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ABSTRACT Smart health care is an important aspect of connected living. Health care is one of the basic
pillars of human need, and smart health care is projected to produce several billion dollars in revenue in
the near future. There are several components of smart health care, including the Internet of Things (IoT),
the Internet of Medical Things (IoMT), medical sensors, artificial intelligence (AI), edge computing, cloud
computing, and next-generation wireless communication technology. Many papers in the literature deal with
smart health care or health care in general. Here, we present a comprehensive survey of IoT- and IoMT-
based edge-intelligent smart health care, mainly focusing on journal articles published between 2014 and
2020. We survey this literature by answering several research areas on IoT and IoMT, AI, edge and cloud
computing, security, and medical signals fusion. We also address current research challenges and offer some
future research directions.

INDEX TERMS Internet of Things (IoT), Internet of Medical Things (IoMT), edge computing, cloud
computing, medical signals, smart health care, artificial intelligence.

I. INTRODUCTION
The rising number of chronic patients and the aging of the
population render the avoidance of diseases an important
requirement of healthcare. Prevention is not only defined by
regular exercise, nutrition, and periodic preventive controls
as a way to sustain a healthier environment but also as a
method of keeping serious conditions from becoming worse.
The future health sector must tackle an increasing number
of chronic problems and the scarcity of treatments to satisfy
patient demands [1]. COVID-19 has recently highlighted the
importance of quick, comprehensive, and accurate eHealth-
care and intelligent healthcare involving different types of
medical and physiological data to diagnose the virus.

The use of emerging technology in protective policies and
behavioral systems can help identify potential health condi-
tions early and enable the scheduling of appropriate steps,
such as concurrently monitoring treatments and preparing
new assessments. The world’s smart health market is forecast
to reach USD 143.6 billion in 2019, which will expand by an
average growth rate of 16.2% between 2020 and 2027 [2].
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Smart healthcare refers to platforms for health systems that
leverage devices such as wearable appliances, the Internet of
Things (IoT), and the mobile Internet to easily enter health
documents and link people, resources, and organizations.
Intelligent medical treatment includes diverse actors, includ-
ing physicians, staff, hospitals, and research bodies. It com-
prises a dynamic framework with many facets, including
disease prevention and identification, assessment and evalua-
tion, management of healthcare, patient decision-making, and
medical research. Elements of intelligent healthcare involve
automated networks like the IoT, mobile Internet, cloud net-
working, Big Data, 5G, and artificial intelligence (AI), along
with evolving biotechnology.

Sensors have been gradually embedded into diverse sys-
tems of our lives through computer technology, automation,
and automated signal processing. Sensor-produced data can
enable clinicians to more quickly and reliably recognize crit-
ical situations and help patients become more informed of
their symptoms and future treatments. Intrusive and noninva-
sive tools—ranging from devices to read bodily temperature
to dialysis control systems—provide personal and multime-
dia details and assistance to patients and the health care
sector.
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Medical signals come in the form of 1D and 2D
signals such as electrocardiograms (ECGs), electroen-
cephalograms (EEGs), electroglottographs (EGGs), elec-
trooculograms (EOGs), electromyograms (EMGs), body
temperature, blood pressure (BP), and heart rate. A health
care monitoring system may use these medical signals to
monitor a patient.

The IoT is slowly starting to connect both doctors and
consumers through health care. Ultrasounds, BP readings,
glucose receptors, EEGs, ECGs, and more continue to mon-
itor patients’ wellness. Conditions like follow-up visits to
doctors are critical. Several health care facilities have started
to utilize smart beds, which can detect a patient’s movement
and automatically adjust the bed to the correct angle and
location. The Internet of Medical Things (IoMT) refers to the
IoT used for medical purposes. When developing a fully inte-
grated health environment, the IoMT can play an important
role.

Sometimes, relying on only one type of medical signal
may not fulfill the requirements for a complete diagnosis of a
certain disease. In such cases, multimodalmedical signals can
be deployed for a better diagnosis. These signals can be fused
at different levels, including the data level, the feature level,
and the classification level [3]. When fusing signals, many
challenges may be encountered. These challenges include
synchronization when acquiring signals from different sen-
sors, data buffering, feature normalization, and classification
fusion [4].

In order to ensure patients’ and stakeholders’ satisfaction,
intelligent health care has been revolutionized with the devel-
opment of AI and machine learning (ML) algorithms in the
context of deep learning (DL) and wireless local area network
(wLAN) technologies [5]. Themedical industry has been able
to manage numerous medical signals from the same user—
simultaneously improving disease detection and prediction
precision—due to these technologies’ high computational
performance, high data volume, accommodation of several
terminal units, and the introduction of 5G and beyond 5G
wireless technology.

In this paper, we present a detailed survey of IoT- and
IoMT-based smart health care systems. The survey is limited
to academic papers written between 2014 and 2020, located
via the IEEE Xplore, ScienceDirect, SpringerLink, MDPI,
Hindawi, the ACM Digital Library, and Google Scholar. The
survey’s aim is to look at different related research areas such
as the state-of-the-art IoT-based smart healthcare, data fusion
of IoTs, AI in smart healthcare, cloud- and edge-based smart
healthcare, and privacy and issues of IoT-based smart health-
care. At the end of this paper, we give few recommendations
and make suggestions of future research directions.

The paper is organized as follows. Section II describes
the methodology adopted to select the papers. Section III
presents a comprehensive survey of the literature and answers
several research questions. Section IV mentions some chal-
lenges and offers future research directions in this field.
Finally, Section V concludes the paper.

II. METHODS
We used the systematic review process PRISMA (Preferred
Reporting Items for Systematic Reviews andMeta-Analyses)
to identify studies and narrow down results for this review,
as shown in Fig. 1. In the review process, there are three
sequential steps, which are identification, scanning, and eli-
gibility testing. In the identification step, papers are identified
through Google Scholar search; after this step we identi-
fied 168 papers. In the scanning step, duplicate and non-
conforming papers are removed; after this step 132 papers
were selected. Then in the eligibility testing step, we removed
the papers that were non-healthcare related. After this final
step, we selected 110 papers to be included in the survey.

FIGURE 1. PRISMA study selection diagram. N represents the number of
papers.

A. RESEARCH AREAS
The research areas we used to select the articles were as fol-
lows: ‘‘state of the art regarding IoMT andmedical signals for
smart health care’’; ‘‘the techniques of multimodal medical
data fusion’’; ‘‘cloud- and edge-based smart health care’’; and
‘‘security and privacy of the IoMT’’.

B. SEARCH STRATEGY
Our survey of articles used a combination of keywords and
involved formulating a search strategy and selecting data
sources. We used the following combination of keywords: a)
‘‘Internet of Medical Things’’; b) ‘‘Fusion medical signals’’;
c) ‘‘Multimodal medical data’’; d) ‘‘Cloud/edge based smart
health care’’; and e) ‘‘Security and privacy Internet of Med-
ical Things.’’ The number of papers elicited by each search
strategy (item) after searching is shown in Fig. 2.

