
Received February 8, 2019, accepted March 21, 2019, date of publication April 4, 2019, date of current version April 18, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2909356

Traffic Load Balancing Using Software
Defined Networking (SDN) Controller
as Virtualized Network Function
SIKANDAR EJAZ 1, ZESHAN IQBAL1, PEER AZMAT SHAH2, BILAL HAIDER BUKHARI3,
ARMUGHAN ALI3, AND FARHAN AADIL 3
1Department of Computer Science, University of Engineering and Technology at Taxila, Taxila 42050, Pakistan
2Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX 75275, USA
3Department of Computer Science, COMSATS University Islamabad, Attock Campus, Attock 43600, Pakistan

Corresponding author: Farhan Aadil (farhan.aadil@cuiatk.edu.pk)

ABSTRACT SDN and NFV are collaboratively recognized as the most promising bearing for flexible
programmability of network control functions and protocols with dynamic usage of network resources.
SDN provides the abstraction of network resources over well-defined APIs to achieve underlying topology-
independent multiple tenant networks with required QoS and SLAs. NFV paradigm deploys network
functions as software instances, namely, VNFs on commodity hardware using virtualization techniques.
In this way, virtual IP functions, such as load balancing, routing, and forwarding or firewall, can operate as
VNF in a cloud with a positive outcome in network performance. In this paper, we aimed to achieve traffic
load balancing by using a virtual SDN (vSDN) controller as a VNF. With vSDN, when there is uneven and
increased load, secondary vSDN controllers can be added to share this load. The need of secondary vSDN
is determined and a copy vSDN with exactly the same configurations as original vSDN is created, which
operates accurately and shares traffic load balancing tasks with an original vSDN controller. Both vSDN
controllers are independently placed in the cloudwith transparency assuring that every client in the network is
familiar with the existence of the newly created secondary vSDN controller. We experimentally validated the
load balancing in Fat-Tree topology using two vSDN controllers in a Mininet emulator. The results showed
50% improvement in average load, 41% improvement in average delay, and considerable improvements in
terms of ping response, bandwidth utilization, and throughput of the system.

INDEX TERMS Load balancing, network function virtualization (NFV), software defined networking
(SDN), virtual SDN controller (vSDN).

I. INTRODUCTION
Software Defined Networking is a constantly progressive
technology that offers more flexible programmability support
for network control functions and protocols. SDN provides
logical central control model for implementation and main-
tenance of programmable networks by utilizing the concept
of decoupling of data plane and control plane [1] over a
well-marked and comprehensible controlling protocol like
OpenFlow Figure 1. OpenFlow is one of the control plane
protocols standardized as per Open Networking Foundation’s
(ONF) [2] recommendation for interfacing of components
with their lower-level components in the network. It allows

The associate editor coordinating the review of this manuscript and
approving it for publication was Tariq Ahamed Ahanger.

the policies, logical switch abstraction, configuration, outlin-
ing of high-level instructions and network resource admin-
istration to initiate functionalities in small timelines to hide
the vendor-specific component details, enhancing the abil-
ity of hardware to use and exchange information in multi-
vendor distributions and environments [3]. Controller in the
SDN paradigm uses this solitary control protocol to provide
abstraction of a wide variety of network functions includ-
ing routing and forwarding technologies, traffic engineering,
management and access control through an Application
Programming Interface (API). A network hypervisor can
be deployed from this abstraction to virtualize the net-
work to achieve network protocol and underlying topology-
independent multiple Virtual Tenant Networks (VTNs) [4]
functioning at the same time with physical infrastructure.

46646
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0001-7347-0765
https://orcid.org/0000-0001-8737-2154

S. Ejaz et al.: Traffic Load Balancing Using SDN Controller as Virtualized Network Function

FIGURE 1. SDN three-layer reference model [5].

Separate controller instances independently handle network
functions and ensure Service Level Agreement (SLA) and
Quality of Service (QoS) in VTNs.

Proprietary characteristics of hardware components, cost
and insufficiently skilled professionals make it difficult
to bring and integrate new services to meet the user
requirements. Combination of Network Function Virtual-
ization (NFV) and associated technologies such as SDN
and cloud computing are now capable of reducing these
issues [6], [7]. NFV supports the separation of software con-
trol instances from hardware infrastructure for faster pro-
visioning of network functions and services by means of
software virtualization [8]. It employs the network functions
on demand (no need of installation of new equipment for
instantiation of virtual appliances), decouples them from
location and virtualizes them on standardized commodity
servers, switches and storage. This way, capital expendi-
tures and energy consumption are decreased, and a lower-
cost smart network infrastructure is achieved [9], [10] along
with the benefits of changing innovation cycle for network
operators such as rapid and efficient introduction of targeted
and custom services according to user’s needs. However, once
network functions get virtualized and turned into Virtualized
Network Functions (VNFs), NFV leads to raise some network
performance related issues [8], [9] like throughput instability
and unusual latency variations in just fewer network utiliza-
tion. Therefore, smooth migration of tightly coupled large
scale existing networks to NFV-based solutions with efficient
deployment and accurate functioning of VNFs becomes a
challenge. Similarly, the decoupling of control operations
from location also generates the problem of effectual place-
ment and dynamic on-demand instantiation of the virtual
appliances.

