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Abstract Salient object detection, which simulates
human visual perception in locating the most significant
object(s) in a scene, has been widely applied to various
computer vision tasks. Now, the advent of depth sensors
means that depth maps can easily be captured; this
additional spatial information can boost the performance
of salient object detection. Although various RGB-D
based salient object detection models with promising
performance have been proposed over the past several
years, an in-depth understanding of these models and
the challenges in this field remains lacking. In this
paper, we provide a comprehensive survey of RGB-
D based salient object detection models from various
perspectives, and review related benchmark datasets
in detail. Further, as light fields can also provide
depth maps, we review salient object detection models
and popular benchmark datasets from this domain
too. Moreover, to investigate the ability of existing
models to detect salient objects, we have carried out
a comprehensive attribute-based evaluation of several
representative RGB-D based salient object detection
models. Finally, we discuss several challenges and open
directions of RGB-D based salient object detection
for future research. All collected models, benchmark
datasets, datasets constructed for attribute-based
evaluation, and related code are publicly available at
https://github.com/taozh2017/RGBD-SODsurvey.
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1 Introduction
1.1 Background

Salient object detection aims to locate the most
visually prominent object(s) in a given scene [1].
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It plays a key role in a range of real-world
applications, such as stereo matching [2], image
understanding [3], co-saliency detection [4], action
recognition [5], video detection and segmentation
[6–9], semantic segmentation [10, 11], medical
image segmentation [12–14], object tracking [15, 16],
person re-identification [17, 18], camouflaged object
detection [19], image retrieval [20], etc. Although
significant progress has been made in the salient
object detection field over the past several years
[21–35], there is still room for improvement when
faced with challenging factors, such as complicated
backgrounds or varying lighting conditions in the
scenes. One way to overcome such challenges is to
employ depth maps, which provide complementary
spatial information to that from RGB images and
have become easier to capture due to the ready
availability of depth sensors (e.g., Microsoft Kinect).

Recently, RGB-D based salient object detection
has gained increasing attention, and various methods
have been developed [38, 45]. Early RGB-D based
salient object detection models tended to extract
handcrafted features and then fused the RGB image
and depth map. For example, Lang et al. [46], the
first work on RGB-D based salient object detection,
utilized Gaussian mixture models to model the
distribution of depth-induced saliency. Ciptadi et
al. [47] extracted 3D layout and shape features
from depth measurements. Several methods [48–50]
measure depth contrast using depth differences
between different regions. In Ref. [51], a multi-
contextual contrast model including local, global,
and background contrast was developed to detect
salient objects using depth maps. More importantly,
however, this work also provided the first large-
scale RGB-D dataset for salient object detection.
Despite the effectiveness of traditional methods using
handcrafted features, their low-level features tend
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Fig. 1 RGB-D based salient object prediction on a sample image
using two classical models: DCMC [36] and SE [37], and seven state-
of-the-art deep models: D3Net [38], SSF [39], A2dele [40], S2MA [41],
ICNet [42], JL-DCF [43], and UC-Net [44].

to limit generalization ability, and they lack the
high-level reasoning required for complex scenes.
To address these limitations, several deep learning-
based RGB-D salient object detection methods [38]
have been developed, with improved performance.
DF [52] was the first model to introduce deep
learning technology into the RGB-D based salient
object detection task. More recently, various deep
learning-based models [41–44, 53–55] have focused
on exploiting effective multi-modal correlations and
multi-scale or level information to boost salient object

detection performance. To more clearly describe the
progress in the RGB-D based salient object detection
field, we provide a brief chronology in Fig. 2.

In this paper, we provide a comprehensive survey
of RGB-D based salient object detection, aiming
to thoroughly cover various aspects of models used
for this task and to provide insightful discussions
of the challenges and open directions for future
work. We also review a related topic, light field
salient object detection, as light fields can also
provide additional information (including focal stacks,
all-focus images, and depth maps) to boost the
performance of salient object detection. Further, we
provide a comprehensive comparative evaluation of
existing RGB-D based salient object detection models
and discuss their main advantages.

1.2 Related reviews and surveys

Several surveys consider salient object detection. For
example, Borji et al. [59] provided a quantitative
evaluation of 35 state-of-the-art non-deep-learning
saliency detection methods. Cong et al. [60] reviewed
several different saliency detection models, including
RGB-D based salient object detection, co-saliency
detection, and video salient object detection. Zhang et
al. [61] provided an overview of co-saliency detection and
reviewed its history, and summarized several benchmark
algorithms in this field. Han et al. [62] reviewed recent
progress in salient object detection, including models,
benchmark datasets, and evaluation metrics, as well as
discussing the underlying connection between general
object detection, salient object detection, and category-
specific object detection. Nguyen et al. [63] reviewed

Fig. 2 Brief chronology of RGB-D based salient object detection. First came the DM model, proposed in 2012 [46]. Deep learning techniques
have been widely applied since 2017. See Section 2.
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various works related to saliency applications and
provide insightful discussions of the role of saliency
in each. Borji et al. [64] provided a comprehensive
review of recent progress in salient object detection
and discussed related topics, including generic scene
segmentation, saliency for fixation prediction, and
object proposal generation. Fan et al. [1] provided
a comprehensive evaluation of several state-of-the-
art CNN-based salient object detection models, and
proposed a high quality salient object detection dataset,
SOC (see: http://dpfan.net/socbenchmark/). Zhao
et al. [65] reviewed various deep learning-based object
detection models and algorithms in detail, as well
as various specific tasks, including salient object
detection. Wang et al. [66] focused on reviewing deep
learning-based salient object detection models. Unlike
previous salient object detection surveys, in this
paper, we focus on reviewing RGB-D based salient
object detection models and benchmark datasets.

1.3 Contributions and organization

Our contributions and organization are:
• the first systematic review of RGB-D based salient

object detection models considering different
perspectives. We classify existing RGB-D salient
object detection models as traditional or deep
methods, fusion-wise methods, single-stream

or multi-stream methods, and attention-aware
methods (Section 2);

• a review of nine RGB-D datasets commonly used
in this field, giving details for each (Section 3).
We also provide a comprehensive, attribute-based
evaluation of several representative RGB-D based
salient object detection models (Section 5);

• the first survey of light field salient object detection
models and benchmark datasets (Section 4);

• a thorough investigation of challenges facing
RGB-D based salient object detection, and the
relationship between salient object detection and
other topics, shedding light on potential directions
for future research (Section 6);

Conclusions are drawn in Section 7.

2 RGB-D based salient object detection
models

2.1 Approach

Over the past few years, several RGB-D based salient
object detection methods have been developed; they
provide promising performance. These models are
summarized in Tables 1–4. Further information can
be found at http://dpfan.net/d3netbenchmark/. To
review these RGB-D based salient object detection

Table 1 Summary of RGB-D based salient object detection methods published from 2012 to 2016
No. Year Method Pub. Training set Backbone Description

1 2012 DM [46] ECCV Without Without Models the correlation between saliency and depth by approximating the joint density
using Gaussian mixture models

2 2012 RCM [67] ICCSE Without Without Develops a region contrast based salient object detection model with depth cues

3 2013 LS [47] BMVC Without Without Extends the dissimilarity framework to model the joint interaction between depth cues
and RGB images

4 2013 RC [48] BMVC Without Without Derives RGB-D saliency by formulating a 3D saliency model based on the region
contrast of the scene and fuses it using SVM

5 2013 SOS [68] NEURO Without Without Incorporates depth cues for salient object segmentation by suppressing background
regions

6 2014 SRDS [69] ICDSP Without Without Integrates depth and depth weighted color contrast with spatial compactness of color
distribution

7 2014 LHM [51] ECCV Without Without Uses a multi-stage RGB-D algorithm to combine both depth and appearance cues to
segment salient objects

8 2014 DESM [49] ICIMCS Without Without Combines three saliency cues: color contrast, spatial bias, and depth contrast

9 2014 ACSD [56] ICIP Without Without Measures a point’s saliency by how much it stands out from the surroundings, and has
two priors (regions nearer to viewers are more salient and salient objects tend to be
located at the center)

10 2015 GP [50] CVPRW Without Without Explores orientation and background priors for detecting salient objects, and uses
PageRank and MRFs to optimize the saliency maps

11 2015 SFP [70] ICIMCS Without Without Develops a RGB-D based salient object detection approach using saliency fusion and
propagation

12 2015 DIC [71] TVC Without Without Fuses the saliency maps from color and depth to generate a noise-free salient patch,
and utilizes random walk algorithm to infer the object boundary

13 2015 SRD [72] ICRA Without Without Designs a graph-based segmentation to identify homogeneous regions using color and
depth cues

14 2015 MGMR [73] ICIP Without Without Designs a mutual guided manifold ranking strategy to achieve salient object detection

15 2015 SF [74] CAC Without Without Proposes to automatically select discriminative features using decision trees for better
performance

16 2016 PRC [75] ACCESS Without Without Saliency fusion and progressive region classification are used to optimize depth-aware
saliency models

17 2016 LBE [57] CVPR Without Without Uses a local background enclosure to capture the spread of angular directions
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(Continued)
No. Year Method Pub. Training set Backbone Description

18 2016 SE [37] ICME Without Without Utilizes cellular automata to propagate the initial saliency map and then generate the
final saliency prediction result

19 2016 DCMC [36] SPL Without Without Develops a new measure to evaluate the reliability of depth maps for reducing the
influence of poor-quality depth maps on saliency detection

20 2016 BF [76] ICPR Without Without Fuses contrasting features from RGB and depth images with a Bayesian framework

21 2016 DCI [77] ICASSP Without Without Adopts the original depth map to subtract the fitted surface for generating a contrast
increased map

22 2016 DSF [78] ICASSP Without Without Develops a multi-stage depth-aware saliency model for salient object detection

23 2016 GM [79] ACCV Without Without Combines color and depth-based contrast features using a generative mixture model

models in detail, we consider them from different
perspectives as follows. (1) As traditional or deep
models, according to whether manual features or
deep features are used for feature extraction. It
is helpful for readers to understand the historical
development of RGB-D salient object detection
models. (2) According to fusion model: it is critical
to effectively fuse RGB and depth images in this
task, so we review different fusion strategies to
understand their effectiveness. (3) As single- or
multi-stream models: using a single stream can
reduce the number of parameters, but the final
result may not be optimal; multiple streams may
require more parameters. It is helpful to understand

the balance between the amount of calculation
and accuracy of different models. (4) According to
attention awareness. Attention mechanisms have
widely been applied to various visual tasks including
salient object detection. We review related works
on RGB-D salient object detection to analyze how
different models use attention awareness. Alternative
designs of attention modules may be useful in future
work.

