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ABSTRACT Cyber security is a matter of the utmost importance in prosumer energy management systems
and modern electric power transmission networks. Modern power system is a typical cyber physical system,
which is formed by the deep integration of power network and information network. Cyber physical power
system has the outstanding advantages of autonomy, reliability, flexibility and efficiency, which give hackers
a chance to attack the power systems. Considering the energy distributions and local load redistributions,
we propose a local AC false data injection attack model. Both the line power losses, and energy conservation
are taken into account in establishing the local false data attack model. Because the state estimation in the
actual power system allows some errors, we take the minimum residual in the region as the objective function.
The effectiveness and feasibility of the proposed local false data attack theory are verified in the IEEE 57-bus
test case. The simulation results show that the residual error of the injection vector obtained by this attack
model is less than 30% compared with that in normal operation.

INDEX TERMS Cyber physical power system, false data injection attack, prosumer energy management,

state estimation.

I. INTRODUCTION

There is a striking difference between the cyber physical
power system and traditional power system. Cyber physi-
cal modeling and cyber security are of vital importance in
prosumer energy management system. A significant con-
cern is that multi-energy scheduling operation is a mat-
ter of the utmost importance for economy and renewable
energy utilization in coupled electricity, heating and nat-
ural gas networks [1]. Research has been conducted in
this field of integrated modelling and enhanced utilization
of power-to-ammonia for high renewable penetrated multi-
energy systems [2]. Noted that distributed renewable energy
resources have a detrimental effect energy management in
power systems [3]. To extract wind power time-series fea-
tures, Wang et al. presented a deep prediction framework
combining wavelet transform and deep convolutional neu-
ral network [4]. Wind speed time-series features can also
be extracted using artificial intelligence, which has high
effectiveness, efficiency and application [5], [6]. Artificial
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intelligence consists of feature learning, weight updater and
multiple machine learning regressor [7].

So, it is obvious that before starting the cyber physical
power system project, we still have many technical difficul-
ties to overcome. In extreme cases, the solution to the problem
of attack detection has been elusive.

With the penetration of modern information and com-
munication technology in power systems, the information
exchange between power network and information network
is becoming more and more close. Due to the large-scale
introduction of advanced information communication tech-
nology in the power systems, the automation and intelligence
of the power system have been gradually improved, and a
cyberattack has become a challenge to the safe operation.
Research has been conducted in this field of enquiry.

In terms of cyber-physical system attack, false data injec-
tion (FDI) attack is always available in practice. An FDI
attack can cause a blackout by evading detection by the bad
data detection module in the supervisory control and data
acquisition system [8]. A significant concern is that there is a
tight link between physical consequences and a cyber-attack,
which can induce sequential outages in power systems [9].
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Zhao et al. presented an imperfect FDI attack model, which
works well even for the direct current model-based power sys-
tem nonlinear state estimation [10]. An attacker can not only
launch an FDI attack at the physical system layer, but also
block the wireless transmission channels between sensors and
energy control centers [11]. Liu er al. modeled local FDI
attacks, which made use of reduced network information and
passed the examination of the state estimator [12]. Because
false data may be treated as an outlier, Liu ez al. designed false
data attacks using dummy data, which can be hided among
normal data [13]. The study in [14] emphasized that the
outages of some lines can be masked via FDI attacks, which
maximized the residual of lines. Yu et al. explored the failure
probability issue of the false-data injection attack in electric-
ity generation system, and designed stealthy attack and secure
control strategies [15]. Because the missing information of
power grid topology and transmission-line admittances have
an adverse effect on attack damage degree, Yu et al. presented
ablind FDI method for cyber-physical system attack using the
principal component analysis without Jacobian matrix and
state variables [16]. To overcome the attack shortcomings
brought by limited information, Zhang et al. presented a
multiple linear regression model to seduce the worst possible
consequences [17]. In conclusion, scholars now generally
agree that an attacker should mount FDI attacks on power
systems using limited information rather than the complete
knowledge about the power grid topology, transmission-line
admittances in reality.

