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Abstract
Purpose  B-mode ultrasound images are used in identifying the presence of fat deposit if any in carotid artery. The intima 
media, lumen, bifurcation boundary is detected by the echogenic characteristics embedded in the carotid artery.
Methods  A fully automatic self-learning based segmentation is proposed by extracting the edges by a modified affinity 
propagation, which are given as inputs to the Density Based Spatial Clustering of Applications with Noise (DBSCAN) for 
super pixel segmentation. The segmented results are analyzed with Gradient Vector Flow (GVF) snake model and Particle 
Swarm Optimization (PSO) clustering based segmentation using various performance measures.
Results  The proposed parameter free, fully automatic segmentation method combining Affinity propagation and DBSCAN 
are evaluated for a database of 361 images and gives reinforced results in the longitudinal B-mode ultrasound images. The 
proposed approach gives an improved accuracy of 12% increase when compared with the manual segmentation and 15% 
compared with segmentation by affinity propagation and DBSCAN when performed individually. The average Root Mean 
Square Error (RMSE) is 110 ± 44 µm.
Conclusion  Extracted edge points are used for clustering in a fully automated carotid artery segmentation approach.

Keywords  Atherosclerosis · Affinity propagation · Carotid artery · Snake model · Particle swarm optimization

1  Introduction

Ultrasound imaging is a promising imaging modality in 
understanding the characteristics of carotid arteries and 
related vascular problems. The deposit of fats in the artery 
walls results in atherosclerosis and other cardio-vascular 
diseases like stroke, myocardial infarction and heart attack. 
B-mode ultrasound images have benefits of low signal to 
noise ratio (SNR) and spatial resolution compared to Mag-
netic Resonance imaging (MRI) and Computer Tomography 
(CT). Avoidance of radiation exposure and injection of con-
trast agents, highly economical, portable, real time are the 
added advantages of ultrasound imaging. B-mode imaging 

is used in practice since it gives anatomical and structural 
details of the artery.

Manual Intima- Media Thickness (IMT) measurement by 
skilful sonographers is not consistent over time and is time 
consuming. The outcomes depends on the individual and is 
subjective. Semi-automatic measurements were proposed, 
which requires the sonographer to select the seed points for 
segmentation [1, 2]. Automation provides more advantages 
than manual and semi-automatic techniques for huge popula-
tion. After 2007, user independent systems for identification 
of plaque started to evolve, which led to faster segmentations 
[3, 4]. There were nearly 15% failure probabilities and was 
not suitable for real time situations. Various protocols and 
standardizations were proposed for computer aided systems 
to help operators in measuring IMT. Some of them were 
motion estimation, stiffness measurement, blood flow analy-
sis, 2D, 3D, doppler image analysis [5–7].

Contour detection based on edgelet information with 
a Bayesian modelling is proposed [8, 9]. Soft delineation 
recognition map is derived from the estimated trajectory 
delivery using a particle filter. The method requires manual 
adjustments and contour framing. Level set methods were 
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introduced, which moves the initial contours towards the 
artery wall by reducing an energy function depending on 
edge detection. The gradient value and the difference between 
the images were used as metrics for measurements. Accurate 
detection of missing contour points with exact shape and size 
constraints is performed, which can avoid discontinuities in 
boundaries [10]. In this approach, the vessel boundary initial-
ization is determined by a radius function, assuming a circu-
lar cross-sectional plane for vessel, which may not be suitable 
in all conditions. This non-linear least square problem can 
be solved by self-learning techniques for segmentation [11].

Andres et al. proposed a 3D coupled ideal graph cut 
procedure identifies the borders into a graph cut using the 
information from multiple sequences [12]. Three seed points 
were selected in the external, internal and common carotid 
artery. The dissimilarity among the left and the right sides 
can be identified after a snake segmentation of the CCA. 
This paper proves that measurement of the IMT thickness 
in any one side is sufficient for normal people, since both 
are symmetrical. With increasing age, IM thickness meas-
ure increases. Patients with Cardio-Vascular Diseases (CVD) 
shows significant statistical differences in the right and left 
IMT measurements [7].

The texture feature varies considerably between the car-
diac systolic and diastolic stages in the ultrasound video of 
the carotid plaque [13]. Combining the systolic and dias-
tolic features gives improved results than using them alone. 
Modified semi-supervised affinity propagation approach 
with autonomous module study were developed for cluster-
ing the ECG heart beat recordings [14]. By this method, the 
labelled samples were used as seeds to initialize the cluster 
centers in k-means algorithm. The method does not use ran-
dom sampling and so it is well suited for real time situa-
tions where incorrect initializations and hard decisions may 
impact the solution.

