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Abstract: Attitude and heading reference system (AHRS) is the term used to describe a rigid body’s
angular orientation in three-dimensional space. This paper describes an AHRS determination and
control system developed for navigation systems by integrating gyroscopes, accelerometers, and
magnetometers signals from low-cost MEMS-based sensors in a complementary adaptive Kalman
filter. AHRS estimation based on the iterative Kalman filtering process is required to be initialized
first. A new method for AHRS initialization is proposed to improve the accuracy of the initial attitude
estimates. Attitude estimates derived from the initialization and iterative adaptive filtering processes
are compared with the orientation obtained from a high-end reference system. The improvement in
the accuracy of the initial orientation as significant as 45% is obtained from the proposed method
as compared with other selected techniques. Additionally, the computational process is reduced
by 96%.

Keywords: inertial navigation system; adaptive Kalman filter; inertial measurement unit

1. Introduction

The determination of Attitude and Heading Reference System (AHRS) involves several
fields like navigation, control, motion tracking [1–3], personal navigation [4,5], robotics [6],
and virtual reality systems [7]. Several AHRS determination and control technologies
in use need an external source to obtain orientation information [1]. Interference and
shadowing are the main problems associated with these technologies. Compared with
other technologies, the inertial system computes the attitude using self-contained sensors
that only respond to inertial forces.

In inertial systems, the attitude is derived from the integration of rate gyroscope data
in an inertial system. Rate gyroscopes are prone to bias and random drifts and this leads to
unbounded attitude errors. Thus, successful implementation of an inertial system requires
very expensive sensors that have exceptional long-term bias stability [8]. In the last decade,
the rapid development of Micro-Electro-Mechanical System (MEMS) inertial sensors in
precision, accuracy, size, weight, and cost make it ideal for developing a small-scale and low-
cost AHRS determination and control system. However, inexpensive MEMS gyroscopes
are low-performance, and using these gyroscopes may result in unbounded attitude errors.
An AHRS determination and control system can be successfully implemented using such
gyroscopes if there is a means for aiding the gyroscopes or resetting the attitude errors
periodically [8].

One of the most successful applications for aiding the low-cost inertial sensors is
the use of the Global Positioning System (GPS). GPS data are precise, and the errors are
independent of time. This makes it ideal to calibrate the drift errors of low-cost gyroscopes.
However, GPS has well-known limitations due to signal attenuation in indoor applications,
so other technologies like the earth’s magnetic and gravitational sensing [9] can help
improving navigation systems.
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Research is currently being undertaken in many laboratories for navigational tracking
using low-cost MEMS-based inertial sensors using advanced signal processing techniques
to improve the performance of such sensors [10]. The method to integrate the data from
gyroscopes and the aiding devices is Kalman filtering, in which the sources of information
are weighted appropriately with knowledge about the signal characteristics.

Accelerometers measure the sum of translational acceleration and earth gravity. How-
ever, the gravity is more significant than the translational acceleration in most
situations [11–14] presented a method of fusing MEMS-based low-cost gyroscopes and
accelerometers in a Kalman filter for orientation estimation. In addition, magnetometers
can be used to correct the drifts in heading estimate from gyroscopes due to their sensitivity
to the earth’s magnetic field [15].

References [1,16,17] also presented the development of different kinds of Kalman
filters to prevent gyroscope drift and the gyroscope data are integrated to monitor the
variation of orientation between successive measurements. When a movement increases,
accelerometers’ discrimination becomes difficult, as they are sensitive to both gravity
and translational acceleration. To separate these components, [6,18] suggested testing the
acceleration magnitude for significant deviation from gravity. Magnetometers are subject
to magnetic disturbances and this causes large errors in the heading. [1,3,4] proposed
the use of various magnetic error models in the filter to detect the ambulatory magnetic
disturbances and provide on-line calibrations.

This paper proposes a new method for AHRS determination and control system
using MEMS-based low-cost and small-scale sensors for tracking and monitoring moving
object-related applications. The main contributions of this paper are:

(1) AHRS initialization process is applied under stationary conditions to determine the
initial orientation. We developed a new method for AHRS initialization, named
Hybrid Method to increase accuracy and precision.

