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ABSTRACT Electric load forecasting has always been a key component of power grids. Many countries
have opened up electricity markets and facilitated the participation of multiple agents, which create a
competitive environment and reduce costs to consumers. In the electricity market, multi-step short-term load
forecasting becomes increasingly significant for electricity market bidding and spot price calculation, but the
performances of traditional algorithms are not robust and unacceptable enough. In recent years, the rise of
deep learning gives us the opportunity to improve the accuracy of multi-step forecasting further. In this paper,
we propose a novel model multi-scale convolutional neural network with time-cognition (TCMS-CNN).
At first, a deep convolutional neural network model based on multi-scale convolutions (MS-CNN) extracts
different level features that are fused into our network. In addition, we design an innovative time coding
strategy called the periodic coding strengthening the ability of the sequential model for time cognition
effectively. At last, we integrate MS-CNN and periodic coding into the proposed TCMS-CNN model with
an end-to-end training and inference process. With ablation experiments, the MS-CNN and periodic coding
methods had better performances obviously than the most popular methods at present. Specifically, for
48-step point load forecasting, the TCMS-CNN had been improved by 34.73%, 14.22%, and 19.05% on
MAPE than the state-of-the-art methods recursive multi-step LSTM (RM-LSTM), direct multi-step MS-
CNN (DM-MS-CNN), and the direct multi-step GCNN (DM-GCNN)), respectively. For 48-step probabilistic
load forecasting, the TCMS-CNN had been improved by 3.54% and 6.77% on average pinball score than
the DM-MS-CNN and the DM-GCNN. These results show a great promising potential applied in practice.

INDEX TERMS Short-term load forecasting, probabilistic load forecasting, multi-step, multi-scale
convolution, time cognition, deep learning.

I. INTRODUCTION

Load forecasting plays an essential role for energy man-
agement and distribution management in power grids. It is
a necessary part in order to ensure the balance between
generation and demand. Operators of power grid need high-
accuracy power load forecasting to maintain the safety
and stability of power supply. Accurate load forecasting
becomes more challenging due to the continuous develop-
ment of the power grids and the increasing complexity of grid
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management [1], [2]. Many countries have opened up elec-
tricity markets and facilitated the participation of multiple
agents, which creates a competitive environment and reduces
costs to consumers. In the electricity market, load forecasting
has become one of the most important tasks for electric-
ity market entities. Electricity load forecasting categories
can be simply summarized as follows: very short-term load
forecasting (VSTLF), short-term load forecasting (STLF),
medium-term load forecasting (MTLF), and long-term load
forecasting (LTLF). The cut-off horizons for these four cat-
egories are one day, two weeks, and three years respec-
tively [3]. STLF gives great significances to power system in
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providing strategies, reliability analysis, interchange evalua-
tion, security assessment, and spot price calculation [4], [5],
which brings a higher accuracy requirement.

In the last decades, short-term load forecasting algorithms
have been widely studied. The major forecasting models are
divided into three categories: traditional, machine-learning,
and artificial intelligent models. The traditional models are
studied and used frequently due to their fast computing speed
and robustness [6]. Some common ones include linear regres-
sion [7], [8] and auto regressive integrated moving average
(ARIMA) [9], [10]. Others, such as exponential smooth-
ing [11] and multiple linear regression [12], [13], have also
attracted the interests of relevant researchers. In dealing with
the linear forecasting problem, these models are effective
as a result of studying the qualitative relationship between
electric load and its influencing factors. However, the linear
regression methods are not competent in nonlinear problems
like relationship between weather and load. Also, there are
some other confusing problems. For examples, ARIMA has
difficulty in selecting the corresponding order in two pro-
cesses auto regressive (AR) and moving average (MA) etc.

Machine-learning models mainly include support vec-
tor regression (SVR) [14], [15], regression trees [16], ran-
dom forest (RF) [17], gradient boosting regression trees
(GBRT) [18], Kalman filtering [19], [20], and gray forecast-
ing [21]. Gray forecasting can just only deal with the data
type with exponent increase trend [22]. SVR can effectively
extract non-linear features and avoid over-fitting, so it shows
good performance in STLF. However, SVR is not stable
enough to outliers, and the setting of training parameters
involves many skills and difficulties, which produces a terri-
ble training process. RF and GBRT are derived from decision
tree, which has better robustness to outliers, fewer parameter
settings, and higher forecasting accuracy. However, the deci-
sion tree algorithm does not serve an acceptable performance
in the case of large load growth.

Then, more intelligent and automated artificial neural net-
work (ANN) [23] methods are developed to overcome the
non-linear and complex relationship in electric time series,
such as back propagation neural network (BPNN), extreme
learning machine (ELM), and radial basis function (RBF).
Recently, deep learning has become one of the preferred
technology in many research fields. Deep learning borrows
spirits from ANN and boost the power of ANN via deep-
ening its layers and leveraging its structures. These learning
methods have been widely implemented to solve natural
language processing and speech/image recognition problems.
Deep belief networks(DBN), made up from multiple layers
of restricted Boltzmann machines, was used in the prob-
lem of 24 hour ahead electricity consumption forecasting,
and applied to available historical real data describing the
electricity consumption in the Republic of Macedonia [24].
The layer-by-layer unsupervised training procedure is fol-
lowed by fine-tuning of the parameters by using a super-
vised back-propagation training method. There are two most
widely adopted models: recurrent neural networks (RNN) and
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convolutional neural networks (CNN). Long short term mem-
ory (LSTM) [25], an improved gate-based RNN, is suitable
for processing and predicting important events with rela-
tively long intervals and delays in time series [26]. LSTM
cannot only resolve the gradient disappearance problem that
exists in the RNN structure, but also enhances the ability of
long-term memory achieving the state-of-the-art precision in
STLF [27], [28]. Nevertheless, LSTM has some probabilities
to lose important information in training process. At the
same time, it does not hold the capability of the parallel
computing that results in a time-consuming and computing
resource wasting behavior. The basic architecture of CNN
is designed for the image recognition, but through care-
ful structural design, CNN-based networks can still achieve
top-level accuracy in sequence processing [29]-[31]. Gated
CNN(GCNN) and temporal CNN are reported being prac-
ticed in load forecasting [32].

