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ABSTRACT The reciprocating pump plays an important role in the petrochemical industry procedure, it is 
crucial in ensuring the systematic safety and stability. Since the useful feature information of the vibration 
signal from the reciprocating pump tends to be overwhelmed by the background ingredients, it is tough to 
realize the recognition on typical modes. Aiming at the extraction of reciprocating mechanical fault features 
and mode recognition, this paper proposes Improved Complete Ensemble Empirical Mode Decomposition 
with Adaptive Noise and LSTM (Long Short-Term Memory) deep neural network algorithm. Firstly, the IMF 
components are obtained by decomposing the vibration signals from the reciprocating pump with the 
Improved CEEMDAN algorithm, in which the key parameter βk is improved and redefined, for optimizing 
SNRs (Signal Noise Ratio) of the IMF (Intrinsic Mode Function) components. Then the corresponding 
singular spectral entropy is calculated and the feature vector is constructed. The classification modal based 
on LSTM deep network is developed in the data dividing-training and the final mode recognition process. 
The study shows that the proposed method can effectively extract the fault features of vibration signal of the 
reciprocating pump, and the testing modes could be accurately recognized with the developed classification 
model. 

INDEX TERMS Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise; 
Long Short-Term Memory; Fault diagnosis; Reciprocating pump; Singular spectrum entropy

I. INTRODUCTION 
Reciprocating pump is an important industrial equipment in 
the field of petroleum, water supply and drainage systems. 
Due to the complexity of the internal structure and operation 
mechanism, most of the key parts such as driven and bearing 
mechanism are vulnerable, which may render huge economic 
losses in case of system failure [1]. Advancement have been 
achieved recently in sensor-based real-time monitoring [2], 
status monitoring, control and optimization [3], key-
performance-indicator oriented prognosis and diagnosis for 
complex industry process systems [4]. As for reciprocating 
machinery, the fault mechanism analysis, method of feature 
extraction and typical pattern recognition on transmission 
parts have always been focused on in relative research field. 
Unlike the rotary machinery, the impact features from the key 

reciprocating parts are the main indicator in the typical failure 
modes, which is regularly overwhelmed in the vibration signal. 
 As the traditional method, vibration-based feature analysis 
and pattern recognition for state maintenance are focused in 
related research fields at present. The time-frequency analysis 
performs effectively applied in extracting fault characteristics 
from reciprocating pumps vibration signal: EMD (Empirical 
Mode Decomposition) and improved algorithms such as 
EEMD (Ensemble Empirical Mode Decomposition) and 
CEEMDAN (Complementary Ensemble Empirical Mode 
Decomposition with Adaptive Noise) are developed. In 1998, 
for the first time, Huang proposed EMD. EMD is a powerful 
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TABLE I 

 NOMENCLATURE 

List of  Abbreviations Symbols 

EEMD Ensemble Empirical Mode Decomposition x The original vibration signal 

CEEMDAN Complementary Ensemble Empirical Mode 

 Decomposition with Adaptive Noise 

𝑥௜ The ith constructed signal with white noise 

EMD Empirical Mode Decomposition 𝑊௜ A series of different Gaussian white noise 

LSTM Long Short-Term Memory 𝐸௞ሺ ሻ The kth EMD modal component 

WPT Wavelet Packet Transform 𝑟௜ The ith decomposition residual 

LTSA Local Tangent Space Alignment 𝑑ప
෩  The ith modal component 

LMD Local Mean Decomposition Mሺ ሻ Local mean of the signal 

SVM Support Vector Machine 𝛽௞ Constant defined in Improved CEEMDAN process 

WKNN weighted k-nearest neighbor 𝜀௞ The kth compensation factor 

DT decision tree stdሺ ሻ Standard deviation 

DWNN deep wavelet neural network 𝜇௜ The singular value of ith IMF component 

AE acoustic emission 𝑆௜ Singular spectral entropy of the signal 

IMF Intrinsic Mode Function 𝑞௜ The proportion of the singular value of the ith IMF 