The search strategy was implemented based on the content
of the main research areas. We restricted our selection to
papers written between 2014 and 2020, as shown in Fig. 3.
To locate appropriate papers, we scanned for related publica-
tions in major online research repositories, including IEEE
Xplore, ScienceDirect, SpringerLink, MDPI, Hindawi, the
ACM Digital Library, Google Scholar,. and other health and
engineering journals.

C. SELECTION OF STUDIES
Our initial search identified 168 papers. The ‘‘Internet of
Medical Things’’ keyword got the largest number of papers.
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FIGURE 2. Number of papers by item.

FIGURE 3. Number of papers by year.

After removing duplicate and irrelevant articles, the search
was reduced to 110 articles.

D. DATA EXTRACTION
The following data categories were collected from articles:

a. Application or tasks
b. IoT/IoMT
c. Features
d. Classifier
e. Dataset
f. Accuracy

III. RESEARCH AREAS
The survey is divided into four areas: IoT or IoMT and
medical signals; IoMT or medical signals fusion; edge- and
cloud-based smart health care; and security and privacy in
IoMT-based health care.

A. IoT OR IoMT AND MEDICAL SIGNALS
The research in [3] used a multi-sensor platform with two-
channel pressure pulse wave (PPW) signals and one-channel
ECG to estimate BP. From the collected signals, a total
of 35 physiological and informative features were extracted.
For dimension reduction and to obtain the most promis-
ing indicators for each subject, they presented a weakly
supervised feature (WSF) selection method. Furthermore,

a multi-instance regression algorithm was used to fuse fea-
tures and enhance the blood pressure model.

Authors in [4] presented a technique for emotion recog-
nition and classification across subjects. It integrated the
significance test and sequential backward selection with a
support vector machine (ST-SBSSVM) to enhance the pre-
cision of emotion recognition. The input modalities used
included 32-channel EEG signals; four-channel EOG sig-
nals; four-channel EMG signals; and vital signals measuring
respiration, plethysmography, galvanic skin response, and
body temperature. Ten types of linear and non-linear EEG,
EOG, and EMG features were extracted and fused with the
vital signals to produce a high-dimensional feature vector.
The features were fused and selected using significance tests
and a backward selection search. The selected features were
then fed into a support vector machine (SVM) classifier. The
experiments were performed using two publicly available
datasets, namely DEAP and SEED. The proposed method
achieved 72% accuracy on the DEAP dataset and 89% accu-
racy on the SEED dataset.

One of the serious threats to the worker life is the disaster
in mine area. Gu et al. [5] proposed a real-time monitoring
system to ensure accuracy and reduce the risks to the mine
worker. Authors discussed multi-sensor data fusion, situation
awareness, and covering theories including the Internet of
Things. A random forest (RF) SVM-based model was used
to identify the level of the situation and to merge the data.
The simulation analysis showed a root mean square error
(RMSE) below 0.2 and a TSQ no greater than 1.691 after 200
iterations.

A data fusion enabled Ensemble approach was proposed
in [6]. The collected data from body sensor network (BSNs)
were fused to and inserted into an ensemble classifier for
heart disease prediction. The ensembles were placed in a fog
computing environment and the output from the individual
predictors were fused. A prediction accuracy of 98% was
shown in the result when the number of estimators was set
to 40 at a tree depth of 15.

Steenkiste et al. [7] provided a reliable model for improv-
ing the performance and reliability of predicting sleep apnea
based on sensor fusion method. In order to collect and inte-
grate multi-sensor data, including oxygen saturation, heart
rate, thoracic respiratory belt, and abdominal respiratory belt,
the proposed approach used backward shortcut connections.
To assess robustness and analyzed the performance of the
proposed fusion method, both Convolutional neural network
(CNN) as well as long short-term memory (LSTM) deep
learning base-models were used.

A multi-sensor fusion (HBMF)-based hybrid BSN archi-
tecture has been developed by Lin et al. [8] to enable smart
medical services. Medical services included data process-
ing technologies, robot, and different sensors. To ensure
that the robot make the right decision and to guarantee the
quality of medical services, a multi-sensor fusion approach
based on an interpretable neural network (MFIN) which used
AI technologies has been proposed (see Fig. 5). Reliability
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FIGURE 4. Taxonomy of the survey.

FIGURE 5. Overview of multi-sensor fusion framework.

and flexibility were improved compared with existing multi-
sensor fusion approaches. In [9], seven channels from func-
tional near-infrared spectroscopy (fNIRS) were fused with
seven EEG electrodes to improve the detection of mental
stress. Simultaneous measurements of fNIRS and EEG sig-
nals were carried out on 12 subjects. These measurements
were conducted while subjects solved arithmetic problems

under two different conditions (control and stress). The per-
formance of the fusion of fNIRS and EEG signals was supe-
rior to the performance of each separately.

In [10], a fusion of EEG and ECG videos was proposed
using three different transforms to improve video resolution:
discrete cosine transform (DCT), discrete wavelet transform
(DWT), and hybrid transforms. Both peak signal-to-noise
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FIGURE 6. Fusion model for to predict blood pressure from ECG data.

ratio (PSNR) andmean squared error (MSE) parameters were
used to measure the fusion effect. This empirical study found
that hybrid transforms improved image reconstruction.

Authors in [11] suggested a method of medical image
fusion using rolling guidance filtering (RGF). The study
used an RGF to filter input images into either low-
frequency or high-frequency components. First, the RGF
separated the input images into low-frequency and high-
frequency components, each of which had its own fusion
role. A Laplacian Pyramid (LP)–based fusion rule and a sum-
modified-laplacian (SML) based method were used to fuse
the structural components and the detailed component respec-
tively. The last step was image reconstruction. The proposed
method achieved the best high-frequency information com-
pared with other existing approaches.

A potential field segmentation (PFS) algorithm was pre-
sented by Cabria and Gondra [12]. PFS was used to segment
brain tumors in magnetic resonance imaging (MRI) scans
and the results produced by PFS were fused by ensemble
approaches to achieve a fused segmentation. The proposed
method was based on the physics notion of potential field and
viewed the intensity of a pixel in an MRI scan as a ‘‘mass’’
which produces a potential field. The performance was vali-
dated on a publicly available MRI benchmark database called
Brain Tumor Image Segmentation (BRATS) and showed that
both PFS and FOR were similar methods. However, PFS
was an exclusive segmentation algorithm and required fewer
parameters.

An approach using particle filtering was suggested by
Nathan and Jafari [13] to improve heart rate tracking with
existing artifacts and the use of wearable sensors. They esti-
mated heart rate apart from other signal features and to exploit
the known steady, they designed observation mechanisms.
This has contributed to the fusion of information from var-
ious sensors and signal modalities to increase the accuracy
of monitoring. The performance of the proposed approach
was examined on actual motion objects caused by ECG and
PPG data with corresponding accelerometer observations,
and results showed encouraging average error levels of less
than 2 beats per minute.