However, most researches only pay attention to one-step
load forecasting. On the contrary, multi-step load forecast-
ing gives more contributions to practical applications, such
as electricity market bidding and spot price calculation.
Bonetto and Rossi [33] proposed an original forecasting tech-
nique based on non-linear autoregressive (NAR) neural net-
works. This architecture allows parallel and efficient training
and is also lightweight at runtime. Yan et al. [34] proposed a
multi-step forecasting strategy with a one-dimension convo-
lutional neural network to predict the load quantity of a rel-
atively longer span for electricity market bidding. Although
their work improves the ability of parallel computing saving
time and resources, the accuracy of this model is not sat-
isfied enough. Cai ef al. [35] presented a direct multi-step
model based on GCNN for multi-step load forecasting. As a
result, this model achieves the state-of-the-art performance.
Besides, it gets rid of the shortcomings of the accumulated
errors that exist over the recursive multi-step process since
the forecasting is obtained directly from the prior neighbor
data. Nonetheless, these researches ignore the time feature
that is indispensable in multi-step load forecasting.

In order to solve problems mentioned above, this paper
proposes the multi-scale convolutional neural network with
time-cognition (TCMS-CNN) for multi-step forecasting of
power aggregation load. With the multi-scale convolution,
the ability of CNN have been improved by extracting complex
and significant features of power load sequences. In addition,
the temporal cognition of our deep model is strengthened by
the periodic representation of a special time mark. At last,
we propose a novel framework using deep learning, which
combines sufficient and discriminative features to extract
potential law in the dataset providing an excellent result.
The main contributions of the paper can be summarized as
follows.

o A one-dimensional multi-scale convolution is intro-
duced, which extracts the intrinsic relationship of
the load sequence from different locations. Besides,
MS-CNN is proposed with multiple residual blocks
to increase the depth and improve the ability of
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feature representation. Through comparison experi-
ments with the state-of-the-art methods, MS-CNN effec-
tively improves the forecasting accuracy at first.

« A novel strategy of a sophisticated periodical coding is
proposed that enable our deep model born with a better
capability of time-cognition. Experiments demonstrated
that our network achieve considerable accuracy com-
pared with currently popular algorithms.

o The TCMS-CNN model unifies two innovations above,
which combines the multi-scale and time-cognition fea-
tures to form an end-to-end multi-step predictive deep
learning model. Complete experiments, including point
load forecasting and probabilistic load forecasting, were
performed to demonstrate the effectiveness of the pro-
posed method. By competing with the state-of-the-art
models, we find that TCMS-CNN can serve more accu-
rate results and show excellent stability in multi-step
forecasting, giving strong generalization in electricity
market bidding and spot price calculation.

To the best of our knowledge, this is the first paper that
presents periodically coded deep neural network combining
multi-scale convolution for multi-step load forecasting. At the
same time, this is the first paper to carry out multi-step
probabilistic load forecasting. These innovations increase the
learning ability of our novel deep learning network to dis-
criminative features and implement end-to-end training and
predicting. The purpose of our work is to optimize a multi-
step load forecasting model based on deep neural network to
improve accuracy in and facilitate production practice.

This paper will be structured as follows: Section II defines
the problem and describes the details of our proposed method.
Section III reports the experimental results. Section IV further
discusses some insights as well as problems of the proposed
method. The conclusions are drawn in Section V.

Il. METHODOLOGY

A. PROBLEM FORMULATION

This paper focuses on STLF, which is considered a kind
of time series prediction problem. Historical load (x’) and
holiday data (x) are selected as input, since in practice,
they are highly relevant to load forecasting and acquired
easily for business. The problem is to construct mapping
relationships between historical load sequences and future
load sequences, i.e.,

Y =f(X), ey
where X = [xl,xg, . ,xN,.] is the input sequence, ¥ =
[yN,.+1, YNiA2s oo s yN,.+N0] represents the output prediction,

and x; = [xF, x']. N; tells the length of the input sequence
and N, the length of the output sequence. When N, is equal
to 1, it is single-step forecasting, and if N, is greater than 1,
it is a multi-step forecasting problem. In point load forecast-
ing, y; is a scalar. While in probabilistic load forecasting, y; is
a vector with length ¢, denoting the estimated g quantiles at
step 7. Based on the data set adopted in this paper, the forecast
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horizon is set to 48 steps(hours), covering the hourly load
forecast for the next 2 days.