SNR Signal noise ratio s The simulated signal 

TP True positive 𝑠௜ The ith component of the simulated signal 

TN True negative w Value of weight 

FP False positive b Value of bias 

FN False negative   

 
tool for dealing with nonlinear vibration signals but EMD 
decomposition lacks strict mathematical basis, low 
computational efficiency, and easily causes modal aliasing 
and false components [5]. On this basis, Liu Z proposed the 
EEMD algorithm. In the process of EEMD, the modal aliasing 
can be suppressed to some extent with essential auxiliary 
white noise added, while the algorithm efficiency is relatively 
low [6]. For the CEEMDAN algorithm proposed by Torres M 
E proposed, the adaptive white noise is added to each stage of 
the decomposition and the modal components by calculating 
the residuals are obtained, thereby the process improves 
computational efficiency by reducing modal aliasing [7].  
The Improved Complete EEMD with Adaptive Noise method 
greatly suppresses the modal aliasing problem caused by 
CEEMDAN's first step decomposition process. In terms of 
pattern recognition methods, the deep learning method is 
driven by data and has stronger feature learning ability than 
traditional machine learning methods. It has significant 
advantages for analyzing complex and unstructured models 
[8]. In 2006, Professor Hinton of Canada firstly proposed the 
idea of deep learning with increasing number of hidden layers 
and the number of neurons in the neural network, as the 
improvement, the multi-mode feature classification can be 
achieved [9].With a wave of deep learning study around the 
world, it is now widely used in speech recognition, image 
processing and driverless driving, etc. Introducing deep 
learning technology into the field of fault diagnosis training 
and identifying data is a hot trend in fault diagnosis research 
in the future. The LSTM (Long Short-Term Memory) deep 
neural network algorithm has stronger learning in the 
classification process. Recently, data-driven methods have 

been used for diagnostic research in many devices. A 
combination of Wavelet Packet Transform (WPT), Local 
Tangent Space Alignment (LTSA), Empirical Mode 
Decomposition (EMD) and Local Mean Decomposition 
(LMD) is studied while the choice of wavelet basis functions 
is crucial [10]. Reference [11] compares the performance of 
three classifiers (namely linear Support Vector Machine 
(SVM), distance-weighted k-nearest neighbor (WKNN), 
decision tree (DT) using data from optimized and non-
optimized sensor set solutions while it’s computationally 
expensive and slow. Reference [12] proposed an improved 
fault diagnosis method based on a deep wavelet neural 
network (DWNN), whose practical feasibility was remained 
to be proven. Reference [13] fused the acoustic emission (AE) 
signal and the vibration acceleration signal with partly 
sufficient generalization. Compared with the traditional 
artificial neural network, the unsupervised deep learning 
algorithm represented by the AE, is quite different in that deep 
learning can mine the hidden correlation among the input 
projects and the compression characteristics of the input data 
without label intervention. Since the original vibration signal 
from the reciprocating machinery contains plenty of disturbing 
noise, it is hard to realize the feature extraction and pattern 
recognition with traditional single-layer neural network, while 
the gradient disappearance tends to occur when too many 
hidden layers involved in the multi-layer neural network, 
which renders that the iterative process could not converge as 
required. The critical need exists to evaluate the performance 
of the deep learning neural network with the typical vibration 
signal and how best to integrate deep learning with meaningful 
spectral analysis. Based on this, LSTM method applied in the 
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research solves the problem of gradient disappearance in the 
gradient back propagation, with the SNR improved in the 
preprocessing process, so as to reduce the residual error in the 
signal decomposition and promote the efficiency of the signal 
feature extraction. 
Aiming at the fault diagnosis method for key parts of 
reciprocating pump, a fault feature extraction method based on 
Improved CEEMDAN, singular spectral entropy and LSTM 
deep neural network algorithm is proposed, in which the 
dynamic analysis on fault modes of typical reciprocating 
pump is developed as the primary point, then the diagnosis 
model is put forward with key parameters calculation and 
accuracy comparison. Firstly, the Improved CEEMDAN 
algorithm is used to decompose signal to generate a series of 
IMF (Intrinsic Modal Function) components. Secondly, the 
IMF component singular spectral entropy is calculated as the 
eigenvector. Finally, the feature vector is input into the LSTM 
deep neural network for training and recognition. Therefore, 
this paper is organized as follows: Section II is the theoretical 
foundations of Improved CEEMDAN and LSTM deep 
learning; Section III illustrates the dynamics simulation and 
experimental validation, where the proposed method is 
basically verified on the driven mechanism of the 
reciprocating pump; the results and discussions on the 
proposed method are finally presented in Section IV as the 
ends. 

