
Received April 28, 2020, accepted May 3, 2020, date of publication May 14, 2020, date of current version June 1, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2994598

uFETCH: A Unified Searchable Encryption Scheme
and Its Saas-Native to Make DBMS
Privacy-Preserving
SHEN-MING CHUNG 1, MING-DER SHIEH 1, (Member, IEEE), TZI-CKER CHIUEH2,
CHIA-CHIA LIU3, AND CHIA-HENG TU3
1Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
2Information and Communications Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
3Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan 70101, Taiwan

Corresponding author: Shen-Ming Chung (anton0706@gmail.com)

ABSTRACT As encrypted-search techniques such as Searchable Encryption (SE) were devised for homo-
geneous data type, i.e. textual or numerical, it is a nature presumption that multiple techniques have to be
intertwined tomake databasemanagement system (DBMS) privacy-preserving. In effect, such a presumption
has led to popular designs such as CryptDB, putting efforts on heterogeneous integration. In this paper, an
easier option is made available when a unified SE scheme named uFETCH is proposed to accommodate
both. Namely, uFETCH is able to build unified SE indexes for both the types while enabling encrypted
search even if the SE indexes built for texts and numbers are mingled. To demonstrate how uFETCH can
bring up simpler designs, a security agent is exemplified to work with off-the-shelf DBMS while making
it privacy-preserving. Since uFETCH transforms the problem of encrypted search into a simple problem of
subsequence matching for SaaS-native, it requires only sub-linear search time w.r.t. the volume of indexed
items and is secure in the widely-adopted 3-tier cloud structure to help cloud service providers ease regulation
compliance with out-sourced repository.

INDEX TERMS Searchable encryption, DBMS, privacy preserving, SaaS-native.

I. INTRODUCTION
As General Data Protection Regulation (GDPR) [1] and sim-
ilar laws are acting in more countries, people are much aware
of their rights on privacy. Because of these laws, compa-
nies doing business with private data have no options but
to protect them with full strength. With raised awareness, it
would make no sense to private data owners if the companies,
working as a cloud service provider (CSP) in the era of
cloud, further moves private data to yet another CSP for
repository. Despite such a practice so common in 3-tier cloud
structure [2] that enables agility and more, as long as GDPR
is considered, out-sourcing repository does make CSP harder
to claim compliance since the out-sourced repository is at best
semi-trusted [3]. Therefore, a challenge arises: how can CSP
preserve the privacy of its users while being able to out-source
repository?

The associate editor coordinating the review of this manuscript and

approving it for publication was Gianmaria Silvello .

Intuitively, encryption such as AES seems a solution for
CSP to address the challenge. For example, CSP can encrypt
private data before storing them upon cloud repository. If
CSP only keeps the key(s), virtually neither cloud repository
nor CSP can see the private data except the epochs of data
processing. This way of managing data not only retains the
3-tier cloud structure but also makes CSP free from escorting
private data all the time. Technique as such also eases imple-
menting ‘‘the right to be forgotten’’ in GDPR because simply
deleting a key destroys all associated data at once.

However, as CSP has to process data as fast as possi-
ble, mere encryption would make CSP a nightmare. That
is, all encrypted data have to be retrieved back from cloud
repository before decrypting for the ‘‘wanted’’. Though, with
traditional encryption, only retrieving all can guarantee a
perfect recall necessary for business, it does suffer the worst
precision by metrics of Information Retrieval (IR) [4].

To get decent precision, solutions for commissioned search
among encrypted items have been proposed. Among them,

93894 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-8086-6661
https://orcid.org/0000-0002-7361-1860
https://orcid.org/0000-0003-4970-4554

S.-M. Chung et al.: uFETCH: A Unified SE Scheme and Its Saas-Native to Make DBMS Privacy-Preserving

Searchable Encryption (SE) and other encrypted-search tech-
niques stand out to enable efficient retrieval. However, if CSP
takes a deeper look at these solutions, obstacles can be found
that explain why these ‘‘near-practical’’ solutions are still
rarely deployed.

A. EXISTING TECHNIQUES AND RESTRICTIONS
Foreseeing privacy issues at the dawn of cloud era, SE has
long been proposed to encrypt data flowing to cloud while
preserving IR ability for those who have the key. However,
the name of SE is often misleading that seems to bring
forth special encryption whose ciphertext is searchable. In
fact, except the proposal of Song et al. [5], almost all SE
schemes actually build subsidiary SE index(es) for word(s)
that represents the data. With SE index(es) associated with
encrypted data, retrieving encrypted data becomes amatching
problem. That is, with the right key, SE Trapdoor can be built
for a word to match through SE index(es). Since this index-
based approach [6], [7] emerged, a variety of SE schemes
have been proposed for single-keyword search, ranging from
offering simple equality queries [5]–[7] to annexing queries
with better expressiveness such as fuzzy [8], [9] and wildcard
[10]–[15]. Formultiple-keyword search, conjunctive schemes
[10], [16]–[18] have been proposed; in case that keywords
have to be consecutive, phrase [19]–[22] and even multi-
phrase [23] can be useful. But one thing in common with
them is: when talking about SE, schemes are dedicated to
matching for word(s).

Besides words, privacy issue also attracts lots of atten-
tion on privacy-preserving search for encrypted numbers.
This line of research is often seen in database community.
Such works fill the vacancy in the paradigm of database
management system (DBMS) where numbers usually dom-
inate. But unlike SE, this community are more liberal to
engage skills beyond cryptography. For example, in 2002
Hacigümüş et al. [24] proposed a bucketing technique with
SQL translations to map range queries onto buckets recalls.
Since then, a number of varying proposals appeared with
many aiming at database-as-a-service (DaaS). While many
works proposed to modify DBMS in order to inject tech-
niques such as bivariate [25], PBtree [26], trusted hardware
[27] and multi-party computation [28], some preferring not
to. Those techniques that requires no server modification, e.g.
[24], [29] and [30], are regarded as SaaS-native. But SaaS-
native or not, all these techniques are dedicated to looking
for number(s).

Of course, neither words nor numbers alone are sufficient
to do business as CSP inevitably has to face databases mixed
with textual and numerical data. But, with the development
of encrypted-search techniques as summarized, it is a nature
presumption that heterogeneous techniques across data types
have to be intertwined to deal with general databases. Such
a presumption is somewhat affirmed after CryptDB [31]
integrated techniques of order-preserving encryption (OPE)
[30], homomorphic encryption (HE) [32] and SE [5] to make
DBMS privacy-preserving. Remarkably, by picking only

SaaS-native techniques, CryptDB is gaining popularity as it
fits well with DaaS that forbids any DBMS retrofit. In fact,
such an integration even inspired works such as MONOMI
[33], L-EncDB [22] and Seabed [34]; all putting efforts on
intertwining heterogeneous techniques that we propose to
refrain from.

B. CONTRIBUTIONS
This work proposes a solution for CSP to address the chal-
lenge of preserving user privacy with out-sourced repository.
We introduce a unified SE scheme called uFETCH (uni-
fied Frequency-Eliminated Trapdoor-Character Hopping)
that enables efficient encrypted-search across data types.
With the merit of SaaS-native to make off-the-shelf DBMS
privacy-preserving, uFETCH brings the following contribu-
tions to advocate cloud security and privacy.

• First Unified SE Scheme. uFETCH is able to make
encrypted data searchable no matter they are textual,
numerical or mixed. By a unified search algorithm, it
offers efficient encrypted-search even if the SE indexes
built for texts are mingled with the SE indexes built for
numbers. uFETCH builds SE trapdoors devised to tell
nothing about the type of data it is looking for. It features
wildcard-based pattern search for encrypted texts while
also making range-based search possible for encrypted
numbers. To the best of our knowledge, uFETCH is the
first SE scheme of this kind.