A. BACKGROUND
Usually, SDN controller distributions for tenant networks are
open-source implementations, such as Floodlight, OpenDay-
light, Ryu, POX, ONOS and Trema etc. Each VTN contains
independent SDN controller running on a dedicated host.
So, SDN controller is essential to be physically deployed
and configured at dedicated host at time of each dynamic
VTN employment. This implementation of SDN controller
adds delays of several days in required service provisioning.
Virtualization of the SDN controller functions by means of
NFV paradigm is supposed as a more sophisticated approach
for utilization of network functions including load balanc-
ing, routing and forwarding, firewall and traffic engineer-
ing. NFV gives the idea of virtualizing the SDN controller
and moving it into the cloud for dynamic deployment and
required connectivity of autonomous SDN controller proto-
types within minutes. Consequently, whenever a new VTN is
deployed dynamically, the functionality of the whole network
can be accomplished in a couple of minutes [11]. More-
over, this technique also offers supplementary advantages
like reduction in hardware retainment pause and improve-
ment in recovery time in catastrophe or failure conditions.
A virtualized SDN controller [12] can be immediately and
effortlessly moved among physical servers within a cloud
of data centers when a hardware retainment is needed (less
hardware retainment pause), snapshots and backups of the
states of virtualized SDN controllers can be shared from one
data center to another in a cloud for quick reconfiguration
after a failure (faster recovery).

NFV related network functions (VNFs) includes IP
network functions (load balancing, routing and forward-
ing, security, firewall or Authentication, Authorization and
Accounting (AAA), EPC/LTE network control functions,

VOLUME 7, 2019 46647

S. Ejaz et al.: Traffic Load Balancing Using SDN Controller as Virtualized Network Function

Serving Gateway (SGW), Mobility Management Entity
(MME) and PDN Gateway (PGW) and virtualization of Path
Computation Element (PCE) [13], [14]. In general, VNFs
are deployed as software instances in dedicated specialized
hardware in data centers or distributed computing platforms.
NFV is appropriate virtualization technology for any control
plane function or data plane packet processing in static and
dynamic network infrastructures. Despite of all, this work
focuses on virtualization of IP functions particularly traffic
load management through which load balancing would be
achieved to distribute the workload on several resources to
avoid overload on any resource. Some load balancing goals
include taking full advantage of throughput and bandwidth,
minimizing the transmission delay and response time with
optimized traffic flows [15], [16]. When it comes to saving
of resources, load balancing can be the centralized decision
based or the distributed decision based [17]. Centralized deci-
sion and distributed decision are not so efficient methods
because of their processing delays and extended completion
times. Centralized decision collects all load information of
local controllers and sends load balancing requests to the
local overloaded controller. Distributed decision [18] allows
every controller to do load balancing locally without sending
commands. The processing delays of centralized decision and
extended completion time of load balancing in distributed
decision reduces the availability and scalability of both the
strategies.

However, due to today’s industry concerns [15], [19],
the existing methods need to be revised and load balanc-
ing functionality would be virtualized to make it dynamic,
resource saving and independent of vendor-specific. In this
paper, we utilize the abilities of NFV paradigm and propose
traffic load balancing using SDN controller as virtualized
network function (creation of vSDN). When using vSDN
we have this opportunity that by the increase of load we
can further add secondary vSDNs to share this load. Since
all the resources (switches, routers and connections etc.) get
virtualized, so we can assign/add hardware resources as per
requirement. So, firstly it should be determined that when
there is a need to create a copy of vSDN controller and then
secondly, all nodes should learn about the existence of sec-
ondary controllers. A copy of vSDN with exactly same con-
figurations as original vSDN operates correctly and shares
traffic load balancing tasks with original vSDN controller.
Both vSDN controllers independently placed in cloud with
transparency assuring that there is no master controller and
every host in network is familiar with the existence of the
newly created secondary vSDN controller.

The remaining sections of paper are planned in a way
that section II gives the literature review of formerly pro-
posed related work and describes the intention for this
research. NFV architecture and scope is discussed in section
III to understand the operations and importance of NFV.
Section IV is the main part of this paper, constitute the
proposed system design for load balancing using vSDN
controller as VNF. This section step by step describes the

followed strategy. Section V and VI shows the experimental
setup and obtained results respectively. Finally, section VII
concludes the complete work.

II. RELATED WORK
There are some related works on load balancing of SDN
controller, some of these are mentioned here. In OpenFlow
descriptions, the switch configuration including flow table
entries can be altered only via master c-node proposed
in [20]. This master c-node is responsible for equalize the
flow of incoming and outgoing messages at varying number
of switches to increase the scalability. For load balancing
in SDN-enabled networks, a technique called BalanceFlow
was proposed in [21], in which a super controller is deployed
among distributed controllers to handle uneven traffic load
problem. A decision-maker controller node gathers the infor-
mation about all other controller nodes and then resolves a
load balancing issue by considering the load variations of
all controllers. Limitations of this approach includes (i) per-
formance compromises due to exchange of frequent control
messages and limited resources like memory, bandwidth and
CPU power (ii) load information is obtained with delays
which do not portray the real load conditions, due to two
network transmissions (sending commands and collecting
loads) and (iii) Entire load balancing operation can be down
if central controller collapses.

Dynamic and adaptive algorithm (DALB) proposed
in [22], enabled all slave SDN controllers for local decisions
just like master controller. This algorithm allows scalabil-
ity and availability of distributed SDN controllers and need
one network transmission for gathering load. Consequently,
decision delay reduced because all controllers do not col-
lect the load information too frequently. While considering
the network resources, integration of SDN and NFV intro-
duced in [11] to enhance the network protocol and func-
tions programmability. NFV paradigm supports the dynamic
adjustment of network resources and gives the concept of
virtualized network control functions for tenant networks.
This way, control function software instances can be dynam-
ically deployed and migrated if need for efficient utilization
of available resources.

Previous work on load balancing rely on physical SDN
resources whether consider SDN controller in central or
distributed mode. Through NFV, all the resources can be
virtualized and further vSDN controllers can be added for
load balancing in case of increased uneven traffic load in
vSDN-enabled networks. A copy vSDN can be configured
dynamically to share the load and to perform same tasks as
of original vSDN. So, first issue here exist is when we need
to create a copy of vSDN controller and the other issue is how
nodes will know about the existence of secondary controller?
Our work novels in a sense that we enhance the functionality
of SDN/NFV integration and introduce IP load balancing
functionality in virtual SDN controller-enabled networks by
utilizing NFV paradigm so that network resources would be
save with improved performance.

