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ABSTRACT Steganography consists of hiding messages inside some object known as a carrier in order to
establish a covert communication channel so that the act of communication itself goes unnoticed by observers
who have access to that channel. The steganalysis is dedicated to the detection of hidden messages using
steganography; these messages can be implicit in different types of media, such as digital images, video
files, audio files or plain text. Traditionally, steganalysis has been divided into two separate stages, the first
stage consists of manual extraction of sophisticated features and the second stage is classification using
Ensemble Classifiers or Support Vector Machines. In recent years, the development of Deep Learning has
made it possible to unify and automate the two traditional stages into an end to end approach with promising
results. This paper shows the evolution of steganalysis in recent years using the Deep Learning techniques.
The results of these techniques have surpassed those obtained with conventional methods - Rich Models
with Ensemble Classifiers - both in the spatial and frequency (JPEG) domains. Since 2014, researchers
have used The Convolutional Neural Networks to solve this problem generating diverse architectures and
strategies to improve the detection percentages of steganographic images on the last generation algorithms
(WOW, S-UNIWARD, HUGO, J-UNIWARD, among others). The Deep Learning, being applied to steganal-
ysis, is now in the process of construction and results so far are encouraging for researchers that are interested

in the topic.

INDEX TERMS Convolutional neural network, deep learning, steganalysis, steganography.

I. INTRODUCTION

Steganography consists of hiding messages inside digital
multimedia files (images, sound, and video) imperceptibly
for any receiver. The first documents describing the use of
these techniques date back to the times of Herodotus in
ancient Greece. One story describes how they sent a message
to Sparta to warn that Xerxes intended to invade Greece
so that it would be hidden from inspection and not arouse
suspicion. At that time it was written on boards covered with
wax. So, to camouflage the message they wrote directly on
the wood covered it with wax and wrote on it again. At first
glance one could only see the writing on the wax but, if it
was removed, one could read the message hidden in the
wood. During the Second World War, the most commonly
used system was to microfilm a message and reduce it to the
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extreme of a small dot, so that it could pass as a punctuation
mark of a character within another text. For example, the dot
on the vowel “i” could be microfilm with a message [1].
This technique has become an exciting alternative to hide
information because cryptography is not allowed in all coun-
tries [2]. The formulation of the steganography process is due
to the famous Simmons Prisoner Problem explained in [3],
which consists of two prisoners, Alice and Bob, who wish
to exchange messages while being intercepted continuously
by the prison director, Eve. If Eve considers the messages
exchanged between Alice and Bob are suspicious, she will
not allow the messages to reach the recipient.

Industrial steganography has been used to control the
copying of digital material illegally, so copyright societies
introduce information by modifying digital content in an
imperceptible way to the human eye, with the aim of provid-
ing evidence of who owns the image or to whom it has been
sold or sent [4]. At a military level, this technique has been
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FIGURE 1. Example of embedding a message with the S-UNIWARD algorithm using a payload
of. 4 bpp. Image taken from BOSSBase V1.01 [12].

used to transmit important messages without being identified
by the counterpart. It is also believed that steganography
could have been used even in communications of illegal
groups and terrorists [4].

Steganography can be done from two domains: spa-
tial or frequency. From the spatial domain, the algorithms
are characterized by directly changing some pixels of the
image which will be imperceptible to the human eye. One
way to achieve this goal is to introduce the message by
changing the Least Significant Bits (LSB) of each pixel
sequentially or randomly [5], [6]. Currently, steganography
is done adaptively, that is, it takes into account the content
of the image to introduce the message in regions where it
is more difficult to be detected by the steganographers. The
most employed algorithms in this domain are HUGO [7],
HILL [8], MiPOD [9], S-UNIWARD [10] and WOW [11].
Figure 1 shows a stego image compared to a cover image
after the steganographic process, using the S-UNIWARD
algorithm with a payload (number of embedded changes)
of 0.4 bits per pixel (bpp). On the right side of the figure,
the difference in images is shown to illustrate the effect of the
algorithm on the stego image.

There are significantly used transformations from the fre-
quency domain (JPEG - Joint Photographic Experts Group)
to make steganography, such as Discrete Cosine Transform
(DCT), Discrete Wavelet Transform (DWT) and Singular
Value Decomposition (SVD), all explained in [13]. JPEG is
the most common loss compression format for images pro-
duced by digital cameras, scanners, and other photographic
capture devices, which is based on DCT. Some coefficients
of the used transform are changed to insert messages in the
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JPEG domain in such a way that it is imperceptible to the
human eye. The most employed algorithms in this domain
are J-UNIWARD [10], F5 [14], UED [15] and UERD [16].

Steganalysis consists of detecting whether or not an image
has a hidden message. In [13], there is a more in-depth expla-
nation of steganography and steganalysis with their respective
classifications. Steganography is traditionally divided into
two stages. Stage one consists on the manual extraction of
features where the best results have been achieved using Rich
Models (RM) [17]. Stage two is based on a binary classifier
(an image is steganographic or not) where Ensemble Classi-
fiers (EC) [18], Support Vector Machines (SVM) [19] or per-
ceptrons [20] are typically used. Thanks to advances in Deep
Learning (DL) [21] and Graphic Processing Units (GPUs)
[22], researchers have begun to apply these techniques in
steganography and steganalysis obtaining better detection
percentages of steganographic images. When DL is employed
in steganalysis, the feature extraction stage and classification
are unified under the same architecture, and the parameters
are optimized simultaneously, allowing the complexity and
dimensionality introduced by manual feature extraction to
be reduced [17]. Figure 2 shows the general structure of
steganalysis with manual extraction of characteristics (top
side) and steganalysis unifying extraction and classification
under the same architecture (bottom side).

A. BACKGROUND

The first application of DL to steganalysis was developed
in 2014 by Tan and Li [23] whose approach used unsu-
pervised learning from a stack of Auto-Encoders training a
Convolutional Neural Network (CNN). Supervised learning
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FIGURE 2. Steganalysis based on manual extraction of characteristics (top side) and steganalysis based on deep learning

techniques (bottom side).

was then used by pre-processing the image using a High
Pass Filter (HPF) to increase the steganographic noise power
introduced by the embedding process. The detection per-
centages of steganographic images were approx. 17% lower
than those obtained by Spatial Rich Models (SRM) [17], and
approx. 11% higher than those obtained by Subtractive Pixel
Adjacency Matrix (SPAM) [24].

In the 2015 Qian, Tan et al. [25] designed the first CNN
with a supervised learning approach, which consisted of
5 convolutional layers and a specific activation function
known as Gaussian Activation. The detection percentages of
steganographic images were approx. 4% lower than those
obtained by SRM [17], and approx. 10% higher than those
obtained by SPAM [24].

Then in 2016 Pibre, Chaumont et al. [26] took over Qian’s
work and proposed two new neural networks. The first one
was a 2-layer CNN and the second a Fully Connected Neu-
ral Network (FNN) composed of 2 layers. Their experi-
ments were characterized by using the same encryption key.
Xu, Shi et al. [27] proposed a CNN similar to Qian’s with
5 convolutional layers. Unlike that network, Xu, Shi et al.
used an absolute value layer (ABS) and 1 x 1 convolutional
kernels to strengthen the statistical modeling and obtain better
results. Xu, Shi et al. took their proposed network and used it
as a Base Learner [28] to train sets of CNNs in order to obtain
better training parameters and further improve their detection
results. In the same year, Qian, Tan, et al. used Transfer
Learning [29] exchanging the parameters of a CNN, which
was trained with steganographic images with a high payload,
to another CNN that would be trained to detect images with
a low payload. The results obtained improved compared to
CNN s that did not use Transfer Learning, but still would not
surpass the traditional algorithms. All the advances obtained
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previously were implemented in the spatial domain. After
that, the researchers have focused on doing steganalysis using
DL techniques in the frequency domain (JPEG).