2.2 Traditional and deep models

2.2.1 Traditional models
Using depth cues, several useful attributes, such as
boundaries, shape attributes, surface normals, etc.,

Table 2 Summary of RGB-D based salient object detection methods published from 2017 to 2018
No. Year Method Pub. Training set Backbone Description

24 2017 HOSO [80] DICTA Without Without Combines surface orientation distribution contrast with color and depth contrast

25 2017 M3Net [81] IROS NLPR(0.65k),
NJUD(1.4k)

VGG-16 Designs a multi-path multi-modal fusion strategy to integrate RGB and depth images
in a task-motivated and adaptive way

26 2017 MFLN [82] ICCVS NLPR(0.65k),
NJUD(1.4k)

AlexNet Leverages a CNN to learn high-level representations for depth maps, and uses a multi-
modal fusion network to integrate RGB and depth representations for RGB-D based
salient object detection

27 2017 BED [83] ICCVW NLPR(0.6k),
NJUD(1.2k)

GoogleNet Uses a CNN to integrate top-down and bottom-up information for RGB-D based salient
object detection, and uses a mid-level feature representation to capture background
enclosure

28 2017 CDCP [84] ICCVW Without Without Proposes a novel RGB-D salient object detection algorithm using a center dark channel
prior to boost performance

29 2017 TPF [85] ICCVW Without Without Leverages stereopsis to generate optical flow, which can provide an additional cue
(depth cue) for producing the final detection result

30 2017 MFF [86] SPL Without Without Uses a multistage fusion framework to integrate multiple visual priors from the RGB
image and depth cue for salient object detection

31 2017 MDSF [87] TIP NLPR(0.5k),
NJUD(1.5k)

Without Proposes a RGB-D salient object detection framework via a multi-scale discriminative
saliency fusion strategy, and utilizes bootstrap learning to achieve the salient object
detection task

32 2017 DF [52] TIP NLPR(0.75k),
NJUD(1.0k)

Without Feeds RGB and depth features into a CNN architecture to derive the saliency confidence
value, and uses Laplacian propagation to produce the final detection result

33 2017 MCLP [88] TCYB Without Without Utilizes the additional depth maps and employs the existing RGB saliency map as an
initialization using a refinement-cycle model to obtain the final co-saliency map

34 2018 ISC [89] SIVP Without Without Fuses salient features using both bottom-up and top-down saliency cues

35 2018 HSCS [90] TMM Without Without Utilizes a hierarchical sparsity reconstruction and energy function refinement for RGB-
D based co-saliency detection

36 2018 ICS [91] TIP Without Without Exploits the constraint correlation among multiple images and introduces depth maps
into the co-saliency model

37 2018 CTMF [58] TCYB NLPR(0.65k),
NJUD(1.4k)

VGG-16 Transfers the structure of the deep color network to be applicable for the depth modality
and fuses both modalities to produce the final saliency map

38 2018 PCF [92] CVPR NLPR(0.65k),
NJUD(1.4k)

VGG-16 Designs the first multi-scale fusion architecture and a novel complementarity-aware
fusion module to fuse both cross-modal and cross-level features

39 2018 SCDL [93] ICDSP NLPR(0.75k),
NJUD(1.0k)

VGG-16 Designs a new loss function to increase the spatial coherence of salient objects

40 2018 ACCF [94] IROS NLPR(0.65k),
NJUD(1.4k)

VGGNet Adaptively selects complementary features from different modalities at each level, and
then performs more informative cross-modal cross-level combinations

41 2018 CDB [95] NEURO Without Without Utilizes a contrast prior and depth-guided-background prior to construct a 3D
stereoscopic saliency model
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Table 3 Summary of RGB-D based salient object detection models published in 2019 and 2020
No. Year Method Pub. Training set Backbone Description
42 2019 SSRC [96] NEURO NLPR(0.65k),

NJUD(1.4k)
VGG-16 Uses a single-stream recurrent convolutional neural network with a four-

channel input and DRCNN subnetwork
43 2019 MLF [97] SPL NJUD(1.588k) VGG-16 Designs a salient object-aware data augmentation method to expand the

training set
44 2019 TSRN [98] ICIP NJUD(1.387k) VGG-16 Designs a fusion refinement module to integrate output features from different

modalities and resolutions
45 2019 DIL [99] MTAP NLPR(0.5k),

NJUD(0.5k)
Without Designs a consistency integration strategy to generate an image pre-

segmentation result that is consistent with the depth distribution
46 2019 CAFM [100] TSMC NUS [46],

NCTU [101]
VGG-16 Utilizes a content-aware fusion module to integrate global and local

information
47 2019 PDNet [102] ICME NLPR(0.5k),

NJUD(1.5k)
VGG-16 Adopts a prior-model guided master network to process RGB information,

which is pre-trained on the conventional RGB dataset to overcome the limited
size

48 2019 MMCI [55] PR NLPR(0.65k),
NJUD(1.4k)

VGG-16 Improves the traditional two-stream architecture by diversifying the multi-
modal fusion paths and introducing cross-modal interactions in multiple layers

49 2019 TANet [103] TIP NLPR(0.65k),
NJUD(1.4k)

VGG-16 Uses a three-stream multi-modal fusion framework to explore cross-modal
complementarity in both the bottom-up and top-down processes

50 2019 DCMF [104] TCYB NLPR(0.65k),
NJUD(1.4k)

VGG-16 Formulates a CNN-based cross-modal transfer learning problem for depth-
induced salient object detection, and uses a dense cross-level feedback strategy
to exploit cross-level interactions

51 2019 DGT [105] TCYB Without Without Exploits depth cues and provides a general transformation model from RGB
saliency to RGB-D saliency

52 2019 LSF [45] arXiv NLPR(0.65k),
NJUD(1.4k)

VGG Designs an RGB-D system with three key components, including modality-
specific representation learning, complementary information selection, and
cross-modal complements fusion

53 2019 AFNet [106] ACCESS NLPR(0.65k),
NJUD(1.4k)

VGG-16 Learns a switch map that is used to adaptively fuse the predicted saliency
maps from the RGB and depth modality

54 2019 EPM [107] ACCESS Without Without Develops an effective propagation mechanism for RGB-D co-saliency detection
55 2019 CPFP [53] CVPR NLPR(0.65k),

NJUD(1.4k)
VGG-16 Uses a contrast-enhanced network to obtain the one-channel enhanced map,

and designs a fluid pyramid integration module to fuse cross-modal cross-level
features in a pyramid style

56 2019 DMRA [54] ICCV NLPR(0.7k),
NJUD(1.485k)

VGG-19 Designs a depth-induced multiscale recurrent attention network for salient
object detection, including a depth refinement block and a recurrent attention
module

57 2019 DSD [108] JVCIR NLPR(0.5k),
NJUD(1.5k)

VGG-16 Uses a saliency fusion network to adaptively fuse both the color and depth
saliency maps

58 2020 DPANet [109] arXiv NLPR(0.65k),
NJUD(1.4k),
DUT(0.8k)

ResNet-50 Uses a saliency-orientated depth perception module to evaluate the
potentiality of depth maps and reduce effects of contamination

59 2020 SSDP [110] arXiv NLPR(0.7k),
NJUD(1.485k),
DUT(0.8k)

VGG-19 Makes use of existing labeled RGB saliency datasets together with unlabeled
RGB-D data to boost salient object detection performance

60 2020 AttNet [111] IVC NLPR(0.65k),
NJUD(1.4k)

VGG-16 Deploys attention maps to boost the salient objects’ location and pays more
attention to the appearance information

61 2020 — [112] NEURO NLPR(0.65k),
NJUD(1.4k)

VGG-16 Uses an adaptive gated fusion module via a GAN to obtain a better fused
saliency map from RGB images and depth cues

62 2020 CoCNN [113] PR STERE, NJUD VGG-16 Fuses color and disparity features from low to high layers in a unified deep
model

63 2020 cmSalGAN [114] TMM NLPR(0.65k),
NJUD(1.4k)

ResNet-50 Aims to learn an optimal view-invariant and consistent pixel-level
representation for both RGB and depth images using an adversarial learning
framework

64 2020 PGHF [115] ACCESS NLPR(0.65k),
NJUD(1.4k)

VGG-16 Leverages powerful representations learned from large-scale RGB datasets to
boost the model ability

can be explored to boost the identification of salient
objects in complex scenes. Over the past several
years, many traditional RGB-D models based on
handcrafted features have been developed [36, 37, 47–
51, 56, 57, 69–71, 75, 82–84, 95]. For example,
the early work in Ref. [47] focused on modeling
the interaction between layout and shape features
generated from the RGB image and depth map. The
representative work in Ref. [51] developed a novel
multi-stage RGB-D model, and constructed the first
large-scale RGB-D benchmark dataset, NLPR.

2.2.2 Deep models
The above traditional methods suffer from unsatisfac-
tory salient object detection performance due to

the limited expressiveness of handcrafted features.
To address this, several studies have turned to
deep neural networks (DNNs) to fuse RGB-D data
[39, 40, 42–44, 52–55, 83, 93, 94, 96, 102–106, 111–
113, 117–119, 137]. These models can learn high-
level representations to explore complex correlations
between RGB images and depth cues for improving
salient object detection performance. We next review
some representative works.