• SaaS-Native for Legacy DBMS. Cloud repository run-
ning as DaaS often provides DBMS not open for retrofit.
This fact cripples all encrypted-search techniques unless
they are SaaS-native, i.e. able to work with DBMS as is.
Therefore, we believe a practical SE scheme should be at
least SaaS-native. uFETCH is SaaS-native. It builds SE
indexes and trapdoors that require no retrofit to off-the-
shelf DBMS as long as it serves subsequence matching.
More than SaaS-native, uFETCH also brings forth a
kind of simplicity that heterogeneous integration cannot
afford. This simplicity is demonstrated by a security
agent that uses only uFETCH to make DBMS privacy-
preserving with just few SQL translations.

• Secure in 3-tier Cloud Structure. Brought up in cryp-
tography communities, SE schemes are often set upon
security notions such as IND-CKA [6], [7]. However,
we notice that such notions are actually meant for 2-tier
client-server structure, instead of the 3-tier structure
recurring in cloud scenarios. In effect, such ‘‘over-spec’’
security often leads to inefficient SE schemes whenever
better query expressiveness is needed. For example, in
Table 1, SE schemes supporting wildcard-based pattern
search are often bounded by linear complexity unfit for
increasing data in cloud. uFETCH can break that bound
with adequate security in 3-tier cloud structure for the
sake of commercial-grade performance.

In the following, Section II first reviews some SE prim-
itives devised for SaaS-native, setting a background for the

VOLUME 8, 2020 93895

S.-M. Chung et al.: uFETCH: A Unified SE Scheme and Its Saas-Native to Make DBMS Privacy-Preserving

TABLE 1. Existing SE schemes supporting wildcard-based pattern search are bounded by linear complexity, but our works break that bound by leveraging
existing DBMS capability in 3-tier cloud structure (n and m are the number of indexed documents and words respectively).

proposed scheme. The proposed uFETCH and its security dis-
cussions for 3-tier cloud structure are given in Section III. The
simple security agent enabled by uFETCH is demonstrated
in Section IV, followed by experimental results in Section V.
Finally, a conclusion is given in Section VI.

II. SE PRIMITIVES FOR SaaS-NATIVE
In this section, SE primitives [35] devised for textual-only
encrypted search are reviewed as a background. Note that,
the SE primitives along are not secure but serves to set
up operations and notations to be adopted in the proposed
SE scheme. The operations and notations illustrate how the
problem of encrypted search (using wildcards in particular)
can be transformed into a problem of subsequence matching
for SaaS-native.

A. INDEX CONSTRUCTION
Inspired by distorting mirrors in physical world, the SE
primitives reflect and project an object (a given word) onto
an obfuscating image (an SE index) mathematically; and in
case that you cover (wildcardize) a part of the object (the
word), the part that is not covered still gets reflected and
projected onto another image (an SE trapdoor) which, though
still obfuscating, will be in part the same as the uncovered
image (the SE index) and thus can be used as a clue for match-
ing. But unlike distorting mirrors, ‘‘garbling’’ is introduced,
resulting in three steps of reflecting, projecting and garbling
for building an SE index, as shown in Fig. 1.
More precisely, given a word p =

[
p1 p2 . . . pN

]>, in
the step of reflecting, characters of p are ‘‘reflected’’ by
multiplying with a matrix R of M -by-N entries defined as

R ,

r1
r2
r3
...

rM

 (1)

with each rm∈{1,2,...,M} defined as a shuffled version of an
N -tuple vector z ,

[
x0 x1 . . . xα−1 0 0 . . . 0

]
, wherein each

non-zero entry is a monomial called a reflecting pointer and
α defines the number of them in each row ofR. We denote the

FIGURE 1. Steps to build a SaaS-native SE index from an N-character
word.

generation of such a matrix as R
$
←− R(α)

M×N with
$
←− denoting

a random sampling.
Such a reflecting step ‘‘reflects’’ M subsets of characters

of p on the coefficients of polynomials v1(x), v2(x), . . . and
vM (x). That is,

Rp = R

p1
p2
p3
...

pN

 =

v1(x)
v2(x)
v3(x)
...

vM (x)

 (2)

In the step of projecting, each of the polynomials is pro-
jected onto a character. A keyed hashing such as HMAC can
be conducted over the coefficients of each polynomial with a

secret key k̄
$
←− {0, 1}n, and the first character of the output

hash is selected as the projected character. Denoting such a
projecting as �, we obtain an image

i ,

v1(x)�

v2(x)�

v3(x)�
...

vM (x)�

 =

i1
i2
i3
...

iM

 (3)

Finally, for the step of garbling, the image i is partitioned
into λ ‘‘rooms’’ specified by a sequence b of increasing
integers, i.e.

b , (b1, b2, . . . , bλ+1)|b1=1,bλ+1=M+1,bi−bi−1>2 (4)

93896 VOLUME 8, 2020

S.-M. Chung et al.: uFETCH: A Unified SE Scheme and Its Saas-Native to Make DBMS Privacy-Preserving

Assuming b is randomly-generated according to (4) that

we denote as b
$
←− B(M , λ), we can partition i as

i =

i1
i2
i3
...

iM

 =

i1
i2
...

iλ

 (5)

such that

il =

ibl
ibl+1
ibl+2
...

ib(l+1)−1

 (6)

Aligned with the partitioned i, a Garbler G is defined as

G ,

π1
π2
π3
...

πλ

 (7)

where each π l∈{1,2,...,λ} is a randomly-generated permutation
matrix [36] of dimension (bl+1 − bl)× (bl+1 − bl).
With G, an SE index is obtained by

idx , G>i ,

π1il
π2i2
π3i3
...

πλiλ

 (8)

Note that, the resulted idx is SaaS-native because it can be
stored as a string, i.e. the most common type in DBMS.

B. TRAPDOOR CONSTRUCTION
Before showing how SE trapdoors can be built for wildcard
queries, we first define what a wildcard query is:

• Wildcard Query. q̃ =
[
q̃1 q̃2 . . . q̃N

]> is a wildcard
query if it is made by replacing zero or more characters
of a certain word p =

[
p1 p2 . . . pN

]> with wildcard
1, that represents any single character. And we denote
q̃ D p if q̃ matches p. More precisely,

q̃ D p⇔ (q̃i 6= 1⇒ q̃i = pi)∀i ∈ {1, 2, . . . ,N } (9)

By this definition and the notation, wildcard query is
seen as a generalization of equality query. Given a wildcard
query q̃ =

[
q̃1 q̃2 . . . q̃N

]>, to conduct encrypted-search
through SE indexes, an SE trapdoor can be built with the
same {R, k̄, b}. As illustrated in Fig. 2, the procedure of
building SE trapdoor for the wildcard query also comprises
three steps: reflecting, projecting and sifting. In reflecting,

FIGURE 2. Steps to build a SaaS-native SE trapdoor from a N-character
(wildcardized) query word.

M polynomials are resulted, i.e.

Rq̃ = R

q̃1
q̃2
q̃3
...

q̃N

 =

ṽ1(x)
ṽ2(x)
ṽ3(x)
...

ṽM (x)

 (10)

If there is any 1 in q̃, it would get reflected among the
coefficients of ṽ1(x), ṽ2(x), . . . , ṽM (x). For each polynomial
containing at least one1, we force the result of projecting �
to be a 1. In general, any operation dealing with 1 is forced
to output1, resulting in ‘‘wildcard propagation’’. Therefore,
one might obtain a 1-involved t =

[
t̃1 t̃2 . . . t̃M

]> that, like
(5), is partitioned into λ rooms according to b, i.e.

t ,

ṽ1(x)�

ṽ2(x)�

ṽ3(x)�
...