B. MS-CNN

Recently, CNN-based models have begun to receive atten-
tions in sequence processing, and have achieved the state-
of-the-art results in sequence tasks such as speech synthesis,
language modeling, and machine translation. A simple con-
volutional neural network can only extract features in neigh-
borhoods, which reflects limited relationships and cannot fit
the target of load forecasting. Consequently, we introduce
the multi-scale convolution to fuse extensive receptive fields
information by stacking multiple layers of dilated convo-
lution with various scales [36]. Dilated convolution cannot
only reduce the size of learning parameters in deep network,
but extract the multi-level and significant relationships of
different position fused into our neural network.

FIGURE 1. This figure includes three layers of multi-scale convolutions in
a block, resulting in a receptive field size of 15. The dilation rate s from
bottom to top is 1, 2, and 4, that is s = 2/ in the /-th layer.

As shown in Fig. 1, we define a series of blocks, each
of which contains a sequence of L convolutional layers.
The activations in the /-th layer and j-th block are given by
§U-D e RFwxT where T is the length of input sequence that
keeps equivalent in every layer. Also, the number of filters
F,, preserve the consistence, which enables us to combine
activations from different layers later. Meanwhile, each layer
consists of a set of dilated convolutions with a specific rate
parameter s and related non-linear operations. We denote
the non-linear activation function, the normalization and the
dropout operation together as g (-). In our work, we pay no
attention to causal relationships in load forecasting due to
it does not fit time series problems well. Convolutions are
applied over three time steps, 7, t —s, and 7 +s, so the complete
equations is as follows. The filters are parameterized by W =
(W, w@ w®Y} with W e RFw*Fv and bias vector

b e Rfv. Let S’t(’:’l) be the result of the dilated convolution
at time ¢ and S,(/ D be the result after adding the residual
connection such that

St(/sl) =g (W(I)St(i;ﬁ_l)+W(2)St(j’l_l)+W(3)St(].;:é_1) + b) i
sUD = sP7D L vEID 4. 3)
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FIGURE 2. The network structure consists of multiple multi-scale convolutional blocks, each of
which contains multiple residual layers with different scales. Each residual layer contains a
dilation convolution, a ReLu activation function, a batch normalization operation, a dropout

operation, and a residual connection.

X1 X2 Xni

FIGURE 3. The recursive multi-step method includes a variety of models such as
ARIMA, SVR, and RNN. LSTM is illustrated in this instance. A single-step forecasting
model are trained firstly, then we run prediction N, times to get all N, forecasts.

In prediction phase, the result of the previous step forecasting is integrated into the
next step input. For example, if we want to get y,, we must predict y; first and

integrate y; into input of next step.

Let V e RF»*Fv and e € RF¥ be a set of weights and biases
for the residual, where parameters {W, b, V, e} are different
for each layer. The dilation rate increases for consecutive
layers within a block such that s; = 2!. This enables the
structure to extract relationships from more scales rather
than just neighborhood and increase the receptive field by a
substantial amount without drastically increasing the number
of parameters.

Fig. 2 describes our proposed multi-scale convolutional
neural network (MS-CNN) architecture that holds 8 blocks,
each of which have 3 dilated convolution layers with different
dilation rate s. This mechanism combines multi-scale features
and makes a deeper network that is demonstrated an effective
model backbone for load forecasting in section 3.
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C. CONVOLUTIONAL NEURAL NETWORK
WITH TIME-COGNITION
Currently, multi-step load forecasting methods can be divided
into two categories: direct multi-step and recursive multi-
step [35]. The recursive multi-step method at beginning fore-
casts the first step, and then integrates the predicted value into
the input sequence for the next step forecasting, as illustrated
in Fig. 3. The prediction error of every step is accumulated to
influence next step severely. Conversely, the direct multi-step
method feeds the input sequence into the model and obtains
all steps to be forecasted.

However, the current direct multi-step method does not
take into account the temporal relationships between multi-
ple forecasted load points, which makes the neural network
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One-hot coding

[1000000]

[0100000]

Days of the week Nature coding [0010000]
Sunday 0 [0001000]
Mond | [0000100]
o [0000010]
Tuesday 2 [0000001]
Wednesday |:> 3 Periodic coding
Thursday 4 [ 0.00 1.00]
[ 078 0.62]

Friday 3 [ 098 -022]
Saturday 6 [ 043 -0.90]
[-0.43 -0.90 ]

[-0.98 -0.22 ]

[-0.78 0.62]

FIGURE 4. Three coding methods are illustrated for comparison by coding
seven days of one week. Natural coding uses integers from 0 to 6 to
represent days of a week, while the one-hot coding converts the natural
code into seven one-hot vectors. The periodic coding uses the sin and cos
functions to convert the natural coding into 7 vectors, each of which
contains 2 values. Natural coding tells the time mark using semantic
description lacking of period. The same problem also exists in one-hot
coding. With our proposed periodic coding, the uniqueness and
periodicity are preserved effectively that enables the neural network with
a well-trained time-cognition.