DF [52] develops a novel convolutional neural
network (CNN) to integrate different low-level
saliency cues into hierarchical features, to effectively
locate salient regions in RGB-D images. This was
the first CNN-based model for RGB-D salient object
detection. However, it utilizes a shallow architecture
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Table 4 Summary of RGB-D based salient object detection models published in 2020
No. Year Method Pub. Training set Backbone Description

65 2020 BiANet [116] TIP NLPR(0.7k),
NJUD(1.485k)

VGG-16 Uses a bilateral attention module (BAM) to explore rich foreground and
background information from depth maps

66 2020 ASIF-Net [117] TCYB NLPR(0.65k),
NJUD(1.4k)

VGG-16 Integrates the attention steered complementarity from RGB-D images and
introduces a global semantic constraint using adversarial learning

67 2020 Triple-Net [118] SPL Triple-Net ResNe-18 Uses a triple-complementary network for RGB-D based salient object detection

68 2020 ICNet [42] TIP Triple-Net VGG-16 Uses a novel information conversion module to fuse high-level RGB and depth
features in an interactive and adaptive way

69 2020 SDF [119] TIP NLPR, NJUD,
DEC, LFSD(1.5k)

VGG-16 Proposes a exemplar-driven method to estimate relatively trustworthy depth maps,
and uses a selective deep saliency fusion network to effectively integrate RGB
images, original depths, and newly estimated depths

70 2020 GFNet [120] SPL NLPR(0.8k),
NJUD(1.588k)

Res2Net Designs a gate fusion block to regularize feature fusion

71 2020 RGBS [121] MTAP NLPR(0.65k),
NJUD(1.4k)

VGG-16 Utilizes a GAN to generate the saliency map

72 2020 D3Net [38] TNNLS NLPR(0.7k),
NJUD(1.485k)

VGG-16 Uses a depth purifier unit and a three-stream feature learning module to employ
low-quality depth cue filtering and cross-modal feature learning, respectively

73 2020 JL-DCF [43] CVPR NLPR(0.7k),
NJUD(1.5k)

VGG-16,
ResNet-101

Uses a joint learning strategy and a densely-cooperative fusion module to achieve
better salient object detection performance

74 2020 A2dele [40] CVPR NLPR(0.7k),
NJUD(1.485k)

VGG-16 Employs a depth distiller to explore ways of using network prediction and attention
as two bridges to transfer depth knowledge to RGB images

75 2020 SSF [39] CVPR NLPR(0.7k),
NJUD(1.485k),
DUT(0.8k)

AGG-16 Designs a complimentary interaction module to select useful representations from
the RGB and depth images and then integrate cross-modal features

76 2020 S2MA [41] CVPR NLPR(0.65k),
NJUD(1.4k)

VGG-16 Fuses multi-modal information via self-attention and each otherâĂŹs attention
strategies, and reweights the mutual attention term to filter out unreliable
information

77 2020 UC-Net [44] CVPR NLPR(0.7k),
NJUD(1.5k)

VGG-16 Uses a probabilistic RGB-D saliency detection network via a conditional VAE to
generate multiple saliency maps

78 2020 CMWNet [122] ECCV NLPR(0.65k),
NJUD(1.4k)

VGG-16 Exploits feature interactions using three cross-modal cross-scale weighting modules
to improve salient object detection performance

79 2020 HDFNet [123] ECCV NLPR(0.7k),
NJUD(1.485k),
DUT(0.8k)

VGG-16 Designs a hierarchical dynamic filtering network to effectively make use of cross-
modal fusion information

80 2020 CAS-GNN [124] ECCV NLPR(0.65k),
NJUD(1.4k)

VGG-16 Designs cascaded graph neural networks to exploit useful knowledge from RGB
and depth images for building powerful feature embeddings

81 2020 CMMS [125] ECCV NLPR(0.7k),
NJUD(1.485k)

VGG-16 Proposes a cross-modality feature modulation module to enhance feature
representations and an adaptive feature selection module to gradually select
saliency-related features

82 2020 DANet [126] ECCV NLPR(0.65k),
NJUD(1.4k)

VGG-16,
VGG-19

Develops a single-stream network combined with a depth-enhanced dual attention
to achieve real-time salient object detection

83 2020 CoNet [127] ECCV NLPR(0.7k),
NJUD(1.485k),
DUT(0.8k)

ResNet Develops a collaborative learning framework for RGB-D based salient object
detection. Three collaborators (edge detection, coarse salient object detection
and depth estimation) are utilized to jointly boost the performance

84 2020 BBS-Net [128] ECCV NLPR(0.65k),
NJUD(1.4k)

VGG-16,
VGG-19,
ResNet-50

Uses a bifurcated backbone strategy to learn teacher and student features, and
utilizes a depth-enhanced module to excavate informative parts of depth cues

85 2020 ATSA [129] ECCV NLPR(0.7k),
NJUD(1.485k),
DUT(0.8k)

VGG-19 Proposes an asymmetric two-stream architecture taking account of the inherent
differences between RGB and depth data for salient object detection

86 2020 PGAR [130] ECCV NLPR(0.7k),
NJUD(1.485k)

VGG-16 Proposes a progressively guided alternate refinement network to produce a coarse
initial prediction using a multi-scale residual block

87 2020 MCINet [131] arXiv NLPR(0.65k),
NJUD(1.4k)

ResNet-50 Develops a novel multi-level cross-modal interaction network for RGB-D salient
object detection

88 2020 DRLF [132] TIP NLPR(0.65k),
NJUD(1.4k)

VGG-16 Develops a channel-wise fusion network to conduct multi-net and multi-level
selective fusion for RGB-D salient object detection

89 2020 DQAM [133] arXiv NLPR(0.65k),
NJUD(1.4k)

Without Proposes a depth quality assessment solution to conduct “quality-aware” salient
object detection for RGB-D images

90 2020 DQSD [134] TIP NLPR(0.65k),
NJUD(1.4k)

VGG-19 Integrates a depth quality aware subnet into a bi-stream structure to assess the
depth quality before conducting RGB-D fusion

91 2020 DASNet [135] ACM
MM

NLPR(0.7k),
NJUD(1.5k)

ResNet-50 Proposes a new perspective of containing the depth constraints in the learning
process rather than using depths as inputs

92 2020 DCMF [136] TIP NLPR(0.65k),
NJUD(1.4k)

VGG-16,
ResNet-50

Designs a disentangled cross-modal fusion network to expose structural and content
representations from RGB and depth images

to learn the saliency map.
PCF [92] presents a complementarity-aware fusion

module to integrate cross-modal and cross-level
feature representations. It can effectively exploit
complementary information by explicitly using cross-
modal and -level connections and modal- and level-
wise supervision to decrease fusion ambiguity.

CTMF [58] employs a computational model
to identify salient objects from RGB-D scenes,
utilizing CNNs to learn high-level representations for
RGB images and depth cues, while simultaneously
exploiting the complementary relationships and joint
representation. This model transfers the structure of
the model from the source domain (RGB images) to
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the target domain (depth maps).
CPFP [53] proposes a contrast-enhanced network

to produce an enhanced map, and presents a fluid
pyramidal integration module to effectively fuse cross-
modal information in a hierarchical manner. As depth
cues tend to suffer from noise, a feature-enhanced
module is used to learn enhanced depth cues for to
effectively boost salient object detection performance.

UC-Net [44] proposes a probabilistic RGB-D
based salient object detection network via conditional
variational autoencoders to model human annotation
uncertainty. It generates multiple saliency maps for
each input image by sampling the learned latent space.
This was the first work to investigate uncertainty
in RGB-D based salient object detection, and was
inspired by the data labeling process. It leverages
diverse saliency maps to improve the final salient
object detection performance.

2.3 Fusion approach

For RGB-D based salient object detection models, it
is important to effectively fuse RGB images and depth
maps. Existing fusion strategies can be classified as
using early fusion, multi-scale fusion, or late fusion,
as we now explain; also see Fig. 3.
2.3.1 Early fusion
Early fusion-based methods work in one of two
ways: (i) RGB images and depth maps are directly
integrated to form a four-channel input [50, 51, 87,
96], which we call input fusion, or (ii) RGB and depth
images are first fed into separate networks and their
low-level representations are combined to give a joint
representation which is then fed into a subsequent
network for further saliency map prediction [52]. We
call this early feature fusion.

2.3.2 Late fusion
Late fusion-based methods can also be further divided
into two families: (i) two parallel network streams
are adopted to learn high-level features for RGB and
depth data, respectively, which are concatenated and
then used to generate the final saliency prediction
[48, 58, 106]. We call this later feature fusion. (ii)
Two parallel network streams are used to obtain
independent saliency maps for RGB images and
depth cues, and then the two saliency maps are
concatenated to obtain a final prediction map [108].
This is called late result fusion.
2.3.3 Multi-scale fusion
To effectively explore the correlations between RGB
images and depth maps, several methods propose
a multi-scale fusion strategy [42, 43, 55, 109, 116,
122, 123, 128]. These models can be divided into
two categories. The first learns the cross-modal
interactions and then fuses them into a feature
learning network. For example, Chen et al. [55]
developed a multi-scale, multi-path fusion network to
integrate RGB images and depth maps, with a cross-
modal interaction (MMCI) module. This method
introduces cross-modal interactions into multiple
layers, which can provide additional gradients for
enhancing learning of the depth stream, as well as
enabling complementarity between low-level and high-
level representations to be explored. The second
category fuses features from RGB images and depth
maps in different layers and then integrates them
into a decoder network (e.g., via skip connections)
to produce the final saliency detection map. Some
representative works are now briefly discussed.

ICNet [42] proposes an information conversion
module to interactively convert high-level features.

Fig. 3 Three fusion strategies for exploring the correlation between RGB images and depth maps for RGB-D based salient object detection:
(a) early fusion, (b) late fusion, and (c) multi-scale fusion.
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In this model, a cross-modal depth-weighted com-
bination (CDC) block is introduced to enhance RGB
features with depth features at different levels.

DPANet [109] uses a gated multi-modality
attention (GMA) module to exploit long-range
dependencies. The GMA module can extract the
most discriminatory features by utilizing a spatial
attention mechanism. This model also controls the
fusion rate of the cross-modal information using a
gate function, which can reduce some effects caused
by unreliable depth cues.

BiANet [116] employs a multi-scale bilateral
attention module (MBAM) to capture better global
information from multiple layers.

JL-DCF [43] treats a depth image as a special
case of a color image and employs a shared CNN for
both RGB and depth feature extraction. It also
proposes a densely-cooperative fusion strategy to
effectively combine the features learned from different
modalities.

BBS-Net [128] uses a bifurcated backbone
strategy (BBS) to split the multi-level feature
representations into teacher and student features,
and develops a depth-enhanced module (DEM) to
explore informative parts in depth maps from the
spatial and channel views.

2.4 Single- and multi-stream models

2.4.1 Single-stream models
Several RGB-D based salient object detection works
[52, 53, 83, 87, 93, 96, 102] focus on a single-
stream architecture to achieve saliency prediction.
These models often fuse RGB images and depth
information in the input channel or feature learning
part. For example, MDSF [87] employs a multi-
scale discriminative saliency fusion framework as
the salient object detection model, in which four
types of features from three levels are computed
and then fused to obtain the final saliency map.
BED [83] utilizes a CNN architecture to integrate
bottom–up and top–down information for salient
object detection. It incorporates multiple features,
including background enclosure distribution (BED)
and low level depth maps (e.g., depth histogram
distance and depth contrast) to boost salient object
detection performance. PDNet [102] extracts depth-
based features using a subsidiary network, which
makes full use of depth information to assist the
main-stream network.

