circles, administrative regions, etc. Second, according to the
requirements of mobility modeling, an appropriate time-
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FIGURE 7. STMarkov. Spatiotemporal-mobility perception.

period is picked out as the target time-period. Finally, we
should further determine the granularity for dividing the
effective time-period and area, forming a reasonable time-
partition set, T P, and geographic grids, as shown in Fig. 7(b).
The granularity of the time-partitioning and area dividing
reflects the accuracy of the mobility analysis. We refer n,m
to represent the sizes of the time-partition set, T P, and the
grids, S, respectively. Therefore, the transfer matrix’s scale is
determined to be (n∗m)∗ (n∗m).

After the above preparations, we construct the mobile
model, STMarkov. However, an inevitable fact is that the
training data is incomplete, and we need to estimate the miss-
ing data. We refer T T to represent the real training trajectory
set and ET to describe the hypothetical complete dataset.
Then they have the following probabilistic relationship:

P(M | T T ) = ∑
ET

P(M,ET | T T ) . (1)

However, it is infeasible to sample directly from
Pr(M,ET | T T ). The computation increases exponentially
as the trajectory becomes longer. Therefore, we introduce
one kind of Monte Carlo sampling method, Gibbs Sampling
[7], for the unbiased training of STMarkov. The above joint
distribution is achieved in polynomial time by sampling from
the following two conditional distributions iteratively. An
iteration execution of the following sampling pairs (Ml ,ET l)
yields a pair of sampling data.

Ml ∼ P
(

M | ET l−1,T T
)

; (2)

ET l ∼ P
(

ET |Ml ,T T
)
. (3)

Algorithm 1 shows its sampling process. We can pre-set
the maximum number of iterations or approximate value
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Algorithm 1 Two-dimensional unbiased training for the
STMarkov model
Input Data Set S = (M,ET ). M the transfer matrix, ET hypotheti-

cal complete dataset.
Output Sample Set S

′
= (m,et).

1: Initialize M0 = m0, ET0 = et0;
2: Set Max(SamplingNum), loop sampling;
3: for i = 0; i≤Max(SamplingNum); i++ do
4: Sample ET i+1 ∼ P(ET |Mi) as shown in Eq. 2;
5: Sample Mi+1 ∼ P(M | ET i) as shown in Eq. 3;
6: end for
7: Return the sample set S

′
= (M,ET ).

between the last two samplings as the condition for ending
the iteration.

STMarkov provides the ConCrowd-DP with the user’s
time-related probability distribution on location-set (the
user’s distribution) and the spatiotemporal transfer matrix.
The user’s distribution constructs the anonymity set for K-
norm DP, protecting the actual location with the locations that
the user is most likely to visit. While the transfer matrix trans-
forms the user’s distribution into the values corresponding to
the following timestamp.

B. DP PROTECTION FOR CROWDSOURCING
APPLICATION AT SINGLE TIMESTAMPS
For the crowdsourcing application at single timestamps, we
need to perturb the actual positions based on the DP principle
and generate the perturbed locations. Here, we adopt the
improved DP solution, the PIM based K-norm DP [5], for this
propose. It synthesizes the DP noise based on the δ -location
set, which is driven from the user’s probability distribution
on location-set output by the STMarkov model.

Definition 1 δ -location Set [5]. Let pt be the prior proba-
bility of a user on-location set at timestamp t. δ -location set
is a set containing minimum number of locations that have
prior probability sum no less than 1 -δ .

∆Xt = min{xi|∑
xi

pt [i]≥ 1−δ}, (4)

where xi denotes a location, pt [i] refers to the probability with
which the user visits the location xi.

Definition 2 K-norm (Sensitivity Hull). In the two-
dimensional mobile scenarios, the K-norm is equivalent to
the sensitivity hull. It can be formulized as follows.

K =Convex(∆x), ∆x = (x1− x2),x1,x2 ∈ δ , (5)

where x1, x2 are any two of the locations in δ set, and ∆x
is the distance vector between x1 and x2. Then, K-norm is a
convex hull formed by the distances.

In order to further control the DP noise, PIM-based K-
norm DP also implement an isotropic transformation to the
above-mentioned sensitivity hull.

Corollary 1 Isotropic Transformation [5]. For any convex
body K in R2, any integer p≥ 1, there is an absolute constant

c such that if ς ≥ 4cp2 with probability at least 1˘2−p, KI =
TrK is in isotropic position.

Tr =

(
1
ς

ς

∑
i=1

yiyT
i

)− 1
2

, (6)

where y1,y2, · · · ,yl are independent random points uniformly
distributed in K.