ṽM (x)�

 =

t̃1
t̃2
t̃3
...

t̃M

 =

t̃1
t̃2
...

t̃λ

 (11)

Aligned with the partitioned t, a Sift S is defined as

S ,

σ 1
σ 2
σ 3
...

σ λ

 (12)

wherein each σ l∈{1,2,...,λ} is a randomly-generated selection
vector [36] of dimension bl that has exactly one entry of 1
and 0’s elsewhere. By σ l∈{1,2,...,λ}, one character per the room
t̃ l∈{1,2,...,λ} is selected (i.e. mux). Thereby, an SE trapdoor is
built as

trap , S · t ,

σ 1 t̃ l
σ 2 t̃2
σ 3 t̃3
...

σ λ t̃λ

 (13)

Denoting trap w idx if trap is a subsequence of idx, it can
be observed that

q̃ D p⇒ trap w idx (14)

VOLUME 8, 2020 93897

S.-M. Chung et al.: uFETCH: A Unified SE Scheme and Its Saas-Native to Make DBMS Privacy-Preserving

as proved in [37]. With this property, cloud repository can
conduct a textual search simply by checking whether a given
trap is a subsequence to any of stored idx’s. That is, with no q̃
nor p ever exposed to, cloud repository can be commissioned
to search while remaining ignorant. The resulted trapdoor
trap is SaaS-native because it only requires subsequence
matching, a well-supported feature in most DBMS.

III. PROPOSED UNIFIED SE SCHEME - uFETCH
The property of (14) indicates the reviewed SE primitives
as SaaS-native. However, the SE primitives can only serve
words of fixed-length of N , that is too restricted for most
scenarios. Besides, when feeding a word of same characters,
the index construction will lead to an idx of same character.
For example, a word ‘‘000. . .0’’ would lead to an idx like
‘‘xxx...x’’ that leaks the word pattern.

In this section, the SE primitives are extended and for-
malized into the proposed uFETCH of four algorithms
{KeyGen,BuildIndex,Trapdoor,Match}. uFETCH frees the
word-length restriction and leaks no word pattern. Being a
unified SE scheme, uFETCH also builds indexes for numbers
with range queries enabled.

Our initial idea is to ‘‘normalize’’ all words to N -character
long, and if N is configured large enough, the scheme can
then cover most words. Interestingly, it happens that such
normalization can even apply to numbers as long as one can
findways that not only transform any number d ∈ [min,max]
into a word p =

[
p1 p2 . . . pN

]>, but also any range r ⊂
[min,max] into q̃ =

[
q̃1 q̃2 . . . q̃N

]> such that if d ∈ r then
q̃ D p. Then, leveraging (14), a perfect recall for numerical
encrypted search is assured. We found one feasible way to
achieve it is by N projections that project r and d onto q̃ and
p respectively.

A. uFETCH SCHEME KEY

Algorithm 1 KeyGen
Input : a unary 1n, min and max
Output: a uFETCH scheme key k

1 R
$
←− R(α)

M×N

2 k̄
$
←− {0, 1}n

3 b
$
←− B(M , λ)

4 n← {n1, n2, . . . , nN |min < ni < max}
5 k← {R, k̄, b,n}

An instance of uFETCH is defined by a scheme key
k ← {R, k̄, b,n} with public configuration of N , M , α, λ,
L and (min,max). Besides the ingredients of the reviewed SE
primitives, n is introduced as a vector containing N secret
numbers n1, n2, . . . , nN within (min,max) that configure N
projections in algorithms BuildIndex and Trapdoor and are
used exclusively for numbers.

Note that, these secret numbers may or may not be ran-
domly generated, as they can be specified per a known distri-
bution to conceal it, as detailed in Section III-E4.

B. uFETCH INDEX
The algorithm BuildIndex embodies our idea to ‘‘normalize’’
a datum. That is, when a textual word is given, steps are
taken to make it a word of N -character long. But if it is a
number, N projections are instead conducted to make it a
N -character word too. Thereby, regardless of the data type,
the same procedure of projecting, reflecting and garbling can
follow up to build uFETCH indexes.

Algorithm 2 BuildIndex

Input : a scheme key k = {R, k̄, b,n}, a datum d
Output: a uFETCH index idx

// S1. project onto a N-char binary word

1 if d is a number then
2 w← ∅
3 for i← 1 to |n| do
4 β ← (d > ni) // project onto {0,1}

5 w← w‖β

6 else
7 w← d
// S2. pad short words to L-char long

8 h← f (k̄, |w|)
9 if |w| < L then
10 w← w‖h[(|w| + 1) . . . L]

// S3. pattern conceal and make N-char long

11 p← ∅
12 for i← 1 to dN/|w|e do
13 ẇ← w⊕ h[(i× |w| + 1) . . . ((i+ 1)× |w|)]
14 p← p‖ẇ

15 p← p[1 . . .N]
// S4. build an index

16 i← (Rp)� with (·)� , f (k̄, ·)[1 . . . 1]
17 randomly get a Frequency Garbler G
18 idx← G>i

BuildIndex comprises stages of S1 to S4. S1 checks if
a given datum d is a number. If asserted, it transforms d
into a N -character word. That is, N binary comparisons are
conducted with their binary results concatenated (‖) into a
wordw. Thereby, afterS1,w is obtained even if it is a number.
In S2, by a pseudo random-random function (PRF) f (k̄, ·), a
string of PRF characters is generated with the length of w as
the seed. The first part of the string is used to pad short words
to make them at least L-character long. The remaining PRF
characters are used inS3 to wipe out the pattern ofw byXOR.
S3 repeats XORing until a N -character p is concatenated.
Finally, the background primitives are engaged in S4 to build
the corresponding SE index. Note that, the PRF f (k̄, ·) can
also be implemented by keyed-hashing such as HMAC, and

93898 VOLUME 8, 2020

S.-M. Chung et al.: uFETCH: A Unified SE Scheme and Its Saas-Native to Make DBMS Privacy-Preserving

we index the characters of a PRF string by [a . . . b], stating
a-th to b-th character is used.
It can be observed that S1 is so simple that, when a given

datum d is a large (small) number, S1 could result in a
word w comprising many 1’s (0’s) as d is larger (smaller)
than most of n1, n2, . . . , nN . In an extreme case, w could be
a string of ‘‘111...1’’ or ‘‘000..0’’ that we cautioned.
This, however, is fine because in S3 such patterns will be
wiped out after XORing with the PRF sequence h.

C. uFETCH TRAPDOOR
To build a trapdoor that can identify uFETCH indexes under
the same scheme key k, Trapdoor first checks whether a
given query q is a word or a range. When a word is given,
similar steps are taken to normalize it a word of N -character
long, except any wildcard 1 will ‘‘propagate’’ through
normalization.