2.4.2 Multi-stream models
Two-stream models [54, 106, 111] have two inde-
pendent branches to process RGB images and depth
cues, respectively, and often generate different high-
level features or saliency maps, and then incorporate
them in the middle stage or at the end of the two
streams. Most recent deep learning-based models
[40, 42, 45, 55, 92, 104, 109, 112, 114, 117] utilize this
two-stream architecture with several models capturing
the correlations between RGB images and depth
cues across multiple layers. Moreover, some models
utilize a multi-stream structure [38, 103] and then
design different fusion modules to effectively fuse
RGB and depth information in order to exploit their
correlations.

2.5 Attention models

Existing RGB-D based salient object detection
methods often treat all regions equally using the
extracted features in the same way, while ignoring
the fact that different regions can make different
contributions to the final prediction map. These
methods are easily affected by cluttered backgrounds.
Furthermore, some methods either regard the RGB
images and depth maps as having the same status or
overly rely on depth information. This prevents them
from considering the importance of different domains
(RGB images or depth cues). To overcome such issues,
several methods introduce attention mechanisms to
weight the importance of different regions or domains.

ASIF-Net [117] captures complementary
information from RGB images and depth cues using
interwoven fusion, and weights saliency regions
through a deeply supervised attention mechanism.

AttNet [111] introduces attention maps
for differentiating between salient objects and
background regions to reduce the negative influence
of certain low-quality depth cues.

TANet [103] formulates a multi-modal fusion
framework using RGB images and depth maps from
bottom–up and top–down views. It then introduces a
channel-wise attention module to effectively fuse the
complementary information from different modalities
and levels.

2.6 Open-source implementations

Available open-source implementations of RGB-D
based salient object detection models reviewed in this
survey are provided in Table 5. Further source code will
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Table 5 RGB-D based salient object detection models with open-source implementations

Year Model Implementation Code link

2014
LHM [51] Matlab https://sites.google.com/site/rgbdsaliency/code
DESM [49] Matlab https://github.com/HzFu/DES code

2015 GP [50] Matlab https://github.com/JianqiangRen/Global Priors RGBD Saliency Detection

2016
DCMC [36] Matlab https://github.com/rmcong/Code-for-DCMC-method
LBE [57] Matlab & C++ http://users.cecs.anu.edu.au/ u4673113/lbe.html

2017

BED [83] Caffe https://github.com/sshige/rgbd-saliency
CDCP [84] Matlab https://github.com/ChunbiaoZhu/ACVR2017
MDSF [87] Matlab https://github.com/ivpshuhttps://github.com/ivpshu
DF [52] Matlab https://pan.baidu.com/s/1Y-PqAjuH9xREBjfl7H45HA

2018
CTMF [58] Caffe https://github.com/haochen593/CTMF
PCF [92] Caffe https://github.com/haochen593/PCA-Fuse RGBD CVPR18
PDNet [102] TensorFlow https://github.com/cai199626/PDNet

2019

AFNet [106] TensorFlow https://github.com/Lucia-Ningning/Adaptive Fusion RGBD Saliency Detection
CPFP [53] Caffe https://github.com/JXingZhao/ContrastPrior
DMRA [54] PyTorch https://github.com/jiwei0921/DMRA
DGT [105] Matlab https://github.com/rmcong/Code-for-DTM-Method

2020

ICNet [42] Caffe https://github.com/MathLee/ICNet-for-RGBD-SOD
JL-DCF [43] Pytorch, Caffe https://github.com/kerenfu/JLDCF
A2dele [40] PyTorch https://github.com/OIPLab-DUT/CVPR2020-A2dele
SSF [39] PyTorch https://github.com/OIPLab-DUT/CVPR SSF-RGBD
ASIF-Net [117] TensorFlow https://github.com/Li-Chongyi/ASIF-Net
S2MA [41] PyTorch https://github.com/nnizhang/S2MA
UC-Net [44] PyTorch https://github.com/JingZhang617/UCNet
D3Net [38] PyTorch https://github.com/DengPingFan/D3NetBenchmark
CMWNet [122] Caffe https://github.com/MathLee/CMWNet
HDFNet [123] PyTorch https://github.com/lartpang/HDFNet
CMMS [125] TensorFlow https://github.com/Li-Chongyi/cmMS-ECCV20
CAS-GNN [124] PyTorch https://github.com/LA30/Cas-Gnn
DANet [126] PyTorch https://github.com/Xiaoqi-Zhao-DLUT/DANet-RGBD-Saliency
CoNet [127] PyTorch https://github.com/jiwei0921/CoNet
DASNet [135] PyTorch http://cvteam.net/projects/2020/DASNet/
BBS-Net [128] PyTorch https://github.com/DengPingFan/BBS-Net
ATSA [129] PyTorch https://github.com/sxfduter/ATSA
PGAR [130] PyTorch https://github.com/ShuhanChen/PGAR ECCV20
FRDT [138] PyTorch https://github.com/jack-admiral/ACM-MM-FRDT

be kept updated at: https://github.com/taozh2017/
RGBD-SODsurvey.

3 RGB-D datasets

With the rapid development of RGB-D based
salient object detection, various datasets have been
constructed over the past several years. Table 6
summarizes nine popular RGB-D datasets, and Fig. 4
shows examples of images (including RGB images,
depth maps, and annotations) from these datasets.
We provide details for each dataset next.

STERE [139]. The authors collected 1250 stereo-
scopic images from Flickr (http://www.flickr.com/),

NVIDIA 3D Vision Live (http://photos.3dvisionlive
.com/), and the Stereoscopic Image Gallery
(http://www.stereophotography.com/). The most
salient objects in each image were annotated by three
users. All annotated images were then sorted based
on the overlapping salient regions and the top 1000
images were selected to construct the final dataset.
This was the first collection of stereoscopic images in
this field.

GIT [47] consists of 80 color and depth images,
collected using a mobile-manipulator robot in a real-
world home environment. Each image is annotated
based on pixel-level segmentation of its objects.

DES [49] consists of 135 indoor RGB-D images,



46 T. Zhou, D.-P. Fan, M.-M. Cheng, et al.

Table 6 Nine RGB-D benchmark datasets, by year, place of publication (Pub.), dataset size, number of objects in the images (#Obj.), type
of scene, depth sensor, and resolution. They can be downloaded from our website: http://dpfan.net/d3netbenchmark/

No. Dataset Year Pub. Size #Obj. Types Sensor Resolution

1 STERE [139] 2012 CVPR 1000 ∼One Internet Stereo camera+sift flow [251 − 1200] × [222 − 900]

2 GIT [47] 2013 BMVC 80 Multiple Home environment Microsoft Kinect 640 × 480

3 DES [49] 2014 ICIMCS 135 One Indoor Microsoft Kinect 640 × 480

4 NLPR [51] 2014 ECCV 1000 Multiple Indoor/outdoor Microsoft Kinect 640 × 480, 480 × 640

5 LFSD [140] 2014 CVPR 100 One Indoor/outdoor Lytro Illum camera 360 × 360

6 NJUD [56] 2014 ICIP 1985 ∼One Movie/Internet/photo FujiW3 camera+optical flow [231 − 1213] × [274 − 828]

7 SSD [85] 2017 ICCVW 80 Multiple Movies Sun’s optical flow 960 × 1080

8 DUT-RGBD [137] 2019 ICCV 1200 Multiple Indoor/outdoor — 400 × 600

9 SIP [38] 2020 TNNLS 929 Multiple Person in the wild Huawei Mate10 992 × 744

Fig. 4 Left to right: examples of RGB images, depth maps, and annotations from nine RGB-D datasets: (a) STERE [139], (b) NLPR [51], (c)
SSD [85], (d) GIT [47], (e) DES [49] , (f) LFSD [140], (g) NJUD [56], (h) DUT-RGBD [137], and (i) SIP [38].

taken by Kinect at a resolution of 640 × 640. When
collecting this dataset, three users were asked to label
the salient object in each image, and overlapping
labeled areas were regarded as the ground truth.

NLPR [51] consists of 1000 RGB images and
corresponding depth maps, obtained by a standard
Microsoft Kinect. This dataset includes a series of
outdoor and indoor locations, e.g., offices, supermarkets,
campuses, streets, and so on.

LFSD [140] includes 100 light fields collected using
a Lytro light field camera, and consists of 60 indoor

and 40 outdoor scenes. To label this dataset, three
individuals were asked to manually segment salient
regions; the segmented results were deemed ground
truth when the overlap of the three results was
over 90%.

NJUD [56] consists of 1985 stereo image pairs,
collected from the Internet, 3D movies, and
photographs taken by a Fuji W3 stereo camera.

SSD [85] was constructed using three stereo movies
and includes indoor and outdoor scenes. It includes
80 samples; each image has resolution of 960 × 1080.
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DUT-RGBD [137] consists of 800 indoor and
400 outdoor scenes with corresponding depth
images. This dataset provides several challenging
factors: multiple and transparent objects, complex
backgrounds, similar foregrounds to backgrounds, and
low-intensity environments.

SIP [38] consists of 929 annotated high-resolution
images, with multiple salient persons in each image.
In this dataset, depth maps were captured using a
smart phone (Huawei Mate10). This dataset covers
diverse scenes and various challenging factors, and is
annotated with pixel-level ground truth.

A detailed dataset statistical analysis (including
center bias, size of objects, background objects, object
boundary conditions, and number of salient objects)
can be found in Ref. [38].