model lose prior knowledge resulting in a precision to
be improved. Traditionally, there are two ways to encode
time: natural coding and one-hot coding [37], which ignore
the cyclic characteristic in electricity behavior and are not
suitable in load forecasting. For example, O Sunday and
6 Saturday seems too far but a neighborhood actually. There-
fore, we propose a kind of periodic coding to mark each step
of the input sequence and predicted ones. Periodic coding
emphasizes the uniqueness of the moment in one period and
provides periodicity description. In details, periodic coding
depends on a unique markup through the sin and cos func-
tions. For example, if the natural encoding to one day in a
week is n®, then the periodic encoding converts n® to a

vector [p@sin p@weos| by the following formula:
d
pdwsin — sin 2w
Taw 4)
dwcos 2 ndw
p = cos Tdv

where T% describes the length of a period, 7 days in a
week. In load forecasting with time-cognition, let nhd, ndv,
and n® denote the hour location in one day and day in one
week or year with [phdsin,phdcos 1, [pdwxin’pdwcox ], and [pdyxin’
pPeos | respectively. The complete periodic coding for one
point in the year is followed by (5) and Fig. 4 gives an
example three coding approaches for comparison.

hdsin _hdcos _dwsin _dwcos _dysin _dycos
Pt = 1Py Py » Py » Pt s Pto Dt ] (5)

D. TCMS-CNN

TCMS-CNN model is a hybrid network of MS-CNN and
time-cognition models. Periodically encoded marks are con-
catenated with the load sequence fed into the MS-CNN.

88062

Meanwhile, a fully connected network learns the periodic
codes of the forecasted multi-step position to increase extra
features for prediction. Both of strategies strengthen the
hybrid network’s capability on time-cognition periodically.
Then, the outputs of two subnetworks are fused and fed to
another fully connected layer to learn and predict the final
result. The entire framework of TCNS-CNN is described in
detail in Fig. 5. TCMS-CNN reveals temporal characteristics
of the input sequence with multi-scale convolutions to extract
more potential features, which provides an advanced predic-
tion for electricity market bidding. The implementation can
be roughly divided into three stages: data preparation, model
training, and forecasting, which are shown in Fig. 6.

IIl. RESULTS

A. DATASET

We use Ireland’s 2014-2018 load dataset and the granularity is
hourly [38]. Load data are the total electricity consumption in
this country. It is widely known that there is a strong nonlinear
correlation between load and weather characteristics such as
temperature and humidity. In the experiments, we compared
our proposed MS-CNN and TCMSC-CNN with a wide range
of state-of-the-art models, some of which are linear models.
For the sake of fairness and clear contrast, only load, holiday,
and time data are used for all experiments. We intercepted
a two-week hourly load profile, starting at zero o’clock on
Tuesday, as shown from the Fig. 7, and the daily and weekly
loads have significant periodicity, which also belongs to a
common character of most power system loads.

Fig. 8 shows a box plot to collect the statistics of the
electric load distribution in 24 hours of a day (0:00 AM -
24:00 PM) over our dataset. We observe that the load value
of each hour has different maximums, minimums, medians,
and quartiles, which proves a great fluctuation caused by
dataset’s periodicity leads to difficulties of learning the rules
of load forecasting. Our dataset contains 31,128 pieces that
are divided into training set, validation set, and testing set by
60%, 20%, and 20%.

B. EXPERIMENT SETUP

All experiments were conducted on a cloud server with two
NVIDIA P4 computing cards and the CPU with 8 cores.
The implementations of SARIMAX and SVR are based on
the StatsModels and scikit-learn packages respectively. Other
neural network-based models are realized by the Keras frame-
work with Tensorflow [39] backend.

The experiments consist of three sections. At first,
MS-CNN is compared with SARIMAX, DBN, SVR, LSTM,
and residual neural networks (ResNet) at the single-step
forecasting. Moreover, based on the multi-step MS-CNN,
time coding methods including natural coding, one-hot
coding, and our proposed periodic coding are compared.
Finally, we evaluated our proposed TCMS-CNN to com-
pare the performance with the state-of-the-art methods like
recursive multi-step LSTM (RM-LSTM), direct multi-step
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FIGURE 5. Two subnetworks MS-CNN and fully connected networks build up the baseline of
TCMS-CNN for multi-scale and periodical coding features fusion. The subnetwork on the left is
MS-CNN, and the input data sequences contain historical load, holiday, and periodical coding.
Subnetworks on the right hold two full connection layers, inputs of which are periodic encoding of
many predicted steps. The representation vectors output from the two sub-networks are
concatenated as inputs of the top-level fully connected layer for generating loads at the predicted
steps. This framework ensures the model obtain sufficient characteristics, which enhanced the

understanding of dataset.

Data preparation

Select feature: Divide dataset:
Historical load, hours of a day, traning set,
days of a week, days of a year, validation set,
holiday test set

Data collection
& cleaning

Model training

Early stop when
validation loss
does not drop for
30 epochs

Model setup: Traing with learning rate

| initialize parameters, —» dacay 0.3 when validation
loss does not drop for

10 epochs

choose No for No-step
. forecasting

Point forecasting

Probabilistic forecasting

Calculating average pinball
score on test set

Calculating average MAPE,
MAE, RMSE on test set

FIGURE 6. Flowchart for implementation of multi-step load forecasting.

MS-CNN (DM-MS-CNN),
GCNN(DM-GCNN).