46648 VOLUME 7, 2019

S. Ejaz et al.: Traffic Load Balancing Using SDN Controller as Virtualized Network Function

FIGURE 2. NFV architectural framework [26].

III. NFV FRAMEWORK AND SCOPE
European Telecommunications Standards Institute (ETSI)
defines a three-layer NFV framework consisting of Network
Function Virtualization Infrastructure (NFVI), NFV Man-
agement and Orchestration (NFV-MANO) [23] and Virtual
Network Functions (VNFs). These high-level architectural
functional blocks are illustrated in Figure 2. This section
describes these three elements [23], [24].

A. NFV INFRASTRUCTURE
The NFVI make the environment where VNFs are employed,
responsible for holding both software and hardware
resources. These physical resources comprise of commercial-
off-the-shelf (COTS) computation components, network and
storage resources which offers processing, storing and con-
necting links to the VNFs. Here abstraction of physical
computing, network and storage resources is known as vir-
tual pool of resources. A hypervisor-based virtualization
layer decouples the underlying hardware resources from
virtual resources to achieve abstraction. Virtual networks are
deployed from virtual links and nodes like VTNs while com-
pute and storage can most likely be categorized as multiple
Virtual Machines (VMs) in cloud environment. Virtual node
is created by employing either hosting or routing as software
component enclosed in a VM [10] while virtual link provides
a logical connectivity between two or more virtual nodes
but gives the impression of a direct physical interconnection
having dynamically varying properties [25]. NFVI includes
diverse amount of physical resources which can be virtualized
along with the support for execution of VNFs.

B. VIRTUAL NETWORK FUNCTIONS (VNFS)
NFs are functional wedges in a network framework consisting
of definite interfaces and functionalities [23]. They can be IP
network based, EPC/LTE network control or Path Computa-
tion Element (PCE). Consequently, a VNF is implementation
of NFs as software instances which is obtained by deploying
a NF on virtual resources namely a VM and capable of
operating over a NFVI. A single VNF may be implemented
over several VMs because it can contain multiple components
inside and hence each VM would host a solitary component
of that VNF [26]. One or more VNFs make up services that

TSP offers [10], virtualized and placed on multiple VMs but
act like one service. NFV gives opportunity of same service
provisioning regardless the functions running on dedicated
hosts or on VM resources.

C. NFV MANAGEMENT AND ORCHESTRATION
(NFV-MANO)
MANO framework proposed by ETSI enables NFV-
MANO [27] to provide the required serviceability of VNFs
and associated operations including deployment and con-
figuration of the VNFs. NFV-MANO looks for life cycle
management and orchestration of hardware and/or software
resources with support of infrastructure virtualization. More-
over, it deals with the databases that stores the deployment
and life cycle data models and information about functions,
their services, and available resources. All necessary virtu-
alization and management related tasks in NFV framework
are the concerns of NFV-MANO. Interfaces for communica-
tion between different NFV-MANOs and coordination with
legacy network management systems such as Business Sup-
port Systems (BSS) or Operations Support Systems (OSS)
allow the management of VNFs together with the functions
running on traditional equipment [10].

D. SCOPE
NFV offers realization of service provisioning to the
stakeholders independent of vendor-specific hardware and
software and so familiarizes in several differences with
non-virtualized networks [9], [10], [26]. Major differences
include:

1) DECOUPLING OF RESOURCES
As evolution of hardware and software resources is self-
determining from each other. NFV enables both hardware
and software to work autonomously and restrain the need of
integration of hardware and software entities.

2) DYNAMIC FUNCTIONALITY OF VNFS
Performance of VNFs can be scaled in more flexible and
diverse way with finer granularity due to presence of instan-
tiable software components when functionality of network
functions is decoupled. Based on current network settings,
network operators can scale NFV efficiency on grow-as-you-
need basis.

3) FLEXIBLE EMPLACEMENT OF NETWORK FUNCTIONS
Presence of pool of infrastructure resources makes network
function instantiation automated. These instancesmay deliver
dissimilar functions and services at different time in dis-
tinct data centers. This encourages the quick and intelligent
deployment of new services over the corresponding physical
framework.

IV. SYSTEM DESIGN AND IMPLEMENTATION
NFV offers effective dealing of VNFs and associated services
in dynamic network infrastructures. When using vSDN as

VOLUME 7, 2019 46649

S. Ejaz et al.: Traffic Load Balancing Using SDN Controller as Virtualized Network Function

FIGURE 3. Flowchart for the proposed system.

a VNF, we have this opening that we can further add more
identical VNFs for the same task to share the traffic passing
through underlying network. In case of increased uneven
traffic load, a secondary vSDN can be created for load bal-
ancing in vSDN-enabled networks. Since all the resources
(switches, routers and connection etc.) are utilized virtually
under NFV, so we need to assign/add hardware resources
as per requirement. Need for a secondary vSDN controller
is determined and a copy of vSDN controller created with
exactly same configurations as original vSDN which work
accurately and shares traffic load. Both vSDN controllers
independently placed in cloudwith transparency assuring that
every client in network is familiar with the existence of the
newly created secondary vSDN controller. In this section we
present the proposedmodel for traffic load balancing in tenant
networks using SDN controller as VNF. The strategy we
follow is represented in Figure 3 in the form of flow diagram.