 
II. PRINCIPLE METHODS 

A. IMPROVED CEEMDAN ALGORITHM 
By adding positive and negative white noise to each IMF 
component, the error of IMF reconstruction could be greatly 
reduced Complete Ensemble Empirical Mode Decomposition 
with Adaptive Noise (CEEMDAN) is considered as a 
significant improvement of EEMD. It has been widely used in 
fields of fault diagnosis, seismology, building energy 
consumption, etc. Nevertheless, there are several points for 
further improvements of CEEMDAN: (1) CEEMDAN 
decomposition of the modal component contains certain 
residual noise. (2) Since the first step of CEEMDAN 
decomposition is the same with EEMD method, in the early 
stage of signal decomposition reconstruction false 
components are generated while the true signal information 
characteristics is only involved in the latter IMF components. 
Reference [14] and [15] pointed out that the components of the 
original signal and the spurious noise components of the same 
scale are achieved in the first few components of the 
decomposition. Aiming at these problems, the Improved 
CEEMDAN method is proposed. In the first stage of the 
decomposition, the EEMD algorithm has a local mean and an 
IMF component, while the true modal component is the 
average mode of the original signal and noise mixture with 
some residual noise. On the other hand, the CEEMDAN 
algorithm employs the residual of the previous modal 
component decomposition in calculating the next modality 

with each modal calculation being continuous. Colimenas's 
Improved CEEMDAN algorithm has better results in signal 
denoising and decomposition [16]. The Gaussian white noise 
added in CEEMDAN process is taken instead with a special 
white noise )( )(i

k wE   in the Improved CEEMDAN method, 
which is the kth IMF component from the Gaussian white noise 
decomposed by EMD, and each modal component calculates 
the plus noise of the signal. The achieved IMF component is 
decomposed into the difference between the residual signal 
and the local mean. The Improved CEEMDAN method 
greatly reduces the residual noise in the IMF component and 
remedies the defects of the traditional method that is prone to 
generate false components and modal aliasing in the early 
stage of decomposition and reconstruction. The specific 
decomposition process is as follows:  
Step1: Let )( )(

10
)( ii WExx  , calculate the first 

decomposition residual )( )(

1
ixMr   

Step2: Calculate the first modal component when k=1: 
11

~
rxd   

Step3: Estimate the second residual as a series of )( )(
211

iWEr 
mean values and define the second modal component:

))((
~ )(

2111212
iwErMrrrd   

Step 4: For Kk ,......3 calculating the kth order margin: 
))(( )(

11
i

kkkk wErMr      
Step 5: Calculate the K-order mode kkk rrd  1

~
 

Step 6: Return to the fourth step to calculate k+1  

where ( )kE is the kth modal component after EMD 

decomposition, M（）is the local mean of the signal, ( )iw be 

a series of different Gaussian white noise,       is the 
operator which produces the local mean of the signal that is 
applied to. 
Constant defined in Improved CEEMDAN decomposition 

( i )
1

( )

( ( w ) )k k

s t d x

s t d E
  . Since the energy of the signal will 

gradually decrease during the decomposition process, the 
equation ( i )

1 ( w )E remains unchanged. This cause a problem 
that in the later stage of signal decomposition, the total energy 
of the IMF component will decrease after the signal 
decomposition is extracted, which is one of the reasons for the 

residual noise. A method for improving parameters k is 

proposed here. Define the parameters (i)

( )

( (w ))ki k
k

s td x

std E
 

so that the white noise energy and the IMF component energy 
remain the same dimension when mixed with white noise, thus 
maintaining a stable SNR.  

B.  SINGULAR SPECTRAL ENTROPY 
Information entropy describes the complexity of the 
information in the signal. The more information contained in 
the signal, the more complex the signal is [17]. Identically, the 
more uncertainty and randomness the signal contains, the 
greater information entropy is. As one of the information 
entropy, singular spectral entropy reflects the uncertainty of 
the modes of time domain signals under singular spectrum 
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partition [18]. The Improved CEEMDAN decomposition of 
the signal yields an I-order IMF component and a residual 
nr .The singular value decomposition is implemented on the 

IMF components containing different frequency 
characteristics to obtain the singular value of each IMF 
component i ,...,, 321 . Then the vector ],...,,[ 321 iR   is 
the singular spectrum of the original signal. The singular 
spectral entropy of the signal is expressed as: 





M

i
ii qqS

1
1 log

 （1） 

where 



M

i
iiiq

1

/  represents the proportion of the singular 

value of the ith IMF component in the overall singular value 
spectrum. 