(2) An adaptive Extended Kalman filter (AEKF)-based iterative process is applied to
perform the real-time estimation of attitude when the sensor is in motion. While gyro-
scope measurements are integrated to yield the attitude changes between successive
body movements to maintain the high-frequency output of attitude, accelerometers
and magnetometers provide a low frequency and noisy but drift-free calibration of
attitude. The developed AEKF is adaptive to the effects of body acceleration and
magnetic interferences, named the real-time calibration process.

2. Materials and Methods

In body frame (B), a sensor unit rotates and translates with respect to a navigation
coordinate frame (N). The attitude of the sensor can be analytically represented by a
direction cosine matrix CN

B that transforms an arbitrary 3 × 1 vector A from its coordinate
frame B (projection AB) to the N frame (projection AN), presented by Wahba’s problem [11]
as:

AN = CN
B AB (1)

when the body is in motion, its attitude relative to the reference N frame can be represented
by a time-varying function of CN

B (t). AHRS initialization is the process to determine the
initial value of CN

B0.
In this study, we consider a two-step process, a coarse alignment followed by fine

alignment for AHRS initialization. In the following section, we introduce geomagnetic
matching, Compass Heading, and our new method to achieve coarse alignment. In the
end, fine alignment is designed to iteratively estimate the residual error in the heading
estimation.

2.1. Geomagnetic Matching Technique in Coarse Alignment

Geomagnetic matching, one of the techniques often used in determine attitude [8,16],
is based on solving Equation (1). While MEMS-based low-cost gyroscopes fail to sense the



Sensors 2021, 21, 1383 3 of 12

earth’s rotation, the earth’s magnetic and gravitational acceleration vectors are independent
and thus can be used in the AHRS initialization process.

Accelerometers in the static state can measure the components of gravity in B frame
(gB), and its N frame projection (gN) is given by the standard gravity model [19]. Addi-
tionally, magnetometers sense the earth’s magnetic vector in B frame (mB) and its N frame
projection can be obtained from international geomagnetic reference field models [20]. CN

B0
can be obtained with gN = CN

B0gB, mN = CN
B0mB, and hN = CN

B0hB, where, hN = gN ×mN ,
and hB = gB × mB, × is the cross-product between gravity and the earth’s magnetic
vector [8].

2.2. Compass Heading Technique in Coarse Alignment

Compass heading, another technique used to initialize the heading. The earth’s
magnetic field has a component in the local horizontal plane that is always pointing toward
the magnetic north. If a triaxial magnetometer is placed in the horizontal plane, the heading
can be calculated using the horizontal components of the earth’s magnetic field. When the
magnetometer is tilted, the tilt angles should be first compensated for before calculating
the heading [21].

The tilt angles represented in by [21] give us roll (φ) and pitch (θ), calculated by:
φ = tan−1(y/z), and θ = tan−1

(
x/
√

y2 + z2
)

, where x, y, z are the components of gravity
in B coordinate frame. The magnetometers data can be calculated in the horizontal plane
by Xh = xcosθ + ysinφsinθ + zcosφsinθ and Yh = ycosφ− zsinφ, where x, y, z are readings
of the triaxial magnetometer. In the end, heading angle ψ can be determined by ψ = tan−1.
Using the equivalence relation between the direction cosine matrix and the Euler angle
parameters, the attitude matrix CN

B0 can be initialized in terms of ψ, φ, θ [21]:

CN
B0 =

 C11 C12 C13
C21 C22 C23
C31 C32 C33

 =

 cosθcosψ −cosφsinψ + sinφsinθcosψ sinφsinψ + cosφsinθcosψ
cosθsinψ cosφcosψ + sinφsinθsinψ −sinφcosψ + cosφsinθsinψ
−sinθ sinφcosθ cosφcosθ

 (2)

2.3. Hybrid Method in Coarse Alignment

The new method for AHRS initialization proposed by this is study is developed based
on the geomagnetic matching technique defined in Equation (1). As

(
CN

B
)−1

=
(
CN

B
)T

=
CB

N , Equation (1) can be rearranged to AB = CB
N AN , and attitude matrix CB

N is represented
in Equation (2).