A. PROVISIONING OF VSDN CONTROLLER
A network hypervisor aggregates or/and partitions the physi-
cal transport network resources in virtual resources and then
provide connectivity to formmultiple end-to-endVTNs. Each
VTNmay possess a different VNT topology andmay co-exist
with the same physical infrastructure [11]. This hypervisor
discovers the network by representing the abstracted topology
of each VTN and provisions an independent tenant SDN
controller for remote control of that VTN. It creates, modifies
and deletes connections for VTNs and allocated resources
dynamically. On application demands, a network hypervisor
can create, modify and delete VTNs dynamically in response
concluded from a matrix relating resource requirement and
connections [28]. Usually, the SDN controller of each tenant
network (physical or virtual) deployed at physical server, but
through SDN/NFV orchestration and management, network

FIGURE 4. vSDN manager architecture.

control functions namely SDN controller can also be vir-
tualized (create vSDN) and moved into the data centers of
cloud [29] to implement independent controller prototypes
dynamically within minutes. This way, vSDN controllers
operate as Virtual Network Functions (VNFs) in cloud.

NFV Infrastructure (NFVI) is comprise of transport net-
work hardware resources (compute, storage and network)
interconnecting distributed servers in data centers. A NFVI
virtualization layer is there on top of the physical resources
which is based upon a NFVI manager, namely, Virtualized
Infrastructure Manager (VIM), sometimes referred as cloud
controller in NFVI-MANO. VIM is in charge for managing
and provisioning of Virtual Machines (VMs). Next layer con-
sists of some VNF managers [30] that oversee the VNF’s life
cycle supervision (i.e., create, configure, and remove). When
using SDN controller as a VNF, particularly the virtualized
SDN controller managers - vSDN managers are deployed
which supervise the creation of SDN controller-enabled VMs
in cloud Figure 4.

Finally, the orchestrator for SDN-enabled tenant networks
provides a generic network abstraction mechanism and over-
see the entire process from creation of new vSDN controllers
(placed into the cloud), deployment of VTN, and connections
between that VTN and the vSDN controllers. SDN/NFV
orchestration architecture by deploying vSDN controller as
VNF is displayed in Figure 5.

For provisioning of the new vSDN controller, orchestrator
appeals to the vSDN manager and specify the required SDN
controller distribution (e.g., OpenDaylight, ONOS, POX or
Floodlight etc.). Then the vSDN manager forwards this
request towards the VIM which forms a new VM containing
pre-installed desired SDN controller. This vSDN contained
VM is deployed in a host server near to the corresponding
tenant network so that latency would be minimized. vSDN
manager informs orchestrator and replies with IP address of
up and running vSDN controller. Then, the second appeals
that an orchestrator makes is of connectivity. It calls for the
provisioning of flow between the vSDN controller and the
corresponding tenant network. After creation of connection,
orchestrator requests the network hypervisor to form VTN
with desired topology graph and given IP address of vSDN
controller. This topology graph is a combination of virtual
nodes and links which represents VNT as a single virtual node

46650 VOLUME 7, 2019

S. Ejaz et al.: Traffic Load Balancing Using SDN Controller as Virtualized Network Function

FIGURE 5. SDN/NFV orchestration using vSDN controller as VNF.

or VNT as a set of virtual links as a connection through the
physical nodes. At time when the entire process is success-
fully completed, vSDN starts its functionality and a tenant
network is controlled and managed SDN controller located in
the cloud [31]. The entire process is demonstrated in Figure 6.

B. CONGESTION DETECTION
A vSDN controller act as a strategic control point and man-
ages flow control of the switches and routers through south-
bound APIs in deployed transport networks. The forwarding
functionality of controller concerns with the decision mak-
ing for incoming flows i.e. what to do with each incoming
packet, where a flow defines a group of packets transmitted
from one network endpoint or multiple endpoints to other
endpoint or multiple endpoints. Whenever flow reaches to a
certain limit and controller utilization reaches to a threshold
limit, congestion detection component of controller notifies
about congestion. The threshold decision is determined by
using the parameters like CPU, RAM and network conges-
tion/throughput. Here three components, topology creation
component, host management component and congestion
detection component of the controller work together. Topol-
ogy creation component discovers and stores link status to
form current network topology. This component sends Link
Layer Discovery Protocol (LLDP) packet on all ports for
identification of links and then switches replies with required
information. The current network topology is stored, and this
information is accessible and helpful for further use of the
controller [32].

Host management component manages all discovered
hosts in network by storing the necessary information
together with MAC and IP addresses of source host and
destination host, OpenFlow switches IDs, connected nodes

and number of available ports of OpenFlow switches. This
information is reserved for next step so that the proper route
and shifting on secondary vSDN controller for large flow
would be done if congestion occurs in the network. The
main component in this entire method is congestion detection
component, which sets periodic queries and stores statistics
from all OpenFlow switches. Obtained statistics are utilized
to identify large flows and then compute load on various links
so that whenever a flow reaches the threshold limit, it would
be detected immediately. For congestion detection, vSDN
controller gathers statistics per table, per port and per flow
by polling request of STATS_REQUEST message given to
PORT, TABLE and FLOW in network after fixed intervals.
As a response, switches in topology replies the controller with
STATS_REPLY message [32].

LTrans =
Lc − Lthr
Lthr

(1)

The vSDN controller observes the transmitted data bytes
at the ports of every switch periodically. At time when the
transferred data bytes get 70% greater than that of the link
capacity, it is supposed to reach the threshold and conges-
tion conditions come to occur in the controller. From Equa-
tion 1, overload transferred bytes can be determined, where
Lc denotes the current load bytes, Lthr is the threshold load
value of controller and Ltrans is increased portion of trans-
ferred load. Upon identification, the large flowwhich induces
congestion are reserved and control of that flow is inferred to
shift on secondary vSDN controller for load balancing.

Equation 1 gives overloaded data bytes that pass over the
70% threshold of the link capacity. This identification is
supposed as the fulfillment of congestion conditions. Need
for creation of a secondary vSDN is verified here. As vSDN

VOLUME 7, 2019 46651

S. Ejaz et al.: Traffic Load Balancing Using SDN Controller as Virtualized Network Function

FIGURE 6. vSDN provisioning workflow.

controller is aware of the congestion and works as a VNF,
it notifies orchestrator about this congestion. At this time,
orchestrator and vSDNmanager come into play. Orchestrator
requests the vSDNmanager for creation of a new vSDNman-
ager. Primary vSDNdoesn’t select the subsequent controllers.
This selection is responsibility of vSDN manger that creates
another SDN controller-enabled VM from available network
resources with exactly same configurations as original one
and that involves the same operating system, configurations
and flow table entries.