C. LSTM DEEP NEURAL NETWORK MODEL 
As shown in Fig.1, the cell of the Long Short-Term Memory 
[15] neural network is added to process and identify whether 
the input information in the algorithm is useful. 3 gates are 
placed in 1 cell set as input gate, output gate and forgetting 
gate respectively. The LSTM relies on a number of "gates" 
to allow input features to selectively influence the state of the 
neural network at each moment. The so-called "gate" 
structure is a fully connected neural network that uses a 
sigmoid as an activation function to output a value between 
0 and 1. When a feature vector is input to the LSTM neural 
network for training, it can be judged according to the rules. 
Only information that complies with the algorithm's 
certification will be retained, while information that does not 
match will be refused through the forgotten gate. 

 
FIGURE 1. LSTM Network Structure 

TensorFlow is a general-purpose computing framework 
developed by Jeff Dean's Google brain team based on 
Google's first generation of deep learning system, DistBelief 
[19]. TensorFlow is a system that can design neural networks 
by itself and transmit complex data structures to the artificial 
intelligence neural network for analysis and processing [20]. 
Due to the complexity of the pump structure, the relationship 
between the various parameters is non-linear. In this paper, 
an intelligent diagnosis scheme for multi-signal processing 

technology is proposed. The general flow of the proposed 
method is shown in the Fig.2. 
(1) Collect the original vibration signal of the reciprocating 
pump, divide the raw data into a training set and testing set. 
(2) Process the denoising by the Improved CEEMDAN with 
improved parameter for stable SNR. 
(3) Find sensitive features by singular spectral entropy, and 
randomly divide the testing and training data for LSTM deep 
neural network classification. 
(4) Construct a new wear diagnosis classifier LSTM, and 
realize the final classification. 

Acquisition of original 
multi fault signal datas

ICEEMDAN signal 
decomposition

Finding features of  
singular spectral entropy

Randomly divided testing 
and training datas

LSTM deep neural 
network classification

Testing samples

Training samples

Improved parameter 
stable SNR

 

FIGURE 2. Reciprocating pump fault diagnosis flowchart 

Based on the TensorFlow framework, a deep neural network 
system with two hidden layers using Python language is 
designed, its structure is shown in Fig.3. The data flow 
diagram generated with TensorBord is shown in Fig.4.  
 

 

FIGURE 3. Deep LSTM Network Structure  

A single training sample feature vector flows from the input 
layer for the first feature processing through the LSTM 
neural network, then enters the full connect layer for the 
second feature processing and finally the loss function is 
calculated. The tanh function is selected as LSTM layer 
activation function and the softmax function is the full-
connect activation, then the average value of all the training 
sample loss functions in each epoch is calculated. As the 
result, the cost function is calculated and the global minimum 
of the cost function is achieved with gradient descent. 
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FIGURE 4. TensorFlow data flow diagram 

III. SIMULATION AND EXPERIMENTAL 

A. SIGNAL SINMULATION  
Apparently, characteristics of periodical impact shock could 
be found in the vibration signal of reciprocating pump [21]. 
In order to verify the effectiveness of the Improved 
CEEMDAN decomposition for the reciprocating impact 
signal, the analog signal s is constructed with four 
components with various parameters (frequency and phase) 
for the decomposition comparison of Improved CEEMDAN 
decomposition the CEEMDAN method. 

𝑠ଵ ൌ 12sin ሺ70𝜋𝑡 െ 2𝜋/5ሻ 
𝑠ଶ ൌ 7sin ሺ26𝜋𝑡 െ 3𝜋/5ሻ 
𝑠ଷ ൌ 4sin ሺ10𝜋𝑡 െ 4𝜋/5ሻ 

𝑠 ൌ 𝑠ଵ൅𝑠ଶ ൅ 𝑠ଷ ൅ 𝑠ସ                              (2) 
where 𝑠ସ is a noise signal with amplitude of 0.2. The time 
domain diagram of the simulated signal components are 
shown in Fig.5. 
 

