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ABSTRACT A detection model of Internet of Things encrypted traffic based on edge intelligence is 

proposed in the paper, which can reduce the communication times of distributed Internet of Things 

gateways in the process of edge intelligence as well as the encrypted traffic detection model establishment 

time, in order to solve the problems that it is difficult to carry out efficient classification and accurate 

identification of the encrypted traffic of Internet of Things. In this paper, four new classification and 

identification methods for encrypted traffic are put forward, namely time-sequence behavior analysis, 

dynamic behavior analysis, key behavior analysis and two-round filtering analysis. The experimental results 

show that when the sample size is 1600, the encrypted traffic detection model establishment time is less 

than 100 seconds, and the accuracy of all the four new traffic classification methods is more than 92% and 

the recall rates of them are more than 83%. 

INDEX TERMS Internet of things, edge intelligence, encrypted traffic, identification and classification, 

IoT gateway. 

I. INTRODUCTION 

According to recent reports, the popular communication 

protocols of Internet of Things (IoT), such as message 

queuing telemetry transport (MQTT) and advanced message 

queuing protocol (AMQP), use transport layer security (TLS) 

protocol to prevent data breaches during transmission [1, 2]. 

Traffic encryption has become one of the important means to 

protect the privacy of the IoT. It has even become a 

mandatory requirement of the law even in financial, 

transportation and other specific industries. 

However, one coin has its two sides. Traffic encryption 

brings vulnerabilities into IoT. The malwares are 

concealing in the increasing networked applications by 

encrypting their traffics. It is reported that over 30% of the 

malwares utilize encryption protocols [3, 4], which leads to 

the failure of the traditional malwares detection based on 

deep packet inspection (DPI) technologies. 

The common practice of identifying encryption protocols 

in IoT is to thoroughly analyze the encapsulation formats 

and interaction processes of the protocols, find out the 

characteristics and rules that can be used to distinguish 

them, and learn the most distinctive characteristics for each 

application protocol in encrypted traffics [5, 6]. The 

characteristics of an encrypted traffic are in accordance 

with the used encryption protocol. It is feasible to model the 

statistical characteristics of the encrypted traffics by 

machine learning to identify the corresponding encryption 

protocols. This has been a research hotspot since content 

analysis of the traffics is not required at all. In [7], several 

methods are proposed to identify encrypted traffics based 

on machine learning and describe their application 

scenarios. 

However, machine learning has several disadvantages in 

encrypted traffic identification. Firstly, the characteristics 

of an encryption protocol are usually not unique in the 
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whole network environment, and other protocols also have 

similar characteristics, which significantly reduce the 

performance of machine leaning in identifying encryption 

protocols in backbone networks. Secondly, the 

establishment time of the detection model is greatly 

depended on the machine learning algorithm. There are 

over 100 available characteristics [8] and over a dozen 

machine learning algorithms as well [9]. It requires a lot of 

efforts to decide the most distinctive characteristics for each 

encryption protocol in practical use and to design the model 

with appropriate machine learning algorithm. Finally, it is 

time consuming to for the machine learning models to 

extract the characteristics from the encrypted traffics. Due 

to the complexity of the algorithms, it may be even slower 

than manual characteristic labeling and thus be less 

efficient. 

Cisco Systems Inc. has published several papers in recent 

years on how to identify malwares that use TLS protocol 

without decrypting their traffics, which attract great 

concern in the IoT industry. [10] analyzes the differences 

among the TLS traffics, the DNS traffics and the HTTP 

traffics of legal applications and malwares in millions of 

data flows. And then the distinctive characteristics are 

obtained and formed into training datasets, to get a better 

classifier based on supervised machine learning, whereby 

identify encrypted malware traffic. [11] analyzes thousands 

of samples from 18 malware families, as well as tens of 

thousands of malicious connections from millions of 

encrypted data flows of enterprise networks. The results 

show that the malware traffics are distinct to the legal 

traffics and the malwares usually use older or weaker 

ciphers. Based on the fact, it is possible to identify 

encrypted malware traffics in most situations. In [12], it is 

said that Cisco Systems Inc. adopted deep learning to 

model and classify malware traffics, and sort them into 

different malware families in terms of the traffic 

characteristics, whereby Cisco Systems Inc. claims the 

classification precision can reach 90.3%. 