While performing simulations 2 controllers are used, since
vSDN is taken as VNF and its creation and termination are
dynamic whichmakes our proposedmethod scalable, so there
may be third one or up to N if needed. Even so, we believe
that one vSDN controller and a supporting secondary vSDN
controllers are enough for handling of increasing load and
corresponding network functions until an unexpected load
is observed which may approach the threshold of both the
controllers. Load is distributed among all the other controllers
which is greater than the capacity of each previously created
controller. For instance, the load more than threshold of first
controller will be shifting to second controller, if there is
need of third one, then extra load of second controller will
be shifted to third and so on. On the other hand, decrease
in load will lead to the removal of each newly created next
in line controller, to prevent the underutilization of network
resources.

C. VSDN CONTROLLER DUPLICATION AND MIGRATION
vSDN controller duplication becomes unavoidable on valida-
tion of congestion detection. In this regard, vSDN controller

informs orchestrator about need of a secondary vSDN con-
troller so that congestion would be eliminated, and network
performance would not be compromised. As vSDN controller
works as a VNF, so on this notification, orchestrator requests
the vSDN manager for dynamic creation of another SDN
controller-enabled VM with exactly same configurations as
original one, namely secondary vSDN controller (duplicate or
create copy of primary vSDN controller with same operating
system, configurations and flow table entries). Consequently,
whole process of vSDN provisioning is repeated which is
described earlier, takes a short time duration for getting up
and running. This VNF instance is also moved into the cloud
to ensure transparency to the users. In view of this, two
identical virtual appliances control the same tenant network
without any break in ongoing services.

D. TRAFFIC LOAD BALANCING USING VSDN CONTROLLER
As newly created secondary vSDN controller gets the list of
all clients connected to primary controller and knows about
the topology and network connections, so it broadcasts its
existence by sending a FEATURE_REQUEST message to
all the hosts and wait for reply so that all hosts register
secondary vSDN as their controller. As a reply, hosts update
their flow tables and register with secondary vSDN controller
and provide feature information for instance, the data-path
ID (DPID) and list of ports etc. So previously unaware hosts
of vSDN controller simultaneously connect to multiple con-
trollers in network.

wk = 6n
i=1

Lo
co
+6n

i=1
Li
ci

(2)

46652 VOLUME 7, 2019

S. Ejaz et al.: Traffic Load Balancing Using SDN Controller as Virtualized Network Function

FIGURE 7. Proposed system design for traffic load balancing by utilizing vSDN controller.

For load balancing, excessive load is shifted to the sec-
ondary vSDN controller and then on the bases of gathered
statistics by congestion detection component, it determines
the minimum burdened shortest paths among available set of
shortest paths. Equation 2 gives the total cost of each path,
here one path is defined as wkεS,wk represents path and S
represents the set of available paths. Li and ci denotes the
link load and link capacity respectively. Initially, all the paths
have predefined fixed load L0 and capacity c0. The Li and
ci are estimated from statistics after threshold reaches and
a gradual change occurs in both the parameters. The path
with minimum wk is selected from S and current flow table
is updated by a OFP_FLOW_MOD message. Finally, the re-
routing process re-routes the traffic on alternative paths.

β =

1
k6

k
i=1Li, . . . ,Lk
Lmax

(3)

The load balancing rate is defined in Equation 3, where
Li, ..,Lk represents the load of entire system including con-
troller. The value of β varies between 0 and 1.When β is close
to 0, it means that there is no need of load balancing operation.
While when β crosses the 0.7, load balancing works and
load is distributed based on (2). One more important thing
is realized here, that is, whenever traffic load decreases from
the specified value (value of β goes less than 0.7, β <

0.7) and it seems like there is no need for the secondary
vSDN controller, vSDN manger can request VIM for the
deletion of secondary vSDN-enabled VM and restoration of

Algorithm 1 SDN Controller Creation
1: CreateSDN()
2: {
3: i=1
4: ZQ:
5: GetNewMessage Message

(i)=SDNManager(OD,ONOS,POX);
6: CloudCtrl ctrlMsg =message(i);
7: Create VM(i);
8: VM(i)=New SDNCtrl(PredefinedParameters);
9: vSDN= VM(i);
10: if β < ω then
11: hostServerS == vSDN (i)
12: else
13: GOTO ZQ;
14: end if}

resources accordingly. Figure 7 shows the functional blocks
for proposed system including secondary vSDN controller for
load balancing. The algorithms used during research work are
provided below. Algorithm 1 is used for Creation of SDN
Controller. Algorithm 2 is used for establishing Connection
between the newly created SDN Controller and the hosts. For
detecting and minimizing Congestion Algorithm 3 is used.

Algorithm 1 is used for creation of secondary SDN con-
troller. The process is initiated by the existing SDN Con-
troller, when it detects that the traffic load exceeds threshold

VOLUME 7, 2019 46653

S. Ejaz et al.: Traffic Load Balancing Using SDN Controller as Virtualized Network Function

Algorithm 2 Connection Creation
1: CreateConnection() {
2: newConnection = vSDN(i);
3: getIP IP = vSDN(i);
4: getTGraph GP = vSDN(i)
5: new VTN = VTN (IP,GP);
6: startFlow newFlow(VTN) }

Algorithm 3 Congestion Control
1: CongestionControl() {
2: SDN newMsg;
3: newMsg=STATS_REQUEST(PORT,TABLE,FLOW);
4: Y=newMsg;
5: if Y >= 70% then
6: SecvSDN = newvSDN (i+ 1);
7: vSDN (i+ 1) = vSDN (i);
8: vSDN (i+ 1) = messagemsg(FEATUREREQUEST);
9: HostList = vSDN (i+ 1);
10: i= i+ 1;
11: end if}

it notifies the SDN Manager. SDN Manager then sends a
ctrlMsg to the Cloud Controller for the creation of another
SDN Controller. The Cloud Controller creates a VM and
assigns a copy of existing SDN Controller with exact same
parameters to the newly created VM. This creates a Virtual
SDN Controller (vSDN) identical to the existing Controller
as a Secondary SDN Controller.