If an arbitrary vector V is specified as the unit vectors along the X, Y, and Z axes of
the coordinate frame N, the B frame projections of the unit vectors along N frame X, Y, and
Z axes are expressed in terms of the elements of CN

B as:

VB
XN =

 cosθcosψ
−cosφsinψ + sinφsinθcosψ
sinφsinψ + cosφsinθcosψ

, VB
YN =

 cosθsinψ
cosφcosψ + sinφsinθsinψ
−sinφcosψ + cosφsinθsinψ

, VB
ZN =

 −sinθ
sinφcosθ
cosφcosθ

 (3)

So, by CN
B =


(
VB

XN
)T(

VB
YN
)T(

VB
ZN
)T

, can find the gravity vector g is aligned to the Z axis of the

N frame and the earth’s magnetic vector m lies in the X–Z plane depicted in Figure 1.
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Figure 1. The gravity and magnetic vectors shown in N coordinate frame. 
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Figure 1. The gravity and magnetic vectors shown in N coordinate frame.

The X, Y, and Z axes are mutually orthogonal; thus, the earth’ magnetic vector m
is perpendicular to the Y-axis. Vectors along the Y-axis can therefore be computed from
vector cross product between g and m. Realizing that gB and mB are the readings of the
accelerometer and magnetometer when the body remains static during the initialization,
the unit vector along the N frame Y-axis projected on B frame axes can be calculated by
VB

g ×VB
m , where, VB

g is the B frame projection of the unit gravity vector and uB
m is the unit

earth’s magnetic vector. So, VB
XN can be computed by VB

YN ×VB
g . So CN

B0 can be initialized

by


(

VB
g ×VB

m ×VB
g

)T(
VB

g ×VB
m

)T(
VB

g

)T

.

3. Fine Alignment Process

Fine alignment process due to estimate the iterative orientation is implemented using
Kalman filtering technique. The adaptive extended version of the Kalman filter (EKF) is
developed in this study due to the high nonlinearity of the system. The state vector is de-
fined to contain attitude and inertial sensor error, presented by x =

[
qe bB

ω bB
a dB

m
]T ,

where, qe is quaternion vector of attitude errors, bB
ω is gyroscopes random errors, bB

a is
acceleration errors, and dB

m is magnetic disturbances.
The system model is a time-varying function of angular velocity and accelerations.

When the initial value of attitude is obtained, 1st order approximation can be safely applied
for remaining residual attitude errors. The attitude errors are defined by first rotating the
body by an amount equal to the current attitude estimate [22]. By considering q = q̂

⊗
qe,

where, q is the attitude quaternion, the combination of a vector component q and a scalar
component q0, and

⊗
indicates quaternion multiplication [23]; q̂ is the estimated attitude;

qe represents the small error in attitude, in view of quaternion definition, it is approximated
as qe = (qe, 1).

For the high-frequency changes of attitude, we should consider q́ = 0.5q
⊗

WB
I←B −

0.5WN
I←N

⊗
q where, WB

I←B =
(
ωB

I←B, 0
)
, WN

I←N =
(
ωN

I←N , 0
)
. WB

I←B and ωN
I←N are the

quaternion form of the angular velocity of the B frame and N frame, respectively; relative
to the inertial (I) frame.

ωN
I←N is dominated by the earth’s rotation rate, the translational movement of the

body, and the earth’s local curvature. In the AHRS determination, ωN
I←N is negligible

compared to the errors of low-cost gyroscopes; so, q́ = 0.5q
⊗

WB
I←B − 0.5WN

I←N
⊗

q can
be written as 0.5q

⊗
WB

I←B. Additionally, the propagation equation of the errors is derived
after neglecting the 2nd order terms of qe, can be simplified as q́e = −0.5

(
ωB

I←B×
)
qe, where

(ωB
I←B×) is the skew-symmetric matrix of vector ωB

I←B.
A measurement model is the analytical representation of the actual input to a Kalman

filter.
In this study, we consider different inputs of accelerometer, gyroscope, and magne-

tometer data as the input to the Kalman filter. The general vector notation A is used to



Sensors 2021, 21, 1383 5 of 12

represent the true gravity or magnetic vector [8]. δAN = −2
(

AN×
)
qe, that AN and δAN

represent vector A is projected on N frame, and the error of AN , respectively. According
to [8], we can consider δAN = AN − ĈN