The studies of Cisco Systems Inc., however, didn’t 

address the deployment of deep learning-based models on 

resource-constrained IoT devices. Edge intelligence 

technology integrates the complementary advantages of 

local computing and high computing by coordinating 

terminal devices with edge servers, so as to significantly 

reduce the delay and energy consumption of deep learning 

model reasoning [13]. Therefore, it is suitable to apply edge 

intelligence to the IoT. In [14], a master-slave structured 

edge intelligence model is proposed, where the IoT 

terminals construct independently a machine learning 

model and upload its updated parameters to the edge severs. 

Those edge severs collect the updated parameters of 

different models from various terminal devices in order to 

update the overall model, and then distribute the updated 

parameters collected from the overall model to users.  This 

model improves the accuracy and efficiency of detecting 

abnormal traffic in the IoT. The edge intelligence-based 

machine learning models also need to be adapted to the 

transmission rate limits of the edge severs. A Gossip 

algorithm for network environments is put forward in [15], 

which can achieve the convergence of the model parameters 

across the distributed terminals through point-to-point data 

exchange. To implement the algorithm in IoT, the IoT 

devices are divided into clusters. The model parameters 

within a cluster are updated with traditional Gossip 

algorithm. The sink nodes are designated for each cluster to 

share the parameters, in order to update the global model. 

The paper studies classification and identification 

technology of Internet of Things encrypted traffic on the 

basis of edge intelligence, and builds an applied 

experimental environment for it. The remainder of this 

paper is organized as follows. Section II describes the 

system model and edge intelligence method. Section III 

presents four novel classification and identification 

methods for IoTs encrypted traffic applications. Section IV 

describes the experimental environment, and carries out 

performance analysis. Section V concludes this paper. 

II. System Model and Edge Intelligence 

The edge intelligence-based encrypted traffic detection 

model is showed in Fig. 1. The sink nodes with high 

communication and computing capabilities are assigned as 

IoT gateways to collect required information from the 

encrypted traffics [16]. IoT gateways provide connectivity 

and usually include remote control and monitoring 

applications. Edge intelligence enables a so-called model 

updating and aggregation process [17], where IoT gateways 

build local machine learning models respectively, share local 

model parameters dynamically in real time and build a global 

model collectively. The updated parameters of the global 

model are then feed to the IoT gateways respectively. 

The distributed IoT gateway uses edge intelligence 

technology to iterate the model parameters time after time 

[18]. Suppose the set of n IoT gateways is N={N1, N2,…, Nn}, 

and the number of samples corresponding to each IoT 

gateway is Di. IoT gateway i calculates the updated 

parameters of the k-th round of iteration as ( )
k

i  , and 

sends the updated parameters to other IoT gateways. Then 

the updated model parameters of the global model go back to 

all IoT gateways. The sum of the gradients uploaded by each 

IoT node is k
N , and the global model executes optimization 

and updates the model parameters according to the aggregate 

gradients received from all IoT gateways. 

Let the optimization algorithm of updating parameters be 

gradient descent algorithm [19], and it goes as 

1k k k
N  

                         (1), 

where α is learning efficiency. It is difficult to obtain θk+1-θk 

in the actual distributed network, while the parameter 
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changes tend to be flat in the process of edge intelligence, 

so θk+1-θk can be approximated as 

1 1

1

( )
D

k k k d k d
d

d

       



                   (2), 

where both ξd and D are constant coefficients. As a matter 

of convenience, assuming
1

d
D

   and D=1, such that  

2 1 2

2
1

1
|| ( ) || || ( ) ||

D
k k d k d

d

dn
   



  



       (3), 

where β is the scale coefficient, which indicates the 

proportion of IoT gateways involved currently in the 

iteration of model parameters. IoT gateways check the 

gradient according to (3), that is, the nodal IoT gateway 

performs self-test after a round of learning ends. If (3) is 

satisfied, the current round of communication is skipped, 

the gradient is accumulated at local level, and the next 

round of learning continues to be carried out. 

A lower bandwidth often increases duration of each round 

of the IoT gateway learning so that the overall learning time 

is prolonged, while the edge intelligence method proposed in 

the paper has less dependence on network bandwidth. The 

number of edge intelligence rounds affected by bandwidth 

reduces as the frequency of communication interaction in the 

process of gradient descent-based edge intelligence goes 

down. 