Global parameters settings are followed. Seasonal AutoRe-
gressive Integrated Moving Average with eXogenous regres-
sors model (SARIMAX) is an extended model of ARIMA
that adds periodicity and uses external information to enhance
the predictive ability of the model. The standard SARIMAX
model follows the notation of SARIMAX(p, d, q) (P, D, Q)S,
where p = non-seasonal auto-regressive (AR) order,
d = non-seasonal differencing, ¢ = non-seasonal moving

and the direct Multi-step
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FIGURE 7. This figure shows a typical 2-week load profile with significant
periodicity. The valley of the week’s load is on Saturday and Sunday,
whereas the peak appears on weekdays, and there is a similar changing
trend every week. Similarly, the daily load trend also shows a similar
situation.

average (MA) order, P = seasonal AR order, D = seasonal
differencing, Q = seasonal MA order, and S = time span of
the repeating seasonal pattern. SVR is an important applica-
tion branch of Support Vector Machine (SVM) and has been
widely used in regression problems in recent years. In SVR
parameters, 'kernel’ specifies the kernel type to be used in
the algorithm. ’degree’ denotes degree of the polynomial
kernel function. ’gamma’ is kernel coefficient and ’coef0’
independent term in kernel function. ’tol’ and C’ represent
the tolerance for stopping criterion and penalty parameter
of the error term respectively. *Shrinking’ tells whether to
use the shrinking heuristic. The parameters of SARIMAX and
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FIGURE 8. The 24-hour power load box plot shows the distribution of
load in our dataset. It demonstrates there are remarkable changes in
quartiles of different times, which grows influenced by electricity
behaviors of holidays.

TABLE 1. The explanations of global parameters setting in experiments
of SARIMAX and SVR models.

SARIMAX SVR
p 3 kernel ‘rbf’
d 0 degree None
q 1 gamma “auto’
P 1 coef0 0.0
D 1 tol le-3
Q 0 C 0.1
S 24 epsilon 0.0
shrinking True
max_iter None
input_length 20

SVR are shown in Table 1. We use grid search over all pos-
sible combinations of parameter values within a predefined
range of values to get the parameters of SARIMAX, and the
S is 24 clearly. For SVR, most parameters are defaults except
that C and input_length are chosen by cross validation.

There are several infrastructure neural networks including
DBN, LSTM, ResNet, MS-CNN, and GCNN, and they share
the same parameters in different experiments. The parameters
of the DBN consist of two parts: the parameters of the unsu-
pervised training phase and the parameters of the supervised
fine tuning phase. The parameters of DBN are shown in 2,
and the others in Table 3.

TABLE 2. Two phase parameters of DBN.

Parameters DBN Phase 1 DBN Phase 2
Depth 5 5

Hidden neural 20+40+60+50+40 20+40+60+50+40
Batch size 128 128

Input length 8 8
Training method Contrastive Divergence MSE+SGD
Start learning rate 0.0005 0.005
Learning rate dacay None 0.3
Training stop 200 epoch early stopping

C. EVALUATION METRICS

The point forecasting performances are evaluated using
three performance metrics [40], including root mean square
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TABLE 3. Shared parameters of neural network models and related
strategies selected.

Parameters LSTM ResNet MS-CNN GCNN
Depth 3 34 34 6
Hidden neural 128 None None None
Kernel size None 8 8 6,33+ 1,1,1
Kernel number None 24 24 8,5,1 +8,5,1
Batch size 128 128 128 128
Input length 240 240 240 240
Dropout rate 0.05 0.05 0.05 0.05
Loss function MSE MSE MSE MSE
Optimizing method| AMSGrad | AMSGrad AMSGrad | AMSGrad
Start learning rate 0.01 0.01 0.01 0.01
Learning rate dacay 0.3 0.3 0.3 0.3
Training stop early stopping|early stopping|early stopping|early stopping

error (RMSE), mean absolute error (MAE), and mean abso-
lute percentage error (MAPE). Smaller values of their outputs
mean higher forecasting accuracy. The formulations of the
above three metrics are as follows:

1 & 5
= (i) 6)
N i=1
1 N
MAE = NZ i — yil (7)
i=1
MAPE — ﬁ: Byl 100 (8)
N i=1 Yi

where y; is the ground truth of testing sample, y; represents
the prediction, and N is number of testing samples.

For probabilistic load forecasting evaluation, there are
three commonly used attributes: reliability, sharpness, and
resolution. Reliability refers to how close the predicted distri-
bution is to the actual one. Sharpness refers to how tightly the
predicted distribution covers the actual one. Resolution refers
to how much the predicted interval varies over time. Measures
like Kolmogorov-Smirnov statistic, Cramer-von Mises statis-
tic, and Anderson-Darling statistic are only be used to assess
the unconditional coverage of a probabilistic forecast, but not
evaluate its sharpness or resolution. In this paper, the per-
formance of the probabilistic forecasts are evaluated by the
average of the total pinball score, which is a comprehensive
measure considering not only reliability but also sharpness
and resolution. The pinball score for one quantile is calculated
as follows:

1—q (! —w) 3 =wn

Pinball_score = . .
q (v —57) 3 <y

©))

where ¢ denotes the targeted quantile, 37 denotes the forecast
at the gth quantile at step 7.

D. PERFORMANCE COMPARISON WITH

ABLATION STUDY AT SINGLE STEP

In order to clarify the predictive performance of our proposed
MS-CNN model for prediction, we compared it with the
state-of-the-art models such as SARIMAX, SVR, LSTM, and
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FIGURE 9. Scatter plots of forecasting results in comparisons of our proposed MS-CNN,
SVR, LSTM, and ResNet at single step point prediction.

TABLE 4. Comparison results of our proposed MS-CNN, SARIMAX, SVR,
DBN, LSTM, and ResNet at single step point forecasting.