After creation of Secondary SDNController the next step is
to establish connection between the newly created controller
and the hosts in the network. Algorithm 2 starts its work-
ing and introduces the controller to the hosts. This is done
by creating a new connection for the newly created vSDN
Controller. The vSDN Controller then gets IP address and
Graph of the network while combining these two to create
its own Virtual Tenant Network (VTN). Finally, the vSDN
Controller disseminates its newly established Flows to the
network hence making introducing itself to the hosts.

Algorithm 3 lets the SDN Controller work as a congestion
detector in the system. This is done by creating a newMsg by
SDN Controller. This specific message is used to read statis-
tics of the data being transmitted between the hosts. When
this message starts consuming more the 70% resources of
the network, as discussed in this section previously, the SDN
Controller sends request for creation of another SDN Con-
troller to the SDN Manager. The SDN Manager then creates
secondary vSDN Controller and divides the traffic load on
both the controllers for the sake of load balancing. This whole
process allows the SDN Manager to manage traffic load
throughout the network efficiently.

V. EXPERIMENTAL VALIDATION
Mininet has been used to perform experimental validation
of the proposed methodology, as Mininet can create realistic

virtual network topology with application code with SDN
support on a single machine in seconds. We used Fat-Tree
topology as representative data center network infrastructure
because Fat-Tree has identical bandwidth at any bisections,
depicted in Figure 8. In our topology, switch IDs are in deci-
mal and hexadecimal to avoid conversion complications. For
traffic generation, we have considered iPerf since it provides
active measurement of link utilization. iPerf is open source
and useful for the assessment of the traffics which is gen-
erated over TCP and UDP with the support of several types
of measurement scales including throughput, link utilization
and data rate.When using iPerf, the data packets with definite
size and rate are conveyed in a specific number of hosts.
This method generates 56-byte TCP data packets at a rate
of 120Kbps at 8-pairs of VMs with a straightforward Python
script and executing in the proper network namespace created
in Mininet.

This emulated setting works on a solitary Intel i7 2.4GHz
CPU, 16GB RAM, running Ubuntu 16.04. The generated
traffic rate has kept relatively tolerant, but it doesn’t affect
the validity of our experiments. VMs are created in Vir-
tualBox hypervisor containing Ubuntu 16.04 installed with
allocation of 8GB memory to the virtual system and left
the CPU allocation default. In large infrastructures, like in
real data center environments, the communication between
hypervisors and one SDN controller can slow down the per-
formance of the controller and the network, so to avoid these
kind of scenarios, we prefer the use the remote-control plane.
Alongwith this setup,Wireshark is used for capturing packets
& graphs related to packets size, bandwidth utilization and
load-balancing. We used OpenDaylight controller as SDN
controller [33] which acted as the main controller throughout
the experiments. OpenDaylight is java based open source
SDN controller. The aim of OpenDaylight controller is to pro-
vide a functional SDN platformwhich allows users to directly
deploy SDN controller virtually. Figure 8 shows the topology
used during experiments, consist of eight terminal hosts and
ten switched. Switch IDs are shown here in figure next to each
switch while port numbers are shown near the links. The port
numbers may vary when code is executed in mininet.

VI. RESULTS AND DISCUSSIONS
In our experiment we first deployed a single remote vSDN
controller namely OpenDaylight controller Beryllium dis-
tribution and connected it with an abstract Fat-Tree topol-
ogy in Mininet emulator. Initially, connectivity information
is achieved, such as information about all connected hosts,
their connected switches, their IP addresses, MAC addresses
and port mapping etc. Then statics about links are gathered
periodically so that it would be notified whenever traffic
load reaches to threshold limit. At time when the trans-
mitted traffic is 70% higher than that of the link capac-
ity, secondary vSDN is deployed for the same topology.
At this stage network topology is controlled by two identical
controllers. Route/path availability information between two
hosts is obtained using Dijkstra in a way limiting the search of

46654 VOLUME 7, 2019

S. Ejaz et al.: Traffic Load Balancing Using SDN Controller as Virtualized Network Function

FIGURE 8. Network topology used during experiments.

shortest paths to the only one section of Fat-Tree topology
where load balancing has to be performed. Requests are
made to calculate total cost of links for all the paths between
two hosts in terms of transmitted data. The packet flows
are shaped by considering the minimum transmission cost
of links at the current time and the best path is determined,
and static flows are moved to the other controller and to
every switch which lies in the given best path. Substantial
information such as source IP, source MAC, destination IP,
destination MAC, in-port, and out-port is provided to all
flows. The program periodically updates this information
after minute in so doingmake it dynamic.Wiresharkwas used
to capture and analyze the connectivity between hosts when
controller is running and connected to the topology created in
Mininet.

Figure 9 to Figure 13 present the results achieved prior to
and after load balancing. We present the results in Figure 9
to Figure 11 including load rate, pinging and link capacity in
Gbps for Host1 to Host4 & Host2 to Host6 as a sample in our
topology, but these results can be acquired for any host in the
network.
Figure 9 illustrates Load Variation on a Link from Host 1 to
Switch S1 between Host1 to Host4 & Host2 with Switch
S1 between Host2 to Host6 with variation in time on x-axis.
Without load balancing, the load increases with the passage
of time. However, in case of proposed method that load on
a single link decreases after load balancing because load
get distributed on alternative paths. At start the load of the
proposed system is high, it is because of the number of hosts
and the amount of data they are communicating with each
other. However, this high load at start does not affect the per-
formance badly, because enough resources are available at the
start of simulation for each VM. In case of no load balancing,
the load increases with time and the scarce resources also start

FIGURE 9. Load variation on a link between Host1 to Host4.

to decrease which may result in availability or decrease in
performance of VM.