4 Saliency detection on light fields
4.1 Models

4.1.1 Background
Salient object detection methods can be grouped
into three categories according to the input data

type: RGB, RGB-D, or light field [141]. We
have already reviewed RGB-D based salient object
detection models, in which depth maps provide
geometric information to improve salient object
detection performance to some extent. However,
inaccurate or low-quality depth maps often decrease
performance. To overcome this issue, light field salient
object detection methods have been proposed to make
use of the rich information captured by a light field.
Specifically, light field data can provide an all-focus
image, a focal stack, and a rough depth map [137]. A
summary of light field salient object detection works
is provided in Table 7; we now review them in more
detail.
4.1.2 Traditional and deep models
Classic models for light field salient object detection
often use superpixel-level handcrafted features [137,
140, 142–147, 149, 155]. Early work [140, 147] showed
that the unique refocusing capability of light fields
can provide useful focus, depth, and object identity
cues, leading to several salient object detection
models using light field data. For example, Zhang
et al. [143] utilized a set of focal slices to compute

Table 7 Popular light field salient object detection methods
No. Year Method Pub. Dataset Description

1 2014 LFS [140] CVPR LFSD The first light-field saliency detection algorithm employs object identity and focus cues
based on the refocusing capability of the light field

2 2015 WSC [142] CVPR LFSD Uses a weighted sparse coding framework to learn a saliency/non-saliency dictionary

3 2015 DILF [143] IJCAI LFSD Incorporates depth contrast to complement the disadvantage of color and uses focus-
based background priors to boost the saliency detection performance

4 2016 RL [144] ICASSP LFSD Utilizes the inherent structure information in light field images to improve saliency
detection

5 2017 MA [145] TOMM HFUT, LFSD Integrates multiple saliency cues extracted from light field images using a random-
search-based weighting strategy

6 2017 BIF [146] NPL LFSD Integrates color-based contrast, depth-induced contrast, focus map of foreground
slice, and background weighted depth contrast using a two-stage Bayesian integration
framework

7 2017 LFS [147] TPAMI LFSD An extension of Ref. [140]

8 2017 RLM [148] ICIVC LFSD Utilizes the light field relative location measurement for salient object detection on light
field images

9 2018 SGDC [149] CVPR LFSD Designs a saliency-guided depth optimization framework for multi-layer light field
displays

10 2018 DCA [150] FiO LFSD Proposes a graph model depth-induced cellular automata to optimize saliency maps
using light field data

11 2019 DLLF [151] ICCV DUTLF-FS, LFSD Utilizes a recurrent attention network to fuse each slice from the focal stack to learn
the most informative features

12 2019 DLSD [152] IJCAI DUTLF-MV Formulates saliency detection into two subproblems, including 1) light field synthesis
from a single view and 2) light-field-driven saliency detection

13 2019 Molf [153] NIPS UTLF-FS Uses a memory-oriented decoder for light field salient object detection

14 2020 ERNet [154] AAAI DUTLF-FS, HFUT, LFSD Uses an asymmetrical two-stream architecture to overcome computation-intensive and
memory-intensive challenges in a high-dimensional light field data

15 2020 DCA [137] TIP LFSD Presents a saliency detection framework on light fields based on the depth-induced
cellular automata (DCA) model. It can enforce spatial consistency to optimize the
inaccurate saliency map using the DCA model

16 2020 RDFD [155] MTAP LFSD Defines a region-based depth feature descriptor extracted from the light field focal stack
to facilitate low- and high-level cues for saliency detection

17 2020 LFNet [141] TIP DUTLF-FS, LFSD, HFUT Utilizes a light field refinement module and a light field integration module to effectively
integrate multiple cues (focus, depth, and object identity) from light field images

18 2020 LFDCN [156] TIP Lytro Illum, LFSD, HFUT Uses a deep convolutional network based on the modified DeepLab-v2 model to explore
spatial and multi-view properties of light field images for saliency detection
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a background prior, and then combined it with a
location prior for salient object detection. Wang et
al. [146] proposed a two-stage Bayesian fusion model
to integrate multiple contrasts for boosting salient
object detection performance. Recently, several deep
learning-based light field salient object detection
models [141, 151–154, 156] have also been developed,
obtaining remarkable performance. In Ref. [151], an
attentive recurrent CNN was developed to fuse all
focal slices, while data diversity was increased using
adversarial examples to enhance model robustness.
Zhang et al. [153] developed a memory-oriented
decoder for light field salient object detection, which
fuses multi-level features in a top–down manner
using high-level information to guide low-level feature
selection. LFNet [141] employs a new integration
module to fuse features from light field data according
to their contributions, and captures the spatial
structure of a scene to improve salient object detection
performance.

4.2 Refinement-based models

Several refinement strategies have been used to
enforce neighborhood constraints or to reduce the
homogeneity of multiple modalities for salient object
detection. For example, in Ref. [142], the saliency
dictionary was refined using an estimated saliency
map. The MA method [145] employs a two-stage
saliency refinement strategy to produce the final
prediction map, so that adjacent superpixels obtain
similar saliency values. LFNet [141] presents an
effective refinement module to reduce the homo-
geneity between different modalities as well to refine
their dissimilarities.

4.3 Light field data

Five representative datasets are widely used in
existing light field salient object detection methods,
as we now describe.

LFSD [140] consists of 100 light fields of different
scenes with 360×360 spatial resolution, captured using
a Lytro light field camera. This dataset contains 60
indoor and 40 outdoor scenes, and most scenes include
only one salient object. Three individuals were asked
to manually segment salient regions in each image,
and ground truth was determined to occur when all
three segmentation results had an overlap of over 90%.
(https://sites.duke.edu/nianyi/publication/saliency-
detection-on-light-field/)

HFUT [145] consists of 255 light fields captured
using a Lytro camera. Most scenes contain multiple
objects at different locations and scales, with
complex background clutter. (https://github.com/
pencilzhang/HFUT-Lytro-dataset)

DUTLF-FS [151] consists of 1465 samples, 1000
for use as a training set, and 465 for a test set. The
resolution of each image is 600 × 400. This dataset
contains several challenges, including low contrast
between salient objects and cluttered backgrounds,
multiple disconnected salient objects, and dark and
bright lighting conditions. (https://github.com/
OIPLab-DUT/ICCV2019 Deeplightfield Saliency)

DUTLF-MV [152] consists of 1580 samples, 1100
for training and the remainder for testing. Images
were captured by a Lytro Illum camera, and each light
field consists of multi-view images and corresponding
ground truth. (https://github.com/OIPLab-DUT/
IJCAI2019-Deep-Light-Field-Driven-Saliency-Detection-
from-A-Single-View)

Lytro Illum [156] consists of 640 light fields and
the corresponding per-pixel ground-truth saliency
maps. It includes several challenging factors, e.g.,
inconsistent illumination conditions, and small
salient objects existing in a similar or cluttered
background. (https://github.com/pencilzhang/MAC-
light-field-saliency-net)

5 Model evaluation and analysis
5.1 Evaluation metrics

We briefly review several popular metrics for salient
object detection evaluation: precision-recall (PR), F-
measure [59, 157], mean absolute error (MAE) [158],
structural measure (S-measure) [159], and enhanced-
alignment measure (E-measure) [160].

PR. Given a saliency map S, we can convert it to
a binary mask M , and then compute the precision P

and recall R by comparing M with a ground-truth
map G:

P =
|M ∩ G|

|M | , R =
|M ∩ G|

|G| (1)

A popular strategy is to partition the saliency map
S using a set of thresholds (from 0 to 255). For
each threshold, we calculate a pair of recall and
precision scores, and then combine them to obtain
a PR curve that describes the performance of the
model as threshold varies.
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F-measure (Fβ). The F-measure takes into
account both precision and recall in a single measure,
using the weighted harmonic mean:

Fβ =
(
1 + β2) PR

β2P + R
(2)

where β2 is set to 0.3 to emphasize precision [157].
We may again vary threshold and compute the F-
measure, yielding a set of F-measure values, from
which we report the maximal or average Fβ.

MAE. This measures the average pixel-wise
absolute error between a saliency map S and a ground
truth map G for all pixels. It can be defined by

MAE =
1

WH

W∑

i=1

H∑

i=1
|Si,j − Gi,j | (3)

where W and H denote the width and height of the
map, respectively. MAE values are normalized to [0, 1].

S-measure (Sα). To capture the importance of
the structural information in an image, Sα [159] is
used to assess the structural similarity between the
regional perception (Sr) and object perception (So).
Thus, Sα can be defined by

Sα = αSo + (1 − α) Sr (4)
where α ∈ [0, 1] is a weight. We set α = 0.5 as the
default, as suggested by Fan et al. [159].

E-measure (Eφ). Eφ [160] was proposed based
on cognitive vision studies to capture image-level
statistics and local pixel matching information. Thus,
Eφ can be defined by

Eφ =
1

WH

W∑

i=1

H∑

i=1
φFM (i, j) (5)

where φFM denotes the enhanced-alignment matrix [160].

5.2 Performance comparison and analysis

5.2.1 Overall evaluation
To quantify the performance of different models,
we conducted a comprehensive evaluation of 24
representative RGB-D based salient object detection
models, including nine traditional methods: LHM
[51], ACSD [56], DESM [49], GP [50], LBE [57],
DCMC [36], SE [37], CDCP [84], CDB [95], and
fifteen deep learning-based methods: DF [52], PCF
[92], CTMF [58], CPFP [53], TANet [103], AFNet
[106], MMCI [55], DMRA [54], D3Net [38], SSF [39],
A2dele [40], S2MA [41], ICNet [42], JL-DCF [43],
and UC-Net [44]. We report the mean values of Sα

and MAE across the five datasets (STERE [139],
NLPR [51] , LFSD [140], DES [49], and SIP [38])
for each model in Fig. 5. Better models appear
in the upper left corner (i.e., with larger Sα and
smaller MAE). From Fig. 5, we may make following
observations:
• Traditional versus deep learning models.

Compared to traditional RGB-D based salient
object detection models, deep learning methods
obtain significantly better performance. This
confirms the powerful feature learning ability of
deep networks.

Fig. 5 Comprehensive evaluation of 24 representative RGB-D based salient object detection models: LHM [51], ACSD [56], DESM [49],
GP [50], LBE [57], DCMC [36], SE [37], CDCP [84], CDB [95], DF [52], PCF [92], CTMF [58], CPFP [53], TANet [103], AFNet [106], MMCI [55],
DMRA [54], D3Net [38], SSF [39], A2dele [40], S2MA [41], ICNet [42], JL-DCF [43], and UC-Net [44]. For each, we report the mean values of
Sα and MAE across five datasets: STERE [139], NLPR [51], LFSD [140], DES [49], and SIP [38]. Better models appear in the upper left corner
(i.e., with larger Sα and smaller MAE). Red diamonds: deep models. Green circles: traditional models.
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• Comparison of deep models. Among the deep
learning-based models, D3Net [38], JL-DCF [43],
UC-Net [44], SSF [39], ICNet [42], and S2MA [41]
obtain the best performance.