Algorithm 3 Trapdoor

Input : a scheme key k = {R, k̄, b,n}, a query q
Output: a uFETCH trapdoor trap

// S1. project onto a N-char ternary word

1 if q is a range then
2 w← ∅
3 for i← 1 to |n| do
4 τ ← (q > ni) // project onto { 0,1,1}

5 w← w‖τ

6 else
7 w← q
// S2. pad short query words to L-char long

8 h← f (k̄, |w|)
9 if |w| < L then
10 w← w‖h[(|w| + 1) . . . L]

// S3. pattern conceal and make N-char long

11 q̃← ∅
12 for i← 1 to dN/|w|e do
13 ẇ← w⊕ h[(i× |w| + 1) . . . ((i+ 1)× |w|)]
14 q̃← q̃‖ẇ

15 q̃← q̃[1 . . .N]
// S4. build a trapdoor

16 t ← (Rq̃)� with (·)� , f (k̄, ·)[1 . . . 1]
17 randomly get a Frequency Sift S
18 trap← S · t
19 remove each 1 from trap , if any
20 if |trap| > bλ/2c then
21 randomly remove (|trap| − bλ2 c) character(s) from

trap

Aligned with the pseudo codes of BuildIndex, when a
numerical range is given, q has to be first projected onto a
N -character word so as to comply with S2. Since a range is
not a number but stands for a set of numbers usually bounded
by two numbers, say (q1, q2), the comparison in the line 4

requires special treatment. Specifically, the condition > is
true and symbolized as 1 if and only if both q1 and q2 are
larger than ni. In case that both q1 and q2 are NOT larger than
ni, the result is false and symbolized as 0. Otherwise,1 is
designated. For example, because (10,20]>15 is neither
true nor false, 1 is designated for that comparison. Thereby,
after S1, a range is made into a N -character ternary word of
characters {0,1,1}.
If a wildcard query is given, S1 is skipped and S2 takes

place to pad the query to be at least L-character long if it is
not. But padded or not, S3 follows up to make all words to
be N -character long while using XORing with PRF sequence
h to conceal original word pattern. Note that, the protocol of
wildcard propagation will make each wildcard1 propagated
through XOR. Thereby, if q contains 1, the word q̃ input to
S4 will also contain propagated 1(’s).

In S4, after the steps of reflecting, projecting and sifting
(in lines 16∼ 18), each 1 is removed from trap. If trap
is longer than the threshold bλ/2c, the remaining characters
are randomly trimmed out. The trimming tries to make the
resulted uFETCH trapdoor to be of the same length of bλ/2c
if possible. It helps conceal search pattern as to be discussed.

D. uFETCH ENCRYPTED SEARCH
What makes uFETCH extraordinary and attractive is that it
transforms the problem of encrypted search into the simple
problem of subsequence matching, with trapdoors telling
nothing about the data type being searched.

Algorithm 4Match
Input : an SE trapdoor trap, an SE index idx
Output: True or False

1 output True if trap w idx; otherwise, output False

As shown in the algorithmMatch, to check if a query iden-
tifies any encrypted item, cloud repository can simply check
if a given SE trapdoor trap is a subsequence to any stored
SE index idx, as denoted by the operator w. With a typeless
trapdoor, cloud repository is made ignorant of the data type
when it is commissioned to search, not even the number of
wildcards in use if any. Thanks to the implication of (14),
under the same scheme key k = {R, k̄, b,n}, uFETCH brings
a perfect recall rate of 1 regardless of the configuration of
N ,M , α, λ, (min,max) and L. Though, for a good precision,
configuration does matter as exemplified in Section V.

E. SECURITY DISCUSSIONS
Typically, CSPs provide their services running in the middle
of a 3-tier structure as shown in Fig. 3, wherein private data
fed from the tier-1 are processed in tier-2 but stored in the tier-
3. Such a 3-tier structure is widely-adopted because the tier-
3 cloud repositories can free CSP from tedious-yet-serious
storage management.

In the 3-tier cloud structure, repository providers see each
CSP as a tenant regardless how many users it has. In fact,

VOLUME 8, 2020 93899

S.-M. Chung et al.: uFETCH: A Unified SE Scheme and Its Saas-Native to Make DBMS Privacy-Preserving

FIGURE 3. The widely-adopted 3-tier cloud structure with examples of
repository providers seeing services A, B and C as tenants, but not able to
identify users of service A because of encryption.

assuming no collusion between the CSPs and repository
providers, repository providers cannot know the number nor
the identity of users in tier-1 if CSP enforces encryption, just
as what cloud service A does in Fig. 3. Please note that, to
utilize any security proxy/agent such as CryptDB [31] or the
one we are about to propose in tier-2, it is assumed that CSP
is allowed to see private data in plaintext. Though CSP is
entrusted by tier-1 users to see data in order to process them
as fast as possible for the service it offers, CSP has to make
tier-3 cloud repository ignorant of all the (processed) data it
uploads This assumption is generic to SE schemes and exist-
ing SE-integrated tools such as CryptDB [31], MONOMI
[33], L-EncDB [22] and Seabed [34] as long as they are
used in tier-2 to help CSP protect tier-1 user privacy against
adversarial DBMS in tier-3.

With the 3-tier cloud structure, security notions such as
IND-CKA [6], [7] seem ‘‘over-spec’’ to assure each SE
index indistinguishable from one another. Though notions
as such are tough, they are actually meant for 2-tier client-
server structure, wherein user identity is often known. As
user identity can be exploited to apply domain-knowledge
or side-channel to compromise the meaning of certain SE
index, IND-CKA prevents any compromised SE index from
breaching another.

However, it is not the case with the 3-tier cloud struc-
ture, assuming all data are anonymised by encryption and
put under tenants’ umbrella. Thereby, it is arguable that
SE indexes have no need to be indistinguishable from one
another, as long as they properly conceal the data.

1) CFA-IMMUNITY IN 3-TIER CLOUD STRUCTURE
Assuming encryption is enforced in the 3-tier cloud structure,
with no user identity to exploit, adversaries inside cloud
repository can be modelled as accessible to some open dic-
tionaries. However, this alone could lead to the notorious
Character Frequency Attack (CFA).

uFETCH is immune to CFA. By reflecting, projecting
and engaging Garbler G and Sift S, it makes character

FIGURE 4. Character distributions before and after uFETCH BuildIndex
under an example configuration, wherein the typical English distribution
of KJV Bible is transformed into one that is close to White Noise.

frequency eliminated (FE). Namely, character frequencies are
‘‘merged’’ after reflecting-and-projecting, with the merged
frequencies further ‘‘blended’’ by GarblerG and Sift S before
producing index and trapdoor respectively. From uFETCH
indexes and trapdoors, adversaries are only left with severely
distorted frequencies that are useless to launch CFA.

Furthermore, uFETCH can conceal search pattern [7] to
prevent user’s query behaviour from being analyzed. That is,
given the same query repeatedly, Trapdoor is able to build
different trapdoors with all reaching the same goal. Trapdoor
also tries to make all trapdoors the same length to conceal the
wildcard usage in a textual query or the wideness of a range
query. By randomly punching out character(s), Trapdoor
builds dynamic trapdoors that seem to have trapdoor charac-
ters hopping (TCH) around. Combining the techniques of FE
and TCH, uFETCH protects its indexes and trapdoors from
CFA.

2) MAKING INDEX ENTROPY CLOSE TO WHITE NOISE
Whenever necessary, uFETCH can actually be better than
CFA-immunity. As a case study, using a configuration ofN =
40,M = 200, α = 16, λ = 40, L = 7, (min,max) = (0, 100)
and HMAC-SHA256 as the PRF f with base64 characters
output, the entropy of built indexes can be made quite close
to that of White Noise. Though this configuration pulls down
precision (comparing to the instance in Section V), it can even
be considered for the 2-tier client-server structure.

Using KJV Bible as an example, we first check the ensem-
ble character distribution along with the entropy of all unique
words in KJV Bible. Then, after BuildIndex, the ensemble
character distribution and the entropy of the corresponding
uFETCH indexes are examined. As the perfect entropy of
base64 is 6, uFETCH can make characters distributed very
close to White Noise, with an near-perfect entropy of 5.9998
as shown in Fig. 4.