The major execution process of the PIM based K-norm DP
is described as follows, which is also shown in the process
marked by the solid arrow in Fig. 6.
• First, we extract the δ -location set from the user’s

time-related probability distribution, and construct the
sensitivity hull of the δ -location set.

• Second, we train a transformation matrix, Tr, and trans-
form the sensitivity hull onto the isotropic position,
Tr ∗K, forming the isotropic sensitivity hull.

• Third, two random samplings are performed respec-
tively in the isotropic sensitivity hull and the Gamma
function, obtaining the samples z and r.

• Finally, the perturbed location is generated according
to the Eq. 7. The perturbed position satisfies DP in δ -
location set [5] and is indistinguishable from the loca-
tions of δ -location set.

x∗t = xt + r ∗T−1
r ∗ z. (7)

The mobile user sends the perturbed location to the crowd-
sourcing platform, and the Server dispatches one task as the
response. The user chooses to accept or reject the task based
on a certain criteria. If he (she) takes and completes the task,
he (she) can get the corresponding reward.

C. DP PROTECTION FOR THE CONTINUAL
CROWDSOURCING
In the following, we seek to eliminate the privacy risks
caused by the accepted tasks for achieving the privacy-
preserving continual crowdsourcing. To achieve the above
goal, the main challenges come from the following two as-
pects. One is to formulize the mapping relationship between
the location set and the accepted task. The second is to
eliminate the privacy risk brought by the accepted task and
prepare for participating in the application in the following
time-partition.

The releasing probability for the location of the ac-
cepted task. As shown by the process marked by the hol-
low arrows in Fig. 6, we need to generate the mapping
relationship between the position set and the accepted task.
To maintain the consistency of system operation, we still
seek to achieve the DP protection for hiding the location
of the accepted task in the δ -location set. We formalize the
mapping probability from the location set to the position of
the accepted task, referring to it as the releasing probability
of the accepted task. This releasing probability is formalized
according to the principle of K-norm Mechanism, taking the
location of the accepted task as the output.
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Definition 2 K-norm Mechanism [11]. Given a linear
function F : RN → Rd and ε > 0, we let K = FBn

1 and define
the mechanism KM(F,d,ε), so that each measure is given by
the probability density function defined over Rd .

p(o) = Z−1exp(−ε‖Fx−o‖K),

Z =
∫

Rd
exp(−ε‖o−Fx‖K)da = Γ(d +1)∗Vol(ε−1K).

(8)

here, Z denotes the normalized constant. The mechanism
KM(F,d,ε) is K-norm Mechanism, and satisfies Differential
Privacy.

As shown in Eq. 8, the releasing probability of the output
location is exponentially related to the distance between the
output location x∗ and the actual location x, i.e., ∆x=(x∗−x).
However, there is a prerequisite for the establishment of this
formula. That is, the distance ∆x must be within the range of
K-norm.

In the following, we analyze the distance relationship be-
tween the ∆x and K-norm. When ∆x = (x∗−x) ∈ K, K-norm
mechanism provides DP protection effectively, as shown in
its definition. We prove that this situation accounts for the
vast majority in the total by the experimental results. When
∆x = (x∗ − x) /∈ K, we need a surrogate for ∆x in K-norm
to seek an approximative DP protection. The point closest
to ∆x in K-norm, ηagent = Nearby(∆x,K), can be used as
the surrogate. We will evaluate this drift phenomenon in the
experiments.

Besides, we also transform the K-norm to the isotropic
position to improve the DP performance. Then, we formalize
the releasing probability of the location of the accepted task
as follows.

p(x∗|x) =
ε2

2∗Area(KI)
exp(−ε‖T ∗ (x∗− x)‖KI ), ∆x ∈ K

ε2

2∗Area(KI)
exp(−ε‖T ∗ (ηagent)‖KI ), ∆x /∈ K.

(9)

Eliminate the privacy risk brought by the accepted
task. As shown by the process marked by the hollow arrows
in Fig. 6, the Bayesian posterior theorem is then introduced to
update the user’s distribution, taking the accepted task as the
condition. According to the principle of the Bayes-Markov
inference model, there are two steps required for eliminating
the privacy risk brought by the accepted task. First, according
to the releasing probability of the accepted task p(x∗|x), we
update the probability distribution of the user on-location
set based on the Bayesian posterior theorem. It transforms
the prior probability distribution p−t (x) to be the posterior
probability distribution p+t (x|x∗), taking the accepted task as
the condition.