In 2017 Zeng, Huang et al. [30], [31] proposed a CNN
approach to perform steganalysis in JPEG format images
using an RM-inspired pre-processing applied to large sets
of images offered by ImageNet [32]. The results obtained
were close to those recorded in the literature. In the same
year Chen, Fridrich, et al, built a new network using Phase-
Split inspired by the JPEG compression process [30]. A CNN
assembler was used to obtain results significantly higher than
those obtained by state of the art. Subsequently Xu [33]
proposed a new CNN inspired by ResNet [34] consisting of
20 convolutional layers followed by a Batch Normalization
(BN) process [35], [36]. Tang, Li et al. [37] suggested to
make steganography of images in the spatial domain taking
as reference two networks that compete with each other.
This methodology, known as Generative Adversarial Net-
work (GAN), used the rivalry between steganography and
steganalysis (2 competing networks) to automatically learn
which was the best position in where to embed a message.
Ye, Yi et al [38] proposed a new CNN in the spatial domain
with 8 convolutional layers, a self-activation function known
as Truncation Linear Unit (TLU), and filter banks for image
pre-processing. These filter banks initialize their SRM-based
weights to obtain residual characteristic maps and avoid the
use of the static filter used by all previous CNNs. The trend in
2017 was to train sets of CNNs and modify the network archi-
tecture to mimic the SRM feature extraction process. Another
significant contribution was to jump between different con-
volutional layers (ResNet [34], [39]) thus enabling deeper
CNNs to be designed, ensuring network convergence and
improving detection accuracy; until then, detection results
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were improved by approximately 10% compared to those
recorded in the literature.

In 2018 a new CNN was proposed in the spatial domain
by Yedroudj, Chaumont et al. [40]. This CNN brings together
the best features of its predecessors (a set of input filters for
pre-processing based on SRM feature extraction, 5 convolu-
tional layers, BN, TLU activation units and an increase in
the size of the training database) to get better results from
those reported by literature. In [41] Tsang, Fridrich, et al.
take Ye’s network and modify it to be able to classify high-
resolution steganographic images from CNNs training with
low resolution images. Yedroudj, Chaumont et al. [42] stud-
ied the effect of enriching the database traditionally used in
steganalysis known as BOSSBase [43]. The added images
belong to the BOWS2 [44] database, as well as images
captured with cameras with similar characteristics to those
used to create the traditional database. Finally, the num-
ber of images in both databases were increased using crop-
ping, resizing, rotation and interpolation operations. They
concluded that to improve the performance of steganalysis
it is recommended to have a large database acquired with
similar cameras and dimensions. Chen, Fridrich, et al. [45]
propose to do quantitative steganalysis using DL techniques
to predict the payload contained in a steganographic image
in both spatial and frequency domain (JPEG). Li et al. [46]
propose to combine 3 CNNs in parallel. Each network uses
a different pre-processing layer for feature extraction (Gabo
Filters [47], Linear-SRM [17], nonlinear-SRM [17]) and
simultaneously uses 3 activation functions (ReLU [48], Sig-
moid [49] and TanH [49]) in order to consider more pre-
processed information. Zeng et al. [S0] make an experiment
similar to the previous one on color images. Boroumand
Fredrich et al. [34] proposed a new CNN that avoids as much
as possible the use of tricks, such as using SRM filters for
pre-processing. This network works in both the spatial and
frequency domains. Zhang et al. [51] suggested a new CNN
that optimizes the weights of the pre-processing layer filters
to increase the power of steganographic noise and decrease
image content. It uses separate convolutions to obtain residue
channel correlations and spatial correlations separately for
better feature representation, and finally uses Spatial Pyramid
Pooling (SPP) [52] to add local features, to improve feature
representation capability, and to allow arbitrary image sizes.

The rest of the paper has the following order: Section IT
explains how the systematic review of the literature was done.
Section III presents the results found and the state of the art.
Section IV shows some conclusions and future work.

II. LITERATURE SYSTEMATIC REVIEW

This review is aimed at showing how the application of DL to
steganalysis has evolved in the recent years, highlighting the
most significant results and possible future work. The reader
is recommended to previously scan the review in [53] which
explains in detail the basic methods behind steganography
and steganalysis. This literature review used the phases pro-
posed in [54] which are described below.
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A. A NEED FOR BIBLIOGRAPHIC REVIEW

Due to technological advances in hardware and software
applied to Artificial Intelligence (Al), the constant devel-
opment of the GPUs [22], and the emergence of frame-
works supporting the design and implementation workflow
of machine learning algorithms, such as TensorFlow [55],
researchers have started to use these techniques and tech-
nologies thoroughly. DL applied to steganalysis is no excep-
tion and, since 2014, researchers in this area have been
using them in the detection of steganographic images.
Consequently, a great variety of experiments have been
implemented, obtaining percentages of detection that have
overcome up to 13% to those obtained by SRM, increasing
the overall interest in this topic.

B. RESEARCH QUESTIONS

In order to identify the current status of DL applied in ste-
ganalysis, it is key to obtain data on scientific production,
journal articles or conference proceedings in a systematic
manner as it is the purpose of this review. Relevant articles
were searched in different databases for this purpose, and the
following research questions arose:

Q1: Is the use of CNNs for steganographic image detec-
tion beneficial over traditional methods in terms of detection
performance?

Q2: Which are the different architectures and novel com-
ponents of CNNs used to make steganalysis of digital images?

Q3: What are the detection percentages of the stegano-
graphic image using CNNs?

Q4: What are the most used digital image databases to do
DL experiments on steganalysis?

C. BIBLIOGRAPHIC SEARCH

A systematic review of documents from scientific societies
devoted to forensic science, computer security, digital signal
processing, digital image processing, and Al was conducted.
The search for information took into account authors who
were researchers, students or professors, with the aim of
obtaining a list of articles that explain the design and imple-
mentation of CNNs to do steganalysis.

The terms chosen for this search were:

o Deep Learning

« Convolutional Neural Network

« Steganalysis
With the search terms defined above, query strings, which are
complemented with logical operators, were built to improve
execution results. The search process was limited to articles
published in journals or conference proceedings between
2014 — 2018, only in the English language.

The general search string is listed below

((“Deep Learning” OR “Convolutional Neural Net-
work”’) AND (“Steganalysis”’))

In Table 1 the databases and search strings used for
the review are shown. The search for grey literature
included all types of documents contributed by the most
relevant researchers in the area. In the presentations of
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TABLE 1. Databases and search strings for literature review.

Name of the
search query
or database

IEEExplorer

Search string

(((deep learning) OR convolutional

neural network) AND steganalysis)
((TitleCombined:(deep learning)) OR
(TitleCombined:(convolutional neural network)))
AND ((TitleCombined:(steganalysis)) OR
(Abstract:(deep learning)) OR
(Abstract:(convolutional neural network)))
AND (Abstract:(steganalysis))
acmdlTitle:(+deep +learning +steganalysis)
OR acmdlTitle:(+convolutional +

neural +network +steganalysis)

OR recordAbstract:(+deep +

learning +steganalysis)

OR recordAbstract:(+convolutional +
neural +network +steganalysis)

OR content.ftsec:(+deep +learning +
steganalysis)

OR content.ftsec:(+convolutional +

neural +network +steganalysis)

allintitle: deep learning steganalysis
pub-date >2014 and
TITLE-ABSTR-KEY

Cornell University
Library

The ACM Digital
Library

Google Scholar

ScienceDirect ((deep learning OR convolutional neural network))
and TITLE-ABSTRKEY ((steganalysis))
Sori *"deep learning” OR
pringer "convolutional neural network" AND steganalysis’
Scopus TITLE-ABS-KEY
(deep AND learning AND steganalysis )
Web Of Science (TEMA: (deep learning steganalysis)

OR TITULO: (deep learning steganalysis))

congresses, symposia or short courses exposed in [42],
[56]-[60], [80], a good baseline was found to start with a
chronological review of the literature.

D. INCLUSION AND EXCLUSION CRITERIA
The inclusion criterion was taken into account:

« Articles written in English

« Articles published between 2014 — 2018

« Articles published as results of Conferences, Con-
gresses or Journals.

« Articles only included in the databases in Table 1.

« Articles which use DL applied to steganalysis.

It was taken into account as an exclusion criterion:

« Articles which only have a table of contents and sum-
mary.

« Articles not related to research.

o Articles where steganalysis is done
applying DL.

without

E. EXTRACTION AND EVALUATION OF INFORMATION
After a systematic search of the literature on information
sources and with the search strings provided in Table 1,
312 items were found distributed as shown in Table 2 and
their percentage distribution is shown in Figure 3.