Jing et al. proposed a illustrative multi-label learning 
approach was developed to reject the effect of noisy features 
and select only representative features [15]. It was applied in 
affinity propagation with Support Vector Machine (SVM) to 
frame the relationship among the designated features and for 
the learning process. The non-metric similarity between the 
pictures by soft matching of Scale Invariant Feature Trans-
form (SIFT) was proposed, which gave significant results 
than by hard matching, which used binary representation 
[16]. SIFT can recognize look features, which are illumina-
tion, 3D camera view point invariant, scale and rotation. 
Chen et al. proposed an approach where individual features 
class discrimination ability can be extended within a new 
sub-space, minimizing the spectral correlation among the 

chunklets features, followed by affinity propagation based 
clustering [17]. By learning a discriminative transforma-
tion, a standardized metric function is assimilated, using 
the positive and negative constraints. Clustering exemplars 
are obtained preserving low correlation and high separable 
data points. Ground truth label information for data points 
are not required, making it suitable for any image.

A small number of labelled exemplars are incorporated 
into the affinity propagation in a semi-supervised technique 
[18]. Similarity matrix is adjusted by the labelled samples 
and the unlabeled data selection and needless label reduction 
are done using incremental and decremental affinity propa-
gation technique. Thus learning bias and stability-plasticity 
dilemma are evaded with a drawback of increased compu-
tational complexity.

Based on a Fuzzy Statistical Similarity (FSS) quantity, 
affinity propagation based clustering was proposed which 
shows faster implementation, least error and demonstrates 
how near two pixel vectors look alike [19]. In this method, 
the data points are taken as applicant exemplars and per-
mits soft data till a subset of data points become exemplars. 
Incorrect initialization and hard decision problems reduces 
the computational complexity and gives ideal results.

DBSCAN algorithm with geometric restrictions and color 
similarity clusters the pixels and merges clusters into small 
super-pixels by their neighboring pixels through a distance 
measure using spatial and color features [20]. Centroid of 
the cluster identification was done using the number of pix-
els and cumulative values, which are used to build Color 
Sum of Absolute Differences (CSAD) to identify the deci-
sion criteria and the difference measure [6]. The method was 
much suitable for images which has color information for 
better area matching.

Jian et al. proposed a parameter less algorithm was pro-
posed depending on dominant sets and DBSCAN. User 
independent parameters Minpts are identified with respect 
to clusters from DSets in arbitrary shapes [21]. The method 
solves the over-segmentation effect, with number of clusters 
closer to ground truth value, increasing the cluster size. A 
modified DBSCAN is used to create saliency map with the 
sensed traffic light followed by template matching [22].

After setting an initial boundary, three cluster centers are 
approximately computed using level set technique [7]. From 
the resulting cluster centers, level set density map is created 
and final segmentation is done with valley seeking cluster-
ing. During clustering, outlier detection is also performed at 
the same time using the initial boundary set during the level 
set method. The method avoids the over-fitting problem and 
also correctly classifies the cluster centers and outliers.
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To cope up with this, a parameter free segmentation 
approach where the edge points of the image are extracted 
using affinity propagation is modelled. With extracted edges 
as core and border points, a local cluster based segmentation 
with DBSCAN is proposed. Both the algorithms are made 
parameter free thus making it not relying on initial assump-
tions and ground truth. The methods prevents interior area 
shrinkage and can be combined with any fitting terms.

The paper layout is as follows. Carotid artery ultra-
sound imaging and its significance in IMT measurement is 
explained in Sect. 2. Affinity propagation based edge detec-
tion in Sect. 3 followed by DBSCAN based clustering in 
Sect. 4. Section 5 explains PSO and GVF based segmenta-
tion, Sect. 6 gives the experimental dataset, performance 
measures, Sect. 7 portrays the results and discussions and 
Sect. 8 concludes the paper.

2 � Carotid Artery Ultrasound Imaging

Standard B-mode Ultrasound Imaging (BMUS) is used for 
lumen segmentation to identify abnormalities in carotid 
artery. Vulnerable plaques possess some different biologi-
cal, mechanical and morphological structures, which has to 
be identified to prevent further rupture. Uneven lumen shape, 
noise in lumen and echolucent plaque are some problems 
faced during the segmentation process. Figure 1 shows the 
example ultrasound images of the carotid artery with and 
without plaque.