Model RMSE(MW) MAEMW) MAPE(%)
DBN 388.3 273.03 1.57
SARIMAX 270.29 181.65 1.20
SVR 285.53 180.42 1.04
LSTM 272.2 187.74 1.09
ResNet 263.83 179.11 1.05
MS-CNN 252.59 167.87 0.98

ResNet at single-step forecasting accuracy. In this ablation
study, all input sequences are not marked with the time
stamps. The results of the comparison are shown in Table 4
and Fig. 9.

Through the results, we can observe that models based
on neural networks generally achieve higher accuracy than
SARIMAX. SVR’s MAPE performs better, but its RMSE
becomes inferior among all models. Due to its powerful
learning and fitting ability of deeper network, vanilla ResNet
outperforms LSTM in three metrics giving great potential
for loading forecasting. In statistics, our proposed MS-CNN
achieves the best accuracy, and compared with LSTM,
MS-CNN increases 7.2%, 11.58%, and 10.09% in RMSE,
MAE, and MAPE respectively. It demonstrates that the multi-
scale convolution helps MS-CNN extract more significant
features from the input sequence providing the excellent
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ability of mining valuable relationships in the dataset, as illus-
trated in Fig. 9.

E. EVALUATIONS ON TIME CODING METHODS

In this subsection, we compare our proposed time cod-
ing strategy periodical coding with common methods on
multi-step forecasting performance, including natural coding,
one-hot coding, and periodic coding. All experiments are
implemented using the MS-CNN for the sake of fairness.
For three dimension informations, hours of a day, days of a
week, and days of a year, as discussed in section 2, the natural
coding has 3 (1 + 1 4 1) features, one-hot coding holds
397 (24 4+ 7 + 366) features, and our periodic coding serves
6 (2 + 2 4+ 2) features. The target of multi-step load fore-
casting adopts next 48 hours and evaluated results are listed
in Table 5.

TABLE 5. Comparisons of different time coding approaches including
natural coding, one hot, and our proposed periodical coding on RMSE,
MAE, and MAPE.

Model RMSE(MW) MAEMW) MAPE(%)
Natural Coding 1.87e3 1.5e3 8.47
One-hot Coding 1.27¢3 0.93e3 6.09
Periodic Coding 1.02e3 0.65e3 3.74

Table 5 expresses that the natural coding has the lowest
accuracy, and the neural network cannot utilize time features
to produce an acceptable prediction. Natural coding provides
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only simple representation to time, which exhibits a signif-
icant periodical relationship. One-hot coding removes the
linear temporal features in the natural coding, thus improved
the accuracy of load forecasting. However, it still lacks of
the periodic correlation between time and load, which is
difficult for generalization in our problem. The periodic
coding achieved the best accuracy, indicating that it effec-
tively learned periodic features in the training addressing
problems caused by other two algorithms. In experiments,
RMSE, MAE, and MAPE of periodic coding decreased by
19.69%, 30.1%, and 38.59% compared to the one-hot coding
respectively.

F. COMPARISON OF THE STATE-OF-THE-ART

MULTI-STEP FORECASTING MODELS

We evaluated several the state-of-the-art multi-step mod-
els, including RM-LSTM, DM-MS-CNN, and DM-GCNN,
with our proposed TCMS-CNN for 48 hours forecasting on
5976 pieces of testing data listed in Table 6, where each
item represents an average MAPE of 5976 experiments on
each step. RM-LSTM is derived from the recursive multi-
step model. DM-MS-CNN and DM-GCNN belong to the
direct multi-step model without any time coding. MAPE
was chosen as the only metric to reflect the algorithm’s
performance. The results are depicted in Table 6. RM-LSTM
yielded the best results before the fourth step but fell behind
others increasingly. RM-LSTM has the predominance in
single-step, whereas accumulated errors results in poor per-
formances with growing steps. DM-MS-CNN is built up
with our proposed MS-CNN for direct multi-step forecasting.
DM-GCNN is another direct multi-step model with gated
CNN outperforming RNN for the sequential modeling task.
Their MAPE growth are slower than RM-LSTM indicating
an improved performance for multi-step load forecasting. Our
proposed model TCMS-CNN achieved the best accuracy over
steps on average, improved by 34.73%, 14.22%, and 19.05%
on average MAPE than RM-LSTM, DM-MS-CNN, and
DM-GCNN respectively.

Fig. 10 gives 10 examples of four models’ predictions to
different group of 48 hours, where our proposed TCMS-CNN
results keep a stable and closest performance to ground truth
in general. Fig. 11 describes the compared methods’ MAPE
curve. Obviously, the MAPE curve of TCMS-CNN grows
slowly with lower and steady errors manifesting a remark-
able robustness in 48 hours load forecasting. Its success was
owed to two points: 1) a basic convolutional neural network
backbone MS-CNN playing a critical role in extracting multi-
level features and fusion; 2) an effective periodical coding
to integrate sequential features into our model. In conclu-
sion, TCMS-CNN is proved to have the advanced precision
and stable performance holding a promising application in
practice.

G. MULTI-STEP PROBABILISTIC FORECASTING
DM-MS-CNN, DM-GCNN, and TCMS-CNN are evaluated
for multi-step probabilistic forecasting in this subsection.
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TABLE 6. Comparisons of multi-step forecasting models on average
MAPE of 5976 pieces of testing data with 48 steps load point forecasting.