The 79 articles obtained by the search on the IEEExplore
database were taken as a reference, classified by year and
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FIGURE 3. Percentage of articles found with the search strings used in
the different databases.

Number of articles published

2014 2015 2016 2017 2018
Year of publication

FIGURE 4. Number of articles published in IEEExplore with respect to the
year.

their results are shown in Figure 4 which demonstrated a
trend of publication of articles in the area of interest.

It is important to clarify that a large number of repeated
articles were found in different search sources. After unifying
the repeated articles, a base of 110 articles was obtained.

The steps for systematic literature search are listed below:

1) Start: Defining search strings and selecting databases.

2) Search: Execution of search strings in the selected

databases (312 articles were found).

3) Repeated: Unify the articles that appear in more than

one database (the results are condensed to 110 articles).

4) Title: After reading the title, 24 are accepted and 86

articles are rejected.

5) Abstract: After reading the abstract, 18 are accepted

and 6 articles are rejected.

6) Full text: After reading the entire text, 14 articles are

accepted and 4 articles are rejected.

The 14 articles chosen for the systematic review of the
literature are highly reliable as they are found in high-impact
international databases, they also have a good number of
citations and their authors have great prestige in the subject.
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TABLE 2. Systematic literature search resuits.

TABLE 3. Articles found by systematic literature search.

Name of the . . Number of
Filters applied o
search query publications
for the search
or database found
IEEExplore All text and Metadata 79
Cornell_ University Title and abstract 27
Library
The ACM Digital All text 50
Library
Google Scholar Title 20
ScienceDirect All text 29
Springer All text 45
Scopus Title, abstract and keywords 50
Web Of Scienc Title and subject 12
Total 312

Number of citations

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Articles

FIGURE 5. Number of citations for each of the items selected for
literature review.

In Table 3. the title of the article, the authors and the year
of publication are shown chronologically. For the rest of the
document, when one of these articles is needed, the list given
in this table will be used as a convention. The articles were
organized through the Mendeley application.

Finally, the selected articles were taken, and the num-
ber of citations was extracted according to Google Scholar,
the results are shown in Figure 5.

Ill. DEVELOPMENT OF THE SUBJECT

After a systematic search of the literature using the criteria
of Section II, the development of the topic was focused in
14 articles which have a common thread in the advances that
the DL applied to steganalysis has had. The place of publi-
cation and main contributions are shown in Table 5. It can
be observed that the topic has become relevant due to the
frequency of publications in the last 2 years. The researchers
who have contributed most to this topic are as follows: Jessica
Fridrich, Marc Chaumont, Yinlong Qian, Guanshuo Xu,
Tieniu Tan, Shunquan Tan, Yun-Qing Shi, Jishen Zeng,
Mo Chen, Bin Li, Jiwu Huang, Jian Ye, Jiangqun Ni. The
results are published in high-impact symposia, congresses,
and journals. The main contributions are the generation of
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ANr ‘:. Title of the article Authors pu?);?azin
Stacked Convolutional Shunquan Tan
1 Auto-Encoders for Bin Li ? 12/12/2014
Steganalysis of Digital Images [23]
Deep learning for Steganalysis YI;IOH%QMM’
2 via Convolutional Neural 1ng vong, 4/03/2015
Networks [25] We1' W'dng, and
Tieniu Tan
Deep Learning is a
Good Steganalysis Tool Lionel Pibre,
when Embedding key Jérome Pasquet,
3 is Reused for Different Images, Dino Ienco, 18/02/2016
even if there is a Marc Chaumont
Cover Source-Mismatch [26]
Structural Design of Guanshuo Xu,
4 Convolutional Neural Networks Han-Zhou Wu, | 30/03/2016
for Steganalysis [27] Yun-Qing Shi
Guanshuo Xu,
3 Steganaﬁ/r;?:m x:llaeEorfl[():llr\fclitsl fSotfxdy [28] Han-Zhou Wu, - | 30/06/2016
’ Yun-Qing Shi
Learning and Transfering Yinlong Qiana,
Representations for Jing Dong,
6 Image Steganalysis Using Wei Wang, and 28/09/2016
Convolutional Neural Network [29] Tieniu Tan
Large-Scale JPEG Image S‘Elsl}r:er:laznefll"ih
7 Steganalysis Using Hybrid quan an. - »6/01/2017
Deep-Learning Framework [30] . Bin Lj,
Jiwu Huang
JPEG-Phase-Aware Vall\ﬁ?l gggin’hi
8 Convolutional Neural Network . &L 122/06/2017
for Steganalysis of JPEG Images [61] Mehdi Boroumand,
Jessica Fridrich
Deep Convolutional
9 Neural Network Guanshuo Xu 22/06/2017
to Detect J-UNIWARD [33]
Automatic Steganographic \S)\}lleliﬁuiznT’aI‘;ﬁ ?
10 Distortion Learning Using a B?n Li > 110/10/2017
Generative Adversarial Network [37] . ’
Jiwu Huang
Deep Learning Hierarchical Jian Ye,
11 Representations for Jiangqun Ni, 1/11/2017
Image Steganalysis [38] Yang Yi
. . . Mehdi Yedroud;,
12 CN;egfgg{; tli\il?ts t’zgaﬁg;;f;“[ 4o | Frédéric Comby., |20/04/2018
Marc Chaumont
Steganalyzing Images Clement Fuji,
13 of Arbitrary Size with CNNs [41] Jessica Fridrich | 2Y/04/2018
Efficient feature learning léznZh;}rllf,
14 and multi-size image Steganalysis . 'gL' ? d 30/07/2018
based on CNN [51] Jianyi Liu an
Gongshen Liu

TABLE 4. Error percentage of the CNNs and SRM for two
steganographic algorithms with a payloads of 0.4bpp and
0.2 bpp [25], [27], [38], [40], [51].

Network WOW | WOW |S-UNIWARD |S-UNIWARD
0.2 bpp| 0.4 bpp 0.2 bpp 0.4 bpp

SRM+EC (2012) 36.5 25.5 36.6 24.7
QianNet (2015) 38.6 29.3 46.3 30.9
XuNet (2016) 324 20.7 39.1 27.2
YeNet (2017) 33.1 232 40.0 31.2
YedroudjNet (2018)| 27.8 14.1 36.7 22.8
ZhuNet (2018) 233 11.8 28.5 15.3

different CNNs, which have evolved thanks to the contri-
butions of the predecessor networks. The CNNs proposed
so far in chronological order are QianNet or GNCNN [25],
XuNet [27], YeNet [38], Yedroudj-Net [40], ZhuNet [51].
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Table 6 shows the architecture implemented by each
author, the database used for training, validation and test-
ing, the domain of the experiment (spatial or frequency),
the steganographic algorithms used for the steganalysis and
the best results.

It can be observed from Tables 5 and 6 that the first
experiment was done using unsupervised learning by imple-
menting an Auto-Encoders stack. Work continued on super-
vised learning ever since following 3 fundamental principles
for steganalysis: reinforcement of the steganographic noise,
by means of a fixed high-pass filter, extraction of character-
istics and classification; all unified under a single architec-
ture which optimizes its parameters simultaneously. The first
advances in the subject were made in the spatial domain, and,
then, the researchers entered the frequency domain (JPEG).