 

FIGURE 5. Time domain components of the simulation signal 

The methods of CEEMDAN decomposition and Improved 
CEEMDAN decomposition are implemented upon the 
simulation signals respectively, and the results are shown in 
Fig. 6. The frequency domain diagram of CEEMDAN and 
Improved CCEMDAN decomposition of each IMF 
component is shown in Fig. 7, from which the performance 
on modal aliasing of the two methods are analyzed. 

 
FIGURE 6. Simulation signals decomposed with original CEEMDAN 
(left) and Improved CEEMDAN(right) 

 

FIGURE 7. CEEMDAN and Improved CEEMDAN decomposition IMF 
component of the frequency domain 

Totally 12 IMF components from CEEMDAN are obtained, 
the first 7 of which are shown in Fig.6, while the Improved 
CEEMDAN generates 5 IMF components. It can be found 
from the frequency domain figure of CEEMDAN 
decomposition in Fig.7 that the first 3 could be classified as 
false components with no actual physical meaning, while the 
frequency scale of IMF5 spans two sinusoidal signal 
frequencies which may render modal aliasing. 
Therefore, the Improved CEEMDAN decomposition 
generates fewer IMFs. From the frequency domain figure, 
the IMF1 of the Improved CEEMDAN decomposition is the 
mixed noise component s4. The IMF2 and IMF3 could be 
expressed as the components s1 that make up the original 
signal. The ingredient of IMF4 reflects the component s2 that 
makes up the original signal, while the IMF5 is the 
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component s3. Each IMF component contains a unique 
frequency with no modal aliasing, which indicates that the 
Improved CEEMDAN decomposition has a superior 
performance. 

B. DYNAMICS SIMULATION 
In order to further verify the validity of the method, a 
crankshaft model is established for ADAMS dynamics 
simulation, as shown in Fig.8. 

 
FIGURE 8. Dynamic model of the crankshaft assembly 

Normal and fault conditions are simulated in the 
configuration. As shown in Fig.9，The bearing wear mode 
is selected as the fault state, in which a collision force on the 
bearing bush is applied and vibration signal is collected to 
verify the effectiveness of the proposed method.  

 

FIGURE 9. Partial drawing of bearing wear 

The parameters of the stiffness coefficient, the collision 
index, the maximum damping coefficient, etc. are involved 
in the setting of the collision force. The specific parameters 
are shown in Table II. 

TABLE II 
 CONTACT PARAMETER SETTING 

Parameter Value 
Force exponent 1.5 

Stiffness coefficient 0.729 
Damping coefficient 0.00729 
Collision parameters 1.5 

Cutting depth 0.1 

With the dynamic simulation of targeted configuration, a 
series of vibration signals from the crankshaft assembly are 
obtained. The time domains of the typical vibration signals 
are shown in Fig.10, which illustrates that the periodical 
impact with different magnitudes of the reciprocating pump 
is embodied in two typical conditions of normal mode and 
fault mode. In particular, the impacting features caused by 
the abnormal force on the bush-crankshaft are added to the 
simulated fault mode as shown in the time domain signal. 
 

 
(a) normal signal 

 
(b)bearing wear 

FIGURE 10. Normal (up) and fault (down) state acceleration signal 

The signal of the bearing pad wear has stronger impact 
characteristics due to the impact force. For the fault signal, 
several small peaks could be observed in the frequency band 
and not as smooth as the normal signal apparently. For 
quantitative comparisons, further analysis of faults and 
normal signals is performed to verify the effectiveness of the 
proposed method. The Improved CEEMDAN 
decomposition is performed on the analog signal, and the 
decomposition result is shown in Fig.11. 

 
FIGURE 11. Improved CEEMDAN decomposition results left 
(normal) right (bearing wear) 

It can be seen that the magnitude of the normal signal is 
smaller than that of the fault, indicating that a stronger 
impact characteristics is involved in the IMF classification of 
the fault mode. The periodic characteristics of the normal 
signal are more obviously reflected, and the signal is 
distorted due to the impact of the fault signal. To quantify the 
two state characteristics for the analysis，the singular 
spectral entropy of the normal and bearing wear states is 
calculated as shown in the Table III. 