BMUS segmentation were done using methods like 
deformable active contours, Bayesian model, Transforms, 
and other classification based approaches [5]. Studies proves 
that primary artery stiffness causes vascular variations and 
predicts major vascular diseases [4, 23]. Ultrasound imaging 
uses mechanical energy and is repeatable, highly economic, 
reliable and extremely safe for patients. Carotid intima- 
media, lumen thickness is necessary for early detection of 
abnormalities [3]. A suitable Region of Interest selection is 
necessary for starting the segmentation process [24]. Fac-
tors like age, gender, hemodynamics, blood glucose level, 

lipid level take diverse properties in the left and right CCA 
[25, 26].

Completely automated carotid artery segmentation gives 
better accuracy in identifying the random shaper lumen, 
good repeatability, better efficiency, reduced computational 
cost, tractability and error control [27]. Though carotid wall 
irregularity can identify atherosclerosis, IMT measurement 
gives exactly the extent of the deposits in the artery and the 
risk factors [28].

3 � Affinity Propagation Based Segmentation

When poorly visualized, the speckle noise in the ultrasound 
image makes it tough to identify the lumen boundary. Lipid 
rich plaque formation or a transducer not angled properly 
may further affect the image quality. Speckle noise is the 
inherent artifact in ultrasound image and is denoised using 
curvelet filtering, which is a multi-scale analyzer. Taking 
edge as an indicative, the objective function being the char-
acteristics of a singular curve, line singularity is mapped as 
point singularity [29].

Bigger curvelet constants will have additional coefficients 
at its neighborhood positions. The curvelet transform has 
acceptable scale directional components and rough scale iso-
tropic father wavelet [30]. Curvelet soft thresholding gives 
best denoised results and also reserves maximum of the nec-
essary edge features. By this method, both the smooth low 
frequency noise and the oscillatory high frequency noise are 
filtered and given as input to the segmentation algorithm. 
Figure 2 gives the proposed method for the affinity propaga-
tion and DBSCAN based segmentation. The extracted noise 
coefficients, subjected to curvelet soft thresholding results 
in the denoised coefficients in the approximate, coarse and 
fine scales. Inverse curvelet transform is to bring back the 
image from the radon domain to the transform domain. The 
denoised image is given to affinity propagation for edge 
detection and is to be fed as input to DBSCAN for clustering 
based segmentation. Figure 3 gives the sample carotid artery 
ultrasound image and denoised with curvelet decomposition.

Affinity propagation clustering depends on message pass-
ing between data points, which do not need identifying the 
number of clusters prior. While passing message within a 
pair of data points, exemplars arises and each one is identi-
fied as a cluster. Similarity among the data points for how 
it is appropriate to be an exemplar for other data points is 
assigned as input. If two data points are not similar, it may 
be omitted or assigned as infinity. Preferences are assumed, 
on how well each data points are appropriate to the exem-
plar. Any information which may be required while cluster-
ing can be included in the preferences. With applications 
having large number of clusters, the method is fast, generally 
applicable -and has better performance [14, 31]. Similarity 

Fig. 1   Sample Longitudinal Projection of the Carotid artery image 
with and without plaque deposit. The intima media layers marked for 
arteries far wall. The region of interest subdivided into non-overlap-
ping strips
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(S), Responsibility (R) and Availability (A) matrices are 
updated iteratively to extract the final criteria value. Figure 4 
gives the flow diagram of affinity propagation algorithm.

Affinity propagation algorithm requires quadratic mem-
ory but has minimum error, faster speed and is flexible. 
Initially the data point sets are transformed into a distance 
matrix and the point densities are identified rendering to the 
adjacent neighbour distance matrix.

In the algorithm given below, α(Ck) is the sum over all 
the configurations sustaining fi given ck. The first two larg-
est memory elements and the cumulative sum are identified 
to convert the sum_product affinity propagation to max_ 
products, in which the numerical precision inaccuracies are 
removed. Availabilities are initially set to zero so that the 
difference between the responsibility r(i,k) is made equal to 
the input similarity among points i and k subtracted from the 
biggest similarity among i and eligible exemplars. Figure 5 
gives the core, border and noise points in the image.

Noise 
coefficients

Noisy 
Image

Cuvelet soft 
thresholding

Extract 
Denoised 

coefficients

Inverse curvelet 
transform

Affinity 
PropagationDBSCAN

Segmented 
image

Fig. 2   Sketch of the proposed segmentation method by Affinity Propagation and DBSCAN clustering methods

Fig. 3   Original carotid artery ultrasound image without plaque 
deposit. Denoised with curvelet decomposition with smooth edge and 
sparsity. The curvelet coefficients at Tmax = 30, at fine edges, curved 
area becomes almost straight line

Construct 
similarity matrix

Availability = 0, 
Responsibility=0

Update R, A

E = A + R

Start

If E>0, mark it as 
exemplar

Correct 
decision?