Finally, the user’s posterior distribution need to be trans-
formed into the prior distribution in the following time-
partition. For achieving this purpose, the spatiotempo-
ral transfer matrix, M(t,xt , t + 1,xt+1), generated by the

STMarkov, is recalled back. It transforms the user’s pos-
terior probability distribution in the current time-partition,
p+t (x|x∗), to be the prior probability distribution in the
following time-partition, p−t+1(x|x∗), i.e., p−t+1(x) = p+t (x) ∗
M(t,xt , t + 1,xt+1). The probability p−t+1(x|x∗) is the target
distribution which needs to be prepared for the user to partic-
ipate in the application in the following time-partition.

The process marked by these hollow arrows can form
a loop operation combined with the process characterized
by the solid arrows as shown in Fig. 6. Performing cir-
cular operations iteratively can generate a mobility-aware
perturbed location sequence, allowing users to participate in
the crowdsourcing securely and continually. Up to now, we
have eliminated the privacy risk caused by the accepted tasks
and achieved the privacy-preserving continual crowdsourcing
application.

V. PERFORMANCE ANALYSIS
In the following, we analyze the performance of our
ConCrowd-DP in terms of privacy preservation and compu-
tational complexity.

A. PRIVACY ANALYSIS
Here, we analyze its privacy-preserving characteristics and
the perturbation degree caused by the introduced noise.

Theorem 1. ConCrowd-DP satisfies ε-DP in the space of
the isotropic sensitivity hull, KI .

Proof. In the mobile crowdsourcing scenario, the linear
mapping is F : R2 → R2. Given ε > 0 and KI = T Bd

1 ,
the releasing probability p(x∗|x) satisfies the condition of
K-norm mechanism defined in Eq. 8. So the mechanism
K(T Bd

1 ,d = 2,ε) defined in this paper satisfies ε-DP in the
space of KI . That is, ConCrowd-DP provides ε-DP protection
in the space of the isotropic sensitivity hull KI . For the
detailed proof of the DP in K-norm mechanism, please refer
to Literature [11].

Theorem 2. ConCrowd-DP satisfies ε-DP on δ -location
set.

Proof. The isotropic transform is a unique linear mapping:
R2 → R2, and it is easy to replace the isotropic sensitivity
hull KI with the original sensitivity hull K. That is, there is
also a corresponding releasing probability in the space of the
original sensitivity hull of K. It is almost in the same form as
the releasing probability in Eq. 9. Therefore, ConCrowd-DP
is ε-DP in the space of K. That also means ConCrowd-DP
satisfies ε-DP on the δ -location set.

Differential privacy is a perturbation-based privacy-
preserving method. Therefore, we evaluate the error caused
by the introduced noise from the ConCrowd-DP and give the
upper and lower bounds in the following.

Theorem 3. The introduced noise brought by ConCrowd-
DP causes the errors with Lower Bound Ω

(
1
ε

√
AREA(K)

)
,

and Upper Bound O
(

c
ε

√
AREA(K)

)
, where c is the approx-

imation degree of the isotropic position.
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Proof. In this paper, we seek the DP protection in a two-
dimensional isotropic plane. Thus, we evaluate the error
brought by the ConCrowd-DP in the space of KI , by making
use of the results from Literature [11].

Lower Bound. To answer a linear function F : Rn → Rd

under the definition of DP, every ε-DP mechanism must have

ERROR≥Ω

(
d
ε

(
VOL(K)

VOL(Bd
2)

)d−1)
, (10)

where VOL(�) is the volume and Bd
2 is the unit l2 ball.

Upper Bound. Let ε > 0. Suppose F : Rn→ Rd is a linear
mapping such that K = FBn

1 is in c-approximately isotropic
position. Then, the K-norm mechanism is ε-DP with the error
at most O(cLK) �LB(F,ε).

In a two-dimensional isotropic plane, we can obtain
the Lower Bound: Ω

(
1
ε

√
AREA(KI)

)
and Upper Bound:

O
(

c
ε

√
AREA(KI)

)
. After transforming back into the orig-

inal space, it is easy to show that AREA(K) = det(T−1
r ) ∗

AREA(KI). Therefore, the Lower Bound and Upper Bound
of Theorem 3 are obtained.

In summary, the perturbed location generated by our
ConCrowd-DP is geographically indistinguishable from the
positions where the user is most likely to visit after complet-
ing the previously accepted tasks. The perturbation degree
caused by the introduced noise is proportional to the area
of the K-norm constructed by the δ -anonymity set, and
inversely proportional to the DP’s privacy degree.

B. COMPLEXITY ANALYSIS
In the following, we analyze our ConCrowd-DP’s complexity
from the perspectives of the implementations at single times-
tamps and participating in the application continually.