A method based on multi-level information fusion was
proposed by the authors in [14] to develop a predictive model
to calculate BP from ECG sensor data. In this method, the
data were fused in five levels (see Fig. 6). Data from multiple

ECG sensors were fused and they used different techniques
to extract the features from the input data in level one and two
respectively. The fusion of output information from seven dif-
ferent classifiers was input into the meta-classifier in level 3.
Knowledge from multi-target regression models for each BP
type was integrated into level 4, and a single predictor for
systolic BP (SBP), diastolic BP (DBP), and mean arterial
pressure (MAP) was obtained in level 5.

In [15], the author presented a method based on physiolog-
ical signals fusion to improve the accuracy of emotion recog-
nition. Its performance was validated by comparing both
fused and non-fused physiological signals on two publicly
available datasets. A feedforward neural network classifier
was trained using both fused and unfused signals. The result
of the proposed method showed an improvement in perfor-
mance on the DEAP and BP4D+ datasets compared with
other current methods.

Chen et al. [16] modified an existing real-time system to
produce a recognition system for human action. The device
obtained data from various sensor types, such as depth cam-
eras and wearable inertial sensors. Low-computation effec-
tive depth perception features and inertial signal features
were inserted into two computationally powerful shared col-
laborative representation classifiers (CRCs). The proposed
method was tested on a publicly available dataset called
UTD-MHAD, and the results showed an improvement in
overall classification rate (> 97%) compared to using each
sensor separately.

A data fusion cluster-tree construction algorithm based on
event-driven (DFCTA) was presented in [17]. They designed
a data fusion system for intelligent health monitoring in the
medical IOT. By calculating the nodes’ fusion waiting time,
the minimum fusion delay path was provided, and the fusion
delay problem within the network was analyzed. The empiri-
cal study showed an improvement in reliability and timely in
the proposed method compared with traditional method.

In [18], two procedures built on intrinsic image decom-
position (IID) was proposed to address the complexity of
complexity in extracting structural and functional informa-
tion from both MRIs and positron emission tomography
(PET) images utilizing the same decomposition scheme. The
presented IID was used to decompose both MRIs and PET
images into two components in the spatial domain. two algo-
rithms were used, algorithm 1 for extracting the structural
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information and eliminating the noise from MRI images,
while algorithm 2 was used for averaging the color informa-
tion from the PET image. Based on IID models, three fusion
methods were employed. IID+PCA, IID+IIC, and IID+HIS
were superior to other existing methods when the planned
method was tested.

Guanqiu [19] proposed a framework for medical image
fusion that combined two methods: dictionary learning and
clustering based on entropy. A Gaussian filter was used
to decompose source images into high-frequency and low-
frequency components. High-frequency and low-frequency
were fused by using dictionary learning and L2-norm based
weighted average algorithms respectively. The comparative
experiments showed that the proposed method enhanced per-
formance compared with other existing methods.

Baloch et al. [20] presented a layered context-aware
data combination tactic for IoT health care applications.
It included three phases: situation building, filtering and con-
text acquisition, and intelligent inference. Reliable, accurate,
and timely data were gathered from various sources. The aim
of the analysis was to resolve issues such as uncertainty, irreg-
ularity, restricted range, and sensor deficiency. The drawback
of this analysis was that no particular method was used to
evaluate the suggested solution.

In [21], a distributed hierarchical data fusion architecture at
various levels was employed using complex event processing
(CEP) technology to improve decision accuracy and timely.
It divided the task of data fusion into three-level processing
models (low, middle, and high levels of data fusion). A smart
health care scenario was prepared with appropriate IoT net-
work topologies to prove the effectiveness of the proposed
architecture. This empirical research found that the proposed
solution allowed for effective decision-making at various
stages of data fusion and showed an overall increase in the
efficiency and response time of primary health services.
Survey Papers on IoMT and Medical Signals:

Herrera et al. [22] presented state-of-the-art regarding sensor
fusion for hand rehabilitation applications. Authors classified
the research on hand rehabilitation into three categories:
exoskeletons, hand movements, and serious games for hand
rehabilitation. Of the types of sensors used, sensors based on
EMG signals were the most common.

Wearable devices play a vital role in long-term health mon-
itoring systems and are currently at the heart of IoMT [23].
In [23], a comprehensive study was presented with the goal of
presenting the most important wearable health care monitor-
ing devices, including biophysiological signs, motion track-
ers, EEG measurement devices, ECGs, BSCs, and so on.
Based on expert, authors suggested that the most critical
elements in health monitoring are motion trackers, vital signs,
and gas detection

In [24], the authors argued that it was complicated to detect
and resolve obstructive sleep apnea (OSA), although it is one
of the most common diseases. The paper highlighted IoT
systems that had supportive technologies and were utilized to
diagnose OSA, including FC, smart devices, ML, the cloud,

and Big Data. It further considered the improvement in the
monitoring of sleep quality and other remote monitoring in
AI-based health systems. In addition to the survey, a novel
IoMT optimization paradigm was proposed to improve the
quality of remote OSA diagnosis. The model showed an
enhancement in the sensitivity, accuracy, energy consump-
tion, and specificity of the system of remote OSA diagnosis.

A thorough and systematic analysis of current multi-
sensor fusion technologies for BSNs was presented by
Gravina et al. [25]. In the context of physical activity, they
have presented an in-depth analysis and assessment of data
fusion. Furthermore, they presented a systematic catego-
rization by pinpointed specific properties and parameters
that affected data fusion design choices at each level of
the traditional classification (data-level, feature-level, and
decision-level).

A comprehensive overview of different modalities fus-
ing, such as MRI- PET imaging, computed tomography
(CT)-MRI, X-ray, and ultrasound, was given by Sumithra
and Malathi [26]. The research pinpointed different types of
multimodal fusion and found that the exact boundary of the
tumor in the brain could be identified by merging both CT
frames and MRI slices.

Authors in [27] presented a thorough overview of the
application of image fusion technology in tumor treatments
and diagnosis, in particular liver tumors. It highlighted the key
values of image fusion techniques by considering their limi-
tations and prospects. It further presented an extensive review
of the procedures and algorithms used in medical image
fusion and concluded with a discussion of the research chal-
lenges and trends in medical image fusion. Table 1 presents a
summary of the papers described above on the IoT or IoMT
and medical signals.

B. IoMT AND MEDICAL SIGNALS FUSION
Swayamsiddha and Mohanty [28] discussed different appli-
cations of the cognitive IoMT (CIoMT) to tackle the
COVID-19 pandemic. Their review showed that the CIoMT
was a successful tool for fast detection, decreasing the work-
load of the health industry, dynamic monitoring, and time
tracking.