Edge points 
extracted

Yes

No

Fig. 4   Edge Detection by Affinity Propagation. Responsibility R are 
sent from data point to exemplar and Availability A are sent from 
exemplar to data points
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How many other points belong to that exemplar is known 
after more number of iterations and their availability status 
becomes less than zero. Thus their cumulative value reduces 
and it will be slowly removed from the potential exemplars 
list. Self—availability a(j,j) is rationalized by summing up 
the positive values of the new responsibilities leaving the 
threshold value. A lower value for preference gives few num-
ber of clusters and a higher value increases the number of 
clusters. The criteria matrix is represented as

(8)C(u, v) = r(u, v) + a(u, v)

r and a are responsibility and availability values at points 
(u,v).

The dividing point of data points is first identified and 
the edge detection is initiated from that point. Initially, 
a rational partition is obtained where the data point in a 
cluster is very distinct from data points of other clusters. 
The time complexity is order of (N × N log N), considering 
each pixel as potential exemplar. For a 512 × 512 image, the 
count of data points is 262144 and the complexity becomes 
512 × 512 × log 512. To reduce the computational complex-
ity the number of data points has to be minimized without 
losing the potential exemplars.

4 � DBSCAN Based Clustering

Density based spatial clustering of applications with noise 
(DBSCAN) is a non-parametric density dependent cluster-
ing approach where it clusters spatially close points based 
on their density similarity. A low density point in the neigh-
bourhood may be marked as an outlier provided its similar 
density points are farther away. Figure 6 gives the flow dia-
gram of DBSCAN algorithm.

The points are defined as follows. A point can be con-
sidered a core point if the minpoints are within the distance 
ɛ. If a point q is inside a distance ɛ, it can be considered a 
directly reachable point from p. In a path p1 to pn, all being 
core points, with p1 = p and pn = q, each pi+1 accessible from 
pi, then q point can be reachable from p. The other not reach-
able points are called outliers or noise points. Two points 
can be considered as density associated if there is additional 
point from which the two points are reachable. Thus a cluster 
contains all the density reachable points alone.

DBSCAN is robust and can cluster the image without 
initial initialization of the number of clusters. The required 
parameters minpts and ɛ are adaptively calculated from the 
texture density of the image. The border is initially identi-
fied by considering the discontinuities in the boundaries. 
This image is subjected to DBSCAN so that there is no 
misinterpretation of border points as noise or outlier. The 
distance function comprises of the seed distance and the 
neighbour distance components. The pixels in the super-
pixel being similar is proved by the seed distance measure 
and the neighbour distance measure focusses more on the 
weak boundary and flat regions. The similar neighbouring 
super pixels are merged to form a single cluster.

Clusters are identified at different densities and according 
to the data distribution separate Eps and Minpts are consid-
ered. If in the adapted Eps and Minpts minimum 10% similar 
data is available, then a cluster is identified. After 95% of 
the data are clustered, the remaining points are considered 
outliers and are discarded. The memory required is O(n2) 
and the distance matrix size is O(n2 − n)/2 [32]. Instead of 

Core Points

Border 
Point

Noise

Candidate 
Exemplar

Fig. 5   Points assumption in DBSCAN. Points within minpt distance 
4 are grouped as core points. The points in the edges of a cluster are 
marked as border points. The points not in the distance range are 
noise points
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reaching a point many times, the computational complexity 
is minimized by fixing a point to a particular cluster when 
the adapted Eps and Minpts are optimal. Figure 7 gives the 

search space of the standard DBSCAN and the proposed 
approach.

By this approach, linking of clusters by a line, the sin-
gle link effect is minimized, since arbitrary shaped clusters 
are permitted. Fractional lp norm distance measure is used 
instead of Euclidian distance thus minimizing the curse of 
dimensionality problem [33]. The lp measures identifies if 
a pixel can belong to a particular cluster forming the local 
clusters. The similar local clusters are combined to form a 
global cluster.