Theorem 4. In the implementations at single timestamps,
our ConCrowd-DP takes O

(
nmd + klog(h)+h2log(h)

)
or

O
(
klog(h)+h2log(h)

)
time. Here, n,m,d are the numbers

of time-partitions, divided geographic grids and iteratives of
Gibbs sampling, and k,h refer to the size of ∆X and number
of vertices on Conv(∆X).

Proof. The implementation of our Concrowd-DP contains
the following three core components. STMarkov perceptives
the user’s mobility, PIM-based K-norm DP generates the
perturbed location, and the Bayesian posterior theorem elim-
inates the impact of the accepted task. We denote their com-
putational complexities as T (ST Makov), T (K − norm DP)
and T (Bayes), respectively.

T (ST Makov). Because of the data’s incompleteness, we
train the STMarkov model by implementing the Gibbs Sam-
pling method in two dimensions, i.e., the target matrix M and
the estimated completion ET . Both of their matrices’ scales
are (nm) ∗ (nm) and we produce the samples for each row
separately. Therefore, this operation needs to be executed
2nmd times, i.e.,T (ST Makov)∼ O(nmd).

T (K− norm DP). As described in Section IV-C, we have
T (K−norm DP)∼ T (PIM)+O(1). Meanwhile, T (PIM)∼

O(klog(h) + h2log(h)) [5]. Therefore, T (K − norm DP) ∼
O(klog(h)+h2log(h)). Besides, Bayesian posterior takes 2m
operations, i.e., T (Bayes)∼ O(m).

In addition, the mobile user only needs to train the
STMarkov model before participating in the application for
the first time, which is not needed at other timestamps.
Therefore, Theorem 4 is obtained.

Theorem 5. When the mobile user participates in
the application continually, our ConCrowd-DP takes
O
(
nmd +N[klog(h)+h2log(h)]

)
time, where N is the times

of participation.
Proof. When the mobile user participates in the application

multiple times continually, our ConCrowd-DP first trains the
STMarkov matrix, and then generates the perturbed locations
for the user to participate in the application, iteratively. Based
on the analysis in Theorem 4, we have Theorem 5 easily.

VI. EXPERIMENTAL EVALUATION
In this section, we present the experimental evaluation re-
sults of ConCrowd-DP, including the accuracy of the users’
spatiotemporal-mobility perception and the performance of
the DP protection.

A. DATASET AND SETUP
We adopt the Geolife dataset [18]–[20] conducted by
Microsoft Research Asia to verify the performance of
ConCrowd-DP. Microsoft Research Asia organizes hundreds
of people and publishes the dataset with a large number of
trajectories covering a distance of millions of kilometers,
after years of accumulation. The data in Geolife covers more
than 30 cities in China and even some cities in USA and
Europe. But most of them are recorded in Beijing. We take
the area within the Third-ring road of Beijing as the target.
It has an area of 12.8 ∗ 12.8 [km*km], which is divided into
20∗20 equal sizes.

The platform is assumed to publish the crowdsourcing
tasks at the working time on weekdays. We should perceive
and model the user’s mobile behavior during the time-period
from 8 : 00 am to 6 : 00 pm. The time-period is divided into
ten time-partitions with the time granularity of an hour in
each slot. We sample time-location pairs from the trajectories
in every 10 minutes and construct two training datasets, as
the comparative experiments. We simulate the path of the
accepted tasks with the route most often taken by the user.
The experiments on each training set are repeated 20 times.

To fully verify the DP protection performance offered
by ConCrowd-DP, we also need to construct two kinds of
databases, a personal database and a public database. We
randomly select a person from individuals with relatively
abundant data, regarding his dataset as a personal database.
The remaining dataset can be considered as a public database.

B. MOBILITY PERCEPTION
1) Evaluation Criteria
We evaluate the perceived performance of the STMarkov
model by taking the statistic method as a baseline. We

VOLUME 4, 2016 9



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3058211, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

0 2 4 6 8 10

The Time Partitions

0.4

0.5

0.6

0.7

0.8

0.9

1

T
h
e 

A
cc

u
ra

cy
 R

at
e

Top 3 Trajectory

Top 4 Trajectory

Top 5 Trajectory

(a) The accuracy ratio of each time
partition from the first training set.