Yang et al. [29] proposed a combination of point-of-care
diagnostics and the IoMT to assist patients in receiving proper
health care at home. The proposed platform might reduce
national health costs and monitor disease spread.

Singh et al. [30] highlighted the overall applications of the
IoT philosophy in tackling the COVID-19 health crisis. This
study aimed to decrease costs and improve treatment out-
comes by employing an interconnected network for efficient
flow and exchange of data. Singh et al. [31] also presented an
IoMT concept based onML approaches to tackle the COVID-
19 health crisis. It provided treatments and solutions to issues
related to orthopedic patients.

Kaleem et al. [32] discussed ways to actively apply the IoT
in the medical and smart health care sectors and provided a
method named k-Healthcare in IoT. The proposed method
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TABLE 1. Summary of papers regarding IoT/IoMT and medical signals.

3666 VOLUME 9, 2021



F. Alshehri, G. Muhammad: Comprehensive Survey of the IoT and AI-Based Smart Healthcare

TABLE 1. Summary of papers regarding IoT/IoMT and medical signals.

used smartphone sensors to collect and transmit data to the
cloud for processing and then to stakeholders.

In [33], an event-driven data fusion tree routing algorithm
was presented. The paper discussed the theory of health infor-
mation and the sports information gathering system, which is
divided into terminal nodes and client management systems.
The proposed algorithm designed communication mecha-
nisms according to the characteristics of IoT communication
and used visual methods for modeling. The outcomes showed
an enhancement in accuracy and timeliness compared with
other methods.

Chiuchisan et al. [34] provided the design for a health care
network to track at-risk patients in smart intensive care units
(ICUs) based on the IoT model. It used a series of sensors
and theXboxKinect to track patient motions and any required
adjustments in environmental parameters to notify physicians
in real time.

Sharipudin and Ismail [35] proposed a health care monitor-
ing system to manage and process data in the patient monitor-
ing system. The proposed system was combined with health
care sensors that measured health parameters. The extracted
parameters were then sent to cloud storage for medical staff’s
reference.

Dimitrov [36] presented a discussion of IoMT appli-
cations and Big Data in the health care field which
permitted innovative commercial models and allowed for
variations in work progression, customer experiences, and
output enhancements. Wearable sensors and mobile appli-
cations were used to fulfill numerous health needs and
to collect Big Data from patients to advance health
education.

Authors in [37] established early warning score systems
based on the characteristics of vital signs. The proposed
system supported the estimation of a health state by providing
a helpful decision and cause for critical care interference.
It investigated the most appropriate ML technique to predict
the risk associated with input medical signals.

Sanyal et al. [38] proposed a federated filtering framework
(FFF) based on the forecast of data at the central fog server
using aggregated model from IoMT devices. This framework
used models provided by local IoMT devices and then shared
with the fog server. It presented a solution for many common
issues, such as energy efficiency, privacy, and latency for
resource-constrained IoMT devices.

Luna-delRisco et al. [39] addressed recognition, obsta-
cles to implementation, and threats to the usage of wearable
technology in the Latin American health care system. Major
problems that the authors noted included the training and
allocation of human capital in health care, the connectivity of
public care, funding arrangements for health programs, and
inequality in health. They considered smart wearable sensors
in health care to be part of the solution.

Adali et al. [40] used a system where joint independent
component analysis (ICA) and transposed independent vec-
tor analysis (IVA) were employed to fuse functional MRI,
structural MRI, and EEG data. Results were obtained from
healthy controls and schizophrenia patients using an audible
oddball (AOD) function. The presented system was validated
on a private dataset which included 36 subjects. The analysis
was performed using the Infomax and entropy bound min-
imization (EBM) algorithms. The experiment revealed that
the joint ICA model could be superior to the transposed IVA
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model. In the case of joint ICA, a robust ICA algorithm such
as EBM was superior to the Infomax algorithm.

Authors in [41] presented a deep CNN model for seizure
detection utilizing an excellent cross-patient seizure classi-
fier. The visualization method demonstrates the spatial distri-
bution of the characteristics learned by the CNN in various
frequency bands when studying the seizure and non-seizure
classes.

Bernel et al. [45] presented a DL method for the fusion of
multimodal data to assist and monitor a user in performing
multi-step tasks. Furthermore, they extracted deep features
from individual data sources by a deep temporal fusion
scheme. The Insulin Self-Injection (ISI) dataset consists of
motion data captured with a wrist sensor and video data
obtained from the wearable cameras of eight subjects. When
the performance of the fusion method was evaluated, the
proposed method was superior to other state-of-the-art fusion
approaches.

Torres et al. [48] proposed a formulation that merged two
features from three different modalities to categorize human
sleep poses in an ICU atmosphere. Unlike other methods that
extract one feature by merging data from various sensors, this
method extracted features independently and then utilized
them to estimate labels. Various properties and scenes were
obtained from different modalities, cameras, and RGB (red,
green, and blue) and depth sensors. Both shape and appear-
ance features were extracted and used to train single modal
classifiers and generate an estimation of the trust level of each
modality.

Using the quantum-behaved particle swarm optimization
(QPSO) algorithm, Xu et al. [46] presented an updated
pulse-coupled neural network (PCNN) model to solve the
problem of PCNN parameters and to improve the efficacy
and correctness of medical image fusion. Different metrics,
including mutual knowledge, standard deviation (SD), spatial
frequency (SF), and structural similarity (SSIM), have been
used to determine the efficiency of various methods. The
result showed that the proposed algorithm has high estima-
tion Accuracy. The proposed method was validated on five
pairs of multimodal medical images from a publicly available
dataset [42] and showed an improvement in performance over
other current methods.

In [47], an approach based on weighted principal compo-
nent analysis (PCA) for multimodal medical fusion in the
contourlet domain was presented. One of the contourlet trans-
form’s limitations was capturing limited directional informa-
tion. In this study, the contourlet transform was combined
with PCA to overcome this limitation and improve the fusion
of medical images. It used max and min fusion rules to
merge the decomposed coefficients, and the results showed
improvement.

Using a hybrid technique combining non-subsampled con-
tourlet transform (NSCT) and stationary wavelet transform
(SWT), Ramlal et al. [49] produced an enhanced multimodal
medical image fusion scheme. NSCT was used to decompose
the source image into various sub-bands, and SWT was used

to decompose the NSCT approximation coefficients into sub-
bands. The efficiency of the proposed procedure was assessed
through four sets of experiments. The suggested system
was compared to other existing fusion schemes and showed
improvement in brightness, clarity, and edge information in
the merged image.

An improved algorithm based on a fuzzy transform (FTR)
for multimodal medical image fusion was presented by Man-
chandaa and Sharmab in [50]. They considered the error
images obtained using FTR pair to improve the performance
of multimodal medical image fusion algorithm. To validate
the proposed algorithm, different datasets were used, and the
result was compared with other multimodal medical image
fusion algorithms. The proposed algorithm showed a sig-
nificant improved in edge strength, standard deviation, and
feature mutual information.
Survey Papers on IoMT and Medical Signals:

Joyia et al. [51] presented the contributions of IoT in the
medical field and their major challenges in the IoMT. Numer-
ous applications and research in IoMT were discussed in
terms of how they solved issues faced by the global health
care industry.