With data mirroring, filtering and preprocessing 

technologies, the IoT gateways are able to process Gigabit-

/10-Gigabit-class IoT traffics in real time [20]. The 

preprocessing module of the model filters the collected 

traffics utilizing DPI technologies. It removes non-encrypted 

traffics through an information entropy algorithm for 

encrypted traffic identification based on statistical testing 

[21], reducing workloads of analysis and storage in the 

following processes. Then, based on MapReduce parallel 

computing architecture [22], the modules classified the 

encrypted traffics and form them into n parallel queues for 

further processing. The MapReduce architecture is efficient 

in a clustered environment, in this case IoT. The number of 

the IoT gateway is linearly positively correlated to the 

processing performance for the encrypted traffics. With a 

proper increase in the IoT gateway number and the multi-

core parallel processing structure deployed in the following 

module, the proposed model improves the classification 

performance for large-scale traffics greatly. 

After establishing the communication connection, the 

IoT devices first carry out key agreements and certificate 

exchange, which is called as handshake stage, afterwards 

only then uses the session keys and the encryption suite to 

implement the encryption transmission of the application 

data. The pre-filtering module of the model analyzes the 

plain text in the package headers and the handshake process 

of MQTT or AMQP protocol. The analyzing results include 

information indicating the protocol characteristics, such as 

client version, cypher suites, extensions, etc. 

Many studies show that encrypted traffic from a certain 

IoT application carries behavior characteristics that are 

inherent to the patterns in its data transmission and package 

processing [23, 24]. The sophisticated identification module 

of the model extracts the behavior characteristics of the 

encrypted traffics without decryption, including time 

distribution, intervals and transmission rates of the 

uplink/downlink data packages in the traffics. Then the 

module identifies encrypted IoT traffics based on a 

fingerprint database of the traffics and deep recognition 

algorithms. The fingerprint of an encrypted traffic is a set of 

essential characteristics. It is unique, distinctive and noise 

insensitive. With feature fusion machine learning models, 

multi-dimensional fingerprints can be generated for the 

encrypted traffics. 

The auto-updating module of the model works 

independently. It decides whether to update the model once 

an unknown encrypted IoT traffic is identified, and carries 

out the updating process afterwards. 

III. Methods for Detection and Classification of 
Encrypted IoT Traffics 
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FIGURE 1. Edge intelligence based encrypted traffic detection 

model. 
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A. Method base on Time-sequence Behavior Analysis 

The method of encrypted IoT traffics identification based 

on HMM (Hidden Markov Model) extracts the behavior 

characteristics from a time-sequence change perspective 

instead of a local one [25]. The behavior characteristics are 

implied in the process of data packages flowing into and 

out of the devices, which can be modeled with HMM. We 

model the timing and statistical characteristics of the 

traffics with HMM, and analyze the behaviors of the 

encrypted IoT traffics in the data flows to correlate the 

traffics to their source applications. 

Specifically, the proposed model first labels the packages 

in the traffics as incoming or outgoing of an application. 

The observed state of the model is defined by the 

accumulated length of the continuous incoming or outgoing 

packages in traffic, in order to reduce the number of the 

observed states related to a hidden state. The model 

parameters are obtained with training datasets utilizing 

forward-backward algorithm. Then the model utilizes 

Viterbi algorithm in the classifying process to find the most 

probable state path [26], and relates traffic to its source 

application. 

Fig. 2 shows the time-sequence changes of encrypted 

traffics in four typical applications, namely web application 

traffics, real-time transport protocol (RTP) traffics, 

environmental monitoring traffics (produced by humidity, 

temperature or smoke sensors), and video-audio multimedia 

streaming services traffics (produced by cameras). There 

are significant differences in the time-sequence change of 

encrypted traffic for each kind of applications. Therefore, 

the recurrent neural networks are used to model and analyze 

the time-sequence change characteristics of encrypted 

traffic. Fig.3 shows a traffic model of IoT based on HMM. 

The x axis represents the accumulated length of the 

continuous packages. The y axis represents the probability 

density at each length value, that is, the percentage of the 

package sets with a length value to overall package sets. 