B AB, where, ĈN
B and AB are the estimated attitude

and the true gravity or magnetic vectors, respectively.
Ref. [8] presents that the general linear measurement model can be considered as

δÃN = −2ĈN
B

(
ÃB×

)(
ĈN

B
)Tqe − ĈN

B bB, that can be simplified to δÃN = AN − ĈN
B ÃB,

applying the accelerometer, gyroscope and magnetometer raw measurements. So, the
measurement models are defined as:

δÃN
a = −2ĈN

B

(
ÃB

a×
)(

ĈN
B

)T
qe − ĈN

B bB
a δÃN

m = −2ĈN
B

(
ÃB

m×
)(

ĈN
B

)T
qe − ĈN

B dB
mδÃN

g = −2ĈN
B

(
ÃB

g×
)(

ĈN
B

)T
qe − ĈN

B dB
g (4)

where ÃN
a , ÃN

m and ÃN
g are the data of the triaxial accelerometer, magnetometer, and

gyroscope, bB
a , dB

m and dB
g are the acceleration errors and magnetic disturbance, and gravity

errors.
Regarding the sensor model, this study investigated three stochastic models that are

developed to account for the gyroscope random drifts, body acceleration, and magnetic
disturbances. Employing Allan variance to analyze the stochastic errors of the low-cost
gyroscopes used in this study [24,25], a log–log plot of Allan standard deviation σ(τ)
versus cluster times τ is shown in Figure 2.
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Figure 2. Plot of Allan standard deviation σ(τ) versus cluster times τ.

The results indicate that the dominant noise type appears in the σ(τ)/τ plot with
slope of −1/2, which represents the random walk noise term. The gyroscope stochastic
error is thus approximated as a random walk process, presented by b́B

ω = nB
ω , where, bB

ω is
a vector representing the stochastic errors of a triaxial gyroscope; nB

ω is a vector of Gaussian
white noise with the noise density σω. The acceleration errors caused by body motion are
modeled by a 1st-order Markov random process [3], presented by b́B

a τabB
a + nB

a , where bB
a is

a vector representing the triaxial acceleration errors; τa is a diagonal matrix, of which the
three diagonal entries are the time constants for the acceleration errors along each axis of
the sensor device; nB

a is a vector of Gaussian white noise whose density σa.
To extract the stochastic noises in IMU, we put the sensor in static mode for about 4

h. When the experiment is performed in an environment where there are no significant
external magnetic fields, the magnetic disturbances can be estimated as a 1st-order Gauss–
Markov process, d́B

mτmdB
m + nB

m, where dB
m is a random magnetic disturbances vector; τm

is a diagonal matrix, and its three diagonal elements represent the time constants for the
magnetic disturbances along each axis; nB

m is Gaussian white noise vector with density σm.

4. Experimental Results and Discussion

The experiments evaluate the AHRS initialization by different techniques and in-
vestigate the accuracy and stability of the AHRS determination and control system in
different scenarios. We use MEMS-based inertial sensor unit nIMU, which contains triaxial
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gyroscope, accelerometer, and magnetometer. Additionally, we utilize an accurate optical
motion capturing system Vicon as a true reference.

4.1. AHRS Initialization

AHRS initialization consists of coarse alignment and fine alignment. Coarse align-
ment approximately obtains the initial orientation. As the heading results derived from
coarse alignment may be significantly affected by magnetic disturbances, fine alignment
is employed to compensate for the heading errors. So, the EKF-based attitude estimation
process is used for the initialization under stationary conditions.

The testing unit is placed on the top of a turning table in eight different setups and
the data are recorded at 100 Hz for a duration of 10 s. The three-coarse alignment process
using three different techniques is evaluated by comparing the Euler angle parameters of
the attitude. Three methods present the same accuracy and precision in estimating heading
(ψ) orientation shown in Table 1. Regarding the accuracy, three methods almost identically
show significant errors compared with the references. The errors have a mean value of
178.1◦ and vary between 161.9◦ and 188.5◦. The reason causing the heading errors is the
existence of magnetic disturbances.