Researchers have tested different ideas using CNNs for
their experiments, among the most important of which are as
follow: increasing the height of the network or using fully
connected networks [26]; using custom activation features
to ensure network convergence and improve steganographic
image detection rates [25], [38], [40]; using CNNs with jumps
between convolutional layers (Residual Networks or Dense
Networks) in order to design very deep networks (20 or more
layers) achieving network convergence and improving detec-
tion percentages [33], [34], [62]-[66]; training sets of CNNs
and transferring the learned parameters to CNNs where their
convergence is complex or they have a low detection percent-
age [28], [29], [61]; training CNNs with a certain database
and test the network with a completely different database
in order to determine the reliability of the designed CNNs
(Cover-Source Mismatch) [26], [61]; strengthening statistical
modeling by means of an absolute value layer (ABS) [27],
[28], [40], [51]; improving steganographic noise extraction
by using filters designed in SRM and doing feature extraction
and classification with CNNs [30], [38], [40], [51]; using real-
world databases such as ImageNet to see how well a CNN
can adapt to any dataset with diverse resolution and capture
characteristics [25], [30], [33], [34], [62], [63]; placing two
CNNs to compete. In this case the first network is used
for steganography and the second for steganalysis, the aim
is to obtain an automatic steganography process due to the
learning of the characteristics of both processes [36],
[37], [67]-[72]; training a network to be able to classify
high-resolution images from low-resolution images [41]; pre-
dicting the payload (quantitative steganalysis) of a stegano-
graphic image using DL in the spatial and JPEG domain
[45], [73]; generating an increase in the database taking
into account trimming, rotation and interpolation operations,
as well as the use of cameras with similar or different charac-
teristics for image acquisition, taking care with resizing [30],
[38], [51], [74]; placing 3 CNNs to work in parallel [46], each
network uses the activation functions (ReLU, Sigmoid and
TanH) and different filters in the pre-processing layer inspired
by Gabo Filters [47] and SRM (linear and non-lienar) [17];
doing a similar work to the previous one but in color
images [50], among others.
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Most of the proposed networks use the high-pass filter of
Equation 1, developed in [17] and used for steganalysis for
the first time [25]. High-Pass filter parameters are not opti-
mized during the training process. This filter pre-processes
the image to strengthen the steganographic noise and decrease
the impact of the image content. This filter helps the CNN
training to be convergent; in case the convergence is not used
it can be slower or non-existent. The last designed CNNs do
not use this filter; they use a bank of filters proposed by the
SRM to obtain maps of residual characteristics instead.

-1 2 -2 2 -1
2 s 8 -6 2
K=—]-2 8 —12 8 -2 1)
21,2 6 8 -6 2
-1 2 -2 2 -1

The general-level operation done on a CNN can be seen
in Equation 2. Where M/ is one of the maps of characteristics
of the [-th layer, M;'~! is the i-th map of characteristics of the
previous layer, K;' is the i-th kernel of the I-th layer, b’ is
the bias parameter of the / layer, * is the convolution opera-
tion, f() is the non-linear operation known as the activation
function, pool() is the pooling operation, and norm() is the
normalization operation. The order of the operations in the
convolutional layers are convolution, normalization, activa-
tion function, and pooling. Feature maps obtained by the last
layer are passed to the classification module which consists
of one or several layers of neurons completely connected and
a Softmax layer; the last layer is in charge of normalizing the
values of the CNN between [0, 1], which in turn are the ones
of probability that indicate if the image is cover or stego.

M = norm <pool (f (Xn: (M}—l " Ki’) + b’))) )

i=1

The nonlinear activation functions employed in the CNNs
studied are Rectification Linear Unit (ReLU) [48], Tangent
Hyperbolic (TanH) [49], Gaussian and TLU. This last acti-
vation function is exclusive of DL applied to steganalysis,
and its function is to limit the range of values and avoid the
modeling of the network to large values. Normally TanH is
used in the first layers and ReLU in the last ones.

The operation used for data normalization is BN, which is
summarized in Equation 3 [35]. BN consists of normalizing
the distribution of each feature of a feature map so that
the average is zero and the variance is unitary, and possi-
bly, if necessary, allows re-scaling and re-translation of the
distribution.

Given a random variable X whose realization is a value
x € R of the feature map, the BN of this value x is:

x — E[X]
JVar[X]+ ¢

with E[X] the expectation, Var[X] the variance, and y and
B two scalars representing a re-scaling and an re-translation.

BN(x,y,B)=B+v (€)
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TABLE 5. Contributions of the main articles that apply DL to steganalysis.

No
Art

Journal or Conference

Main Contributions

Signal and Information
Processing Association
Annual Summit
and Conference
(APSIPA 2014),
Asia-Pacific

The first approach of a CNN applied to steganalysis using a stack of convolutional
Auto-Encoders for pre-training. In this paper, it is explained that the traditional
methods to do steganalysis such as SRM [17] are similar to the structure of a CNN. It
still does not reach the results offered by SRM [17], but it surpasses the results offered
by SPAM [24], the two best steganalyzers of the moment with manual extraction of
characteristics.

SPIE/IS&T Electronic
Imaging (EI 2105),
Media Watermarking,
Security, and Forensics.

The first CNN with supervised learning is proposed. It uses a high-pass filter to
reinforce steganographic noise and decrease image content. For the extraction of
features, there are 5 convolutional layers, a custom Gaussian activation function, and
Average Pooling. For classification, a module of neurons fully connected to a Softmax
layer was added. The results are competitive to state of the art (SRM and SPAM). The
name of this network is QianNet or GNCNN.

Media Watermarking,
Security, and Forensics,
IS&T Int. Symp.
on Electronic
Imaging (EI 2016)

Returns the QianNet network [25] as a basis for experimentation and after testing 40
designs of different Neural Networks, proposes two new networks to do steganalysis,
which, trained under the scenario Clairvoyant [26] (for example using the same
incrustation key to do the steganography process) or under the scenario Cover-Source
Mismatch [26] (training with a database and testing with a completely different one)
are achieved better results than those obtained by SRM. The proposed networks
are characterized by their higher, shallower depths, the Gaussian activation function
is changed to the classic ReLU [48] and the Pooling step [75] is suppressed. The
best proposed CNN consists of two convolutional layers, the first convolutional layer
applies 64 kernels 7x7 that work as a band-pass filter, the second convolutional layer
applies 16 kernels 5x5 to obtain insensitive features for the Cover-Source Mismatch
effect, this task subdivision cannot be achieved with traditional methods generating an
inferior performance over other data sets. Finally, CNNs can use transfer learning to
test other data sets, and this is not possible with traditional methods.

IEEE Signal
Processing
Letters (2016)

A new CNN called XuNet [27] is proposed. This network is characterized by the
fact that after the first convolutional layer it uses an ABS layer ABS to facilitate
and improve the statistical modeling taking into account the sign symmetry [17]
existing in the noise residuals. Additionally, it uses BN to prevent CNN training
from falling to poor local minima, and to learn optimal scales and biases for feature
maps [35]. A TanH [49] activation function is also used on the first two layers,
and a ReLU [48] activation function on the rest of the layers, in order to reinforce
statistical modeling and avoid overfitting. These activation functions are also used to
avoid low slope regions and the cancellation of the gradient value when using back-
propagation (gradient vanishing phenomenon), which makes learning impossible.
Finally, convolutions 1x1 are used in the last layers in order to limit statistical
modeling.

[H&MMSec
Proceedings
of the 4th ACM
Workshop on Information
Hiding and
Multimedia Security
(2016)

It is proposed to train a set of CNNs that learn about common characteristics (charac-
teristics vector), output probabilities and information lost by the pooling operation to
obtain a more precise classification. The results obtained when training a set of CNNs
provide better results than when training a single model. The set of trained networks
uses a structure very similar to the one proposed in [27], with the difference of adding
a layer of convolutions and increasing the size of the pooling of the last two layers.
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TABLE 5. (Continued.) Contributions of the main articles that apply DL to steganalysis.

No
Art

Journal or Conference

Main Contributions

IEEE International
Conference on
Image Processing
(ICIP 2016)

The parameters learned in the convolutional layers, and in the fully connected layers
of a high payload, CNN for a given steganographic algorithm is transferred to train
a low payload CNN for the same algorithm, thus improving the performance of this
type of networks.

IEEE Transactions on
Information
Forensics and
Security(2017)

It is proposed for the first time to do steganalysis using DL in the frequency domain
(JPEG). A hybrid Framework is generated where in the first stage a manual extraction
of characteristics is made from a bank of filters supplied by SRM. Specifically,
it corresponds to the phase of convolution, quantization, and truncation proposed
by DCTR in [78] for RM. For the second stage, a classification is made using 3
convolutional subnets, followed by 3 completely connected network layers and a
Softmax layer. The experimentation is done on large-scale databases (ImageNet) to
obtain results closer to the real world, trained with up to 5 million images. The training
was done with 5 versions of DL models independently to combine the results then and
obtain better accuracy (Ensemble of CNNs). Finally, the learned model can be easily
transferred to a different attacking target and even to a different data set obtaining
satisfactory results.