The length value is inherent to the modeled protocol p and 

depends on the states. Its maximum appears in the transfer 

data state, while the minimum in the connect request or 

ACK state. The relation between the length value and the 

states implies the statistical characteristics of protocol p. In 

the finite state machine model of protocol p, the states are 

time ordered with given state transition probability. The 

state transition probability also represents the statistical 

characteristics of protocol p. We take the probability 

density and the state transition probability comprehensively 

as the statistical characteristics for identifying traffics of 

different protocols. 

B. Method base on Dynamic Behavior Analysis 

Adaptive classification based on weighted ensemble 

learning analyzes the encrypted traffics dynamically instead 

of statically. The traffic changes dynamically with the 

network environment, in the way decided by its protocol 

and source application. For example, the IoT gateway 

introduces the latency and package loss into the passing 

traffics, and it adopts retransmission and flow control 

strategies to avoid transmission interruption [27]. When the 

traffics are changed by an IoT gateway, it gives out more 

information about its protocol and source application. 

We proposed an adaptive classification method on 

weighted ensemble learning. The classifier can be defined 
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FIGURE 2. The time-sequence changes of encrypted traffics in four 

typical applications, i.e. (a) Web application traffics. (b) RTP Traffics. 

(c) Environment monitoring traffics. (d) Video-audio multimedia 

streaming services traffics. 
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FIGURE 3. A traffic model of IoT based on HMM. 
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by an expectation function, which is f：x→y. Since x is 

known, the classification depends on 

( ) | ( | )
( | )

( )

P y P x y
P y x

P x
                      (4). 

Thus we can get 

0
( ) ( | )

( ) arg max ( | ) arg max
( )

n

ii

y

P y P x y
f X P y x

P x





 


Y

  (5), 

where P(x) is the probability of characteristic x, 

0
( ) ( )

n

ii
P x P x


 , P(xi) is the probability of xi at a 

training dataset. y represents the categories of the 

characteristics, consisting constants. P(y|x) varies with 

P(xi|y) which depends on xi. P(y|x) also varies with prior 

probability P(y). 
To better describe the changes of the encrypted traffics 

and get finer classifiers, the proposed method extracts the 

characteristics of the encrypted traffics at the points where 

they are changed. The classifiers are trained and selected by 

their performance before integrated together to guarantee 

the generalization ability. To train the classifiers, the 

training dataset is divided into 𝑛 blocks with identical size, 

i.e., S1, S2, … , Sn. Sn consists of the latest packages. Ci is the 

classifier trained by Si. Gk is the classifier trained by the last 

k blocks, i.e., 
1n k nS S    . Ek is the classifier that 

integrates the last k classifiers, i.e., Cn-k+1, … , Cn. Wi is the 

weight of Ci, which is inversely proportional to the 

expectational error for the classifying result for Ci. 

Here we suppose the category distribution of Sn is the 

closest with the training dataset, the weight of Ci can be 

approximated by the classifying error of Cn. Specifically, 

for a training data block Sn consisting of training samples 

(x,c), the mean square error of Ci is represented as 

2

( , )

1
(1 ( ))

| |

i

i c

x cn

MSE f x
S 

 
nS

                 (6), 

where c is the actual category of characteristic x, ( )
i

cf x is 

the probability of correlating 𝑥 to category c, and 1 ( )
i

cf x  

is error rate of Ci for a training sample (x, c). wi of Ci is 

inversely proportional to MSEi. The mean square error of 

the classification error probability p(c) of the random 

classifier can be represented as 
2

( )(1 ( ))r

c

MSE p c p c                    (7). 

Since the random classifier does not hold valuable 

information of the training samples, we use MSEr to decide 

whether to integrate it or not. That is to integrate the 

random classifiers with classification error probability less 

than MSEr, and discard the others. wi of Ci being integrated 

can be calculated by 

i r iw MSE MSE                            (8). 

C. Method based on Key Behavior Analysis 

The IoT devices are generally constrained in computing and 

communication resources. It is necessary to focus the 

behavior analysis on the most valuable characteristics of the 

traffics instead of learning from a whole training dataset. 

To this end, we use the classification accuracy and the 

iterative rate of the model in the training stage to select 

valuable characteristics, which significantly reduces the 

resources required by the proposed model. We use 

sequential forward selection algorithm to obtain a 

characteristic set, and select the most valuable 

characteristics that comprise the fingerprint of the 

encrypted traffics by a criterion value defined by 

classification accuracy. The set of the most valuable 

characteristics obtained by key behavior analysis method is 

the fingerprint of encrypted traffic. 