Figure 10 shows improvement in iPerf pinging prior to and
after the load balancing for Host1 to Host4 & Host2 to Host6.
This figure clearly depicts that the Round Trip Time (RTT)
has decreased significantly due to the proposed load balanc-
ing scheme. When there were 40 packets, the average ping
time for scheme which does not uses any load balancing
system i.e. existing SDN was 0.35 seconds. However, for the
same number of packets (load), the proposed scheme reduced
the average ping time to 0.15 seconds which is more than 50%
improvement. This decreased ping time is due to the fact that
the proposed load balancing distributed the load.

Figure 11 gives the idea of bandwidth enhancement after
load balancing for the same hosts. It can be seen from fig-
ure that average link capacity of the links has improved

VOLUME 7, 2019 46655

S. Ejaz et al.: Traffic Load Balancing Using SDN Controller as Virtualized Network Function

FIGURE 10. Pinging between Host1 to Host4.

FIGURE 11. Average available link capacity between Host1 to Host4.

as compared to the existing system. Also, the average link
capacity is not decreasing at the same rate with the passage
of time as it is decreasing for the existing solution. This
decrease rate is very slow, which tells that the proposed load
balancing is a solution that will stabilize the network and will
not decrease its performance over the passage of time.

Figure 12 indicates the throughput at different time inter-
vals while keeping the load percentages stable. Again,
the throughput is improved with the proposed load balancing
scheme.

Considering the Figure 13, average delay can be seen if
packet size varies in the range of 8 to 56 bytes. At start,
when the load was 8 the delay for both schemes is same.
However, as the load (packet size) increases the average delay
in micro seconds increases with a high pace for existing
scheme as compared to the proposed load balancing scheme.
At load of 56, the average delay of existing scheme was
1400 micro seconds. When the proposed load balancing was
applied, the average delay is reduced to 825 micro seconds
for the same load. This shows 41% improvement in average
delay.

FIGURE 12. Throughput considering different time intervals.

FIGURE 13. Average delay with increase in load.

Statistical and graphical comparison shows a signifi-
cant improvement in average load rate, pinging, bandwidth,
throughput and delay. So, it is realized that proposed approach
enhances the network performance in terms of above men-
tioned parameters. Virtualization of control functions and use
them as an VNF comes with saving of resources and better
performance of network to the user satisfaction.

Most of the time, the proposed methodology in any
research work turns out to be as much relatable to the prob-
lem statement as the researchers wanted. But, there are also
some limitations in every research work. Our proposed work
may also have some limitations, which may provide future
research direction to the researchers. Following are the few
limitations of the proposed methodology, discussed below:
The complexity of proposed technique is somehow high due
to the consuming of multiple controllers. It may increase with
the number of controllers. Another limitation of our work is,
it does not mention the challenges of energy consumption
and carbon emission. These issues can be independently ana-
lyzed and discussed. So, when it comes to determining the
effectiveness of load balancing mechanism in terms of energy
consumption and carbon emission.

46656 VOLUME 7, 2019

S. Ejaz et al.: Traffic Load Balancing Using SDN Controller as Virtualized Network Function

VII. CONCLUSION
In this paper we presented the traffic load balancing mech-
anism using SDN controller as VNF in SDN-enabled net-
works. The proposed system allows the provisioning of a
vSDN controller which is acting as a VNF service. When-
ever traffic load reaches to a certain threshold, a secondary
vSDN controller with exact same configuration as original
can be added in the same network to share the load and
tasks of original vSDN controller ultimately balancing load
on both controllers. Since, all the hosts know the existence
of both the controllers so exceeded load would be shifted to
the secondary vSDN controller which switches the load and
balances the flows among connected hosts. We performed
the experiment using Fat-Tree topology as representative data
center network infrastructure with OpenDaylight as SDN
controller on Mininet emulator for load balancing. We found
accurate working of two controllers and a rise in average
pinging of hosts, transfer rate and link capacity after load
balancing was witnessed. This refers to the improvement in
network performance. In future, we aimed to deploy more
IP network functionalities as VNF services and direct our
research towards virtualization of EPC/LTE network control
functions.

REFERENCES
[1] E. Haleplidis, K. Pentikousis, S. Denazis, J. H. Salim, D. Meyer, and

O. Koufopavlou, Software-Defined Networking (SDN): Layers and Archi-
tecture Terminology, E. Haleplidis and K. Pentikousis, Eds. Internet
Research Task Force, 2015.

[2] Open Networking Foundation (ONF). (2014). SDN Architecture 1.0.
[Online]. Available: https://www.opennetworking.org/images/stories/
downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_
06062014.pdf

[3] N. McKeown et al., ‘‘OpenFlow: Enabling innovation in campus net-
works,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Apr. 2008.

[4] Open Networking Foundation (ONF). Sdn Architecture for Transport
Networks. [Online]. Available: https://www.opennetworking.org/wp-
content/uploads/2014/10/SDN_Architecture_for_Transport_Networks
_TR522.pdf

[5] (2014). Understanding the SDN Architecture: SDN Control Plane
SDN Data Plane. [Online]. Available: https://www.sdxcentral.com/sdn/
definitions/inside-sdn-architecture

[6] J. Matias, J. Garay, N. Toledo, J. Unzilla, and E. Jacob, ‘‘Toward an
SDN-enabled NFV architecture,’’ IEEE Commun. Mag., vol. 53, no. 4,
pp. 187–193, Apr. 2015.

[7] O. S. Brief, ‘‘OpenFlow-enabled SDN and network functions virtualiza-
tion,’’ Open Netw. Found, vol. 17, pp. 1–12, Feb. 2014.