IH&MMSec Proceedings
of the 5th ACM
Workshop on
Information
Hiding and
Multimedia Security
(2017)

Knowledge of JPEG phases is incorporated into the architecture of a CNN to increase
accuracy. The XuNet network is taken and adapted to work in the JPEG domain, at
the end two CNNs (PNet, VNet) are proposed. The first allows each JPEG phase
to pass through a CNN thus increasing the computational complexity; the second
allows to mix the JPEG phases and thus decrease the computational complexity. Both
networks will be trained individually and using sets of CNNs to obtain better results.
Another innovative concept introduced is the "Catalyst Kernel" which, together with
the traditional high pass filters used to pre-process images, allows the network to learn
the essential kernels for the detection of the stego signal introduced by JPEG steganog-
raphy. Experiments with J-UNIWARD and UED-JC inlay algorithms are used, and
the results are compared with the traditional steganalysis method Selection-Channel-
Aware Gabor Filter Residuals (SCA-GFR) [79]. For network training, parameters
were transferred (Transfer Learning) from the network training with 0.4 bpnzac and
with these parameters already trained, initialize the other networks. Finally, we would
like to know what effect it has on CNN to train with an image database and try a
completely different one (Cover Source-Mismatch) [26], [20].

[H&MMSec Proceedings of
the 5th ACM
Workshop on

Information
Hiding and
Multimedia Security
(2017)

A CNN with 20 convolutional layers is proposed. It is demonstrated that deep CNNs
and Pooling operation can overcome traditional methods based on manual feature
extraction. This network is tested on J-UNIWARD. It is also proposed to Res-Net
in order to avoid the disappearance of the gradient due to the depth of the net.
The experiments are performed on ImageNet’s CLS-LOC base with approximately
1 million 256X256 cropped images compressed with a QF 75 quality factor.

10

IEEE Signal
Processing
Letters (LSP 2017)

It is proposed to do automatic steganography taking into account the characteristics
of adaptative steganography. Two CNNs are proposed to compete with each other,
the first is used for steganography (Generator), and the second for steganalysis
(Discriminator), through this competition the algorithm can automatically embed a
message in locations where it is more difficult to make the detection for a steganalyzer.
Through the other training of these two opposing subnets, the proposed framework
can automatically learn to embed change probabilities for each pixel in a given
cover image in the spatial domain. Automatic Steganographic Distortion Learning
framework with GAN (ASDL-GAN) simulates the rivalry between additive distorted
steganography and DL steganalysis.
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TABLE 5. (Continued.) Contributions of the main articles that apply DL to steganalysis.

No
Art

Journal or Conference

Main Contributions

11

IEEE Transactions
on Information
Forensics
and Security
(TIFS 2017)

A CNN is proposed that does not use the traditional high-pass filter to obtain the
steganographic noise, on the contrary, it uses a set of high-pass filters used in the
calculation of residual maps of SRM, whose values are used to initialize the trainable
filters instead of doing it randomly. The purpose of these filters is to suppress image
content and amplify steganographic noise effectively. A new activation function called
TLU [38] is adopted in order to increase the signal-to-noise ratio (SNR) [88] which
is extremely low in the steganography incrustation process. Finally, the performance
of the CNN-based steganalyzer is increased by incorporating knowledge of channel
selection (knowledge of the probability of change of each pixel) [61] and parameter
transfer for low payload networks. By adding the values of the probabilities of
change of each pixel and the characteristic maps generated by the pre-processing
filters (filters initialized with SRM values), it is possible to deliver more information
about steganographic noise to the following convolutional layers and thus improve the
performance of CNN. This network is called YeNet.

12

International
Conference
on Acoustics,
Speech, and Signal
Processing
(ICASSP 2018)

This network unites the best features between the XuNet and YeNet. The use of
a filter bank for pre-processing based on SRM, TLU and BN activation function
is highlighted. It does not use the knowledge of the channel selection (map of
probabilities of change of a pixel). For the training, they use an extended database
to improve the results. This network is called Yedroudj-Net.

13

Media Watermarking,
Security,
and
Forensics (2018)

The YeNet network is taken and adapted to train with sets of small resolution images
and generalize the model to be able to do steganalysis in high-resolution images, that
is to say, it addresses the problem that the images have different sizes, this due to the
tremendous computational cost involved in training a CNN with high-resolution input
images.

14

Computing
Research
Repository (2018)

A new CNN is proposed that for the first time optimizes the kernel weights of
the pre-processing layer to increase the steganographic noise signal. Convolutional
layer filters are reduced in size to decrease the number of parameters and model
characteristics in a small local region. Separable convolutions [89], [90] are used to
residue channel correlation, spatial correlation, compress image content and increase
signal-to-noise ratio. SPP [52] is used to add local features, improve feature rendering
capability, and allow arbitrary image sizes. Finally, the database is increased to
improve detection accuracy. This network is called ZhuNet. The results obtained by
this network exceed those obtained by XuNet, YeNet, YedroudjNet and SRM+EC.

The expectation E[X] and the variance Var[X] are updated at
each batch, while y and B are learned by back-propagation.
In practice, the BN makes the learning less sensitive to the
initialization of parameters [35], allows to use a higher learn-
ing rate which speeds up the learning speed, and improves
the accuracy of the classification [61]. In the first proposed
CNNs, BN is not used.

Average Pooling [75] operation is commonly used in all
CNNs for pooling due to the steganographic noise intro-
duced by the incrustation process is very weak and using
this operation favors the propagation and preservation of this
type of noise, which does not occur in the case of using
Max Pooling [75]. The pooling customarily used is a local
operation that is computed with its neighbors.

VOLUME 7, 2019

The most important CNNs obtained from the studies are
as follows: QianNet or GNCNN (2015) [25], [76], XuNet
(2016) [27], YeNet (2017) [38], YedroudjNet (2018) [40]
and ZhuNet (2018) [51], all were initially designed in the
spatial domain and some were adapted to work in the fre-
quency domain (JPEG). QianNet is characterized by hav-
ing 5 convolutional layers, a Gaussian activation function
and Average Pooling after each convolutional layer, 2 fully
connected layers, and 1 Softmax. XuNet is characterized by
having 5 convolutional layers, an ABS layer after the first
convolutional layer, using TanH activation functions for the
first 2 layers and ReLU for the last 3 layers, BN in each
convolutional layer, 2 fully connected layers, and 1 Softmax.
YeNet uses an SRM filter bank to do the steganographic
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TABLE 6. Characteristics of CNNs, databases, steganographic algorithms and results of the main DL articles applied to steganalysis.

E:t Network architecture Databases | Domain Stfﬁ;ﬁ:ﬁ;ﬁ?lc Pe(rlgz:tt 2ii;i§;§or
. 9 convolutional layers subdivided Using 0.4 bpp on BOSSBase
into 3 stages. CNN=31
1 o Max Pooling. BOSSBase | Spatial HUGO SPAM=42
« 1 layer completely connected. SRM=14
¢ 1 Softmax.
Using 0.4 bpp on BOSSBase
CNN=HUGO (28.29),WOW (29.3),
S-UNIWARD (30.29)
. ) SRM=HUGO (25.2), WOW (25.7),
e 1 pre-processing layer (1 high- S-UNIWARD (26.3)
pass filter). SPAM=HUGO (39.1), WOW (38.2),
» 5 convolutional layers. BOSSBase . HUGO | g UNIWARD (35.1)
2 o Gaussian activation function. ImageNet Spatial WOow
« Average Pooling. S-UNIWARD Using 0.4 bpp on ImageNet
o 3 completely connected layers. CNN=HUGO (33.6),WOW (34.1),
+ 1 Softmax. S-UNIWARD (34.7)
SRM=HUGO (32.5), WOW (34.7),
S-UNIWARD (34.4)
SPAM=no results
CRN: Using 0.4 bpp on BOSSB
e 1 pre-processing layer (1 high- CIS;E%O}./an tpsi;?ario ase
pass filter). CNN=7 4
¢ 2 convolutional layers. FNN=8.66
e ReLU activation function SRM=24.67
o Without Pooling.
3 |« Zcompletely connected layers. | BOSSBase | o o1 | g UNTWARD | Using 0.4 bpp on
* 1 Softmax. LIRMMBase BOSSBase (Train)
FNN: ‘ . and LIRMMBase (Test)
« | pre-processing layer (1 high- Cover-Source Mismatch scenario
pass filter). CNN=5.16
o 2 completely connected layers. FNN=5.89
« ReLU activation function. SRM=48.29
o 1 Softmax.
. . Using 0.1 bpp on BOSSBase
e 1 pre-processing layer (1 high- CNN=S-UNIWARD (42.67)
pass filter). HILL (41.56) o
« 5 convolutional layers. SRM=S-UNIWARD (40.75)
o ABS Absolute Value Layer (Only HILL (43.56) ’
4 after the first convolutional layer). BOSSBase | Spatial S-UNIWARD
o Activation function TanH, ReLU. HILL Using 0.4 bpp on BOSSBase
« Batch Normalization BN. CNN=S-UNIWARD (19,76),
o Average Pooling. HILL (20.76)
o 2 completely connected layers. SRM= S-UNIWARD (20.47),
« 1 Softmax. HILL (24.53)
e 1 pre-processing layer (1 high-
pass filter).
« 6 convolutional layers.
o ABS absolute value layer (Only Using 0.4 bpp on BOSSBase
5 |  afterthe first convolutional layer). | poqgpyqe | Spatial | S-UNIWARD | CNN = 18.99
o Activation function TanH, ReLLU. SRM=18.97
« Batch Normalization BN.
 Average Pooling.
« 1 layer completely connected.
o 1 Softmax
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TABLE 6. (Continued.) Characteristics of CNNs, databases, steganographic algorithms and results of the main DL articles applied to steganalysis.