Irfan and Ahmad [52] reviewed current architectural mod-
els and produced a new one for the IoMT. They pinpointed the
motivations that would lead medical practitioners to decide to
adopt the IoMT and further demonstrated privacy and security
problems in the IoMT.

Authors in [53] presented a comprehensive review of the
current architecture for IoMT devices and discussed different
aspects of the IoMT, including communication modules and
major sensing technologies. The paper further discussed the
challenges and opportunities related to using the IoMT in the
health care industry. Communication gateways, data acqui-
sition, and cloud servers were the main components of the
IoMT framework.

In [54], the author presented a comprehensive overview
of multimodal fusion of brain imaging data. This survey
addressed the merits of multimodal data fusion in depth
and summarized different methods of multivariate voxel-wise
data fusion. A number of multimodal medical data fusion
studies, particularly related to psychosis, have been reviewed.
The author summarized this analysis by highlighting the
importance of multimodal convergence in minimizing misdi-
rection and perhaps discovering links between the brain and
mental illness.

Table 2 presents a summary of the papers described above
regarding IoMT and medical signals fusion.

C. EDGE-INTELLIGENT AND CLOUD-BASED SMART
HEALTH CARE
An edge- or cloud-based privacy-preserved automatic emo-
tion recognition system utilizing a CNNwas proposed in [55].
In [56], the authors suggested an appropriate training system
for a deep neural network named ETS-DNN in an edge-
computing environment. In order to change DNN parameters,
ETS-DNN was combined with a hybrid algorithm for hybrid
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TABLE 2. Summary of papers regarding IoMT or medical signals fusion.

modified water wave optimization (HMWWO) In order to
minimize data traffic and latency, data preprocessing and
classification was carried out at the edge of computation. The
results showed that ETS-DNN was superior to the compared
approaches.

Han et al., in [57] provided effective communication
by developing a clustering model for medical applications
(CMMA)) for cluster head selection. The proposed CCMA
aimed to enhance lifetime of communication, improve relia-
bility, and offering energy efficiency in medical application.
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When choosing a cluster head, some criteria should be taken
into consideration such as remaining energy, distance from
the base station, capacity, delay, and queue of the IoMT
devices. An improvement in terms of energy-efficient com-
munication was shown in the proposed method compared
with other existing methods.

Authors in [58] presented a cognitive IoT (CIoT) cloud-
based smart health care framework with an EEG seizure
detection method using DL. Authors in [59] proposed a
voice pathology monitoring system integrating IoT and cloud
technology.

In [60], Olokodana et al. used the ordinary kriging method
to present a real-time seizure detectionmodel in an edge com-
puting paradigm. Fractal dimension features were extracted
from EEG signals, and an ordinary kriging model was then
used for classification. Computational time complexity is one
of the limitations of kriging. In the proposed model, a previ-
ously trained ordinary kriging model was moved to an edge
device for real-time seizure detection. The empirical study
achieved a training accuracy of 99.4% and a mean seizure
detection latency of 0.85 seconds.

In [61], an energy-efficient smart-health system based on
fuzzy classification was proposed for seizure detection. The
raw EEG data was processed at the edge before being trans-
mitted to the mobile–health cloud (MHC). The proposed sys-
tem minimized energy consumption by reducing the amount
of transmitted data and provided high classification accuracy.
The result showed an extension in battery life of 60% and a
classification accuracy above 98%.

A new network paradigm, CIoT, has been proposed based
on the application of cognitive computing technologies [62].
In [63], Chen et al. combined the advantages of edge com-
puting and cognitive computing to create an edge-cognitive-
computing–based (ECC-based) smart health care system
which allocated maximum edge computing resources to
higher-risk patients. The empirical experiments showed that
the proposed system was capable of improving energy effi-
ciency and user quality of experience (QoE).

Authors in [64] presented an edge-IoMT computing archi-
tecture which minimized latency and improved bandwidth
efficiency. It consisted of two components: edge computing
unit modules which compressed and filtered real-time video
data, and cloud infrastructure modules which securely trans-
mitted medical information to the physician.

Akmandor et al. [65] discussed different edge-side com-
puting options which were designed to address challenges
in smart health care systems. They demonstrated an edge-
side reference model comprised of three levels: sensor node,
communication, and base station. The compatibility between
sensors and edge-side requirements enabled smart edge-side
decision-making.

DL was utilized on a mobile health care platform to inves-
tigate a speech pathology detection method in [66] and an
EEG-based remote pathology detection system in [67].

In [68], an automated voice disorder recognition system
was used to monitor people of all age groups and professional

backgrounds. By identifying the source signal from the
speech using linear prediction analysis, the proposed system
could determine the voice disorder.

In [67]–[69], the authors developed a voice disorder detec-
tion andmonitoring system. In [69], they collected voice sam-
ples sent to the edge, which offers low latency and reduces
delays in data traffic flow. After processing data using edge
computing, data were transferred to the cloud for more pro-
cessing and assessment. The medical information was then
sent to a specialist, who prescribed suitable treatments for
patients. The authors tested voice disorder classification and
detection and compared the results with two related systems.
The study found that the proposed technique improved per-
formance in terms of detection and classification with 98.5%
accuracy.

Oueida et al. [70] provided a resource preservation net
(RPN) framework which integrated a custom cloud, edge
computing, and Petri net. The framework improved reliability
and efficiency and reduced both resources and time con-
sumption. The proposed system was suitable for emergency
departments and other types of queuing systems.

In [71], Kharel et al. used Long Range (LoRa) wireless
communication and FC to produce an architecture for smart
remote health monitoring. LoRa radio provides long-range
communication and energy consumption for IoT devices and
is used in the proposed system to link the edge user’s device
with health centers. FC preserves network bandwidth and
reduces latency by minimizing data exchange with the cloud.
Tests showed that LoRa and FC had promising performance
in remote health care monitoring.

In [72], the author utilized several wearable sensors and a
DL method (namely a recurrent neural network [RNN]) to
introduce a human activity prediction system. Data, features,
and activity prediction were processed on fast edge devices
like personal computers. To predict human activities from a
public dataset, the RNN was trained based on the features,
achieving 99.69% mean prediction performance.

Authors in [73] produced a task scheduling approach called
HealthEdge that assigned priority to each task based on its
emergency level in order to decide whether to process the
given task remotely (i.e., in the cloud) or locally. They also
provided a priority-based task queuingmethodwhich allowed
emergency tasks to be processed earlier. The results showed
that increasing the local edge workstation reduced processing
time.