5 � PSO and GVF Based Segmentation

PSO is an optimization algorithm based on population, mod-
elled according to the behaviour of birds in a flock, identifies 
global optima by updating the generations [34]. Each parti-
cle travels in the space with adjusting the position depend-
ing on its own personal best position and the global best by 
any other swarm, thus reaching global minima faster. The 
distance from the particle’s present position to the local best 
position is known as pbest. The distance from the particle’s 
position to the best global position is gbest. Applying mini-
mum cross entropy thresholding (MCET) as the objective 
function prevents strucking in sub optima solutions [35, 36]. 
By this approach, higher dimensional complex particles are 
reduced to simple one dimensional particles in each space. 
The pbest of every space is known to every other particles 
while deciding their pbest using context vector. Figure 8 
gives the PSO and adaptive thresholded PSO segmented 
images and Fig. 9 gives the GVF thresholded segmented 
image.

The MCET objective function is given by

where j = 1 to M is the histogram of the image, M is the 
count of gray levels. The optimal threshold value is given by

(8)

C(t) = −

M
∑

j=1

jh(j)log(j) −

t−1
∑

j=1

jh(j)log(�(1, t))

−

L
∑

j=t

jh(j)log(�(t,M + 1))

Fig. 6. DBSCAN Algorithm

Join the core points in 
the clusters

Identify neighbours of 
core points

Join border points to 
core points

Mark the remaining 
points in P as clamour

Mark the border 
points B, Eps<Minpts

Set the end points of 
the segments P, 
Adapt Eps and 

Minpts according to 
cluster

For each Eps>Minpts, 
mark the core points 

D

Start

Fig. 6   Points Marking process in DBSCAN algorithm. The histogram 
equalized image of the pair wise equivalent data make it independent 
of initial initializations. As the data points from affinity propagation 
is an added input, the proposed approach becomes parameter free. a 
Standard DBSCAN search. b Proposed approach combining affinity 
propagation edge points and DBSCAN clustering

Fig. 7   Illustration of the search space of DBSCAN clustering. The standard DBSCAN searches the entire image to cluster. The proposed 
approach cluster applying the extracted edge points as core and border points
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Thus reducing the computational complexity from 
O(nLn+1) to O(nL2) . The final context vector is computed by 
concatenating all the pbest. The final gbest is found analys-
ing all the swarms. Mahalanobis distance measure is used in 
place of Euclidian distance because each data point is differ-
ent and may depend on other points also [37]. The squared 
mahalanobis distance from sample xj and population X is 
given by 

Mahalanobis distance gives dissimilarity between the two 
random vectors and it is equal to the Euclidean distance if 
the covariance matrix is identity.

Snake or active contour model with x and y gradient 
directions with separate force fields for each direction was 
performed [35]. The angles between the gradients and the 
contours normal direction at each snake element is used for 
segmentation. The directional data of the gradient is pre-
served by the edge map given by

(9)t∗ = argmintC(t)

(10)dM
(

xj,X
)

= (xj − v)T
1

l

l
∑

k=1

(xk − v)(xk − v)Tz(xi − v)

where gx and gy are the smoothed image gradients in hori-
zontal and vertical directions. The external static force from 
the image and the internal snake force distorts the image by 
a constant force normal to the image. The elasticity, rigidity, 
and regularization parameters were fixed to be 0.05, 0 and 
0.2 respectively [36, 38]. The segmented images with the 
combined Affinity propagation and DBSCAN are compared 
with PSO and GVF segmentation to prove its efficiency in 
clustering.

6 � Dataset and Performance Measures

The proposed hybrid approach was performed on 361 
B-mode carotid artery ultrasound images with and without 
plaque. The images were attained in digital form and discre-
tized to 256 Gy levels. The number of experts for manual 
segmentation was three. The LI/MA tracings of the image 
were identified to find the IMT measurement bias to help 
radiologists do the manual segmentation.

The performance measures used for identifying the opti-
mum segmentation approach for the carotid artery images 
are as follows.

Intersection over Union J or Jaccard Similarity Coeffi-
cient is for comparing the difference and similarity of the 
sample sets. Its value ranges between 0 and 1. Jaccard dis-
tance measures the dissimilarity among the samples and is 
opposite to jaccard index.

Or it can be written as

where U and V are the two sets, TP is True Positive, TN is 
True Negative, FP is False Positive and FN is False Nega-
tive. The value depends only on the number of pixels cor-
rectly and wrongly classified and so it is a gradual measure. 
Dice index measures the set agreement with the spatial over-
lap and is a reproducibility variation measure. For the same 
pair of segmentations dice value is higher and can be used 
as a lossless function.