0 2 4 6 8 10

The Time Partitions

0.6

0.7

0.8

0.9

1

T
h
e 

A
cc

u
ra

cy
 R

at
e

Top 3 Trajectory

Top 4 Trajectory

Top 5 Trajectory

(b) The accuracy ratio of each time
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FIGURE 8. Dynamic Accuracy Ratio on the Time-sequence.

extract Top n PoIs from the user’s time-related probability
distribution in the descending order in each time-partition,
forming a perceptual trajectory. Meanwhile, we divide the
user’s historical mobile data set according to time partition.
Then, Top n PoIs, with the highest user’s access rate, are
picked up from the sub-dataset corresponding to each time-
partition, composing a statistical trajectory. We take it as
a comparison of the perceptual trajectory. We select the
evaluation indicators as follows.

• Dynamic Accuracy Ratio on the Time-sequence. In
each time-partition, we compare the number of PoIs,
n′, that the above two trajectories have in common, and
construct the accuracy rate of the STMarkov’s mobility
perception in each time-partition, ζ = n′/n. We refer to
the accuracy ratio on time-sequence as the similarity of
the above two trajectories.

• P-L Indicator. We define a P− L indicator to indi-
cate the probability weights of ToP n PoIs. First, we
note P probability to depict the probability occupied
by Top n PoIs among the total possibility, p∗, in each
corresponding time-partition. Further more, P−L indi-
cator divides the P probability by the average chance,
P−L=P∗L/(p∗), where L is the size of the location set
composed of all locations where the user has appeared
in the corresponding time-partition.

• Proportion Distribution of the Time-partitions on
the Coverage Ratio. We refer to this indictor as the pro-
portion of the time-partitions, T Pt , in the total, T Ptotal ,
corresponding to a certain coverage rate, c.

P = {pc}, pc = T Pc/T Ptotal , c ∈ {1,2, · · · ,n}, (11)

where the coverage ratio c refers to the number of PoIs
shared by the above two comparative tracks in the same
time-partition.

2) Dynamic Accuracy Ratio on Time-sequence
We refer to the accuracy ratio as the proportion of the PoIs
shared by the two comparative trajectories. Fig. 8(a) 8(b)
present the accuracy ratios of each time partition in the
two groups of comparative experiments, respectively. They
compare the perceptual results obtained when n is taken from
{3, 4, 5} respectively. Fig. 10(a) shows the average accuracy
rate obtained when n is taken from 1 to 5.

Fig. 8(a) 8(b) indicate some spike-wave phenomena. It is
determined by the user’s behavioral pattern. During some
time-partitions, the user’s behavioral pattern is relatively
fixed. The predicted results have higher accuracy ratios.
However, the situation is just the opposite of some other
time-partitions. Such as the user’s mobile behaviors at noon
or after getting off work in the afternoon. Uncertain user’s
behaviors result in lower predicted accuracy ratios.

3) Proportion Distribution of the Time-partitions on the
Coverage Ratio

Fig. 9 presents the proportion distribution of time-partitions
as defined above. It indicates that time-partitions are dis-
tributed over the high coverage ratio with a large probability.
For example, Fig. 9(a) shows that the proportion of time
partitions reaches 96%(100%) on the coverage ratio of 2 and
3. The proportion accounts for 94%(89%) for the coverage
ratio of 3 and 4, as shown in Fig. 9(b).

Besides, it also indicates that the proportion of time-
partitions with the full coverage decreases as n increases, as
shown in Fig. 9(b) 9(c).

4) Comparative Experiments

We compare the experimental performances of our
STMarkov, traditional Markov, and statistic method, in terms
of the average accuracy and the indicator of P− L. The
traditional Markov models the user’s mobile behavior based
on the Markov Chain. The statistic method reflects the
historical fact of user mobility.

The Average Accuracy. Fig. 10(a) shows the perfor-
mance of the average accuracy obtained from STMarkov
and Markov Chain, respectively. We first analyze the cor-
responding curves of STMarkov. When n takes the value
1, the accuracy ratio is relatively low. Then, the accuracy
ratio increases as n becomes larger. When n takes the value
of 3, the average accuracy ratio reaches the highest value,
up to 85%. After that, it begins to decrease as n increases.
When n takes the value 5, the average accuracy rate falls to
82.4%. The phenomenon that the accuracy ratio decreases as
n increases is also reflected in the experiments of Fig. 8(a)
8(b).

To explain the above phenomenon, we had better start from
the definition of the Top n PoIs. Top n PoIs are extracted
from the probability distribution of the user’s appearance in
a decreasing manner. Therefore, the initial increasing trend is
due to the introduction of high-frequency PoIs. These PoIs
successfully improve the coverage rate of the PoIs shared
by the perceptual trajectory and the statistic trajectory. The
subsequent decreasing trend is due to the introduction of low-
frequency PoIs.