In [74], Vasconcelos et al. proposed a new method called
adaptive brain tissue density analysis (adaptive ABTD) to
improve the detection and classification of strokes. Edge
computing devices provided low computation and cost and
reduced time consumption in detection and diagnosis. The
integration of the adaptive ABTD with edge devices and the
IoT introduced speedy and efficient stroke diagnosis.

Authors in [75] presented a model for cloud-IoT–based
health service applications in an integrated Industry 4.0
environment by enhancing the selection of virtual machines
(VMs). They implemented their cloud-IoT model using three
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optimizers: particle swarm (PSO), genetic algorithm (GA),
and parallel particle swarm (PPSO). The proposed architec-
ture consists of stakeholders who use IoT devices to send
tasks through cloud computing in order to receive services
such as telemedicine and disease diagnosis. The cloud broker
works in the middle to send and receive tasks over the cloud.

Authors in [76] proposed a tree-based deep model for
efficient load distribution to edge devices. The input image
was divided into volume groups and a tree structure passed
through each volume. The tree structure had several branches
and levels, each of which was defined by a convolutional
layer.

In [77], Chung and Yoo increased the effectiveness of
analyzing Big Data by proposing an edge-based health model
using peer-to-peer DNNs. An edge-based health model and a
server model were established separately to tackle the issue
of response time delay. The results showed that combining
DNN techniques and parallel processing models minimized
response time delay.

Limaye and Adegbija [78] provided a comprehensive
review of medical applications and algorithms in IoMT archi-
tectures and their integration with edge computing. IoMT
workloads were compared using MiBench, an existing open
source embedded system benchmark suite. The comparison
showed that the IoMT applications differed from MiBench,
indicating the need for a new benchmark sufficient for the
IoMT microarchitecture. A cloud-based healthcare frame-
work was proposed in [111]. In the framework, several
aspects of data transmission and latency were discussed.
An edge-enabled DNN-based method was proposed in [110].

Table 3 presents a summary of the papers described above
on edge- and cloud-based smart health care.

D. SECURITY AND PRIVACY IN IoMT-BASED HEALTH CARE
The security and privacy of medical data are very important
in smart health care frameworks. A patient’s data should be
handled privately. If privacy is breached, the patient may
be harassed in public, which can lead patients to become
traumatized and depressed. If medical sports data are leaked,
rival sports team members might use these data to solicit
illegal advantages. Therefore, medical data should be dealt
with privately and securely transmitted over communication
channels [123]. This important issue has been addressed in a
great deal of prior research.

Alsubaei et al. [79] presented a taxonomy of security and
privacy in the IoMT. They categorized IoT layers (percep-
tion, network, middleware, application, business); intruder
types (individual, organized group, state-sponsored group);
impact (life risk, brand value loss, data disclosure); and attack
method (social engineering, implementation layer, software
or hardware bugs, malware). The perception layer includes
wearable devices such as fitness trackers, BP sensors, and
respiratory sensors; implantable devices such as capsule cam-
eras; ambient devices such as door sensors and daylight sen-
sors; and stationary devices such as CT scanners and X-rays.

While there are many ways to fuse data from these devices,
the authors did not discuss them in the paper.

In [80], the authors identified the potential security threats
that can affect IoMT-based health care systems and recom-
mended a series of security measures to tackle these threats.
Some of the security issues mentioned in this paper include
overlooking the aspects of built-in security, stakeholders’
unfamiliarity with security solutions and focus on marketing
and financial gain, and a lack of consensus between stake-
holders for overlapping solutions. Based on these threats,
the authors proposed some ontology-inspired, stakeholder-
centric, and scenario-based recommendations in line with
available guidelines.

Ivanov et al. [81] introduced OpenICE-lite, a middleware
for medical device interoperability designed to provide secu-
rity for IoMT devices. Several applications were investigated
for this middleware, including a critical pulmonary shunt
predictor and a remote pulmonary monitoring system.

Lu and Cheng [82] proposed a secure data-sharing scheme
for IoMT devices. First, the system guarantees the protection
of and permitted access to mutual information. Second, the
system conducts effective integrity tests until the customer
opens mutual data to prevent an erroneous application or
calculation performance. Ultimately, the system provides a
lightweight procedure for both consumer and customer. The
scheme removes the burden of generating encryption and
decryption keys solely on end devices.

Mohan [83] presented some cyber threats to IoMT devices
and provided some solutions to these threats. As IoMT
devices are limited by their battery life, they have only lim-
ited encryption capability and are thus at risk in terms of
integrity, confidentiality, and privacy. Sensitive patient data
can be leaked, and denial of service attacks can be made
by draining the battery. As solutions, IoMT devices must be
installed during deployment and software details transferred
to the cloud-based system provider. IoMT devices encrypt
all patient data using lightweight cryptographic methods and
store patient data on the cloud-based system. Only approved
entities who send their verifiable attribute-based certificate to
the cloud provider may access this data.

Nkomo and Brown [84] proposed a cybersecurity frame-
work for IoMT devices in smart health care systems that
had five attributes: identify, protect, detect, respond, and
recover. First, asset management and risk assessment should
be identified. Second, access control, data security, and pro-
tective technology should be developed. Third, anomalies and
events should be detected. Fourth, response planning should
be designed through analysis andmitigation. Fifth, a recovery
path should be planned.

Rathnayake et al. [85] realized a security mechanism for a
smart healthcare system using the IoMT. First, data from dif-
ferent IoMT devices were encrypted using asymmetric cipher
and advanced encryption standard (AES) keys. The keys
were protected using a ciphertext attribute-based encryption
(ABE) protocol. The encrypted data were transmitted through
an insecure network. At the receiver end, AES keys were
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TABLE 3. Summary of papers regarding edge- and cloud-based smart health care.

decrypted using the ABE protocol. Data were then decrypted
using the ASE keys. This mechanism maintained the privacy
and the security of patients’ data.

Seliem and Elgazzar [86] proposed a blockchain for IoMT
(BIoMT) to preserve security and privacy in a smart health
care framework. The BIoMT had four layers. The first layer
was a device layer, which contained IoMT and user interface
devices. The second layer was a facility layer, which had a
bolster to look after IoMT devices. The facility layer provided
the basic blockchain modules for attribute number selection,
security generation, and identity issuance. The third layer
was a cloud layer that provided the computational power
and storage, and the fourth layer was a cluster layer which
contained medical facilities and the service provider.

Wang et al. [91] designed a fog-based access control
(AC) method for the IoMT. The authors developed a method
that installed an extra layer of control on fog servers to
improve protection for local mobile devices. A register in
the AC server was important for compliance with devices.
Data access requests were submitted to the AC server, where
the status of the application could be reviewed. The registry

needed to ensure that the incoming function had been
recorded in the past. The comparison should be performed as
the work form was recorded to ensure that the privacy setting
was changed. The architecture was situated in the fog layer,
where functional-oriented servers could provide the required
AC service to each device.