ANlt')t Network architecture Databases | Domain St(ﬁ;ﬂ:ﬁﬁgglc Pe(rgz:tt i%i;flzgor
e 1 pre-processing layer (1 high-
pass filter). Using 0.4 bpp on BOSSBase
« 5 convolutional layers. WOW CNN=WOW (21.95),
6 « Gaussian activation function. BOSSBase | Spatial S-UNIWARD S-UNIWARD (22.05)
« Average Pooling. SRM=WOW (20.67),
« 2 completely connected layers. S-UNIWARD (20.55)
o 1 Softmax
The proposed network consists of two
stages:
The first stage is manual feature
extraction based on Rich Models
(convolution Phase and Quantization
& Truncation).
The second stage consists of 3 The article presents the results
7 convolutional sub-networks of deep ImageNet IPEG J_UEIIIE\;%RD in graphical form which does not
learning for classification each with: gelNe UED allow to extract the results in a
« 3 convolutional layers. precise way.
« ABS absolute value layer (only
for after the first convolutional
layer).
« Batch Normalization BN.
« ReLU activation function.
« Average Pooling
« 3 completely connected layers.
o 1 Softmax.
Using 0.1 bpnzAC QF 75
BOSSBase(Train, Test)
Two networks are proposed: BOWS2(Test)
First Network (PNet), No mixing of CNN-PNet=J-UNIWARD (35.75),
channels UED-IC (17.77)
« 2 pre-processing filters. CNN-VNet=J-UNIWARD (36.15),
« 5 convolutional layers, the first 2 UED-JC (18.97)
layers similar to the XuNet net- SCA GFR=J-UNIWARD (35.54),
Y
work. UED-IC (22.54)
o The characteristic maps obtained .
at the exit of the second convolu- Using 0.3 bpnzAC QF 75
tional layer are divided into 64 di- BOSSBase(Train, Test)
.. . BOWS2(Test)
visions of 16 maps each one which
are analyzed by a set of CNN’s CNN-PNet=J-UNIWARD (12.28),
(layers 3 to 5) in an independent UED-JC (3.90)
way). CNN-VNet=J-UNIWARD (13.32),
o ABS absolute value layer (Only UED-IC (4.07)
after the first convolutional layer). SCA GFR=I-UNIWARD (13.44),
o Activation function TanH (layers | BOSSBase J-UNIWARD UED-IC (6.35)
8 1 to 2), ReLU (layers 3 to 5). BOWS2 JPEG UED-IC .
« Average Pooling only for layers 3 Using 0.4 bpnzAC QF 75
to 5. BOSSBase(Train, Test)
« 1 layer completely connected. BOWS2(Test)
o 1 Softmax CNN-PNet=J-UNIWARD (6.56),
UED-IC (2.34)
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TABLE 6. (Continued.) Characteristics of CNNs, databases, steganographic algorithms and results of the main DL articles applied to steganalysis.

E:t Network architecture Databases | Domain Stﬁ;‘;ﬁﬁ;ﬁ:lc Pe(t;g:ttz:)%i;)iizgor
Second Network (VNet), With Mixed CNN-VNet=J-UNIWARD (7.05),
Channels UED-IC (2.32)

» 2 pre-processing filters SCA GFR=J-UNIWARD (7.53),
« 5 convolutional layers UED-IC (3.46)
e« ABS absolute value layer (Only
after the first convolutional layer). Using 0.5 bpnzAC QF 75
« Activation function TanH (layers BOSSBase(Train, Test)
1 to 2), ReLU (layers 3 to 5). BOWS2(Test)
« Average Pooling only for layers 3 CNN-PNet=]-UNIWARD (3.36),
5. UED-JC (1.33)
« 1 layer completely connected. CNN-VNet=]-UNIWARD (3.74),
o 1 Softmax UED-IC (1.20)
SCA GFR=J-UNIWARD (4.15),
UED-JC (1.74)
Using 0.1 bpnzAC QF 75 on
BOSSBase
CNN=32.83
SCA GFR=35.98
« 16 fixed DCT filters. g(s)nslig.z bpnzAC QF7S on
ase
« ABS absolute value layer. CNN=19.47
o Activation function: TLU Trunca- SCA GFR=23.16
tion Linear Unit.
« 20 convolutional layers. .
g | < BNaftereach convolution. BOSSBase | ypp | LUNIWARD gf)nsligi: prAC QT on
e ReLU activation function after| ImageNet CNN=11.24
each convolution.
« Global Average Pooling after last SCA GFR=14.09
convolution. Using 0.4 bpnzAC QF 75 on
« 1 layer of fully connected neurons BOSSBase
o 1 Softmax CNN=6.41
SCA GFR=8.07
Using 0.4 bpnzAC QF 75 on
ImageNet
CNN=16.8
Structure of the steganalyzer or Dis-
criminator
o | pre-processing layer (1 high-
pass filter).
« 5 convolutional layers.
« ABS absolute value layer (Only
after the first convolutional layer). Using 0.1 bpp on BOSSBase
o Activation function TanH, ReL.U. CNN=ASDL-GAN (40.04),
« Batch Normalization BN. S-UNIWARD (42.53)
« Average Pooling. SRM=ASDL-GAN (33.02),
o : ? ;zrfrgﬁ:}t{ely connected layers. ossaace | Sonc S-UNIWARD S-UNIWARD (40.02)
patial | A SpL-GAN
Structure of the steganography or Gen- Using 0.4 bpp on BOSSBase
erator CNN=ASDL-GAN (16.20),
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TABLE 6. (Continued.) Characteristics of CNNs, databases, steganographic algorithms and results of the main DL articles applied to steganalysis.