Step(Hour) | RM-LSTM | DM-MS-CNN | DM-GCNN | TCMS-CNN
1 1.09 2.89 3.80 2.88
2 1.84 3.12 3.87 2.99
3 2.42 3.46 3.79 3.08
4 2.86 3.58 3.90 3.14
5 321 3.63 4.01 3.19
6 3.50 3.73 4.18 3.25
7 3.69 3.87 4.26 3.30
8 3.83 3.87 4.26 3.34
9 3.97 3.79 4.26 3.39
10 4.12 3.94 435 3.42
11 427 3.98 434 3.45
12 4.40 3.97 442 3.48
13 452 3.94 445 3.50
14 4.65 4.12 443 3.53
15 4.78 4.09 443 3.58
16 4.89 4.18 4.54 3.62
17 4.99 4.16 4.57 3.65
18 5.09 422 4.62 3.65
19 5.18 4.11 4.58 3.67
20 5.26 4.20 4.52 3.71
21 5.34 4.27 4.56 3.74
22 5.40 4.38 4.50 3.71
23 5.46 4.36 4.61 3.77
24 5.54 4.37 4.61 3.78
25 5.71 4.49 4.72 3.82
26 5.92 4.70 4.80 3.88
27 6.11 4.74 4.86 391
28 6.29 4.67 4.89 3.93
29 6.46 4.70 4.85 3.95
30 6.63 4.84 4.82 3.96
31 6.77 4.95 4.84 3.98
32 6.88 5.01 4.90 4.00
33 6.99 4.73 4.88 4.01
34 7.11 491 4.87 4.03
35 7.23 4.88 4.84 4.04
36 7.34 4.89 4.92 4.05
37 7.44 4.79 4.93 4.05
38 7.53 493 491 4.05
39 7.64 4.79 4.97 4.07
40 7.75 4.79 4.96 4.08
41 7.85 4.68 4.95 4.08
42 7.94 4.89 4.93 4.07
43 8.01 4.72 491 4.07
44 8.08 4.69 5.00 4.08
45 8.16 4.78 4.99 4.10
46 8.22 491 5.02 4.12
47 8.30 4.79 4.99 4.10
48 8.39 4.92 5.14 4.09

Average 5.73 4.36 4.62 3.74

We adopt quantile regression with pinball loss for producing
quantiles [41]. Recursive methods are not suitable for this
experiment, because quantile outputs cannot be fed into input
recursively. The application of AMSGrad requires the loss
function to be differentiable so that the neural network can
be trained using gradient descent. Common pinball loss is
not differentiable everywhere, so we introduced the Huber
norm to the loss function, with least change, making the loss
function differentiable everywhere. The Huber norm can be
viewed as a combination of the L1- and L2-norms:
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FIGURE 10. Ten groups of 48-step hourly load forecasting results for different time, showing the performances of
different models. RM-LSTM deviates from the truth drastically. Although DM-MS-CNN and DM-GCNN are close,

in contrast, TCMS-CNN shows the best accuracy over the dataset.
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FIGURE 11. The MAPE curve of RM-LSTM, DM-MS-CNN, DM-GCNN, and
TCMS-CNN. Obviously, our proposed TCMS-CNN serves a stable curve
trend with lower errors.

where ¢ denotes the threshold magnitude for the L1- and
L2-norms. In order to minimize the error caused by this
approximation, we set ¢ to a very small value of 0.001. Then,
we can get the approximated pinball loss:

(1—q)H (v, 37)
qH (1, 57)

As with the point prediction experiment, we still fore-
cast the 48 steps probabilistic load for each sample on all
5976 test samples. Each predicted step produces 9 quantiles,
from 0.1 to 0.9, so in the forecasting phase, a total of
5976 x 48 x 9 quantiles are generated. The average pin-
ball score for each step and for all 48 steps are calculated
in Table 7. As shown, the average pinball loss of TCMS-CNN
on entire test set is 300.11MW, which is 3.54% and
6.77% lower compared to DM-MS-CNN and DM-GCNN
respectively. The change of pinball score for each step is
demonstrated in Fig. 12. Three average pinball scores curves
all goes upward as the steps moving forward. Compared with
DM-MS-CNN and DM-GCNN, the average pinball score
curve of TCMS-CNN is less fluctuating and smoother, and
the curve rises more slowly, which shows the superiority of
the proposed method.
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FIGURE 12. The average pinball score profile. The curve fluctuation of
TCMS-CNN is smaller, indicating that the error difference between
different steps is smaller.

Figure 13 captures a 48-step forecast curve, with the red
dashed line corresponding to the predicted quantiles and the
black solid line representing the actual value. Among the
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TABLE 7. Comparisons of three model on average pinball score
of 5976 test samples with 48 steps probabilistic load forecasting.