3) MAKING INDEX INDISTINGUISHABLE
To check how indistinguishable uFETCH indexes can be,
under the same configuration, uFETCH indexes are built for
alphabetically-similar words and put along with the uFETCH
indexes for numbers within (0,100). We check if similar
words or nearby numbers will have their uFETCH indexes
related to each other.

93900 VOLUME 8, 2020

S.-M. Chung et al.: uFETCH: A Unified SE Scheme and Its Saas-Native to Make DBMS Privacy-Preserving

FIGURE 5. Measurement of LCS length as a distance between uFETCH
indexes built for words and numbers.

Why similar words? Intuitively, with the same uFETCH
scheme key k, it can be anticipated that similar words will
get reflected-and-projected similarly. Thus, uFETCH indexes
built for similar words might have same characters spread as
the common subsequence between uFETCH indexes. There
is the same concern for nearby numbers. Therefore, we are
curious about whether uFETCH can even eliminate such a
clue, if necessary.

As shown Fig. 5, longest common subsequence (LCS)
length between FETCH indexes is measured to see if it
distinguishes similar words or nearby numbers. Because of
the noise resulted from ‘‘redundant’’ characters prepared
in rooms for TCH, the LCS length between similar words
and not-similar words can be quite indistinguishable. How-
ever, nearby numbers would have indexes with longer LCS.
Though this clue could be used to ‘‘group’’ nearby numbers,
it tells no relative magnitude as OPE [30] leaks.

4) FLATTENING NUMERICAL INDEXES
uFETCH can be seen as a variant to the bucketing technique
proposed by Hacigümüş et al. [24] because numbers are vir-
tually ‘‘bucketed’’ by uFETCH indexes, with each uFETCH
index designated as an identifier. Therefore, the distribution
of uFETCH indexes reveals the numerical distribution.

To conceal the distribution, as proposed byHore et al. [38],
it is good to adjust bucketing so that each bucket has roughly
the same quantity of items. uFETCH offers an option to do
so. By generating the secret numbers n1, n2, . . . , nN accord-
ing to the known distribution to be concealed, the index
distribution can be flattened. For example, given a dataset
of Gaussian distribution, secret numbers with Gaussian dis-
tribution can be generated and used in the scheme key k
accordingly.

IV. SECURITY AGENT FOR OFF-THE-SHELF DBMS
uFETCH can bring up simpler designs that make off-the-shelf
DBMS privacy-preserving. To demonstrate the simplicity, a
security agent is built that relies only on the uFETCH for
encrypted-search across data types, instead of integrating
heterogeneous techniques.

As shown in Fig. 6, the security agent resides with CSP in
tier-2 to let it move private data to tier-3 DBMS with privacy
preserved. Whenever data are fed from users in tier-1, CSP
stores the (processed) data to the tier-3 DBMS using SQL
statements as usual but only via the security agent. CSP can
of course query and update data by SQL aswell.With the keys
specified and kept by CSP, the security agent ‘‘translates’’ all
SQL statements into SQL-aware encrypted statements so that
all data are concealed before landing on tier-3. The security
agent processes SQL statements with three overhead levels:
L1, L2 and L3.

A. L1: SIMPLE TRANSLATION
As a database has at least one table, CREATE TABLE is
always the first SQL statement that CSP has to begin with.
CREATE TABLE configures a new table by pairs of {field-
name, type}. For example, to create a table club with four
fields of ID, name, age and weight, four types of INT,
CHAR(40), INT and FLOAT are paired respectively.

Given one CREATE TABLE statement, the security agent
actually derives two CREATE TABLE statements, with one
to ask the tier-3 DBMS to create a new table (e.g. club)
for storing encrypted data, and the other to create a new
table (e.g. club_cnf) in a local DBMS to keep the pairs
of {fieldname, type}. While the table in tier-3 DBMS would
grow and become enormous, the local one is static and small.

To derive the statement to tier-3 DBMS, simple translation
is conducted over all fields specified by CREATE TABLE
(except field(s) of no privacy concern such as auto-serialized
ID). Thus, for each pair of {fieldname, type}
• type is changed to VARCHAR
• an extra pair of {fieldname_idx, VARCHAR} is added
Then, with a table created as specified in tier-3 DBMS,

CSP can populate it by INSERT statements. As INSERT
specifies pairs of {fieldname, datum}, simple translation is
conducted for each pair such that
• datum encrypted by encryption such as AES
• an extra pair of {fieldname_idx, BuildIndex(k,
datum)} is added, with k a uFETCH scheme

Note that, uFETCH builds an idx for a number regardless it
is of INT, FLOAT or types of other resolution, and a unified
field, e.g. VARCHAR, suffices to accommodate it as a string.

B. L2: SECOND-STAGE FILTERING
After a table is populated with encrypted data, CSP can
selectively retrieve them back by SELECT statements via the
security agent. However, because of possible false-positives,
such a selective retrieval requires a second-stage filtering that
slightly pushes the overhead to L2.

VOLUME 8, 2020 93901

S.-M. Chung et al.: uFETCH: A Unified SE Scheme and Its Saas-Native to Make DBMS Privacy-Preserving

FIGURE 6. Using uFETCH, the security agent can be built at ease with three levels of overhead, i.e. L1, L2 and L3.

A SELECT statement often comes with WHERE followed
by conditions of {fieldname operator operand}. Translation
is enforced on each condition such that

• fieldname replaced by fieldname_idx
• operator replaced by LIKE
• operand replaced by Trapdoor(k, operand) with the
SQL wildcard % put in front of, in rear of and in between
all trapdoor characters

The translated SELECT asks tier-3 DBMS to conduct sub-
sequence matching on the index field, instead of the field of
encrypted data, and is sent as L2:1 in Fig. 6. After a result
set is back (L2:2), the security agent decrypts it and put the
plaintext one into the local DBMS for second-stage filtering
by the original SELECT (L2:3-4). Then the result set with
a perfect precision is returned to CSP (L2:5) with each type
restored according to the local table (e.g. club_cnf).
Note that, the security agent recognizes and com-

bines two conditions into one if they constitute a range
query. For example, SELECT * from club WHERE
age > 16 and age < 28 will be translated into
SELECT age from club WHERE age_idx LIKE
Trapdoor(k, (16, 28)), with SQL wildcard % put in front of,
in rear of and in between trapdoor characters for subsequence
matching. However, for a single-ended comparison, min
or max will be used to complete a range. For example,
Trapdoor(k, (16,max)) is used to build a trapdoor for age
> 16.

C. L3: SELECTIVE UPDATING
Besides SELECT statements, UPDATE and DELETE can also
come with WHERE followed by conditions. In such cases,
similar translation can also be conducted over the conditions.
However, to avoid corrupting data because of false-positives,
the security agent first sends SELECT instead.

That is, given a UPDATE or DELETE statement, a SELECT
statement with WHERE appended with translated conditions
(pruned from UPDATE or DELETE) is sent as L3:1 in Fig. 6.
After the tier-3 DBMS returns a result set L3:2, the security
agent decrypts it and put the plaintext one into the local
DBMS for second-stage filtering (L3:3-4) by the SELECT
except this time all conditions are in plaintext. With all false-
positives filtered out, the result set gives the security agent
a result set with precise identifiers id1, id2, . . . (e.g. of the
field ID) to update or delete. Thereby, as shown by L3:5, an
UPDATE or DELETE statement is sent to tier-3 DBMS with
WHERE followed by a list of ID = id1 OR ID = id2 OR
. . . to update affected records precisely, with affected fields
‘‘simple translated’’ as L1 does.