In terms of cyber-physical system attack detection, power
system state estimation is always available in practically.
Wang et al. presented a novel data analytical approach to
mitigate FDI attacks by employing a margin setting algo-
rithm, which yields good results in terms of attack detection
accuracy [18]. Yu et al. presented a false data detection
mechanism based on the combined wavelet transform and
deep neural networks, which can detect operating condition
deviations [19]. A deep learning-based intelligent mechanism
was presented by He ez al. to detect the behavior of FDI using
the historical measurement data [20]. Yang et al. presented
a novel data fusion algorithm to combat FDI and electronic
countermeasure jamming attacks in networked radar systems
[21]. Zhang et al. presented a data integrity attack detection
method based on a grey relational analysis method, which
evaluated the correlation between measurements and con-
trol variables [22]. Li et al. presented a proactive false data
detection method, which can harness the distributed flexible
alternating current transmission system devices, to detect the
high-profile FDI attacks [23]. Because traditional weighted
least square state estimation methods are invalid for FDI
attacks on power systems, Gu et al. measured the distance
between two probability distributions using Kullback-Leibler
distance, whose deviation can help find the FDI attacks [24].
Manandhar et al. adopted the Kalman filter to estimate the
variable range, which can help detect denial-of-service, ran-
dom attack, and FDI attacks [25]. In conclusion, scholars now
generally agree that optimal data attack can bypass the bad
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data detection (BDD), and new methods should be developed
to defend against cyber attacks based on the variation devia-
tions of variable interval or probability characteristics.

Because the defects of information communication sys-
tem cannot be avoided, integrity attacks can be launched in
different ways from many different device entrances. Data
integrity attacks have the characteristics of low cost, long
time and strong concealment. Although data integrity attack
cannot directly affect the primary equipment in the power
system, it may seriously damage the normal operation of the
secondary equipment. When the communication network of
the secondary system is maliciously attacked, it will do harm
to the primary power system. The purposeful data integrity
attack is enough to cause serious primary system oscillation
and large-scale blackout. Data integrity attack is an urgent
problem of a cyber physical power system.

The novel contributions of this paper can be summarized
as follows. 1) We propose a novel, realistic and feasible FDI
attack model. In practice, an attacker can’t obtain the com-
plete knowledge about the power grid topology, transmission-
line admittances and power system operation information.
The proposed attack model only needs to obtain the line
parameters and measurement data in a certain area, as well as
the terminal power data of the line connecting the boundary
nodes in the grid. 2) The attack model considers the isolation
physical-protection of the key nodes in actual power systems.
We set up the measurement variables that cannot be tampered
with and includes generator power output, zero injection node
power.

The remainder of this paper is organized as follows. First,
the traditional attack model and a new attack model are
described. Second, an effective detection method is presented
to solve the false data attack problems. Third, four cases are
performed to verify the effectiveness of the proposed attack
model and detection method.

Il. ENGINEERING PRACTICE

There are some differences in communication mode and
communication network defense between domestic and for-
eign information systems. Foreign power grid enterprises use
microwave and carrier communication, and also use public
network link to set up private network virtual private network
for communication. Domestic power grid enterprises attach
great importance to the security of power grid information
system, and divide several security levels to ensure com-
munication security. The power grid dispatching automation
system is deployed in safety zone I, which uses optical fiber
communication dispatching data private network for commu-
nication, and isolates with other safety zones through physical
isolation devices, thus effectively ensuring the safety of the
system. Data processing and calculation services of power
grid metering automation system are deployed in safety
zone III. The gateway data of power plants and substations are
communicated by special dispatching data networks, and the
measurement data of public transformer, special transformer
and low-voltage side are communicated by general packet
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FIGURE 1. Communication architecture of power grid dispatching
automation system and metering system.

radio service or mobile public network. The communication
architecture of power grid dispatching automation system and
metering system is shown in Fig.1.

The effective methods to prevent the cyberattack of power
grid information physical system are: physical security, com-
munication security and information security. In the aspect
of physical security, it can improve the redundancy of the
system by increasing the minimum number of meters in
the right place, thus enhancing the immunity of the system
to cyberattacks. In this case, the attacker needs to tamper
with more measurement tables and increase the attack ampli-
tude. At this time, the cost of cyberattacks in the physi-
cal system of power grid information will be increased a
lot, and the probability of attack detection will be greatly
increased. It is an important means to defend against cyber-
attacks by protecting vulnerable nodes of power commu-
nication networks. From the perspective of the attacker,
local false data attack is more practical than data integrity
attacks.

lll. ATTACK MODEL

The state estimation of power system is the state estimation
of real-time power flow. Considering measurement errors, the
reliable state variables can be estimated using state estimation
theories. It is realized by using the redundancy of the real-
time measurement systems. State estimation can improve the
accuracy of data, and eliminate the error information caused
by random interference. State estimation is an important part
of the power system energy management system, and the first
threshold of cyberattack. Therefore, the attack model will
consider the consistent state estimation.