Step(Hour) | DM-MS-CNN | DM-GCNN | TCMS-CNN
1 217.95 216.39 250.92
2 213.64 248.99 258.12
3 219.36 244.65 263.40
4 237.50 249.71 267.18
5 242.35 278.21 270.51
6 255.17 280.46 273.93
7 265.31 282.07 277.16
8 270.66 285.43 280.25
9 278.28 291.34 283.07
10 289.47 293.75 285.02
11 281.26 293.35 286.35
12 284.03 301.16 287.82
13 290.29 311.03 289.10
14 305.31 315.73 290.99
15 305.58 313.59 293.30
16 301.11 317.44 294.95
17 303.89 316.84 296.16
18 305.82 316.11 296.43
19 305.90 316.53 297.44

20 300.48 313.05 299.18
21 307.92 309.58 300.57
22 311.26 313.03 302.04
23 302.78 314.00 302.42
24 304.48 317.00 303.06
25 319.90 333.85 305.97
26 328.98 349.49 309.02
27 335.35 345.41 310.87
28 333.13 333.13 311.82
29 325.50 338.03 312.56
30 331.90 340.49 313.50
31 340.45 341.84 314.41
32 328.78 337.49 315.58
33 327.25 339.96 316.43
34 336.59 343.26 316.63
35 340.23 343.84 316.48
36 338.24 349.11 316.56
37 339.24 353.98 316.24
38 349.29 359.03 316.50
39 351.77 361.82 316.89
40 349.36 356.09 316.74
41 352.13 355.37 316.44
42 352.02 352.12 315.80
43 357.33 347.41 315.71
44 351.20 348.58 316.30
45 351.73 359.14 316.51
46 357.10 368.23 316.74
47 364.49 373.33 316.17
48 372.01 380.73 316.18
Average 311.12 321.90 300.11

three subgraphs, the red lines of TCMS-CNN are the
smoothest and most compact, indicating that TCMS-CNN
has achieved the best sharpness. Although the red lines of
TCMS-CNN are very compact, the black line is still well
wrapped in the red lines, showing that the reliability of
TCMS-CNN keeps high.

IV. DISCUSSION

Multi-step short-term load forecasting is gaining more and
more attentions in electricity market bidding and spot price
calculation. The development of deep learning technology
provides a pathway to improve accuracy for short-term load
forecasting and a growing ability to fit the time series data.
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FIGURE 13. A 48-step probabilistic forecasting profile, with the red
dashed line corresponding to the predicted quantile and the black solid
line representing the actual value.

In this paper, we give some contributions to multi-step load
forecasting with deep learning.

At first, a multi-scale convolutional network (MS-CNN) is
proposed to extract multi-level features fused to our model
with dilated kernels. In addition, the shortcomings of tradi-
tional time coding approaches are analyzed. For strengthen-
ing the periodical description to sequential model, we design
the periodical coding strategy to encode the load data for
improved prediction. At last, we present the TCMS-CNN
model to integrate multi-scale convolutions and periodi-
cal coding into an end to end trainable neural network,
which optimizes the structure of CNN and extracts more
relationships with periodical characters raising the accuracy
of multi-step load forecasting. Some ablation experiments of
comparison with the state-of-the-art methods were finished.
For verifying the MS-CNN, we compared it with some popu-
lar models SARIMAX, SVR, LSTM, and ResNet on single-
step prediction. The results demonstrated that MS-CNN
has an obvious predominance 7.2%, 11.58%, and 10.09%
improvement in RMSE, MAE, and MAPE to 2nd rank algo-
rithm respectively which can be preferred as the baseline
for advanced networks for load forecasting. In the second
experiment, we evaluated our proposed periodical coding in
comparison with natural coding and one-hot coding. Through
the same neural networks, the statistics of RMSE, MAE,
and MAPE gave a proof that the periodical coding out-
performs remarkably than others providing a great poten-
tial in the sequential model prediction. Finally, the most
advanced currently models RM-LSTM, DM-MS-CNN, and
DM-GCNN had joined in our testings. 34.73%, 14.22%,
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and 19.05% improvements on MAPE of point forecasting
than the state-of-the-art methods RM-LSTM, DM-MS-CNN,
and DM-GCNN respectively had been found on 5976 pieces
of testing data for 48 steps load point forecasting. For
48 steps probabilistic load forecasting, TCMS-CNN had been
improved by 3.54% and 6.77% on average pinball score than
DM-MS-CNN and DM-GCNN respectively.

However, for direct multi-step forecasting, the perfor-
mance of TCMS-CNN is not satisfied enough at first steps.
Meanwhile, its network structure runs some complicated that
results in a little time-consuming training and inference pro-
cess. Future work includes improving accuracy for first steps
and optimizing the network structure.

V. CONCLUSIONS

This paper proposed TCMS-CNN for short-term multi-step
load forecasting. With the multi-scale convolution, the ability
of CNN have been improved by extracting complex and
significant features of load sequences. In addition, the tem-
poral cognition of our proposed model is strengthened by
the periodic coding. At last, we propose a novel framework
that combines sufficient and discriminative features to extract
potential law in the dataset providing an excellent result.
By competing with the state-of-the-art models, we find that
TCMS-CNN can serve more accurate results and show excel-
lent stability in multi-step point and probabilistic forecasting,
giving strong generalization in electricity market bidding and
spot price calculation.

NOMENCLATURE
Vi forecasts
N; length of input sequence
N, forecast horizon and length of output
Vi truth
ARIMA auto regressive integrated moving average
CNN convolutional neural networks
DBN deep belief networks
DM-GCNN direct Multi-step GCNN
DM-MS-CNN  direct multi-step MS-CNN
GCNN Gated CNN
LSTM Long short term memory
MAE mean absolute error
MAPE mean absolute percentage error
MS-CNN multi-scale CNN
ResNet residual neural network
RM-LSTM recursive multi-step LSTM
RMSE root mean square error
SARIMAX Seasonal ARIMA with eXogenous
STLF short-term load forecasting
SVR support vector regression
TCMS-CNN MS-CNN with time-cognition
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