In comparison, we find that the accuracy of the Markov
Chain is low. It is because it only records the sequence
of spatial transition, but does not model the time-varying
mobile pattern. That is, the user’s transfer probability is time-
varying.
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FIGURE 9. The proportion distribution of the time partitions on the coverage rate.
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FIGURE 10. The Comparative Experiments on the Average Accuracy and P-L
Indicator.

P-L Indicator. Fig. 10(b) presents the comparative perfor-
mance of our STMarkov and Statistic method on the P− L
indicator. The two curves have a similar trend, and derive
out a consistent conclusion with the result of the dynamic
accuracy ratio. That is, the probability weights in the P−L
curves are relatively high during working time-periods, but
low at other time-partitions, as shown in Fig. 10(b). The
reason is that the places where the user works are relatively
fixed, while the moving behaviors in other time-periods have
more uncertainty.

You may be confused that the curve of the predicted
trajectory is below, as shown in Fig. 10(b). Does it mean
our prediction results are not good? Actually, no. It is a little
necessary sacrifice for the global optimization. The steady-
state probability distribution of STMarkov generalizes the
probability over the entire (T P,S) state space.

However, we adopt STMarkov to perform mobility percep-
tion, rather than the statistic method. It’s because the statistic
method does not take the spatiotemporal association into
consideration, which is hidden in a user’s mobility. The ab-
sence of the spatiotemporal association makes it impossible
to predict the user’s mobile behavior in real-time accurately.

C. DP PROTECTION
We go deep into the ConCrowd-DP mechanism and evalu-
ate its performance by taking the original K-norm DP [5]
as a baseline. The parameters δ and ε are considered as
the variables to explore the DP performance of ConCrowd-
DP, including how δ -set changes, how often drift happens,
and how accurate the perturbed location is. Besides, we
also construct experiments on personal and public datasets
respectively to ensure the objectivity and accuracy of the

experimental results.
Variables. Besides the training dataset, the input of

ConCrowd-DP requires the user to pre-provide two param-
eters, δ , and ε .
• δ . The parameter δ is required for constructing the δ -

location set. The δ -location set consists of the potential
locations where the user is most likely to appear. It is
used to provide DP protection for the predicted PoIs.

• ε . It is introduced by the definition of K-norm DP. It
indicates the privacy degree of DP protection.

Metrics. We select the following three internal indicators
to demonstrate the performance of our experimental results,
i.e., the distance between the perturbed location and the
predicted PoI, the size of δ -location set, and the drift ratio.
• Distance between the perturbed location and the

actual PoI. This kind of distance reflects the degree of
the error caused by the introduced noise. It is a general
usability metric in the mobile privacy-preserving sce-
nario.

• The size of δ -location set. ConCrowd-DP generates DP
protection based on the δ -location set, which consists of
the potential locations. Therefore, it indicates the scope
of privacy protection, which performs as an anonymity
set. The size of δ -location set is determined by both the
parameter δ and the probability distribution of the user
on-location set.

• Drift ratio of the accepted tasks. We refer to ’drift’ to
indicate that the vector, formed by the actual position
and the location of the accepted task, exceeds the range
of K-norm. In this scenario, ConCrowd-DP just provides
approximate DP. Thus, the drift ratio calculates the
proportion of such situations among the total accepted
tasks.

The impacts of ε . The parameter ε is introduced by
the K-norm DP and indicates the privacy degree of the DP
protection as described above. A larger ε value means a
more relaxed privacy requirement. In this situation, less noise
is introduced, and the perturbed location is closer to the
protected object. That is, the output result is more accurate.
Otherwise, the situation will be just the opposite.
• Distance vs ε . Fig. 11(a) 12(a) present the impacts of

the parameter ε on the distance between the released
location and the actual position. It shows the distance
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FIGURE 11. The DP protection performance of ConCrowd-DP with the
personal training set.

decreases while ε increases. It indicates that the increase
of ε improves the accuracy of the output location.

• Size of δ -set vs ε . Fig. 11(c) 12(c) show the impacts
of ε on the size of δ -location set. The size of δ -
location set decreases as ε increases. The reason for this
phenomenon is that a larger ε results in a more accurate
output. An accurate output position optimizes the user’s
probability distribution on-location set in the subsequent
time-partition. The potential locations correspond to a
higher probability in the optimized distribution, leading
to a smaller size of the δ -set finally.