A. TRADITIONAL ATTACK MODEL

Most of the existing attack models assumes that the attacker
has known all the information of power system states, and
attackers can determine the best attack vector. Data integrity
attacks can disrupt the normal operation of the power grid
and bypass the bad data detection mechanism. To bypass the
detection mechanism of bad data, the attack vector should
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meet the following equation:
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where z is the measured vector, x? is the state vector under
the attack, h(x*) is the estimated vector, P{ is the active
power injection at the i node under the attack, 07 is the
reactive power injection at the i node under the attack, 1%
is voltage amplitude at the i node under the attack, B is
the phase angle difference between the i node and the ji
node under the attack, G;; and Bj; are the real and imaginary
parts of the elements in the row and column of the node
admittance matrix, g;; is the conductance of the i node to
the j" node, y. is the ground susceptance between the i" node
and the j™ node, AP?]- is the active loss between the i node
and the jth node under the attack, AQ;‘J. is the reactive loss
between the /" node and the j" node under the attack, P}
is the real active power injection at the i/ node, 07 is the
real reactive power injection at the i node, S represents
the apparent power limits for the k" branch, L represents the
load number, n represents zero-injection node, a represents
the false data, * represents the real data, Q2 is the set of lines,
Qoad 1s the set of load, Qg is the set of generators, 2 is the
set of zero-injection buses. If the attacker has known all the
information of the exact network topology, the attack vector
can be established.

B. NOVEL ATTACK MODEL

A cyber defender can ensure that parts of the state variables
cannot be tampered by enhancing patrol inspection or deploy-
ing redundant phasor measurement units. Load redistribution
attack stands that the attacker can only attack the injected
power and branch power flow, but not the the power station
and zero injected node. The attack mode differences of this
paper and [26] can be summarized as follows. 1) The tradi-
tional attack model assumes that the complete information
can be obtained, but this is not realistic. Therefore, the pro-
posed attack model is based on the local information. 2) The
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traditional attack model assumed that the sum of power loads
remains fixed, and the load redistribution is unchanged. The
proposed attack model considers the sum of power loads
and power losses remains fixed, which makes the attack
more secretive. 3) To ensure that the attack can bypass the
traditional residual test, voltage amplitudes and phase angles
of the boundary nodes remain fixed in the proposed attack
model.

min |94 —h®4 (x?)]|, (13)

subject to (2)-(6) and
DPY APL =) "Pr+ > AP (14)
20T AQG=D) 0F+ ) AQ) ijewx (15
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where wy is the set of the attacked nodes, wjoaq is the set of
power loads in the attack region, wgen is the set of generators
in the attack region, wy is the set of zero-injection nodes in
the attack region, d represents the boundary node set, x4 is
the initialize state array of boundary buses, AP;.;. is the real
active power between the i node and the j’h node, and AQ?}
is the real reactive power between the i” node and the j node.

IV. DEFENSE MODEL

Compared with the state estimation method, the interval
analysis method has lower calculation cost. Interval analysis
method is a possibility method to describe the uncertainty
rule of power system operation. A complete process has
been established, as shown in Fig.2. The daily load curve
is predicted using the data correlation rules, and the future
load interval can be obtained. One can calculate the state
variable intervals of the next period according to the load
intervals of the next period. The attack should be detected by
judging whether the state variables of power flow calculation
are within the above ranges.

V. CASE STUDY AND DISCUSSIONS

We use a step-by-step validation method to demonstrate our
example. The IEEE 57-bus test case is presented as the study
object, as shown in Fig.3. Cyberattack and defense behaviors
are simulated using MATLAB. YALMIP-master and IPOPT
are used as mathematical model solvers. The machine perfor-
mance will affect the simulation time. The simulations in this
paper were performed at a Dell notebook, whose processor is
an Intel(R) Core (TM) i7-9750HQ CPU @ 2.60 GHz, with
8 GB of available memory.
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FIGURE 3. Network topology of IEEE 57-bus test case.