The value 1 indicates complete overlap and 0 indicates no 
overlap of the sets. Hausdorff distance identifies degree to 
which every point of a model set lies close to certain point 
of an image set and vice versa. It determines degree of simi-
larity among two objects that are overlaid on one another. 

(11)g(x, y) = ∇
(

G
�
(x, y) ∗ I(x, y)

)

= (gx(x, y), gy(x, y))

(12)J(U,V) =
|U ∩ V|

|U ∪ V|

(13)J(U,V) =
TP

TP + FP + FN

(14)D(U,V) = 2|UandV|∕(|U| + |V|)

Fig. 8   a, c PSO segmented images of the sample images b, d adap-
tive thresholded PSO segmented images

Fig. 9   Thresholded GVF segmented results of the sample images



267Fully Automated Integrated Segmentation of Carotid Artery Ultrasound Images Using DBSCAN and Affinity Propagation

1 3

It is an indication of the biggest segmentation error. The 
bidirectional hausdorff distance between the two segmented 
image sets is given by

w h e r e  hd(A,B) = a∈A
max

b∈B
min

||A − B| |2  a n d 
hd(B,A) = b∈B

max
a∈A

min
||A − B| |2 . Euclidean distance meas-

ure is applied here and it gives the maximum distance from 
a point in one set to the closest point in another set [39].

The accuracy of the segmentation method can be found 
with probabilistic rand index which gives the similarity 
between the clusters. It measures the percentage of correct 
decisions made by the algorithm.

The value close to one indicates a good match with the 
ground truth segmented image. Negative results are obtained 
if the segmented results do not match. Cohen’s kappa is a 
representation of agreement to evaluate the segmentation 
accuracy, considering that agreement may be just a chance. 
Kappa value reduces with increasing threshold values. Vari-
ation of information (VoI) gives the total information loss 
and gain among the two clustered results, gives the degree to 
which one clustering can describe the other. The VOI metric 
is positive, with smaller values representing better similarity. 
It indicates the amount of randomness in one segmentation 
algorithm compared to the other.

where H(A) and H(B) represents the entropy related with the 
segmented results A and B, and I being the mutual informa-
tion between A and B. Global consistency error adopts that 
one segmentation is a modification of the other, and makes 
all local alterations to be in similar direction. Cophenet 
measures how loyally a dendrogram conserves the pairwise 
distances amongst the original unmodeled data points.

7 � Results and Discussion

The comparison of the performance of the proposed affinity 
propagation and DBSCAN with PSO and GVF segmenta-
tion approaches is studied in this section. The average of the 
PSO and GVF segmented results is the ground truth value, 
which are to be compared with the proposed segmentation 
approach. Figure 10 gives the edge points extracted by affin-
ity propagation in the sample image.

Wavelet and Ridgelet transforms finds the lines in the 
image but the curved line segments can be identified only 
with curvelet transform. The image is divided into smooth 
overlapping regions and curvelet is applied individually 

(15)HD(A,B) = max(hd(A,B), hd(B,A))

(16)RI =
TP + TN

TP + TN + FP + FN

(17)VoI(A,B) = H(A) + H(B) − 2I(A,B)

in every region. The method senses anisotropic structures 
effectively with optimal denoising approximation. The 
parameters for curvelet thresholding given by Hill et al. 
are offset parameter α = 1.083, exponent’s scaling product 
k = 0.790, minimum frequency f0 = 0.509, orientation sub-
band frequency offsets g1 = g2 = g3 = 1 [39].

Snake based GVF algorithm has the tendency to converge 
in places with more luminescence. The dataset is non-linear 
separable and so the linear discriminant GVF have some 
errors in concave region. Parameter adjustment and over-
segmented region merging because of huge texture varia-
tions are done manually. GVF segmented results give good 
Hausdorff distance and Cohens Kappa values than the PSO 
and other segmentation methods. During the deformation 
process, the snakes are re-parameterized to maintain sta-
bility. The distance between neighbouring snake contours 
are maintained at 1 pixel so that the noise remaining does 
not interfere with the contour. Computation depends on the 
order of square of the number of contours required making 
it less time consuming. The snake formation depends on the 
initial contour selection since it grows from that boundary 
point. Manual accuracy is an important parameter of the 
GVF segmentation approach. With its large capture range, 
the gradient vector gets attracted to the actual boundary and 
comes closer to that. AN interpolating B spline is created 
with the obtained continuous contour points.