• Drift ratio vs ε . Fig. 11(e) 12(e) present the impacts of
ε on the drift ratio of the accepted tasks. It indicates that
a larger ε increases the risk of the drift. That’s because a
larger ε leads the δ -set to become smaller, as mentioned
above. Fewer locations, which are used to provide DP
protection, result in a smaller K-norm. The smaller K-
norm makes the drift more likely to happen.

The impacts of δ . The parameter δ directly determines
the size of the δ -location set. A larger value of δ means that
δ -set contains a smaller number of locations. δ -set selects
locations from the probability distribution in the reverse
order, with which the user is likely to appear at the site.
Therefore, smaller size of δ -set also indicates that there is a
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FIGURE 12. The DP protection performance of ConCrowd-DP with the public
training set.

more significant correlation between the δ -set and the actual
position. Then, ConCrowd-DP generates a more accurate
perturbed location.

• Distance vs δ . Fig. 11(b) 12(b) show the impact of
δ on the DP performance of the distance between the
perturbed location and the actual position. The distance
decreases as δ increases. It just reflects that a large value
of δ improves the accuracy of the perturbed location, as
analyzed above.

• Size of δ -set vs δ . Fig. 11(d) 12(d) present the impact of
δ on the size of the δ -set. The parameter δ determines
the size of δ -set directly with the opposite trend as
mentioned above.

• Drift ratio vs δ . Fig. 11(f) 12(f) present the impact
of δ on the drift of the accepted tasks. As mentioned
above, a larger δ means a smaller size of δ set, while
a smaller size of δ -set means a smaller size of the K-
norm. Therefore, a large value of δ increases the risk of
drift.

The impacts of the different training data set. Fig. 11
shows the DP performance on the personal training dataset,
and Fig. 12 presents the performance on the public training
dataset. The personal training set consists of individual tra-
jectories. While the public training set consists of the trajec-
tories from public users. Therefore, compared with the pub-
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lic training dataset, the training trajectories in the personal
dataset are more relevant to the user’s mobile behavioral pat-
tern. Thus, STMarkov generates a more accurate probability
distribution of the user on-location set and spatiotemporal
transfer matrix. It results in a smaller size of δ -set and a
shorter distance between the perturbed location and the actual
position, as shown in Fig. 11 12.

The comparison of the performances between
ConCrowd-DP and original K-norm DP. ConCrowd-DP
optimizes the original K-norm DP by taking the accepted
tasks into consideration. The accepted task is close to the
actual location, optimizing the users’ probability distribution
on-location set. The optimized probability further results in
more accurate perturbed locations. Finally, it leads to the
advantages on the size of δ -set and the distance, and also
the disadvantage on the drift of the accepted tasks, as shown
in Fig. 11 12.

VII. DISCUSSION
In this section, we summarize the suitable application sce-
narios and modes of our ConCrowd-DP, and discuss the
directions in which it can be optimized.

A. SUITABLE APPLICATION MODES OF
CONCROWD-DP
We discuss various suitable application modes of ConCrowd-
DP, according to different real-world scenarios. We do not
take the cybersecurity issues into consideration in this paper.
• In a secure and trusted scenario, mobile users can par-

ticipate in the crowdsourcing application directly with
the actual trajectory or the perceptual PoI sequence
generated from the STMarkov model.

• In the scenario with untrusted platform, mobile users
can participate in the application with a perturbed loca-
tion as described in Section II-A. The Server assigns a
task according to the user’s perturbed position. The user
then corrects the deviation caused by the perturbance.
Literature [4] provides a straightforward solution in
such a manner.

• Four kinds of trajectories are introduced in this paper,
i.e., the actual trace, the statistical trajectory, the per-
ceptual PoI sequence generated by STMarkov, and the
perturbed trajectory from ConCrowd-DP. They can be
used not only individually but also in a combination
manner. For example, we can set a route-selection op-
tion for the mobile users. If the user selects a secure
path, we provide him (her) the perturbed DP trace for
participating in the application. If he (she) is taking a
regular route, the statistical or perceptual trajectory can
be selected; if taking a new way, the user can be allowed
to set a new route.

B. FUTURE WORK
We further discuss the optimization space of our ConCrowd-
DP and take the following ideas as the research directions of
our future work.

• Personalized privacy preservation. We achieve our
privacy-preserving solution by modeling the user’s mo-
bility. In the future work, we can seek to achieve further
personalized privacy preservation, based on not only the
mobility but also the user’s identity and the location’s
sensitivity. For instance, a multi-level DP mechanism
can be customized according to the user’s identity. It
provides different-level DP protections to the users with
different privacy-preserving requirements. We can also
adaptively protect a location’s privacy according to its
sensitivity to the user.