Figures 6 and 7 show PR and F-measure curves
for the 24 representative RGB-D based salient object
detection models, for eight datasets: STERE [139],
NLPR [51], LFSD [140], DES [49], SIP [38], GIT [47],
SSD [85] , and NJUD [56]). Note that there are 1000,
300, 100, 135, 929, and 80 test samples for NLPR,
LFSD, DES, SIP, GIT, and SSD, respectively. For
the NJUD [56] dataset, there are 485 test images for
CPFP [53], S2MA [41], ICNet [42], JL-DCF [43], and
UC-Net [44], and 498 testing images for all other models.

To understand the best six models in depth, we
discuss their main advantages below.

D3Net [38] consists of two key components, a
three-stream feature learning module and a depth
purifier unit. The three-stream feature learning

module has three subnetworks: RgbNet, RgbdNet,
and DepthNet. RgbNet and DepthNet are used
to learn high-level feature representations for RGB
and depth images, respectively, while RgbdNet is
used to learn their fused representations. This three-
stream feature learning module can capture modality-
specific information as well as the correlation between
modalities. Balancing the two aspects is very
important for multi-modal learning and helps to
improve the salient object detection performance.
The depth purifier unit acts as a gate to explicitly
remove low-quality depth maps, whose effects other
existing methods often do not consider. Because low-
quality depth maps can hinder fusion of RGB images
and depth maps, the depth purifier unit can ensure
effective multi-modal fusion to achieve robust salient
object detection.

JL-DCF [43] has two key components, for joint
learning (JL) and densely-cooperative fusion (DCF).

Fig. 6 PR curves for 24 RGB-D based models, for the STERE [139], NLPR [51], LFSD [140], DES [49], SIP [38], GIT [47], SSD [85], and
NJUD [56] datasets.
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Fig. 7 F-measures under different thresholds for 24 RGB-D based models on the STERE [139], NLPR [51], LFSD [140], DES [49], SIP [38],
GIT [47], SSD [85], and NJUD [56] datasets.

Specifically, the JL module is used to learn robust
saliency features, while the DCF module is used for
complementary feature discovery. This method uses
a middle-fusion strategy to extract deep hierarchical
features from RGB images and depth maps, in which
cross-modal complementarity is effectively exploited
to achieve accurate prediction.

UC-Net [44], instead of producing a single saliency
prediction, produces multiple predictions by modeling
the distribution of the feature output space as a
generative model conditioned on RGB-D images.
Because each person has specific preferences in
labeling a saliency map, the stochastic characteristic
of saliency may not be captured when a single
saliency map is produced for an image pair using
a deterministic learning pipeline. The strategy in
this model can take into account human uncertainty
in saliency annotation. Moreover, depth maps can
suffer from noise. Directly fusing RGB images and

depth maps can cause the network to fit this noise.
Therefore, a depth correction network, designed as
an auxiliary component, is used to refine depth
information with a semantic guided loss. All of
these key components help to improve salient object
detection performance.

In SSF [39], a complementary interaction module
(CIM) is developed to explore discriminative cross-
modal complementarity and to fuse cross-modal
features, where region-wise attention is introduced
to supplement rich boundary information for each
modality. A compensation-aware loss is used to
improve the network’s confidence for hard samples
in unreliable depth maps. These key components
enable the proposed model to effectively explore and
establish the complementarity of cross-modal feature
representations, while at the same time reducing the
negative effects of low-quality depth maps, boosting
salient object detection performance.
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ICNet [42] uses an information conversion module
to interactively and adaptively explore correlations
between high-level RGB and depth features. A
cross-modal depth-weighted combination block is
introduced to enhance the differences between the
RGB and depth features at each level, ensuring that
the features are treated differently. ICNet exploits
the complementarity of cross-modal features, as well
as exploring continuity of cross-level features, both
of which help to achieve accurate predictions.

S2MA [41] uses a self-mutual attention module
(SAM) to fuse RGB and depth images, integrating self-
attention and mutual attention to propagate context
more accurately. The SAM can provide additional
complementary information from multi-modal data
to improve salient object detection performance,
overcoming the limitations of only using self-attention,
i.e., a single modality. To reduce the effects of low-
quality depth cues (due to e.g., noise), a selection
mechanism is used to reweight the mutual attention.
This can filter out unreliable information, resulting
in more accurate saliency prediction.
5.2.2 Attribute-based evaluation
To investigate the influence of different factors, such
as object scale, background clutter, number of salient
objects, indoor or outdoor scene, background objects,
and lighting conditions, we carried out diverse
attribute-based evaluations on several representative
RGB-D based salient object detection models.

Object scale. To characterize the scale of a salient
object, we compute the ratio of the size of the salient
area to that of the whole image. We define three
object scales: small, when the ratio is less than
0.1, large, when the ratio is greater than 0.4, and
medium, otherwise. For this evaluation, we built
a hybrid dataset with 2464 images collected from

STERE [139], NLPR [51] , LFSD [140], DES [49],
and SIP [38], where 24%, 69.2%, and 6.8% of
images have small, medium, and large salient objects
respectively. The constructed hybrid dataset can
be found at https://github.com/taozh2017/RGBD-
SODsurvey. Some sample images with objects of
different scales are shown in Fig. 8. The results of the
attribute-based comparison w.r.t. object scale are
shown in Table 8. It can be observed that all methods
perform best at detecting small salient objects and
worst for large salient objects. The three most recent
models: JL-DCF [43], UC-Net [44], and S2MA [41],
achieve the best performance. D3Net [38], SSF [39],
A2dele [40], and ICNet [42] also obtain promising
performance.

Background clutter. It is difficult to directly
characterize background clutter. Since classic
salient object detection methods tend to use prior
information or color contrast to locate salient objects,
they often fail in the presence of complex backgrounds.

Fig. 8 Images with objects at different scales. Scale ratios are given
in yellow.

Table 8 Attribute-based study w.r.t. salient object scales. 24 representative RGB-D based salient object detection models (9 traditional, 15
deep learning-based) are compared in terms of MAE and Sα. The three best results are shown in red, blue, and green
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Small 0.065 0.149 0.319 0.098 0.177 0.108 0.056 0.128 0.073 0.087 0.042 0.065 0.044 0.041 0.046 0.051 0.030 0.033 0.031 0.032 0.035 0.036 0.032 0.034

Medium 0.178 0.183 0.287 0.180 0.210 0.158 0.150 0.173 0.179 0.152 0.068 0.107 0.055 0.067 0.095 0.079 0.069 0.053 0.045 0.054 0.052 0.052 0.041 0.042

Large 0.403 0.311 0.310 0.377 0.261 0.305 0.364 0.308 0.385 0.310 0.112 0.183 0.093 0.118 0.213 0.130 0.181 0.102 0.105 0.114 0.088 0.104 0.085 0.072

Overall 0.166 0.184 0.296 0.173 0.206 0.156 0.142 0.171 0.167 0.147 0.065 0.102 0.055 0.065 0.091 0.076 0.067 0.052 0.046 0.053 0.051 0.052 0.041 0.042

S
α

Small 0.624 0.668 0.517 0.650 0.645 0.700 0.775 0.661 0.666 0.745 0.847 0.789 0.840 0.846 0.792 0.832 0.860 0.879 0.876 0.859 0.877 0.882 0.881 0.883

Medium 0.543 0.732 0.658 0.598 0.723 0.727 0.676 0.683 0.585 0.730 0.863 0.805 0.877 0.862 0.779 0.859 0.838 0.888 0.893 0.865 0.893 0.892 0.906 0.901

Large 0.386 0.630 0.686 0.450 0.731 0.604 0.479 0.586 0.424 0.597 0.838 0.761 0.855 0.827 0.682 0.830 0.734 0.846 0.837 0.815 0.863 0.845 0.859 0.876

Overall 0.552 0.710 0.626 0.601 0.705 0.712 0.686 0.671 0.593 0.725 0.857 0.798 0.867 0.856 0.776 0.851 0.836 0.883 0.885 0.860 0.887 0.886 0.897 0.895
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Thus, in this evaluation, we utilize five traditional
salient object detection methods: BSCA [161], CLC
[162], MDC [163], MIL [164], and WFD [165], to first
detect salient objects in various images, and then
categorise these images as having simple or complex
backgrounds according to the results. Specifically, we
first constructed a hybrid dataset with 1400 images
collected from three datasets (STERE [139], NLPR
[51], and LFSD [140]). Then, we applied the five
models to this dataset and obtained Sα values for
each image, which we used to characterize images as
follows. If all Sα values are higher than 0.9, the image
is considered to have a simple background. If all Sα

values are lower than 0.6, the image is said to have
a complex background. The remaining images are
deemed to be uncertain. Some example images with
these three types of background clutter are shown in
Fig. 9. The constructed hybrid dataset can be found
at https://github.com/taozh2017/RGBD-SODsurvey.
The results of the attribute-based comparison w.r.t.
background clutter are shown in Table 9. All models
are worse at salient object detection for images with
complex backgrounds than simple ones. Among the
representative models, JL-DCF [43], UC-Net [44],
and SSF [39] achieve the three best results. The four
most recent models: D3Net [38], S2MA [41], A2dele
[40], and ICNet [42], obtain better performance than
the other models.

Single and multiple objects. For this
evaluation, we constructed a hybrid dataset with 1229
images from the NLPR [51] and SIP [38] datasets.
Some example images with single and multiple salient
objects are shown in Fig. 10. The comparison results
are shown in Fig. 11. From the results, we can see
that it is easier to detect single salient object than
multiple ones.

Fig. 9 Images with three types of background clutter.

Fig. 10 Images with single or multiple salient objects.