TABLE III 
 NORMAL FAULT ENTROPY VALUE 
State Singular spectral entropy 

Bearing wear 0.55 
Normal 1.42 

 

C. EXPERIMENTAL VALIDATION  
Aiming at the vibration measurement on the reciprocating 
machinery of different running mode, a corresponding 
testing system is composed, which contains an IEPE 
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piezoelectric accelerometer with a sensitivity of 102mv/g, a 
dynamic signal analyzer (type of DH5981) with a mobile 
power supply and a laptop, as shown in Fig.12. The 
reciprocating pump experiment platform is shown in Fig.13, 
which executes a variety of typical failure modes of piston 
wear, bearing wear, valve disc wear and normal operation. In 
view of avoiding the signal contamination in the 
transmission process, the measuring location is set near the 
driven mechanism of the pump power end, as shown in 
Fig.14. 

 
FIGURE 12. Testing system composition 

 

 

FIGURE 13. Reciprocating pump experiment platform   

 

 FIGURE 14. Measuring location arrangement 

D. DATA PROCESSING ANALYSIS AND FEATURE 
EXTRACTION 
The vibration signal of the reciprocating pump under the four 
conditions of piston wear, bearing wear, valve disc wear and 
normal operation were collected. The methods of Improved 

CEEMDAN and CEEMDAN for vibration signal of the four 
modes are performed individually, and the singular spectral 
entropy is calculated with the IMFs analyzed and compared. 
Due to space limitations, only mode of bearing wear is 
illustrated in Fig.15. It can be observed from the figure that 
the IMF1 component of (a) and (b) contains similar 
waveform, while the IMF2 of (a) and the IMF3 of (b) are 
roughly similar, the IMF3 (a) is similar with The IMF4 (b), 
meanwhile the magnitude of IMF2 t of the CEEMDAN 
decomposition is much smaller with the signal waveform 
varying smoothly. 
As mentioned in reference [13], the components of the 
original signal and the spurious noise components of the 
same scale tends to generate in the first few components of 
CEEMDAN process, therefore it could be inferred that the 
IMF2 in (b) is a spurious component. By comparing and 
analyzing the IMF3 component in the graph (a) and the IMF4 
component in the graph (b), it can be found that the IMF4 
contains extra noise information, which may result in 
information distortion for the possible modal overlap and 
aliasing phenomenon in the decomposition process. As the 
overall comparison, Improved CEEMDAN method performs 
better than CEEMDAN in the feature extraction process. 

 
FIGURE 15. Improved CEEMDAN and CEEMDAN Decomposition on 
Bearing wear mode 

The effects of the original parameters
k

 and the optimized 

parameters k i   on the SNR of the IMF components are 

compared and analyzed. The results are shown in Table IV. 
It could be found that the SNR ratio of the latter IMF 
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components decreases continuously as the IMF component 
increases with the parameters before optimization, which 
means the proportion of the added white noise increases. 
With the residual noise reducing to some extent, each of the 
IMF components with improved parameters maintains a 
relatively stable SNR. 
The theory of information entropy shows that singular 
spectral entropy could reflect the uncertainty and complexity 
of signal energy distribution. With the singular values of the 
individual IMF components calculated, the singular spectral 
entropy values of the signals are obtained according to the 
singular spectral entropy theory which is shown in Table V. 
It can be found from Tab.3 that the singular spectral entropy 
value in fault modes are smaller than the normal. Among the 
four, the Fault 1 has the smallest singular spectral entropy 
value since stronger impact characteristics involved in. 

TABLE IV 
 SINGULAR SPECTRUM ENTROPY VALUE OF 4 FAILURE MODES 

Fault type Fault 1 Fault 2 Fault 3 Normal

Singular spectral entropy 0.4995 1.2058 1.0119 1.3768

D. PATTERN RECOGNITION ON LSTM MODEL 
In this paper, totally 2000 sets of samples of Fault 1, Fault 2, 
Fault 3 and Normal signals (500 groups each) are extracted 
from the original vibration data. Each set of data samples 
contains 2048 points, and the 500 sets of data for each 
category were divided into two categories, 400 of which 

were used for training and 100 for testing. As the result, 1600 
sets of samples for training and 400 sets of samples for 
testing are obtained. 