Suppose there are n characteristics in the global 

characteristic set, and thus 2n-1 non null characteristic 

values. Our goal is to get the most valuable characteristics 

from the set. An improved sequential forward selection 

algorithm is proposed. The algorithm adds a characteristic 

to a valuable characteristic set and calculates the criterion 

value of the current valuable characteristic set. The valuable 

characteristic set with the max criterion value is then taken 

for behavior analysis. The algorithm details are as follows: 

The global characteristic set is represented as F={f1, 

f2, …, fn}. The initial valuable characteristic set is F0=ø, 

and the valuable characteristic set is represented as Fk 

which includes k characteristics from F. There are n-k 

unselected characteristics in F, which are represented as Fj 

(j=1, 2, … , n-k). The algorithm adds one characteristic of 

Fj to Fk every time, and calculates the criterion value J of 

each resulting Fk respectively. 

If 
1 2( ) ( ) ( )k k k n kJ F x J F x J F x       , x1 is added 

to Fk and Fk+1=Fk+f1. The algorithm continues until the 

maximum J is reached to reduce the computation. The time 

complexity of the algorithm is no more than n(n-1)/2. Table 

1 gives an instance of the algorithm running process. 

D. Method based on Two-round Filtering Analysis 

The common classification methods for the encrypted IoT 

traffics are based on single machine learning algorithm [28]. 

We propose a two-round filtering analysis method for 

encrypted IoT traffics. The proposed method improves the 

TABLE 1. An instance of the improved sequential forward selection 
algorithm. 

Number of Iterations Fk J Fk+1 

1 

f1 30 

f3 
f2 20 

f3 35 

f4 25 

2 

f1f3 40 

f2f3 f2f3 50 

f3f4 45 

3 
f1f2f3 40 

Stop(f2f3) 
f2f3f4 45 
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accuracy and the timeliness of traffic classification at the 

IoT gateways, while reducing the energy consumption. 

The first layer machine learning algorithm aims to a fast 

filtering of the encrypted IoT traffics. The second layer is to 

obtain sophisticated classification of the filtered traffics and 

correlate them to their source applications. 

The most common supervised learning algorithms [29] 

perform differently in encrypted traffics classification. The 

accuracy of naive Bayes algorithm is low. For the neural 

network algorithm, the learning speed, the tolerance and 

interpretation of missing values and irrelevant attributes are 

relatively low. The classification speed of K-nearest 

neighbor (KNN) algorithm is relatively low. And the 

learning speed, the interpretation ability and the model 

parameter processing ability of support vector machine 

(SVM) algorithm are relatively low. 

Compared with the mentioned algorithms, the decision 

tree algorithm is superior in learning speed, classification 

speed, model parameter processing ability, etc. It is 

efficient in encrypted traffic detection and identification in 

binary classification scenarios. However, the over-fitting 

problem of the decision tree algorithm cannot be 

thoroughly solved so far. Therefore, we combine the 

decision tree algorithm with the random forest algorithm to 

provide a two-round filtering analysis method for encrypted 

IoT traffics. The random forest algorithm performs well in 

multi classification scenarios, is fast in training and 

prediction, and is less prone to over fitting. As shown in Fig. 

4, the decision tree algorithm is firstly used to obtain the 

encrypted IoT traffics, and the random forest algorithm is 

then used to correlate the obtained traffics to their source 

applications. 

IV. Experimental Results 

We use two sets of experimental data to test the proposed 

model and methods. Dataset 1 is formed by IoT data 

obtained from public sources. Dataset 2 is formed by the 

IoT traffics captured by OpenWrt software installed on IoT 

gateways [30]. The experimental data includes web 

application traffics, RTP traffics, environmental monitoring 

traffics, and video-audio multimedia streaming services 

traffics. 