Table 1. Mean error in coarse alignment process.

#
References Geomagnetic Matching Compass Heading Hybrid Method

φ θ ψ φ θ ψ φ θ ψ φ θ ψ

1 −1.4 −1.2 91.3 −4.7 −0.7 257.1 −1.5 −0.9 257.0 −1.5 −0.9 257.1

2 −1.9 0.9 24.1 −0.6 1.0 200.2 −1.7 −0.3 200.2 −1.7 −0.3 200.2

3 −1.9 −0.4 176.4 −0.7 6.3 357.8 −2.4 −1.0 357.8 −2.4 −1.0 357.8

4 −2.1 21.0 106.8 −7.7 21.7 268.7 −2.8 20.7 268.7 −2.8 20.7 268.7

5 0.6 −8.6 71.2 1.4 −9.0 242.3 1.4 −9.0 242.3 1.4 −9.0 242.3

6 1.2 32.9 194.4 2.5 39.0 14.0 −0.7 34.5 14.0 −0.7 34.5 14.02

7 5.0 −5.6 169.2 6.7 0.6 357.2 5.4 −5.5 357.2 5.4 −5.5 357.2

8 −10.1 −4.9 161.9 −10.1 2.1 345.4 −10.1 −4.6 345.4 −10.1 −4.6 345.4

In this table, pitch (θ) and roll (φ) angles, when compared with the approach based on
the compass heading or hybrid method techniques, the geomagnetic matching presents
significant errors in the pitch and roll angles among some scenarios. The maximum
differences between compass heading and the references are 1.5◦ and 0.8◦; whereas the
differences are 7.0◦ and 5.6◦, in pitch and roll, respectively, for geomagnetic matching.
Regarding the pitch angles, although 50% of scenarios have an estimation error less than
1.0◦ using the geomagnetic matching method, some trails show significant errors bigger
than 6.0◦.

The reason for significant errors in estimating pitch and roll attitude using the geo-
magnetic matching technique is that the gravity measurements are exclusively used to
compute the pitch and roll angles in the approaches based on compass heading and hybrid
method techniques. Since the accelerometer is stationary during the initialization process,
it only measures gravity and thus provides a good estimation of pitch and roll angles.

The adaptive EKF used for fine alignment is applied at the end of the coarse alignment.
It is operated under static conditions for a duration of 10 s. The result of the coarse
alignment is used to initialize the system.

In the proposed adaptive EKF, magnetic disturbances are estimated as a random
vector and be tuned by modifying the parameters of the time constant matrix. It can be
observed from Figures 3 and 4, regarding the Bland–Altman plot between the reference
and the adaptive EKF, that the fine alignment first starts from the Euler angles derived
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from coarse alignment. After a few iterations of filtering, the heading angles convergence
is quick; however, it varies on the scenarios.
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In Table 2, compared with the heading results derived from coarse alignment shown
in Table 1, the heading angles converge to the reference in all the scenarios after the
fin alignment process. This demonstrates the effectiveness of the fine alignment EKF in
estimating and compensating the magnetic disturbances. The accuracy of the headings is
reached at an average error of 2.9◦. Regarding the pitch and roll angles, the pitch angle
presents an average error of 0.5◦ compared with the references; the roll angles have an
average error of 0.5◦. In conclusion, the proposed adaptive EKF presents a significant
improvement in the heading attitude by compensating magnetic disturbances.

Table 2. Mean error in fine alignment process.

Scenario
References Estimated

φ θ ψ φ θ ψ

1 −1.4 −1.2 91.3 −1.6 −0.8 90.8

2 −1.9 0.9 24.1 −1.8 −0.4 27.6

3 −1.9 −0.4 176.4 −2.4 −0.9 174.5

4 −2.1 21.0 106.8 −3.0 20.7 102.6

5 0.6 −8.6 71.2 1.1 −9.0 72.0

6 1.2 32.9 194.4 −0.7 34.5 191.4

7 5.0 −5.6 169.2 5.3 −5.4 173.6

8 −10.1 −4.9 161.9 −10.3 −4.5 164.6

4.2. AHRS Estimation in a Long-Term Test

The adaptive EKF used by the fine alignment process is also employed in the attitude
estimation. After the completion of a fine alignment, the adaptive EKF automatically works
in the dynamic estimation of attitude.