V. EXPERIMENTAL RESULT
A computer with an Intel i7-7700 CPU running at 3.6GHz
with 16GB RAM is used in tier-2 to run both a security
agent and a CSP client. The CSP client creates the example
table club in tier-3 and populates it with 210 to 219 records.
Each record has a name randomly-imported from a name
dataset [39] along with age, weight uniform-distributed in
(0,100).

We set up tier-3 DBMS, i.e. a MySQL server, within the
same computer to eliminate network inference while our
security agent can be replaced by CryptDB [31] for com-
parison. To leverage MySQL internal index for better search
speed, an index is created for each field ofclub. The security
agent is equipped with a uFETCH instance configured with
N = 40, M = 200, α = 7, λ = 40 and L = 16 with (min,
max) set to (0,100). If not explicitly stated, each ofmeasured
points are an average of 1,000 randomly-generated samples.

Note that, there are works also putting efforts on heteroge-
neous integration such as MONOMI [33], L-EncDB [22] and

93902 VOLUME 8, 2020

S.-M. Chung et al.: uFETCH: A Unified SE Scheme and Its Saas-Native to Make DBMS Privacy-Preserving

FIGURE 7. L1 overhead of SQL INSERT in average of all inserted records.

FIGURE 8. L2 overhead of SQL SELECT with LIKE for wildcard query.

Seabed [34]. However, only CryptDB is open to be evaluated
and put along with this work.

A. L1 OVERHEAD
There are two SQL statements, i.e. CREATE TABLE and
INSERT, that require only simple translation and thus bring
L1 overhead. Among them, only INSERT is worthy of evalu-
ating because the overhead of CREATE TABLE is very little
and once for all.

As shown in Fig. 7, after CSP incrementally INSERT
210 to 219 records, we observe the average insert time of
the security agent very close to that of no encryption, i.e.
executing SQL statements in plaintext.

However, given the same dataset, CryptDB requires about
at least 150ms to make each INSERT done in average. Its
slower performance might be due to the heterogeneous inte-
gration of SE, OPE and HE. Besides, in our experiments,
CryptDB actually failed to complete all operations because of
out-of-memory. Specifically, CryptDB crashes when dealing
with 218 inserted records. Therefore, points for 218 and 219

records are extrapolated from the measured points for 216 and
217 for CryptDB in Fig. 7 and Fig. 9.

B. L2, L3 OVERHEAD
Because of the second-stage filtering, we categorize the SQL
statements of SELECT with a WHERE clause as having L2
overhead. However, there are two cases to be observed,
namely, SELECT by searching among encrypted texts, and
SELECT by searching among encrypted numbers.

In case of searching among encrypted texts, uFETCH
enables the security agent to retain the handy SQL operator

FIGURE 9. L2 overhead of SQL SELECT conditioned with range.

LIKE for wildcard queries. To measure the overhead of such
L2 operations, CSP feeds the security agent with the state-
ments of SELECT * FROM club WHERE name LIKE
q, with q randomly-picked from inserted names but with zero
to four characters replaced by wildcards 1. (Note that, it
is actually the _ used in SQL. 1 is used here for symbol
consistency.) For each of the statements, the security agent
conducts SQL translation as depicted in Section IV-B and
we observe that the steps L2:1∼5 would bring about 100-
time slowdown, i.e. 1.6 second, comparing to no encryption
as shown in Fig. 8 when facing 219 records. As CryptDB does
not support wildcard query, the best-reported wildcard SE
speed, i.e. GPSE [13], is put in for comparison, even though
it is not SaaS-native and thus cannot be used in off-the-shelf
DBMS. However, given the same 219 records, GPSE needs
extra 38 seconds to just complete search, i.e. a time that not
yet includes record retrieval and decryption.

In case of searching among encrypted numbers, uFETCH
enables the security agent to support range query also by
the operator LIKE as explained in subsection IV-B. To
measure the overhead, CSP produces statements of SELECT
* FROM club WHERE age > r1 AND age < r2,
with r1 smaller than r2 and both randomly-generated within
(0, 100). As shown in Fig. 9, in average, the SELECT with
range conducted by the security agent is about 65-time slower
than no encryption when facing 219 records. However, it is
nevertheless about 14-time faster than CryptDB given the
same amount of records. Note that, each measured point
is an average of 5,000 SELECT statements with randomly-
generated ranges of 10%, 20%, 30%, 40% and 50% wide to
the maximum (0, 100), wherein each wideness contributes
one-fifth of the samples.

We do not plot the L3 overhead because SQL statements
of L3 dynamically depends on howmany records are actually
updated or deleted. However, since such an overhead can be
seen as L2 SELECT plus L1 update or delete, i.e. UPDATE
or DELETEwith precise identifiers, we consider Fig. 7, 8 and
9 are sufficient for case-by-case L3 estimation.

C. TEXTUAL IR PERFORMANCE
Though externally, CSP always receives from the security
agent a result set with perfect IR [4] as expected, it is impor-
tant to know how the internal IR performs because it implies
additional costs of communication, memory and latency for

VOLUME 8, 2020 93903

S.-M. Chung et al.: uFETCH: A Unified SE Scheme and Its Saas-Native to Make DBMS Privacy-Preserving

FIGURE 10. Precision of SQL SELECT of wildcardized textual queries, with
zero to four wildcards in use.

the sake of privacy-preserving. Since uFETCH guarantees a
perfect recall, we only have to measure the precision after
L2:2.

For searching among encrypted texts, this IR experiment is
targeting the field name and is conducted along with the L2
overhead experiment. The underlying dataset [39] provides
names with average length of 6.19 characters, i.e. about
2-character shorter than English words. Though uFETCH
gives better precision with longer words, the name dataset can
be seen as a corner case. However, because we will measure
the precision of wildcard queries with up to four wildcards in
use, names shorter than five characters are not used as the q
to be made into wildcard queries.

As shown in Fig. 10, given 210 to 219 randomly-picked
names, the precision is checked with respect to the number
of wildcards 1 in use. Wildcard queries with less than four
wildcards are very close to perfect, i.e. 1. However, when
the number of wildcards is set to four, the precision drops
substantially. It is due to the wildcard propagation mentioned
in Section II-B and limits how the security agent can sup-
port SQL wildcard % that represents arbitrary number of
characters. For example, as % can be implemented by ORing
wildcard queries with zero to multiple 1, the security agent
can only support up to four wildcards 1 under this uFETCH
instance if a decent precision is required.

D. NUMERICAL IR PERFORMANCE
As uFETCH enables numerical search by means of wildcard
queries, its numerical IR precision is related to it. Intuitively,
the precision of a range query would drop if the range is too
wide as it leads to more wildcards in use.

As shown in Fig. 11, the best precision of queried ranges
is about 0.7 with the uFETCH instance. The precision drops
when queried range is getting wider. When the queried range
reaches 50% of the (max,min), the precision reduces to 0.5.
This is actual the lower bound for wide range queries due to
too many wildcards in use. In fact, in the case of 50%, all
numbers are retrieved back and the precision of 0.5 is the
worst one can expect for uniform-distributed numbers.

One might come across an anti-intuition that the precision
of 10%-wide range queries is worse than that of 20%. It is
actually a phenomenon due to narrow range queries. Their

FIGURE 11. Precision of SQL SELECT with queried ranges that are 10% to
50% wide to the configured (min,max).

precision cannot be properly measured because it highly
depends on the configured N and the volume of numbers
being indexed. That is, since uFETCH virtually partitions
numbers into N + 1 buckets with N secret numbers, nearby
numbers tend to be bucketed together. When the trapdoor of
a range query matches a bucket, all numbers in the bucket
will be retrieved. However, as the query can be made very
narrow comparing to the ‘‘nearby’’ distance, the precision can
be made very poor. Fortunately, this poor precision can be
improved by an option depicted below.