With various data sets of different sizes, the paper 

compares and analyzes the IoT encryption traffic model 

establishment time in different algorithms including PIUA 

in reference [6], NLNS in reference [12] and the edge 

intelligence method proposed in this paper. Each algorithm 

is executed 10 times in order to get an average value of the 

model establishment time, which is shown in Fig. 5. It is 

found that the model establishment time of edge 

intelligence based traffic fingerprint extraction is the 

shortest, which utilizes distributed parallel computing to 

speed up the processing speed and realize reduction of its 

execution time, while that of NLNS method, due to the 

integration of multiple characteristic selection algorithms, is 

the longest. In addition, the number of iterations of model 

parameters generated by the edge intelligence method is the 

smallest so that the classification model is simplified. When 

the sample size is 1600, the execution time of characteristic 

selection is less than 100 seconds. 
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FIGURE 4. The Two-round filtering analysis for the encrypted IoT 
traffics. 
 

 
FIGURE 5. The model establishment time of different algorithms. 
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FIGURE 6. The accuracy rate and the recall rate of the proposed 
methods. 
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In the experiment, we use the proposed methods to 

classify and identify the encrypted IoT traffics in the test 

datasets. The four methods proposed in this paper are used 

separately, and their performances are tested and analyzed 

respectively. The accuracy rate and the recall rate of each 

method are shown in Fig. 6. The experimental results show 

that, the method based on time-sequence behavior analysis 

has the best performance, with accuracy rate up to 98%. 

The method based on two-round filtering analysis is the 

worst, but still with accuracy rate up to 92%. The 

experimental results obtained from dataset 1 are much 

better than that from dataset 2, because the traffics in 

dataset 2 are more comprehensive and evenly distributed in 

categories. 

Fig. 7 and Fig.8 show the model establishment time and 

the traffics classification time of four methods. The method 

based on dynamic behavior analysis and the method based 

on two-round filtering analysis are faster in traffic 

fingerprint extraction, and the method based on time-

sequence behavior analysis is the slowest. The latter is 

slowed by its recurrent neural networks algorithms, which 

could be improved utilizing parallel computing. As can be 

seen from the figures, the online classification time of 

encrypted traffic is much faster than the establishment time 

of encrypted traffic detection model. We can see that the 

method based on key behavior analysis is the most balanced 

choice. It leads in modeling and classifying speed, 

simplifies the model by reducing the characteristics, and 

improves both the accuracy rate and the recall rate of 

classification. 

With the method based on key behavior analysis, four 

typical applications in dataset 2 are used to train and build 

the detection model. As shown in Fig. 9, the accuracy rates 

and recall rates of encrypted traffic classification of the four 

applications are different. It is illustrated that both web 

application traffics and RTP traffics have better detection 

effect. Generally, their accuracy rates are above 93.5%, and 

recall rates are above 92.0%, while the detection efficiency 

of environment monitoring traffics and video-audio 

multimedia streaming services traffics is slightly lower. 

This is because there are differences in the traffic 

characteristics of the applications themselves, resulting in 

the degrees of difficulty in extracting their traffic 

fingerprint are not the same, so the performance of 

encrypted traffic classification of them are not the same. 

V. CONCLUSION 

Regarding to IoT encrypted traffic, including the open data 

of the IoT traffic acquired from the network and the IoT 

gateway traffic collected by IoT gateway, the paper 

proposes four new classification & identification methods, 

namely time-sequence behavior analysis, dynamic behavior 

analysis, key behavior analysis and two-round filtering 

analysis, to study classification and recognition technology, 

whereby significantly reducing the execution duration of 

the characteristic location of IoT encrypted traffic with edge 

intelligence. These newly-proposed traffic identification 

technologies are able to well classify and identify encrypted 

web traffic, RTP traffic, environmental monitoring traffic, 

and VoIP traffic with accuracy more than 92% and recall 

rate more than 83%. Among them, the dynamic behavior 

analysis can effectively detect the changes of encrypted 

traffic in complex networks, and update the adaptive 

classifier in real time; the key behavior analysis algorithm 

can produce fewer characteristics, improve the accuracy 

and stability of classification with a less time than other 

 
FIGURE 7. The model establishment time of the proposed methods. 

 
FIGURE 8. The classification time of the proposed methods. 
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FIGURE 9. The accuracy rates and the recall rates of four typical 
applications. 
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methods in establishing model and classifying traffic. These 

methods proposed in the paper can provide technical 

support for the detection, analysis and traceability of 

encrypted traffic in the IoT. It is necessary to make certain 

the application protocol and the application that generate 

the encrypted traffics in order to prevent illegal elements 

from using encryption protocol for information 

transmission or network attack, and meet the current 

requirements of the network supervision in an efficient way. 
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