Tests are performed to validate the performance of the proposed EKF under a dynamic
scenario. The attitude in this study is determined by three methods: (1) dead-reckoning, i.e.,
the angular velocity from gyroscopes is integrated into standalone mode, namely INS; (2)
attitude iterative estimation by EKF that considers only accelerometers and gyroscopes for
integration, namely EKF(Acc+Gyr), (3) attitude iterative estimation by EKF that considers
accelerometers, gyroscopes and magnetometers for integration without coarse and fine
alignments, namely EKF1(Acc+Gyr+Mag), (4) attitude iterative estimation by EKF that
considers accelerometers, gyroscopes and magnetometers for integration with initialization
coarse and fine alignments, namely EKF2(Acc+Gyr+Mag) discussed in Section 3; (5) Vicon
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optical system used as the reference. The attitude results represented by Euler angles are
given in Figure 5.
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Figure 5. The attitude angles derived from different attitude estimation solutions.

As can be seen in the figure, the drift in the attitude solution derived from INS
without considering any additional method for calculation is significant. The heading,
pitch and roll angles rapidly diverge from the reference. This figure also presents that
while EKF(Acc+Gyr), EKF1(Acc+Gyr+Mag), and EKF2 (Acc+Gyr+Mag) outperform INS
solution due to their partial usage of IMU data or initialization methods (coarse and fine
alignments), they cannot reach the reference performance.

Compared with the previous solutions, the attitude EKF2 presents a good estimation
of the attitude. Figure 6, which considers the first 300 s of the test, shows that the heading
angles converge to the heading reference at 187◦ after the fine alignment and the transition
from fine alignment to the attitude estimation process is automatic. The initial transients
generated from the fine alignment are depicted in Figure 7, where it is seen that the heading
is converged in less than one second. The average error in the heading angles is 2.5◦

compared with the reference. One can also realize that as the iteration proceeds, the
attitude errors are reduced gradually. For example, the average error during the time 0~150
s is less than 1.0◦; whereas it is 2.0◦ during 140~270 s.
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Figure 7. The initial transients of heading estimates in EKF2.

The max error (6◦) in the heading is caused by the errors in the gravity measurements
used in Kalman filtering and the cross-axis sensitivity of the inertial sensors. A small error
in the gravity measurements has a significant impact on the heading. The errors in the
heading are coupled into pitch and roll because of the sensor cross-axis sensitivity. This
increases the errors in the gravity measurements due to the deteriorated pitch and roll
solutions.

The Bland–Altman plot of pitch and roll angles obtained from the attitude EKF2
presented in Figure 8 shows the average errors of 0.7◦ in both. Compared with the fine
alignment process, the attitude EKF2 reaches the same accuracy in estimating pitch and
roll under dynamic conditions. The errors caused by the rotations introduced during the
testing are not exactly about the sensor axes; as a result, the rotation along one axis is
projected into the other two axes. Moreover, the EKF2-derived attitude is noisier compared
to the reference because the EKF2 is tuned to have a wide bandwidth and thus a quick
dynamic response.
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In conclusion, the attitude EKF2 presents a stable and accurate estimation of the
attitude referring to the reference. This demonstrates the feasibility of applying such an
EKF2 in estimating attitude when using the low-cost inertial sensors.

5. Conclusions

This paper developed and validated an AHRS estimation algorithm in navigation and
tracking systems using low-cost and small-scale MEMS-based inertial sensors. The attitude
estimation process incorporates the mechanism for adapting the EKF in the presence of
sensor acceleration and magnetic disturbances. In the experiment, improvement in the
accuracy of the initial orientation as significant as 45% is obtained from the new method
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as compared with other techniques. While the performance of this method is superior to
the other techniques, the errors in the derived initial orientation are sometimes as much
as 8◦. These errors affect the subsequent attitude estimation process and may result in
the deterioration of the attitude estimates. So, future work will investigate the impact
of the initial errors on the attitude estimates. This will help indicate the sources of the
initial errors and interpret the errors in the attitude estimation process, which in turn will
improve the accuracy of the estimated orientation.
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