Table 9 Attribute-based study w.r.t. background clutter. 24 representative RGB-D based salient object detection models (9 traditional, 15
deep learning-based) are compared in terms of MAE and Sα. The three best results are shown in red, blue, and green

Traditional models Deep learning-based models
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Simple 0.100 0.163 0.219 0.150 0.202 0.056 0.084 0.028 0.136 0.045 0.031 0.053 0.018 0.033 0.031 0.041 0.028 0.017 0.012 0.010 0.016 0.013 0.014 0.013

Uncertain 0.164 0.195 0.294 0.175 0.210 0.140 0.133 0.139 0.159 0.129 0.062 0.081 0.050 0.059 0.075 0.070 0.058 0.045 0.043 0.043 0.049 0.041 0.037 0.037

Complex 0.159 0.190 0.349 0.180 0.205 0.190 0.147 0.236 0.143 0.163 0.085 0.110 0.079 0.077 0.108 0.094 0.087 0.071 0.065 0.070 0.072 0.079 0.063 0.065

Overall 0.160 0.193 0.295 0.174 0.209 0.140 0.132 0.141 0.157 0.127 0.063 0.082 0.051 0.059 0.076 0.070 0.059 0.046 0.043 0.043 0.049 0.043 0.038 0.038

S
α

Simple 0.781 0.787 0.761 0.694 0.748 0.930 0.856 0.941 0.704 0.944 0.944 0.913 0.958 0.937 0.922 0.933 0.935 0.960 0.966 0.965 0.965 0.969 0.961 0.962

Uncertain 0.572 0.694 0.638 0.606 0.695 0.736 0.723 0.727 0.610 0.774 0.873 0.853 0.882 0.873 0.818 0.868 0.854 0.900 0.894 0.884 0.895 0.910 0.909 0.907

Complex 0.496 0.627 0.509 0.545 0.616 0.577 0.605 0.487 0.575 0.627 0.782 0.742 0.787 0.790 0.694 0.768 0.751 0.822 0.815 0.786 0.813 0.808 0.829 0.833

Overall 0.576 0.693 0.633 0.606 0.691 0.732 0.720 0.718 0.612 0.770 0.869 0.847 0.878 0.869 0.813 0.863 0.850 0.896 0.891 0.879 0.892 0.904 0.904 0.904
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Fig. 11 Attribute-based study w.r.t. number of salient objects (single or multiple). Comparative results for 24 representative RGB-D based
salient object detection models: LHM [51], ACSD [56], DESM [49], GP [50], LBE [57], DCMC [36], SE [37], CDCP [84], CDB [95], DF [52],
PCF [92], CTMF [58], CPFP [53], TANet [103], AFNet [106], MMCI [55], DMRA [54], D3Net [38], SSF [39], A2dele [40], S2MA [41], ICNet [42],
JL-DCF [43], and UC-Net [44] in terms of MAE (above) and Sα (below).

Indoors and outdoors. We evaluated the per-
formance of different RGB-D based salient object
detection models on indoor and outdoor scenes. For
this evaluation, we constructed a hybrid dataset
collected from the DES [49], NLPR [51], and
LFSD [140] datasets. The results are shown in Fig. 12.
It can be seen that most models struggle more to
detect salient objects in indoor scene than outdoor
scenes. This is possibly because indoor environments
often have varying lighting conditions.

Background objects. We evaluated the per-
formance of RGB-D based salient object detection
models in the presence of different backgrounds. We
used the SIP dataset [38], and split it into eight
categories: car, barrier, flower, grass, road, sign, tree,
and other. The results of the comparison are shown in
Table 10. All methods obtain diverse performances
with different background objects. Among the 24
representative RGB-D based models, JL-DCF [43],
UC-Net [44], and SSF [39] achieve the three best
results. The four most recent models, i.e., D3Net [38],
S2MA [41], A2dele [40], and ICNet [42] obtain better
performance than the others.

Lighting conditions. The performance of salient
object detection methods can be affected by the
lighting conditions. To determine the effects on
different RGB-D based salient object detection
models, we conducted an evaluation on the SIP
dataset [38], whose images we split into two categories:
sunny and low-light. The results of the comparison
are shown in Table 11. Low light negatively
impacts salient object detection performance. Among
the models compared, UC-Net [44] obtained the
best performance under sunny conditions, while JL-
DCF [43] achieved the best result under low light.

Visual comparison. We further report saliency
maps generated for various challenging scenes to
allow visualization of the performance of different
RGB-D based salient object detection models.
Figures 13 and 14 show some representative examples
for two classic non-deep methods: DCMC [36] and
SE [37], and eight state-of-the-art CNN-based models:
DMRA [54], D3Net [38], SSF [39], A2dele [40], S2MA
[41], ICNet [42], JL-DCF [43], and UC-Net [44]. Row
1 shows a small object, while row 2 shows a large
object. Rows 3 and 4 contain complex backgrounds
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Fig. 12 Attribute-based study w.r.t. indoor vs. outdoor environments. Comparative results for 24 representative RGB-D based salient
object detection models: LHM [51], ACSD [56], DESM [49], GP [50], LBE [57], DCMC [36], SE [37], CDCP [84], CDB [95], DF [52], PCF [92],
CTMF [58], CPFP [53], TANet [103], AFNet [106], MMCI [55], DMRA [54], D3Net [38], SSF [39], A2dele [40], S2MA [41], ICNet [42],
JL-DCF [43], and UC-Net [44] in terms of MAE (above) and Sα (below).

Table 10 Attribute-based study w.r.t. background objects: car, barrier, flower, grass, road, sign, tree, and other. The methods compared
including 24 representative RGB-D based salient object detection models (9 traditional and 15 deep learning-based) evaluated on the SIP
dataset [38] in terms of MAE and Sα. The three best results are shown in red, blue, and green

Traditional models Deep learning-based models

C
at

eg
or

ie
s

L
H

M
[5

1]

A
C

S
D

[5
6]

D
E

S
M

[4
9]

G
P

[5
0]

L
B

E
[5

7]

D
C

M
C

[3
6]

S
E

[3
7]

C
D

C
P

[8
4]

C
D

B
[9

5]

D
F

[5
2]

P
C

F
[9

2]

C
T

M
F

[5
8]

C
P

F
P

[5
3]

T
A

N
et

[1
03

]

A
F

N
et

[1
06

]

M
M

C
I

[5
5]

D
M

R
A

[5
4]

D
3

N
et

[3
8]

S
S

F
[3

9]

A
2d

el
e

[4
0]

S
2

M
A

[4
1]

IC
N

et
[4

2]

JL
-D

C
F

[4
3]

U
C

-N
et

[4
4]

M
A

E

Car 0.158 0.163 0.301 0.159 0.201 0.185 0.154 0.202 0.171 0.171 0.085 0.134 0.094 0.084 0.101 0.093 0.069 0.061 0.063 0.078 0.055 0.067 0.058 0.057

Barrier 0.197 0.177 0.308 0.180 0.201 0.196 0.176 0.251 0.203 0.202 0.073 0.149 0.060 0.078 0.128 0.089 0.093 0.068 0.054 0.074 0.057 0.075 0.052 0.053

Flower 0.105 0.122 0.306 0.099 0.186 0.158 0.063 0.141 0.101 0.132 0.091 0.075 0.133 0.100 0.090 0.081 0.046 0.095 0.107 0.051 0.104 0.025 0.054 0.075

Grass 0.164 0.161 0.279 0.155 0.184 0.167 0.138 0.182 0.176 0.167 0.041 0.110 0.035 0.048 0.088 0.059 0.056 0.037 0.030 0.046 0.033 0.043 0.023 0.029

Road 0.189 0.167 0.281 0.176 0.187 0.181 0.164 0.225 0.189 0.169 0.070 0.140 0.054 0.072 0.125 0.078 0.093 0.059 0.049 0.072 0.050 0.065 0.045 0.044

Sign 0.107 0.126 0.268 0.110 0.184 0.126 0.079 0.134 0.118 0.096 0.058 0.101 0.063 0.060 0.077 0.083 0.051 0.055 0.051 0.054 0.048 0.054 0.050 0.057

Tree 0.192 0.193 0.310 0.190 0.241 0.194 0.183 0.230 0.219 0.205 0.083 0.157 0.083 0.091 0.132 0.109 0.106 0.083 0.067 0.074 0.092 0.097 0.063 0.071

Other 0.246 0.217 0.329 0.224 0.229 0.216 0.229 0.274 0.233 0.233 0.106 0.177 0.111 0.111 0.170 0.124 0.140 0.095 0.083 0.099 0.100 0.100 0.084 0.086

Overall 0.184 0.172 0.298 0.173 0.200 0.186 0.164 0.224 0.192 0.185 0.071 0.139 0.064 0.075 0.118 0.086 0.085 0.063 0.053 0.070 0.057 0.069 0.049 0.051

S
α

Car 0.516 0.731 0.590 0.603 0.714 0.671 0.591 0.613 0.546 0.631 0.811 0.726 0.786 0.807 0.736 0.813 0.817 0.856 0.845 0.804 0.870 0.846 0.855 0.859

Barrier 0.497 0.727 0.609 0.575 0.728 0.672 0.612 0.553 0.552 0.643 0.837 0.698 0.860 0.831 0.708 0.830 0.792 0.855 0.874 0.821 0.871 0.848 0.876 0.875

Flower 0.477 0.775 0.573 0.673 0.703 0.707 0.772 0.667 0.639 0.750 0.771 0.738 0.714 0.760 0.688 0.785 0.824 0.789 0.768 0.845 0.804 0.901 0.856 0.811

Grass 0.537 0.756 0.643 0.605 0.760 0.728 0.683 0.672 0.559 0.672 0.908 0.770 0.908 0.899 0.780 0.888 0.876 0.917 0.924 0.878 0.928 0.910 0.939 0.924

Road 0.521 0.739 0.634 0.598 0.751 0.685 0.641 0.595 0.576 0.680 0.851 0.722 0.871 0.848 0.705 0.847 0.807 0.873 0.885 0.832 0.885 0.868 0.889 0.892

Sign 0.578 0.786 0.634 0.628 0.719 0.745 0.761 0.714 0.615 0.757 0.855 0.756 0.833 0.857 0.771 0.818 0.848 0.849 0.849 0.842 0.871 0.861 0.859 0.840

Tree 0.505 0.699 0.606 0.577 0.661 0.648 0.600 0.588 0.543 0.625 0.802 0.679 0.804 0.778 0.691 0.779 0.748 0.806 0.837 0.807 0.800 0.788 0.848 0.825

Other 0.460 0.687 0.594 0.532 0.706 0.669 0.563 0.554 0.542 0.600 0.786 0.677 0.774 0.782 0.647 0.790 0.722 0.800 0.828 0.785 0.809 0.799 0.821 0.823