E. OPTION FOR NUMERICAL IMPROVEMENT
For clarity, in this work we evaluated the performance of
encrypted numerical search by only picking fields of similar
ranges, i.e. age and weight. However, for not-similar-
range fields such as height and income, the security agent
has to set a different (min, max) for each field, leading to
multiple uFETCH instances in use. Nevertheless, it is not
hard to keep just one uFETCH instance. That is, one can
first represent any number by its floating-point representation
with mantissa and exponent separately normalized to (min,
max) and both indexed by an uFETCH instance. Though this
will require two index fields (instead of one) and a bit more
complicated SQL translation addressing two fields at the
same time, it is worthy because it also improves the precision
of the mentioned narrow range queries.

VI. CONCLUSION
This work proposes a unified SE scheme named uFETCH
for both textual and numerical data. Using unified index
structure and search algorithm, uFETCH enables encrypted-
search even if SE indexes across types are mingled. uFETCH
offers efficient selective retrieval by transforming the prob-
lem of encrypted-search into a simple problem of subse-
quence matching for SaaS-native, regardless the encountered
dataset contains texts, numbers or both. uFETCH is built for
efficiency with a security dedicated to the widely-deployed
3-tier cloud structure.

To show how uFETCH can bring up simplicity, a secu-
rity agent is demonstrated that translates SQL into three
levels of SQL-aware encrypted statements, making existing
DBMS privacy-preserving. Our experimental results affirm

93904 VOLUME 8, 2020

S.-M. Chung et al.: uFETCH: A Unified SE Scheme and Its Saas-Native to Make DBMS Privacy-Preserving

low overhead and decent IR precision. In fact, comparing
with CryptDB, i.e. a popular SQL security proxy, uFETCH
brings not only a simpler design, but also an even lower over-
head. With adequate search speed and the adequate security,
uFETCH is a practical means for CSP to ease compliance
with privacy regulations.

REFERENCES
[1] General Data Protection Regulation. Accessed: Mar. 25, 2020. [Online].

Available: https://gdpr-info.eu
[2] J. Mei, K. Li, A. Ouyang, and K. Li, ‘‘A profit maximization scheme with

guaranteed quality of service in cloud computing,’’ IEEE Trans. Comput.,
vol. 64, no. 11, pp. 3064–3078, Nov. 2015.

[3] O. Goldreich, Foundations of Cryptography: Basic Applications, vol. 2.
Cambridge, U.K.: Cambridge Univ. Press, 2004.

[4] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
New York, NY, USA: ACM Press, 1999.

[5] D. Xiaoding Song, D. Wagner, and A. Perrig, ‘‘Practical techniques for
searches on encrypted data,’’ in Proc. IEEE Symp. Secur. Privacy. (S&P),
May 2000, pp. 44–55.

[6] E.-J. Goh, ‘‘Secure indexes,’’ in Proc. IACR Cryptol. ePrint Arch., 2003,
pp. 1–18.

[7] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, ‘‘Searchable symmet-
ric encryption: Improved definitions and efficient constructions,’’ in Proc.
CCS ACM, 2006, pp. 79–88.

[8] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, ‘‘Fuzzy keyword
search over encrypted data in cloud computing,’’ in Proc. IEEE INFO-
COM, Mar. 2010, pp. 1–5.

[9] A. Awad, A. Matthews, Y. Qiao, and B. Lee, ‘‘Chaotic searchable encryp-
tion for mobile cloud storage,’’ IEEE Trans. Cloud Comput., vol. 6, no. 2,
pp. 440–452, Apr. 2018.

[10] C. Bösch, R. Brinkman, P. Hartel, and W. Jonker, ‘‘Conjunctive wildcard
search over encrypted data,’’ in Proc. SDM, 2011, pp. 114–117.

[11] T. Suga, T. Nishide, and K. Sakurai, ‘‘Secure keyword search using Bloom
filter with specified character positions,’’ in Proc. Int. Conf. Provable
Secur., 2012, pp. 235–252.

[12] S. Sedghi, P. V. Liesdonk, S. Nikova, P. H. Hartel, andW. Jonker, ‘‘Search-
ing keywords with wildcards on encrypted data,’’ in Proc. SCN, in Lecture
Notes in Computer Science, vol. 6280, 2010, pp. 138–153.

[13] D.Wang, X. Jia, C.Wang, K. Yang, S. Fu, andM.Xu, ‘‘Generalized pattern
matching string search on encrypted data in cloud systems,’’ in Proc. IEEE
Conf. Comput. Commun. (INFOCOM), Apr. 2015, pp. 2101–2109.

[14] C. Hu and L. Han, ‘‘Efficient wildcard search over encrypted data,’’ Int. J.
Inf. Secur., vol. 15, no. 5, pp. 539–547, 2016.

[15] Y. Yang, X. Liu, R. H. Deng, and J. Weng, ‘‘Flexible wildcard search-
able encryption system,’’ IEEE Trans. Services Comput., early access,
Jun. 12, 2017, doi: 10.1109/TSC.2017.2714669.

[16] P. Golle, J. Staddon, and B. Waters, ‘‘Secure conjunctive keyword search
over encrypted data,’’ inApplied Cryptography andNetwork Security (Lec-
ture Notes in Computer Science), vol. 3089. Berlin, Germany: Springer,
2004, pp. 31–45.

[17] L. Ballard, S. Kamara, and F. Monrose, ‘‘Achieving efficient conjunctive
keyword searches over encrypted data,’’ in Information and Communica-
tions Security, (Lecture Notes in Computer Science), vol. 3783. Cham,
Switzerland: Springer, 2005, pp. 414–426.

[18] Y. Yang and M. Ma, ‘‘Conjunctive keyword search with designated tester
and timing enabled proxy re-encryption function for E-health clouds,’’
IEEE Trans. Inf. Forensics Security, vol. 11, no. 4, pp. 746–759, Apr. 2016.

[19] Y. Tang, D. Gu, N. Ding, and H. Lu, ‘‘Phrase search over encrypted data
with symmetric encryption scheme,’’ in Proc. 32nd Int. Conf. Distrib.
Comput. Syst. Workshops, Jun. 2012, pp. 471–480.

[20] Z. A. Kissel and J. Wang, ‘‘Verifiable phrase search over encrypted data
secure against a semi-honest-but-curious adversary,’’ in Proc. IEEE 33rd
Int. Conf. Distrib. Comput. Syst. Workshops, Jul. 2013, pp. 126–131.

[21] S. Zittrower and C. C. Zou, ‘‘Encrypted phrase searching in the cloud,’’
in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2012,
pp. 764–770.

[22] J. Li, Z. Liu, X. Chen, F. Xhafa, X. Tan, and D. S. Wong, ‘‘L-EncDB:
A lightweight framework for privacy-preserving data queries in cloud
computing,’’ Knowl.-Based Syst., vol. 79, pp. 18–26, May 2015.

[23] C. Guo, X. Chen, Y. Jie, F. Zhangjie, M. Li, and B. Feng, ‘‘Dynamic
multi-phrase ranked search over encrypted data with symmetric searchable
encryption,’’ IEEE Trans. Services Comput., early access, Oct. 30, 2017,
doi: 10.1109/TSC.2017.2768045.

[24] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra, ‘‘Executing SQL over
encrypted data in the database-service-provider model,’’ in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2002, pp. 216–227.

[25] P. Chen, W. Zeng, Y. Zhu, and Y. Gu, ‘‘Secure range query based on
privacy-preserving function in two-tiered sensor networks,’’ in Proc. Int.
Conf. Secur. Smart Cities, Ind. Control Syst. Commun. (SSIC), Jul. 2016,
pp. 1–6.