E:t Network architecture Databases | Domain Stiﬁ;‘;‘;ﬁﬁ:ﬁ:lc Pe(rg::tt i%i;izgor
1 pre-processing layer (1 high- S-UNIWARD (20.01)
pass filter). SRM=ASDL-GAN (17.40),
25 convolutional layers. S-UNIWARD (20.22)
Batch Normalization BN.
Activation function ReLU, Sig-
moid.
No Pooling.
3 completely connected neuron
layers.
Using 0.1 bpp on
. BOSSBase+BOWS2(Train and Test)
In general it has 10 layers CNN=WOW (24.42),
The first layer of 30 filters whose S-UNIWARD (32.20), HILL (33.80)
weights are .not initialized ran- SRM=WOW (31.63).
domly, but with the values of the S-UNIWARD (38.06), HILL (38.94)
high-pass filters used in SRM. The
first la}.lgr can be merged. With.a Using 0.4 bpp on
probability map of all pixels in WOW BOSSBase+BOWS2(Train and Test)
. ;I;Tezrtrilgie to account for channel BOSSBase Spatial | S-UNIWARD CNN=WOW (9.59),
C BOWS2 S-UNIWARD (12.81), HILL (17.08)
8 convolutional layers. HILL SRM=WOW (15.36).
Activation function ReLU '(from S-UNIWARD (21.36), HILL (24.10)
layers 2 to 9), TLU (only in the
first layer). . Using 0.5 bpp on
Average Pooling from 4 to 7 lay- BOSSBase+BOWS2(Train and Test)
ors: CNN=WOW (9.06),
1 layer completely connected. S-UNIWARD (10.00), HILL (13.05)
I Softmax. SRM=WOW (13.31),
S-UNIWARD (17.32), HILL (21.15)
30 pre-processing filters based on Using 0.2 bpp on BOSSBase
SRM CNN=WOW (27.80),
5 convolutional layers S-UNIWARD (36,70)
1 absolute value layer (ABS) only SRM=WOW (36.50),
after first layer convolutional WOW S-UNIWARD (36.60)
12 BN after each layer convolutional | BOSSBase | Spatial S-UNIWARD
Activation function TLU (2 first Using 0.4 bpp on BOSSBase
layers), ReLU (3 last layers) CNN=WOW (14.10),
Average Pooling of layers 2 to 5 S-UNIWARD (22.80)
3 fully connected layers SRM=WOW (25.50),
1 Softmax S-UNIWARD (24.70)
1 layer of 30 filters whose weights E;gffjﬁg; 6 on BOSSBase
are not initialized randomly, but WOW=11.68
take into account the high-pass fil-
ters used in SRM. Using 512x512 on BOSSBase
13 8 convolutional layers. BOSSBase | Spatial LSBM 1y opM=10.68
Activation function ReLU (from WOwW WOW=13.03
layers 2 to 9), TLU (only in the
first layer) Using 1024x1024 on BOSSBase
1 layer fully connected LSBM=9 40
1 Softmax WOW=14.45
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TABLE 6. (Continued.) Characteristics of CNNs, databases, steganographic algorithms and results of the main DL articles applied to steganalysis.

E:t Network architecture Databases | Domain Stﬁ;‘;ﬁﬁ;ﬁ:lc Pe{éi:ttziizﬁizgor
« 1 layer of 30 filters whose weights
are not initialized randomly but Using 0.2 bpp on BOSSBase
takes into account the high-pass CNN=WOW (23.33),
filters used in SRM, these filters S-UNIWARD (28.50)
will be optimized during the train- SRM=WOW (36.50),
ing process and decrease the size S-UNIWARD (36.60)
of the kernels to train fewer pa-
rameters. Using 0.4 bpp on BOSSBase
e 2 separate convolution layers to CNN=WOW (11.80),
obtain channel correlation and S-UNIWARD (15.30)
spatial correlation residues, as SRM=WOW (25.50),
14 Ivlv(;eilsle ;i) V‘llgfrease steganographic BOSSBase Spatia WOW S-UNIWARD (24.70)
- BOWS2 S-UNIWARD .
« 4 convolutional layers. Using 0.2 bpp on
« Batch Normalization of layers 2 to BOSSBase+BOWS2(train)
7 BOSSBase(Test)
« ReLu activation function of layers CNN=WOW (13.1),
2t07. S-UNIWARD (17.1)
« Average pooling of layers 4 to 6
o 1 Spatial Pyramid Pooling (SPP) Using 0.4 bpp on
module that allows average pool- BOSSBase+BOWS2(train)
ing multi level and work with im- BOSSBase(Test)
ages of arbitrary size. CNN=WOW (6.5),
« 2 fully connected layers. S-UNIWARD (8.1)
o 1 Softmax

noise extraction instead of the traditional high-pass filter of
Equation 1. This CNN consists of 8 convolutional layers,
after the first convolutional layer a TLU activation function
is used, and for the others, TanH is employed, it has 1 fully
connected layer, and 1 Softmax. YedroudjNet uses an SRM-
inspired filter bank for steganographic noise extraction, 5
convolutional layers, an ABS layer only after the first con-
volutional layer, TLU activation function in the first 2 layers,
ReLU in the last 3 layers, Average Pooling of layers 2 to 5,
2 completely connected layers, and 1 Softmax. This CNN
takes the best features of the XuNet and YeNet and unifies
them under the same architecture. ZhuNet is characterized
by using an SRM-inspired filter bank to initialize the pre-
processing layer weights which will be optimized during the
training process in order to strengthen the noise introduced by
the steganography process and decrease the image content.
ZhuNet uses separate convolutions to improve the feature
extraction process and finally, Average Pooling multi-level
known as Spatial Pyramid Pooling (SPP) [52], to allow the
network to analyze arbitrary sized images, the results of
this CNN outperform the results obtained by XuNet, YeNet,
YedroudjNet and SRM+EC. Table 4 shows the error per-
centages of the CNNs mentioned and SRM+EC to detect two
algorithms in the spatial domain (S-UNIWARD and WOW)
with payloads of 0.4bpp and 0.2bpp. In [34], it is observed a
new network design known as SRNet which reduces the use
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of manual devices and heuristics employed by other networks
to capture steganographic noise; this network operates in the
spatial and frequency domain.

Figure 6 shows the architectures of the most important
networks so far. In purple it is specified the entry of pixels
to CNN. In most experiments the image size is 256 x 256,
this due to processing limitations and computational memory.
The pre-processing layer is shown in yellow, where the aim
is to increase the noise power introduced by the steganog-
raphy process and decrease the image content. In green,
the convolutional layers appear where the hierarchical feature
extraction is done. In blue, the functions of activation, scaling,
absolute value layers, and normalization are observed. White
shows the pooling operation that reduces the dimensionality
of the feature map and the computational complexity. All the
CNNss designed so far use Average Pooling operation due to
the low power of the steganographic noise, which makes it
necessary to take into account all the pixels of the region
where the pooling operation will take place in order not to
lose information. Red and aquamarine green show the clas-
sification module consisting of layers of neurons completely
connected and a Softmax which is responsible of delivering
a distribution of probabilities between 0 and 1 for each class
defining whether the image is cover or stego.

The following information must be taken into account to
read Figure 6 correctly. The structure inside the boxes means
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FIGURE 6. Most used CNNs architectures [25], [27], [38], [40], [51]. The data inside the boxes have the following structure: Number of kernels x (height x

width x number of feature maps as input). The data outside the box has the following structu
Stride or Padding is not specified, Stride =1 and Padding =0 are assumed.
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FIGURE 7. Average error percentage of different CNNs and SRMs using
different payload values for the S-UNIWARD steganographic
algorithm. [25], [27], [38], [40], [51].

number of kernels x (height x width of the kernel x number
of feature maps as an entry of the kernels ). The structure to
the outside of the boxes means number of feature maps x
(height x width of the feature map). If Stride or Padding are
not specified, Stride = 1 and Padding = O are assumed.

Figures 7 and 8 show the average error rate of stegano-
graphic images detection using the algorithms S-UNIWARD
(fig 7) and WOW (fig 8) depending on the payload, for arange
of Obpp to 0.4bpp. It is important to note that as the payload
increases the steganographic noise introduced in the image
also increases, allowing CNNs to have more information to
learn from this type of noise and consequently to improve
the detection percentages. For the S-UNIWARD algorithm
(fig 7) the lowest error percentage was obtained by ZhuNet
regardless of the payload value, and observing specifically
0.4bpp (Most used payload by researchers), ZhuNet man-
ages to decrease the error percentage by 7.5% compared to
YedroudjNet (predecessor network) and by 9.4% compared
to SRM-+EC (traditional method). YeNet obtained the high-
est error rate during all payloads. It is important to note that
SRM+EC, QianNet, XuNet, YeNet and YedroudjNet have
similar behavior, which leaves ZhuNet as the first CNN to
significantly exceed the detection percentages obtained by
SRM+EC for the S-UNIWARD algorithm. For the WOW
algorithm (fig 8) the lowest error percentage was obtained
by ZhuNet regardless of the payload value, and specifically
observing 0.4bpp, ZhuNet was able to decrease the error
percentage by 2.3% compared to YedroudjNet and by 13.7%
compared to SRM+EC. QianNet obtained the highest error
rate during all payloads. It is important to point out that
for the WOW algorithm the only CNN that did not exceed
the SRM+EC results was QianNet (First CNN proposed),
the other CNNs have exceeded the SRM+EC detection
percentages.