The global and local optimal values are randomly initial-
ized manually in PSO based segmentation. The computa-
tion relies on the population size and is of the order of the 
product of the count of required iterations and the square of 
initial population size. On trial 19 iterations gave the best 

Fig. 10   Sample images (a, c) and the edge points detected by affinity 
propagation (b and d). The approach assumes initially all points as 
exemplars, thus the final edge points does not depend on any random 
initialization
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Pbest and Gbest values for most of the carotid artery ultra-
sound images in the database. The fractional coefficient α is 
initialized as 1 indicating the non-necessity of memory. This 
gives pixel wise prediction for deep ensemble base network 
efficiency. They achieve complementary pixel wise predic-
tion, leading to a smooth contour curve. The residual target 
echo still attracts to local minima in some images with and 
without plaque. The inertial weight coefficient φ is made to 
update in the process to avoid reaching local targets. Initially 
φ is set to 0.7 and gets updated in each iteration.

Affinity propagation is done with Ramer–Doug-
las–Peucker algorithm which decimates the segments into 
similar ones with fewer data points. The first and the last 
points are kept without alterations. With a threshold con-
sidered from the gray histogram, the remaining points are 
marked as reference to the edge points. Based on the adap-
tive threshold, the number of data points can be controlled 
[31, 40, 41]. A mixture density distribution function for l 
different density types is given by

where wi is the weight of the ith density kind, m is the dis-
tance order and �j is the jth intensity form. Figure 11 gives 
the DBSCAN clustered image with at distances 32 and 80.

The edge pixels extracted from affinity propagation and 
the super pixel segmented image are combined and thres-
holded to obtain the intima-media thickness of the carotid 
artery. Figure 12 gives the thresholded results of affinity 
propagation and DBSCAN segmented image.

The mean performance values of the 361 images in the 
database are compared for the proposed approach combin-
ing affinity propagation and DBSCAN with PSO, GVF 

(18)Dl ∼

l
∑

j=1

wjf
(

d;m, �j
)

=

l
∑

j=1

wj

e−�j�x
2

(2�j�)
md2m−1

(m − 1)!

approaches. The methods are compared with manual seg-
mented results.

Table 1 gives the computational comparison of PSO, 
GVF and the proposed Affinity propagation and DBSCAN 
combination algorithms in terms of memory requirement, 
computational cost, seed points and parameter initializations 
requirement. Time complexity is a function of the popula-
tion size and type. Computational complexity involves the 
generations and evaluations of functions. The cluster param-
eter α is a damping value between 0.5 and 1. Higher values 
makes the algorithm converge but increases the computa-
tional time. The chunklet data is reduced by a minimizing 
technique which uses transformation based dimensionality 
reduction [17].

Similarity metric learning technique is applied to identify 
and apply only the positive points and to remove the nega-
tive points as outliers. The proposed Real time segmentation 
approach is memory, cost efficient and parameter free in 
providing the lumen segmentation analysis. The proposed 
AP + DBSCAN algorithm occupies more memory and is 
computationally marginally costly. But there is no require-
ment for initializations of parameters and the cluster count or 
centroids, making it appropriate for clustering any images. 
The super pixel segmentation does not require number of 
iterations to identify the seed points, thus making it a faster 
clustering approach. The proposed hybrid algorithm runs 
only once to find the cluster and optimization and so gives 
good computational performance for real time medical 
images. Boundary adherence and compact shape is achieved 
by the affinity propagation algorithm.

The method is fully automatic which do not need ROI 
initiation and the dataset is optimized for artery distensibility 
and plaque perfusion assessment. The stiffness parameter of Fig. 11   a and c are images clustered by DBSCAN with distance 

measure ɛ = 32; b and d are images clustered at ɛ = 80

Fig. 12   a, b Thresholded results of the AP + DBSCAN clustered 
images c, d gray inverted images
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the artery depends on the blood pressure and motion estima-
tion in the artery.

Table 2 compares the segmentation approaches with the 
manually segmented results, by the clinician’s, in terms of 
the performance measures. From the experimental results, 
the proposed approached combining the parameter free 
affinity propagation and DBSCAN outperforms in terms 
of Jaccard coefficient, dice index, rand index, variation of 
information and cophenet. The approach reduces the overall 
computational complexity, flexibility and gives good error 
control. The mean intensity and the variance of lumen are 
less related to its surroundings. The bold values in Table 2 
indicates the best performance values. The results shows 
that the proposed method could consistently track the plaque 
contour in the carotid artery ultrasound images, which is 
similar with the manual segmented results.