[26] R. Li, A. X. Liu, A. L. Wang, and B. Bruhadeshwar, ‘‘Fast range query
processing with strong privacy protection for cloud computing,’’ Proc.
VLDB Endowment, vol. 7, no. 14, pp. 1953–1964, Oct. 2014.

[27] S. Bajaj and R. Sion, ‘‘TrustedDB: A trusted hardware-based database with
privacy and data confidentiality,’’ IEEE Trans. Knowl. Data Eng., vol. 26,
no. 3, pp. 752–765, Mar. 2014.

[28] J. Bater, G. Elliott, C. Eggen, S. Goel, A. Kho, and J. Rogers, ‘‘SMCQL:
Secure querying for federated databases,’’ Proc. VLDB Endowment,
vol. 10, no. 6, pp. 673–684, Feb. 2017.

[29] J. Li and E. R. Omiecinski, ‘‘Efficiency and security trade-off in supporting
range queries on encrypted databases,’’ in Proc. Working Conf. Data Appl.
Secur. (DBSec), 2005, pp. 69–83.

[30] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, ‘‘Order preserving encryp-
tion for numeric data,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2004, pp. 563–574.

[31] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,
‘‘CryptDB: Protecting confidentiality with encrypted query processing,’’
in Proc. 23rd ACM Symp. Oper. Syst. Princ. (SOSP), 2011, pp. 85–100.

[32] P. Paillier, ‘‘Public-key cryptosystems based on composite degree residu-
osity classes,’’ in Proc. EUROCRYPT, 1999, pp. 223–238.

[33] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich, ‘‘Processing analyt-
ical queries over encrypted data,’’ Proc. VLDB Endowment, vol. 6, no. 5,
pp. 289–300, Mar. 2013.

[34] A. Papadimitriou, R. Bhagwan, N. Chandran, R. Ramjee, A. Haeberlen,
H. Singh, A. Modi, and S. Badrinarayanan, ‘‘Big data analytics over
encrypted datasets with seabed,’’ in Proc. 12th USENIX Symp. Oper. Syst.
Design Implement. (SDI), Oct. 2016, pp. 587–602.

[35] S.-M. Chung, M.-D. Shieh, and T.-C. Chiueh, ‘‘A SaaS-native wildcard
searchable encryption scheme for protecting privacy in cloud services,’’ in
Proc. IEEE Int. Conf. Big Data Intell. Comput., 2019, pp. 178–184.

[36] I. N. Bronshtein, K. A. Semendyayev, G. Musiol, and H. Muehlig, Hand-
book of Mathematics, vol. 2. New York, NY, USA: Springer-Verlag, 2004.

[37] S.-M. Chung, M.-D. Shieh, and T.-C. Chiueh, ‘‘FETCH: A cloud-native
searchable encryption scheme enabling efficient pattern search on
encrypted data within cloud services,’’ Int. J. Commun. Syst., p. e4141,
Dec. 2019. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/
10.1002/dac.4141

[38] B. Hore, S. Mehrotra, and G. Tsudik, ‘‘A privacy-preserving index for
range queries,’’ in Proc. 13th Int. Conf. Very Large Data Bases, vol. 30,
2004, pp. 720–731.

[39] Popular Baby Names, National Data. Accessed: Mar. 25, 2020. [Online].
Available: https://www.ssa.gov/OACT/babynames/names.zip

SHEN-MING CHUNG received the B.S. and
M.S. degrees in electronic engineering from the
National Yunlin University of Science and Tech-
nology, Taiwan, in 2001 and 2003, respectively.
He is currently pursuing the Ph.D. degree with the
Department of Electrical Engineering, National
Cheng Kung University, Taiwan. He joined the
Industrial Technology Research Institute (ITRI),
Taiwan. Heworked as an Engineer. In recent years,
he has focused on the area of searchable encryption

tailored for industrial scenarios in order to address regulation-induced issues.
His research interests include networking, communication, and the security-
related issues thereof.

VOLUME 8, 2020 93905

http://dx.doi.org/10.1109/TSC.2017.2714669
http://dx.doi.org/10.1109/TSC.2017.2768045

S.-M. Chung et al.: uFETCH: A Unified SE Scheme and Its Saas-Native to Make DBMS Privacy-Preserving

MING-DER SHIEH (Member, IEEE) received
the B.S. degree in electrical engineering from
National Cheng Kung University, Tainan, Taiwan,
in 1984, the M.S. degree in electronic engineering
from National Chiao Tung University, Hsinchu,
Taiwan, in 1986, and the Ph.D. degree in electrical
engineering from Michigan State University, East
Lansing,MI, USA, in 1993. From 1988 to 1989, he
was an Engineer with UnitedMicroelectronic Cor-
poration, Hsinchu. From 1993 to 2002, hewaswith

the Faculty of the Department of Electronic Engineering, National Yunlin
University of Science and Technology (NYUST), Douliu, Taiwan. From
1999 to 2002, he was the Department Chairman with NYUST. Since 2002,
he has been with the Department of Electrical Engineering, National Cheng
Kung University. From 2010 to 2014, he was the Deputy General Director of
Information and Communications Research Laboratories, Industrial Tech-
nology Research Institute (ITRI), Taiwan. From 2014 to 2017, he was the
Department Chairman with National Cheng Kung University, where he is
currently a Full Professor. His current research interests include very-large-
scale integration (VLSI) design and testing, VLSI for signal processing, and
digital communication. He was a technical committee member in several
international conferences. He received the Teaching Award from NYUST, in
1998. He was the Program Co-Chair and General Co-Chair of the Asian Test
Symposium, in 2004 and 2009, respectively, and the Chairman of the Tainan
Chapter of the IEEE Circuits and Systems Society, from 2009 to 2010. From
2010 to 2012, he served as an Associate Editor for the IEEE TRANSACTIONS

ON CIRCUITS AND SYSTEMS - PART I and the Lead Guest Editor of a special issue
of Computers Engineering and Electrical journal, in 2012.

TZI-CKER CHIUEH received the Ph.D. degree in
computer science from the University of Califor-
nia at Berkeley. He was a General Director of
the Cloud Computing Center for Mobile Appli-
cations, Industrial Technology Research Institute
(ITRI), Taiwan. He was a Professor with the Com-
puter Science Department, Stony Brook Univer-
sity, Stony Brook, NY, USA. From 2007 to 2009,
he was the Director of the Core Research, Syman-
tec Research Labs. He is currently the Vice Presi-

dent and the General Director of Information and Communications Research
Laboratories. He has published over 250 technical articles in refereed con-
ferences and journals.

CHIA-CHIA LIU received the bachelor’s degree
in computer science from Tunghai University,
Taichung, Taiwan, in 2018. She is currently pursu-
ing the degree with the Department of Computer
Science and Information Engineering, National
Cheng Kung University, Taiwan. Her research
interests include information security and cryptog-
raphy.

CHIA-HENG TU received the Ph.D. degree from
National Taiwan University (NTU), in 2012. From
2012 to 2015, he was a Research and Develop-
ment Manager with the Institute for Information
Industry. He worked as a Postdoctoral Researcher
with MediaTek-NTU Advanced Research Center,
NTU, in 2015. He is currently an Assistant Pro-
fessor with the Department of Computer Science
and Information Engineering (CSIE), National
Cheng Kung University (NCKU). His research

interests are in developing tools, such as computer architecture simulators,
performance analyzers/optimizers, and parallelizing compilers for design-
ing/optimizing specialized computer systems.

93906 VOLUME 8, 2020