The attacker’s goal is to overload transmission lines 39-57
and 56-57. The attack region contains PQ nodes 11, 35,
36, 37, 39, 40, 41, 42, 43, 56, 57. It is assumed that the
attacker can obtain the following measurement information
in the above region: voltage amplitude, node injection power,
branch power. It is assumed that the attacker can obtain the
following measurement information in the regional bound-
aries: the branch power into the above region. The attacker
can tamper the following measurements: voltage amplitude,
node injection power and branch power in the region. The
attacker can’t tamper the following measurements: voltage
amplitudes of boundary nodes 11, 35, 37 and zero injection
node injection power. The detection error setting parameters
of interval estimation are as follows. The FDI attack model
in [26] are presented to test the performance of the proposed
method. The simulation differences of this paper and [26]
can be summarized as follows. 1) This paper considers both
the power losses and power loads, but [26] only consider
the power loads. 2) This paper considers the measurement
error constraints of boundary node voltage amplitudes, but
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TABLE 1. Simulation conditions.

Error of Error of A
Case Data Loss voltage voltage verage
: residual
amplitude phase
1 local with 0.0005 p.u. 0.18° 0.00066
2 local without 0.0005 p.u. 0.18° 0.00064
3 integrity with 0.0005 p.u. 0.18° 0.00914
4 integrity without 0.0005 p.u. 0.18° 0.00374
11 e \-max
v V-attack
1.05 V-min
. !
8 1
>
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FIGURE 4. Case 1 amplitude results of cyberattack and defense.
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FIGURE 5. Case 2 amplitude results of cyberattack and defense.
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FIGURE 6. Case 3 amplitude results of cyberattack and defense.

the true values of the amplitudes and phase angles of the
boundary node voltages are adopted in [26]. In this regard,
the attack model in this paper is more in line with the actual
project. Four cases are designed to prove the correctness
of the proposed method, and the simulation conditions are
shown in table 1.

We not only compare the impacts of power losses on cyber-
attack and detection, but also compare the impacts of global
and local false data injection on cyberattack and detection,
as show in Figs. 4, 5, 6, 7 and 8.

With respect to local FDI considering power losses, there
are four detected nodes, whose voltage amplitudes are out
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FIGURE 8. Case 4 angle results of cyberattack and defense.

of limits. With respect to local FDI without considering
power losses, there are five detected nodes, whose voltage
amplitudes are out of limits. The local FDI model with power
loss is more secret than that without power losses. The reason
is that interval estimation takes power losses into account, and
it is easier to expose without power losses.

The attack of data integrity can obtain more information
than FDI using local data, so the attack is more secretive than
FDI using local data. When the attack of data integrity con-
siders power losses, the traditional interval estimation can’t
detect the attack any more. The above simulation results just
show that it is very important to realize physical protection
for key nodes.

The detection of phase angle becomes a new method
besides the detection of amplitude. From the simulation
results, it can be seen that one abnormal point is detected for
the FDI model considering power losses, and there are two
points are detected for the FDI model without considering
power losses. The importance of power losses in constructing
attack model is illustrated and should address more concern.
The essence of cyberattack is to destroy the power grid oper-
ation on the basis of satisfying the rules of data detection. The
essence of cyberattack defense is to discover cyberattack by
using more operation rules of power systems.

VI. CONCLUSION

The attack of cyber physical power system is a difficult
problem that must be faced on the road of power grid informa-
tization. There are few researches on local attack. Most of the
works focus on the data integrity attack, which is inconsistent
with the engineering practice. However, a local false data
attack is the source of security risk. In this paper, local false
data attack modeling and simulation are carried out. This
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paper first analyzes the attack of load redistribution in detail,
and demonstrates the feasibility in practice. The attack model
includes power flow constraints, attack constraints of PV and
PQ nodes, power injection constraints of contact nodes, and
total power injection constraints. Then we test the detection
effect of local false data attacks on state interval estimation
detection, and the simulations verify the effectiveness of the
proposed method. The local attack and detection methods of
cyber physical power system need to be further studied and
explored, and the security defense theory is very important
for the safe operation of power grid.
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