Localization and segmentation of the carotid artery is 
a challenging task. The automatic parameter assessment 
method in the affinity propagation and DBSCAN prevents 
error while tracking small region of interest. The empirical 
results state that Affinity propagation with DBSCAN gives 
impressive performance compared to the traditional PSO, 
GVF and manual segmentation approaches. The proposed 
method outperforms the state of art methods in terms of 
precision, stability and convergence rate. The cooperative 

method protects the algorithm from falling under curse of 
dimensionality.

The automatic segmentation approach has a good success 
rate and also the final results had a very few false positives 
and false negatives, causing very less number of false diag-
nosis. The proposed algorithm was designed assuming that 
the lumen is of smooth curved shape. The mean and variance 
in intensities of the lumen and the adventitia layers are less 
compared to the neighbouring layers. The confusion matrix 
in Table 3 gives the information about the predicted and 
the true values. The images were obtained with The Eth-
ics Approval Certificate of SRM Medical College Hospital 
& Research Centre dated 27.06.2019 and numbered 1736/
IEC/2019. Toshiba Aplio 400 Ultrasound device was used 
for ultrasound imaging. The database has 148 cases with 
disease positive and 198 cases with disease negative.

The proposed approach gives a sensitivity of 93.08%, 
specificity of 98.01%, precision of 97.36% and accuracy of 
95.84%. The confusion matrix is given by

(19)Sensitivity = TP∕(TP + FN)

(20)Specificity = TN∕(FP + TN)

(21)Precision = TP∕(TP + FP)

(22)Accuracy = (TP + TN)∕(TP + TN + FP + FN)

Table 1   Computational comparison of the segmentation approaches

*n initial population, *p no. of iterations, N object points or number of objects to be clustered

Computational complexity

Approach Memory 
(bytes)

Computational cost (In minutes) Requirements of seed points Initializations Required

PSO 117 O(p*n2) Minimum one Particles positions and 
fitness parameters

GVF 140 O(N2) Number of centroids Initial contours
Proposed Affinity Propaga-

tion + DBSCAN
162 O(N2) + O(N*log(N)) Not Required Nil

Table 2   Performance comparison of the proposed AP + DBSCAN 
approach and manual, PSO, GVF segmentation methods

Segmentation approach

Performance measures PSO GVF AP + DBSCAN

Jaccard coefficient 0.6889 0.7354 0.8995
Dice Index 0.7844 0.8010 0.9213
Hausdorff distance 0.4896 0.3220 0.3572
Rand Index 0.8721 0.8995 0.9104
Variation of Information 0.1972 0.1789 0.0254
Cohens kappa 0.4592 0.6871 0.5989
Cophenet 0.8976 0.9123 0.9567

Table 3   Confusion matrix measures for the database with 361 images 
with and without carotid plaque deposit

Ground truth

(Disease) Positive (Disease) Negative Total No

Test result
 Positive 148 (TP) 4 (FP) 152
 Negative 11 (FN) 198 (TN) 209
 Total 159 202 361
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Speckle noise makes the lumen and the hypoechoic tis-
sues similar, which is reduced by curvelet denoising. The 
outliers in the affinity propagation algorithm are removed 
by Z score method, where the standard deviations of the 
points from the mean, assuming Gaussian distribution are 
calculated and the deviated points are removed. A distinct 
advantage of our approach is that it is fully user independent 
and parameter free, making it suitable for segmenting other 
dataset images. The method provides reliable segmentation 
of the lumen area in the carotid artery with and without 
atherosclerosis, which may further used to find plaque perfu-
sion and plaque vulnerability [5].

8 � Conclusion

A novel lumen segmentation of the carotid artery combin-
ing affinity propagation and DBSCAN clustering approaches 
is proposed. Affinity propagation identifies outliers, exem-
plars and clusters which are used to sharpen the DBSCAN 
clustering. The method is independent of any user defined 
parameters thus making it suitable for differently oriented 
carotid artery ultrasound images. Super-pixels are identified 
and accumulated based on texture and spatial information 
and are segmented. The algorithm focusses on the overall 
structure of the image and thus gives global optimal results. 
The proposed algorithm attains the state–of-the-art perfor-
mance at much lesser computational and outperforms man-
ual segmentation, GVF snake model and PSO based seg-
mentation with an added parameter free feature. The method 
is automated, and tried in an extensive set of 361 images 
and the results are precise. Thus our method can become a 
valuable technique for carotid artery ultrasound image seg-
mentation. The algorithm focusses on the extracted edge 
points alone, making it generate larger segments of the 
lumen region. Future studies with a larger population and 
combining motion estimation will be performed to improve 
performance accuracy.
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