• User’s mobility perception. This paper perceives the
user’s dynamic mobile behavioral patterns by modeling
the spatiotemporal association in mobility. In the future
work, we can consider modeling the spatiotemporal
association and the social network jointly, considering
that social friends or corresponding communities also
impact the users’ mobility.

VIII. RELATED WORK
In this section, we review prior works that are most relevant
to our ConCrowd-DP from the perspective of the spatiotem-
poral mobility perception and the privacy-preservation in the
continual crowdsourcing scenarios.
A. SPATIOTEMPORAL MOBILITY PERCEPTION
Modeling users’ mobile behaviors in the mobile applications
is an open issue [15], [21]. Literature [22] proposed a utility-
aware synthesis of DP trace, which took the trip’s distribu-
tion, length and start-end points into consideration in the
usability perception. Li et al. studied the users’ mobility-
modeling issues in the mobile social network [23]. These
techniques model the users’ mobilities simply just based on
statistical characteristics. Literature [24] inferred the vehi-
cle’s driving path based on speed and other auxiliary informa-
tion, such as real-time traffic and traffic rules. This technique
is mainly limited to modeling the road network.

Literature [25] generated decoys to provide the dummy
privacy protection for anonymizing the actual user based
on the social and travel behavior patterns. PLP [8] took
the continual transfer into consideration, according to the
Conditional Random Fields. Literatures [26], [27] modeled
users’ mobile behaviors based on the Markov method. How-
ever, they failed to overcome the limitations of traditional
Markov. The above-mentioned techniques only model the
spatial transfer of users’ mobilities, failing to achieve the
time-related transfer model. Our STMarkov realizes this goal
by introducing the time-partitioning concept to improve the
Markov model. It provides the ConCrowd-DP with time-
related steady-state distribution and spatiotemporal transfer
matrix.
B. LOCATION PRIVACY-PRESERVATION IN CONTINUAL
CROWDSOURCING SCENARIOS
Plenty of location privacy-preserving techniques provided
anonymous or uncertain privacy-preservation for mobile ap-
plications generally [28], such as the clustering [29], gener-
alization [30], obfuscation [31], perturbation [32]. Literature
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[33] quantified the privacy risks brought by the co-location
in the social network. Co-location refers to the information
that two users meet together. Literature [34] manipulated
the graph structure to avoid safety detection. Zuo et al.
explored the causes of data leakage in cloud [35]. Jin et
al. proposed a solution for private-data transactions in the
mobile crowdsensing in [36]. However, these single-location-
based protections are vulnerable to the inferential attacks,
due to the spatiotemporal association hidden in the users’
mobility [7], [37].

Solutions, such as θ -secure area [6], DPSence [4], PLP [8],
introduced the spatiotemporal correlation into the location
privacy-preservation. θ -secure area [6] assessed whether the
clustering area was secure, by comparing the Earth Mover’s
Distance between the prior and posterior distributions. It
relies more on statistical calculations and doesn’t dig the
spatiotemporal mobility sufficiently. DPSence [4] provided a
crowdsourced spectrum-sensing solution with the DP princi-
ple based on the Markov model. However, the spatial transfer,
it modeled, did not consider the temporal correlation. Liter-
ature [8] proposed the PLP solution to model the continual
transfer according to Conditional Random Fields (CRF).
While the CRF method has poor compatibility with other
privacy-preserving mechanisms.

These technologies are still threatened by the re-
identification attack proposed in literatures [7], [38]. This
attack infers the user’s identity by modeling his (her) specific
mobile patterns based on the user’s shared locations, such
as the locations of the service queries and the accepted
tasks in the crowdsourcing. Literature [5] proposed a DP
solution for defending against the attacks driven from the
locations of LBS queries. However, it failed to take the
accepted tasks into consideration. According to the design
goals of our solution in Section II-C, our ConCrowd-DP
can prevent the multiple accepted tasks from contributing
to the spatiotemporal-mobility modeling in the continual
crowdsourcing scenario. Therefore, our ConCrowd-DP can
effectively defend against the mobility-modeling attacks,
achieving the privacy-preserving continual crowdsourcing.

IX. CONCLUSION

Targeting at achieving the privacy-preservation continual
crowdsourcing, we proposed the ConCrowd-DP, a mobility-
aware differentially private solution. According to a com-
bination of spatiotemporal-mobility modeling and the DP
principle, it eliminates the privacy risks brought by the
multiple accepted tasks, enabling the users to participate
in the crowdsourcing securely and continually. Extensive
experiments confirmed that our ConCrowd-DP well balances
the tradeoff between privacy protection and data usability.
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