TABLE V 
 PROGRAMMING PARAMETERS 

Parameter name parameter value 

Batch 50 

Epoch 500 

LSTM layer activation Tanh 

Full connection layer activation 
function 

Softmax 

Loss function Cross Entropy 

Training method Gradient Descent 

Learning rate 0.2 

Since the final output layer is selected by the softmax 
activation function, the four sample labels are in one-hot 
mode for training and testing, and the bearing wear is defined 
as [1,0,0,0]; the piston wear is [0,1, 0,0]; disc wear is 
[0,0,1,0]; normal is [0,0,0,1]. The entire neural network was 
composed of an input layer (Input); a hidden layer (LSTM 
layer, Full Connect Layer) and an output layer (Loss). The 
data flows in from the input layer, passes through the LSTM 
neural network and no linearize through the tanh activation 
function, then the fully connected layer functioned with the 
softmax function, finally the output was achieved. The 
related specific parameters are shown in Table VI. 

 
TABLE VI 

 PARAMETER OPTIMIZATION SNR COMPARISON 

Parameter SNR   Unit（dB） 

k i  IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 
30.24 29.34 30.79 32.50 33.96 33.61 34.32 32.56  27.90  30.78

k  IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 
34.99 29.41 28.12 31.15 34.04 28.84 24.44 14.93 14.40 10.38 

 

 
The LSTM deep neural network loss function size after 500 
iterations as shown in Fig.16. The accuracy after 500 training 
sessions is shown in Fig.17. The loss function decreases 
rapidly in the first 100 epochs, then the convergence tends to 
be stable and the loss function converges. The accuracy of 
classification is continuously improved with the training, it 
rises up to 95% after 500 trainings.  

 
FIGURE 16. Size of the Loss Function 

 
FIGURE 17. Training accuracy 

The original sampling data is labelled according to the fault 
type, among which 40% is selected as training set, 50% as 
testing set and the residual 10% for the final modal 
verification. With the fault value labelled as positive and 
normal as negative, the accuracy is calculated here for the 
comparison: 
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With the same configuration, the feature data is respectively 
input into the traditional classifiers such as PNN neural 
network, RBF neural network and BP neural network. As 
shown in Fig.18, the recognition accuracy of LSTM deep, 
PNN, RBF and BP neural network under one batch (50 test 
samples) is compared. The recognition accuracy of LSTM 
deep neural network testing set is 95% and PNN neural 
network is only 90%. Table VII shows a comparison of the 
recognition accuracy of various neural network algorithms. 
 

 

 
FIGURE 18. LSTM, PNN, RBF and BP Neural Network Identification 

 
TABLE VII 

 COMPARISON OF RECOGNITION ALGORITHM PREDICTION 

RESULTS 
Classification LSTM PNN RBF BP

Training sample accuracy
（%） 96 92 90 90

Testing sample accuracy（%） 95 90 88 85

IV. CONCLUSIONS 
An improved simulation and analysis method based on the 
CEEMDAN and LSTM has been proposed in order to 
accurately extract the typical characteristics and identify the 
fault patterns of the reciprocating pump. The method is based 
on acceleration data recorded on the vibrating case of 
reciprocating machinery. The decomposition results of 
Improved CEEMDAN and traditional CEEMDAN 
decomposition in signal processing are compared and 
analyzed on the vibration signal of the normal and typical 
fault modes of the reciprocating pump, the singular spectral 
entropy feature vector is constructed afterwards, then the 
feature vector is input into the LSTM deep neural network 
for the final pattern recognition. The specific conclusions are 
as follows: 
(1) Through simulation and experimental analysis, it is 
testified that Improved CEEMDAN decomposition performs 

better on complex vibration signals of reciprocating 
machinery in averting false components and modal aliasing 
as in the traditional CEEMDAN method. 
(2) The signal processing method based on Improved 
CEEMDAN and singular spectral entropy is proposed. The 
experimental results show that the features of the 
reciprocating pump could effectively extracted through the 
method. 
(3) Comparative analysis of LSTM deep neural network and 
other classical machine learning neural networks (RBF, PNN, 
BP) is implemented for the final pattern recognition. LSTM 
neural network based on deep learning has a more accurate 
recognition rate as the research result. 
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