Dilawar et al. [92] introduced cryptography as a solu-
tion for the safe exchange of patient safety records using
blockchain technologies to protect medical data. A unified
blockchain-based technique would solve many of the diffi-
culties related to a centralized cloud solution. Authors in [93]
introduced an access management model that safeguarded
patients’ medical data from internal information security
attacks. It enabled only legally permitted people to connect
despite physical limitations. The suggested model incorpo-
rated authorization consistent with permits and responsi-
bilities, rather than positions for medical personnel only.
It eliminated the contradictions of current AC models.

Omotosho et al. [94] identified and incorporated some
of the main characteristics of a patient’s health report that
should be published and made accessible at all times as well
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as qualities that should be disclosed only during emergency
conditions or pre-hospital treatment. Creating medical fea-
tures from patient health information that may be retrieved
in critical cases is a proactive step that allows technicians to
obtain access to required details in pre-hospital services while
protecting patients’ dignity and confidentiality.

Farahat et al. [95] introduced a data encryption scheme
that involved first encoding data, then encrypting those data
with a rotated key until they were sent across the network.
Doctors can recover the protected data using their login keys
and credentials. The schemewas implemented using low-cost
equipment and reliable applications to ensure safety in the
delivery of medical information.

Guan et al. [96] proposed a differential private data clus-
tering scheme to allow privacy-preserving IoMT using the
MapReduce system. For large-scale data sets, MapReduce is
a parallel programming system that abstracts parallel comput-
ing procedures into two functions: Map and Reduce. In this
scheme, the authors refined the distribution of privacy bud-
gets and the collection of initial centroids to boost the per-
formance of the k-means clustering algorithm. In addition,
an enhanced method for collection of the initial centroids
was suggested to maximize the precision and reliability of
the clustering algorithm.

Hamidi [97] proposed a modern paradigm for the appli-
cation of biometric technologies to the advancement of smart
health care using the IoMT, which, in addition to being simple
to use, requires broad-scope data access. While card IDs and
passwords control entry, these systems can be quickly broken
and are known to often be inefficient. A biometric trait has
four main features: universality, distinctiveness, permanence,
and collectability. The author anticipated four levels of secu-
rity strategies: IoMT device, communication, analytical, and
management.

Alsubaei et al. [80] outlined a web-based IoMT security
assessment framework focused on an ontological scenario-
driven methodology to propose security steps in the IoMT
and to evaluate safety and deterrents in IoMT solutions.
The framework encouraged the development of a strat-
egy that fits stakeholders’ protection goals and facilitates
decision-making.

Elhoseny et al. [98] proposed a hybrid optimization of
asymmetric encryption for IoMT security. An ideal pri-
vate and transparent key-based authentication was used in
IoT therapeutic images. Various approaches were consid-
ered to achieve optimal hybrid optimization, from which
the researchers differentiated and analyzed the critical open-
ended difficulties in enhancing IoT in healthcare.

Shakeel et al. [99] introduced learning-based Deep
Q-Networks to reduce ransomware attacks when handling
health records using IoMT devices. The approach analyzed
the medical knowledge in various layers per the Q-learning
principle, which allowed transitional attacks to be eliminated
with less difficulty. Efficiency was measured in terms of
energy, lifetime, throughput, accuracy, and malware error
detection rate. Yi and Nie [100] proposed a multivariate

quadratic equation–based cryptographic security system for
IoMT devices. A physical analysis model of the crypto-
graphic systemwas designed by analyzing fault tolerance and
differential power on a cloud platform.
Survey Papers on Security and Privacy in IoMT-Based

Health Care: A survey on security and privacy in the IoMT
was presented in [101]. The authors identified four require-
ments for security and privacy: data integrity, data usabil-
ity, data auditing, and patient information privacy. Existing
solutions to these requirements were discussed and included
data encryption, access control, trusted third-party auditing,
data search, and data anonymization. For example, some
encryption methods for access control include attribute-based
encryption and symmetric and asymmetric key encryption.
The paper ended by noting some future challenges, such
as how to deal with insecure networks, develop lightweight
protocols for devices, and share patients’ private data.

Hatzivasilis et al. [102] reviewed security and privacy in
the IoMT. In an IoMT-based health care system, there are
three main application settings: hospitals, homes, and body
sensors. Three security aspects—confidentiality, integrity,
and availability—should be enforced in device, connectiv-
ity, and cloud security. The survey analyzed different types
of security components. Various types of protection mech-
anisms, identification and anonymity techniques, and data
destruction for device reuse were also discussed.

Sun et al. [103] provided an outline of the latest prob-
lems, requirements, and possible risks to the protection and
confidentiality of IoMT-based health care systems. To design
an IoMT networks, one must address postural body move-
ments, rises in temperature, energy efficiency, transmission
range, quality of service, and heterogeneous environments.
The security and confidentiality requirements have different
attribute levels. At the data level, care must be taken regarding
confidentiality, integrity, and availability. At the sensor level,
the design must address tamper-proof hardware, localiza-
tion, self-healing, over-the-air programming, and forward and
backward compatibility. At the personal server level, device
authentication and user authentication should be considered,
while at the medical server level, important requirements
include access control, key management, trust management,
and resistance to denial of service attacks.

Li et al. [104] provided a survey of secured IoMT with
friendly-jamming schemes. The authors reviewed the IoMT’s
existing protection systems and defined key security issues in
the IoMT. They recommended friendly-jamming schemes to
protect patients’ sensitive diagnostic data obtained frommed-
ical sensors. They concluded that, when properly planned,
friendly-jamming approaches could substantially reduce the
probability of effectiveness of eavesdropping activity while
having no substantial impact on legal transmission.

Ghoneim et al. [105] introduced a new medical image
forgery detection method to verify that health care images
had not been changed or altered. The method generates an
image noise map, realizes a multi-resolution regression filter
to the noise map, and feeds the output to SVM-based and
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ELM-based classifiers. Another copy-move image forgery
detection method was proposed in [112]; the method could
be used in medical image forgery detection.

Lin et al. [106] reviewed the security and privacy issues,
challenges, and future directions in the IoMT field. There are
four major categories of medical sensors: disposable health
sensors, connected health sensors, IoT-supported sensors, and
IoT market cap sensors. The authors provided a systematic
review of these sensors in terms of their security and pri-
vacy, followed by the challenges they present. Some of these
challenges included the integration of multiple sensors with
proper protocols, data bursts, and social acceptance. In a
related survey, Masud et al. [117] outlined some limitations
and issues related to the security of IoMT devices and pro-
vided some recommendations. They listed risks such as the
disclosure of personal information, data falsification, lack of
training, and reasonable accuracy.