The most used stenographic algorithms in the studied arti-
cles are S-UNIWARD, HUGO, HILL, WOW in the spatial
domain and J-UNIWARD, UED, UERD in the frequency
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FIGURE 8. Average error percentage of different CNNs and SRMs using
different payload values for the WOW steganographic
algorithm. [25], [27], [38], [40], [51].

domain (JPEG), all with different payloads, usually the most
used payload for experiments are 0.4 bpp for the spatial
domain or 0.4 bpnzAC(bits per non-zero cover AC DCT
coefficient) for the JPEG domain.

The comparison of the results of detection of stegano-
graphic images obtained by the proposed CNNs are made
with respect to the traditional algorithms, which make a
manual extraction of complex features, the most impor-
tant algorithms are SRM [17], SPAM [24] and the vari-
ants for Selection-Channel-Aware [58], [59] for the spatial
domain. Selection-Channel-Aware Gabor Filter Residuals
(SCA-GFR) [47], [77], Discrete Cosine Transform Resid-
ual (DCTR) [78], JPEG Rich Models (JRM) [79], and
PHase Aware pRojection Model (PHARM) [80] for frequency
domain. The results obtained with the first CNNs were
lower than those obtained by traditional algorithms, but as
researchers advanced in the design of new networks or custom
computational elements, the results of these CNNs outper-
formed the results reported in the literature. Most experiments
use the Clairvoyant [26] scenario, which is characterized by
as follows:

o The steganalyst knows the algorithm that was used to

make the incrustation of the messages.

« The steganalyst has a good statistical knowledge distri-
bution of the image databases used by the steganogra-
pher.

o The payload of the messages for the incrustation process
is known.

« Itis always worked with the same image size.

« The steganalyst has access to a set of cover-stego images
with which the steganographer works.

o It works on the BOSSBase database of 10000 images
with dimensions of 512 x 512 or 256 x 256 depending
on the hardware available.

« From the BOSSBase initially of 10000 images (cover),
other 10000 images are constructed with the incrustation
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of messages by some of the existing steganographic
algorithms (stego), in such a way that the complete
set has 10000 pairs of images (cover-stego). From this
set, 5000 pairs of images (cover-stego) are randomly
selected, CNN is trained with 4000 pairs and validation
is done with 1000 pairs, the remaining 5000 pairs of
images are used for CNN evaluation.

o The initialization of the filter weights is done by the

Xavier method [81].

The experiments mostly use the database BOSSBase
V1.01 [12], [43] which consists of 10000 images in Portable
Gray Map format (PGM) of 8 bits and size 512x512. The sec-
ond database is the BOWS2 [82] which consists of 10000
images in PGM format of 8 bits and size 512 x 512. Finally,
the third database is the extensive ImageNet [32], which
is composed of more than 14 million images of different
sizes. ImageNet database was normally employed for exper-
iments conducted in the frequency domain (JPEG). In some
experiments, the previous databases were resized or trimmed
to 256 x 256 due to the computational cost and memory
limitations of the researchers’ teams.

Most used Frameworks for CNNs implementation are
Cuda-convnet [83], Caffe [84] and TensorFlow [55], these
toolboxes allow to create CNNs in a flexible and fast way.
At Binghamton University (USA) [85] there is a large number
of tools, such as algorithms for steganography and steganal-
ysis (both in the spatial and frequency domain), traditional
steganalyzers and applying DL techniques, digital image
databases for experiments and some publications. Likewise,
in the Laboratory of Informatics, Robotics and Microelec-
tronics of the city of Montpellier-France (LIRMM) [86] there
are several projects of DL applied to steganalysis, from
which the algorithms can be downloaded, as well as the
parameters of the CNNs trained by them and some important
publications.

IV. CONCLUSIONS AND FUTURE WORK
A systematic review of DL applied to steganalysis, done in
this paper, shows the evolution of the subject in a chronolog-
ical way. Since 2014 the first CNN has been proposed with a
stack of Auto-Encoders for unsupervised learning performed
by Tan and Li, their results do not exceed those obtained
by SRM, but they do surpass those obtained by SPAM,
becoming a reasonable basis for other researchers. Since then,
a great variety of research has been proposed, such as training
sets of CNNs, transferring parameters from one network to
another, quantitative steganalysis, steganalysis for arbitrary
sized images, enrichment of image databases, taking into
account the Cover-Source Mismatch effect in experiments,
among others, which can be observed in detail in Section ITI.
Different architectures of CNNs are proposed to do
steganalysis like the mentioned QianNet, YuNet, YeNet,
YedroudjNet, ZhuNet all in the spatial domain, besides an
adaptation of the CNN YuNet applying ResNet to do ste-
ganalysis in the frequency domain (JPEG). It is observed that
the best detection results in the spatial domain are offered
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by CNN ZhuNet also improve the results offered by SRM.
SRNet is a network proposal that avoids as much as possible
the use of tricks or heuristics for the extraction process of
the steganographic noise and works in the spatial domain
and JPEG.

It is interesting to observe the implementation of the GAN
methodology to make the automatic steganography process
by placing two CNNs to compete with each other, one for
steganography and the other for steganalysis.

Regarding the questions set forth in Section II-B we have
shown that (1) detection performance obtained by DL applied
to steganalysis has surpassed the results obtained by tradi-
tional methods (SRM+EC), as can be seen in Figures 7, 8
and Tables 4, 6; (2) a variety of architectures address the
specific challenge of steganalysis as shown in Figure 6 and
Table 6, furthermore, specific network components have
been developed to address this challenge (such as TLU and
Gaussian activation functions); (3) current detection levels
are those reported in Tables 4, 6, however they are yet far
from results targeted by the research community, as con-
veyed in most of the literature, and specially in [34], [40],
[42], [45], [56], [60], [87]; and (4) there is a limited but
active set of databases for benchmarking steganalysis meth-
ods (see Table 6), however in the new challenge of ste-
ganalysis ALASKA [87] new real world oriented databases
were released. These databases will serve as a basis for new
experiments in steganography and steganalysis.

According to the present bibliographic review, we envisage
possible future work as follows:

o Generate new CNNs unifying the advantages of exist-
ing networks or generate an entirely new architecture,
(dense, shallow and/or deeper architectures), in order to
improve the detection percentages, both in the spatial
and frequency domain.

o Use different digital image databases, taking into
account, for example, the use of different cameras, to test
more experiments and study more deeply the Cover-
Source Mismatch effect.

o Perform steganalysis by testing more steganographic
algorithms in the JPEG domain.

o Adapt the GAN methodology to do steganalysis in the
spatial domain and also use it to do automatic steganog-
raphy in the JPEG domain.

o Adjust the CNNs that do quantitative steganalysis to
improve your payload prediction results.

« Apply DL to quantitative steganalysis to predict the
image steganographic payload in frequency domain
(JPEG).

o Train existing CNNs with large scale databases and
larger image sizes. In order to do this, it is necessary
to do the training under a CPU and GPU cluster archi-
tecture in order to meet the demands of processing and
memory.

o Train CNNs with a given steganographic algorithm and
test on another algorithm to study how much transfer
there can be from one algorithm to another.
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o Apply the proposed ASDL-GAN framework to the

JPEG domain, where millions of images are available,
and incorporate more advanced deep learning architec-
tures to improve its security performance.

Generate new CNNs and design new computational
elements that allow to obtain in a more efficient way
the noise generated by the steganography process,
to improve the representation of characteristics, to clas-
sify images in the spatial or frequency domain and to
process arbitrary images, all of the above avoiding the
use of tricks and in the most automatic way possible.
Make a study of computational efficiency of the existing
CNNSs compared to traditional methods.

Measure filters performance used in the pre-processing
stage (HPF) in comparison with the activation functions
used in DL applied to steganalysis.

As can be seen above, there is a great variety of
possibilities for future work that motivates researchers
to continue contributing to this topic and invites
new researchers to be interested in DL applied to
steganalysis.
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