Overall 0.511 0.732 0.616 0.588 0.727 0.683 0.628 0.595 0.557 0.653 0.842 0.716 0.850 0.835 0.720 0.833 0.806 0.860 0.874 0.828 0.872 0.854 0.880 0.875
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Table 11 Attribute-based study w.r.t. light conditions (sunny vs. low-light). The comparison methods include 24 representative RGB-D
based salient object detection models (9 traditional models and 15 deep learning-based models) evaluated on the SIP dataset [38] in terms of
MAE and Sα. The three best results are shown in red, blue, and green fonts

Traditional models Deep learning-based models
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Sunny 0.182 0.171 0.294 0.171 0.200 0.183 0.160 0.218 0.190 0.181 0.069 0.137 0.062 0.075 0.116 0.085 0.083 0.062 0.052 0.068 0.057 0.068 0.048 0.051

Low-light 0.198 0.178 0.323 0.187 0.201 0.207 0.193 0.268 0.208 0.211 0.078 0.154 0.073 0.076 0.130 0.091 0.103 0.067 0.059 0.080 0.058 0.081 0.059 0.055

Overall 0.184 0.172 0.298 0.173 0.200 0.186 0.164 0.224 0.192 0.185 0.071 0.139 0.064 0.075 0.118 0.086 0.085 0.063 0.053 0.070 0.057 0.069 0.049 0.051

S
α

Sunny 0.516 0.733 0.622 0.593 0.728 0.690 0.639 0.607 0.560 0.660 0.843 0.718 0.852 0.834 0.723 0.833 0.811 0.861 0.875 0.831 0.872 0.856 0.882 0.876

low-light 0.481 0.721 0.573 0.554 0.722 0.635 0.556 0.515 0.543 0.610 0.838 0.701 0.838 0.837 0.700 0.832 0.775 0.855 0.867 0.810 0.871 0.839 0.867 0.871

Overall 0.511 0.732 0.616 0.588 0.727 0.683 0.628 0.595 0.557 0.653 0.842 0.716 0.850 0.835 0.720 0.833 0.806 0.860 0.874 0.828 0.872 0.854 0.880 0.875

Fig. 13 Visual comparison of two classical non-deep methods: DCMC [36] and SE [37], and three state-of-the-art CNN-based models:
DMRA [54], D3Net [38], SSF [39].

and boundaries respectively. Rows 5 and 6 contain
multiple salient objects. Row 7 has low light. Row
8 has a coarse depth map with very inaccurate
object boundaries, which could degrade salient object

detection performance. It can be observed that deep
models perform better than non-deep models on these
challenging scenes, confirming the power of deep
features over handcrafted ones. D3Net [38], S2MA
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Fig. 14 Visual comparison of five state-of-the-art CNN-based models: A2dele [40], S2MA [41], ICNet [42], JL-DCF [43], and UC-Net [44].

[41], JL-DCF [43], and UC-Net [44] perform better
than other deep models.

6 Challenges and open directions
6.1 Effects of imperfect depth

6.1.1 Effects of low-quality depth maps
Depth maps with detailed spatial information have
proven beneficial in detecting salient objects against
cluttered backgrounds, while the depth quality
directly affects salient object detection performance.
The quality of depth maps varies tremendously
across different scenarios due to the nature of depth
sensors, posing a challenge when trying to reduce
the effects of low-quality depth maps. However,
most existing methods directly fuse RGB images

and original raw data from depth maps, without
considering the effects of low-quality depth maps.
There are a few notable exceptions. For example, in
Ref. [53], a contrast-enhanced network was proposed
to learn enhanced depth maps, with much higher
contrast than the original depths. In Ref. [39], a
compensation-aware loss was designed to pay more
attention to hard samples containing unreliable depth
information. D3Net [38] uses a depth purifier unit
to classify depth maps as reasonable or low-quality.
It also acts as a gate to filter out low-quality depth
maps. However, such methods often employ a two-
step strategy to achieve depth enhancement and
multi-modal fusion [39, 53] or an independent gate
operation to remove poor depths, which could lead
to a suboptimal problem. There is thus a need to
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develop an end-to-end framework that can achieve
depth enhancement or adaptively assign low weights
to poor depth maps during multi-modal fusion, which
would be more helpful in reducing the effects of
low-quality depth maps and boosting salient object
detection performance.
6.1.2 Incomplete depth maps
In RGB-D datasets, it is inevitable for there to be
some low-quality depth maps due to the limitations
of the acquisition devices. As previously discussed,
several depth enhancement algorithms have been used
to improve the quality of depth maps. However, depth
maps that suffer from severe noise or blurred edges
are often discarded. In this case, we have complete
RGB images but some samples without depth maps,
which is similar to the incomplete multi-view modal
learning problem [166–170]. We may call this problem
incomplete RGB-D based salient object detection. As
current models only focus on salient object detection
using complete RGB images and depth maps, we
believe this could be a new direction for RGB-D
salient object detection.
6.1.3 Depth estimation
Depth estimation provides an effective solution to
recover high-quality depths and overcome the effects
of low-quality depth maps. Various depth estimation
approaches [171–174] have been developed, which
could be introduced into the RGB-D based salient
object detection task to improve performance.

6.2 Effective fusion strategies

6.2.1 Adversarial learning-based fusion
It is important to effectively fuse RGB images
and depth maps for RGB-D based salient object
detection. Existing models often employ different
fusion strategies (early fusion, middle fusion, or
late fusion) to exploit the correlations between
RGB images and depth maps. Recently, generative
adversarial networks (GANs) [175] have gained
widespread attention for the saliency detection task
[176, 177]. In common GAN-based salient object
detection models, a generator takes RGB images
as inputs and generates the corresponding saliency
maps, while a discriminator determines whether a
given image is synthetic or ground-truth. GAN-
based models could easily be extended to RGB-D
salient object detection, which could help to boosting
performance due to their superior feature learning

ability. Moreover, GANs could also be used to learn
common feature representations for RGB images and
depth maps [114], which could help with feature or
saliency map fusion and further boost salient object
detection performance.
6.2.2 Attention-induced fusion
Attention mechanisms have been widely applied to
various deep learning-based tasks [178–181], allowing
networks to selectively pay attention to a subset of
regions for extracting powerful and discriminative
features. Co-attention mechanisms have also been
developed to explore the underlying correlations
between multiple modalities. They are widely studied
in visual question answering [182, 183] and video
object segmentation [184]. Thus, for the RGB-D
based salient object detection task, we could also
develop attention-based fusion algorithms to exploit
correlations between RGB images and depth cues to
improve the performance.

6.3 Different supervision strategies

Existing RGB-D models often use a fully supervised
strategy to learn saliency prediction models. However,
annotating pixel-level saliency maps is a tedious and
time-consuming procedure. To alleviate this issue,
there has been increasing interest in weakly and
semi-supervised learning, which have been applied to
salient object detection [185–189]. Semi- and weak
supervision could also be introduced into RGB-D
salient object detection, by leveraging image-level tags
[185] and pseudo pixel-wise annotations [188, 190], to
improve detection performance. Furthermore, several
studies [191, 192] have suggested that models pre-
trained using self-supervision can effectively be used
to achieve better performance. Therefore, we could
train saliency prediction models on large amounts of
annotated RGB images in a self-supervised manner
and then transfer the pre-trained models to the RGB-
D salient object detection task.

6.4 Dataset collection

6.4.1 Dataset size
Although there are nine public RGB-D datasets for
salient object detection, their size is quite limited,
with the largest, NJUD [56], containing about 2000
samples. When compared to other RGB-D datasets
for generic object detection or action recognition [193,
194], the RGB-D datasets for salient object detection
are very small. Thus, it is essential to develop new
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large-scale RGB-D datasets to serve as baselines for
future research.
6.4.2 Complex backgrounds & task-driven datasets
Most existing RGB-D datasets contain images with
one salient object, or multiple objects but against
a relatively clean background. However, real-world
applications often involve much more complicated
situations, e.g., occlusion, appearance change, and
low illumination, which can reduce salient object
detection performance. Thus, collecting images with
complex backgrounds is critical to improving the
generalizability of RGB-D salient object detection
models. Moreover, for some tasks, images with
specific salient object(s) must be collected. For
example, road sign recognition is important in driver
assistance systems, requiring images with road signs
to be collected. Thus, it is essential to construct
task-driven RGB-D datasets like SIP [38].

6.5 Model design for real-world scenarios

Some smart phones can capture depth maps (e.g.,
images in the SIP dataset were captured using a
Huawei Mate10). Thus it is feasible to perform
salient object detection for real-world applications
on smart devices. However, most existing methods
include complicated and deep DNNs to increase model
capacity and for better performance, preventing
them from being directly applied to such platforms.
To overcome this, model compression [195, 196]
techniques could be used to learn compact RGB-D
based salient object detection models with promising
detection accuracy. Moreover, JL-DCF [43] utilizes a
shared network to locate salient objects using RGB
and depth views, which largely reduces the model
parameters and makes real-world applications feasible.

6.6 Extension to RGB-T

In addition to RGB-D salient object detection,
there are several other methods that fuse different
modalities for better detection, such as RGB-T salient
object detection, which integrates RGB and thermal
infrared data. Thermal infrared cameras can capture
the heat radiation emitted from any object, making
thermal infrared images insensitive to illumination
conditions [197]. Therefore, thermal images can
provide supplementary information to improve salient
object detection when images of salient objects suffer
from varying light, glare, or shadows. Some RGB-T
models [197–205] and datasets (VT821 [199], VT1000

[203], and VT5000 [205]) have already been proposed
over the past few years. Like for RGB-D salient
object detection, the key aim of RGB-T salient
object detection is to fuse RGB and thermal infrared
images and exploit the correlations between the two
modalities. Thus, several advanced multi-modal
fusion technologies in RGB-D salient object detection
could be extended to the RGB-T salient object
detection task.

7 Conclusions
This paper has presented the first comprehensive
review of RGB-D based salient object detection
models. We have reviewed the models from different
perspectives, and summarized popular RGB-D salient
object detection datasets as well as providing details
of each. As light fields also provide depth information,
we have also reviewed popular light field salient object
detection models and related benchmark datasets.
We have comprehensively evaluated 24 representative
RGB-D based salient object detection models, as well
as performing an attribute-based evaluation based on
new datasets. Moreover, we have discussed several
challenges and highlighted open directions for future
research. In addition, we have briefly discussed
the extension to RGB-T salient object detection to
improve robustness to lighting conditions. Although
RGB-D based salient object detection has made
notable progress over the past several decades, there
is still significant room for improvement. We hope
this survey will generate more interest in this field.
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