IV. CHALLENGES AND FUTURE RESEARCH DIRECTIONS
The major challenges of IoT and AI-based smart health-
care include sensors’ interoperability, device communica-
tion, security and privacy, device management, information
management barrier, and efficient use of AI. In some health
care environments, the bulk of IoMT devices can be used
to identify and diagnose an illness, and the data collected
from heterogeneous sensors contains a variety of issues,
such as hardware glitches, drained batteries, or connectivity
problems [106]. There are certain basic problems that are
normal and unregulated. In particular, there are sometimes
unexplained errors in the usage of popular medical sensors,
such as mobile phones and smartwatches. There are also reg-
ular complexities, such as battery power, distinctions between
particular physical characteristics, and variations in the
environment.

The above problems indicate that several difficulties exist
in smart health care, though multimodal signals and several
IoMT devices are being used. A simplified and easier fusion
solution should be discussed to facilitate the general adoption
of such smart health care [115], [119], [121], [123]. Below,
we discuss some of these problems and potential solutions.

The healthcare system can get inconsistent data from
the multiple sensors because of the unawareness from the
researchers. Incomplete data may get thieved or faked by
other people. Radio frequencies of IoTs might have an effect
on reading areas, and readers might give false readings. Tag
collisions and tag detuning should be corrected, along with
metal/liquid effects and tagmisalignment. The system can get
redundant data which need to be refined.

Wearable sensors are equipped with batteries, Bluetooth,
and other materials and were designed to be attached to
human skin. For human safety, it is important to consider
toxicity, flammable materials, and other factors when design-
ing wearable sensors. Wearable sensors that constrain body
movement, such as a belt worn at the waist or ankle, are
uncomfortable, especially for the elderly and children. One
challenge is to develop sensors that continuously monitor

human vital signs using suitable materials and without reduc-
ing user comfort.

There is an increase of the number of connected sensors,
devices, and IoTs in any smart system. A massive healthcare
network will work only if it has sensing capabilities plus the
capacity to produce important information. In the healthcare
system, many millions of sensors and IoTs are linked that
provide massive amounts of data to be studied. In the IoT, the
entities should have compatible data model and knowledge
representation model.

There is a need to recognize interoperability of IoTs or
partnership between nations when it comes to the develop-
ment of digital health infrastructure. This disadvantage, along
with lack of IT infrastructure, is attributed to both a lack of IT
skills and the need for international collaboration in the shar-
ing of confidential medical data, which will promote remote
telemedicine and the provision of high-quality medical care.
Shibboleth is a distributed identification key, which allows
individuals to be authenticated inside and through organi-
zational systems. The conventional Shibboleth mechanism
requires a user to confirm to an ID provider and then directs a
demand for a site to be hosted by a service provider. With
this distributed approach, Shibboleth allows digital health
organizations to have a single sign-on capability, as in the case
of digital health.

Automatic health care programs depend on self-sensing,
self-adjustment, and self-tuning [108], [113]. As background
such as sensor noise and recording environment, varies,
fusion of sensors and IoTs can deal with the modifications,
since they can have a direct impact on system properties such
as precision. Information transfer methods for transfer learn-
ing should be used to permit the system to adjust to particular
circumstances by collecting and transferring acquaintance
from one situation to another.

Unauthorized access to IoT devices may contribute to
extreme health and private information threats to patients.
Linked computers, including the compilation, aggregation,
retrieval and transmission of patient knowledge to the cloud.
Cloning, spoofing, RF jamming and cloud polling is prone
to system type. In the cloud survey, traffic is diverted such
that commands can be injected directly to a computer by an
individual in the center.

Attacks with denials of service (DoS) can impact health
organizations and the security of patients. Although repli-
cation (use of several devices on the network) is a standard
protection of DoS, it might not often be feasible to replicate
resources in a healthcare setting since some of the devices
are essential systems implant. Owing to the amount and
sophistication of new device and hardware bugs, the quick
identification of possible security hazards remains a problem.
This problem is escalating as the Internet links more and
more users. Standard security is also widespread today and
unsecure user interface access raises the threat surface more.

Many wireless networking devices have also recently been
used in the health care industry, including Wi-Fi, BLE and
ZigBee, for linking various medical equipment and sensor
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forms to each other. Defense from eavesdropping, sybil
assault, plunger hole attacks and sleep loss attacks must be
applied with these wireless sensor and sensor technologies.
In order to preserve protection and privacy, core data sets of
personal details, family histories and electronic medical doc-
uments can also be guarding against hackers and malicious
devices.

The misuse of access privileges by allowed insiders is a big
concern. This kind of information sharing occurs when health
facilities disclose sensitive medical information to unautho-
rized people, either due to irresponsibility, for individual or
criminal purposes, or in return for illegal benefits. Celebrities’
health reports and the lawmakers’ information also leaks to
the public from a centralized healthcare system. This could
cause a breach of the regulation by the insiders and the
documents that they would not have access to. For example,
medical personnel who are not taking care of real patient and
former staff who are not yet restricted from data query. A dis-
gruntled party will cause problems to each other by accessing
the protected details of each other. Intruders are trying to
pretend to be healers in order to infiltrate. Cybercrime as a
virus of today’s Internet sector is a big issue and a menace
to health. There are high costs for unsafe medical practice
such as negative impact on their reputation, penalties, legal
liability, and many more.

Traditional AI-based healthcare systems may not gain
acceptability to the doctors. Therefore, explainable AI-based
system can be deployed, where the doctors can visualize
the detection or classification of diseases. The optimization
of edge resources can be efficiently done edge-intelligent
algorithms [105], [107], [109], [114].

The practical usefulness IoMT activated healthcare sys-
tems is rarely addressed in literature. The main concern is
that the most relevant data is owned by companies and is not
accessible to the public. The efficient deployment and utiliza-
tion of data fusion in practice will allow for more reliable
measurement and evaluation of day-to-day physical activity
utilizing low-cost monitors that can lead to easier and better
preventive care for chronic diseases. We assume that hosting
medical data in a public archive with appropriate protection
precautions and exploring current data fusion strategies using
such public data will be a crucial potential direction for future
research.

The advancement of next-generation wireless networks
poses a great prospect in smart healthcare [118], [120], [122].
With the help of 5G and beyond 5G networks, now the health-
care system can be reached anywhere in the world faster than
before. In addition, federated DL and edge-based computing
become easier and powerful [2], [104], [116].

V. CONCLUSION
Smart healthcare is a well-researched area. In the smart health
care domain, there is a breadth of literature covering IoT,
IoMT, medical signals, AI, edge and cloud computing at var-
ious rates and utilizing varied tactics. However, to the best of
our knowledge, there was a lack of a thorough and systematic

analysis of state-of-the-art IoT, IoMT, AI, medical signals use
and fusion, edge and cloud computing, privacy and security in
the smart health care domain. The purpose of this survey was
thus to offer a formal classification and specific comparative
context for IoT, IoMT, AI, edge and cloud computing, privacy
and security in smart health care. The survey included the
use of IoT, IoMT, and medical signals, the fusion of sensors,
and the use of edge and cloud computing in smart healthcare.
It further provided a survey of security and privacy issues
involving IoMT devices. Finally, some research challenges
and future research directions were discussed.
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