[8] N. Operators, ‘‘Network functions virtualization, an introduction, benefits,
enablers, challenges and call for action,’’ in Proc. SDN OpenFlow SDN
OpenFlow World Congr., Oct. 2012, p. 48.

[9] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, ‘‘Network function virtu-
alization: Challenges and opportunities for innovations,’’ IEEE Commun.
Mag., vol. 53, no. 2, pp. 90–97, Feb. 2015.

[10] R. Mijumbi et al., ‘‘Network function virtualization: State-of-the-art
and research challenges,’’ IEEE Commun. Surveys Tuts., vol. 18, no. 1,
pp. 236–262, 1st Quart., 2016.

[11] R. Muñoz, et al., ‘‘Integrated SDN/NFV management and orchestration
architecture for dynamic deployment of virtual SDN control instances for
virtual tenant networks [Invited],’’ J. Opt. Commun. Netw., vol. 7, no. 11,
pp. B62–B70, Nov. 2015.

[12] R. Vilalta, A. Mayoral, R. Muñoz, R. Casellas, and R. Martínez,
‘‘Multitenant transport networks with SDN/NFV,’’ J. Lightw. Technol.,
vol. 34, no. 6, pp. 1509–1515, Mar. 15, 2016.

[13] R. Vilalta, et al., ‘‘Transport network function virtualization,’’ J. Lightw.
Technol., vol. 33, no. 8, pp. 1557–1564, Apr. 15, 2015.

[14] R. Vilalta, R. Muñoz, R. Casellas, R. Martínez, V. López, and D. López,
‘‘Transport PCE network function virtualization,’’ in Proc. Eur. Conf. Opt.
Commun. (ECOC), Sep. 2014, pp. 1–3.

[15] A. A. Neghabi, N. J. Navimipour, M. Hosseinzadeh, and A. Rezaee,
‘‘Load balancing mechanisms in the software defined networks: A sys-
tematic and comprehensive review of the literature,’’ IEEE Access, vol. 6,
pp. 14159–14178, 2018.

[16] S. K. Askar, ‘‘Adaptive load balancing scheme for data center networks
using software defined network,’’ Sci. J. Univ. Zakho, vol. 4, no. 2,
pp. 275–286, 2016.

[17] J. Yu, Y. Wang, K. Pei, S. Zhang, and J. Li, ‘‘A load balancing mechanism
for multiple SDN controllers based on load informing strategy,’’ in Proc.
18th Asia–Pacific Netw. Oper. Manage. Symp. (APNOMS), Oct. 2016,
pp. 1–4.

[18] Y. Zhou et al., ‘‘A load balancing strategy of SDN controller based on dis-
tributed decision,’’ in Proc. 13th Int. Conf. Trust, Secur. Privacy Comput.
Commun., Sep. 2014, pp. 851–856.

[19] T.-L. Lin, C.-H. Kuo, H.-Y. Chang, W.-K. Chang, and Y.-Y. Lin,
‘‘A parameterized wildcard method based on SDN for server load balanc-
ing,’’ in Proc. Int. Conf. Netw. Appl. (NaNA), Jul. 2016, pp. 383–386.

[20] A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, and R. Kompella,
‘‘Towards an elastic distributed SDN controller,’’ Comput. Commun. Rev.,
vol. 43, no. 4, pp. 7–12, 2013.

[21] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, ‘‘BalanceFlow:
Controller load balancing for OpenFlow networks,’’ in Proc. 2nd Int. Conf.
Comput. Intell. Syst., Nov. 2012, pp. 780–785.

[22] K. Hikichi, T. Soumiya, and A. Yamada, ‘‘Dynamic application load
balancing in distributed SDN controller,’’ in Proc. 18th Asia–Pacific Netw.
Oper. Manage. Symp. (APNOMS), Oct. 2016, pp. 1–6.

[23] Gs NFV 003-v1. 2.1-Network Function Virtualisation (NFV): Terminology
for Main Concepts in NFV, ETSI, Sophia Antipolis, France, Dec. 2014.

[24] P. Quinn and T. Nadeau, Eds., ‘‘Service function chaining problem state-
ment,’’ Internet-Draft, Network Working Group, Feb. 2014.

[25] R. Mijumbi, J. Serrat, and J.-L. Gorricho, ‘‘Self-managed resources in net-
work virtualisation environments,’’ in Proc. IFIP/IEEE Int. Symp. Integr.
Netw. Manage., May 2015, pp. 1099–1106.

[26] S. Ejaz and Z. Iqbal, ‘‘Network function virtualization: Challenges and
prospects for modernization,’’ in Proc. Int. Conf. Eng. Emerg. Technol.
(ICEET), Feb. 2018, pp. 1–5.

[27] Gs NFV-Man 001 V1. 1.1 Network Function Virtualisation (NFV); Man-
agement and Orchestration, ETSI, Sophia Antipolis, France, 2014.

[28] R. Vilalta et al., ‘‘Network virtualization controller for abstraction and
control of OpenFlow-enabled multi-tenant multi-technology transport net-
works,’’ in Proc. Opt. Fiber Commun. Conf. Exhib. (OFC), Los Angeles,
CA, USA, Mar. 2015, pp. 1–3.

[29] R. Cziva, S. Jouët, D. Stapleton, F. P. Tso, and D. P. Pezaros,
‘‘SDN-based virtual machine management for cloud data centers,’’ IEEE
Trans. Netw. Service Manag., vol. 13, no. 2, pp. 212–225, Jun. 2016.

[30] R. Vilalta, A. Mayoral, R. Muñoz, R. Casellas, and R. Martínez,
‘‘The SDN/NFV cloud computing platform and transport network of the
ADRENALINE testbed,’’ in Proc. IEEE 1st Conf. Netw. Softwarization
(NetSoft), Apr. 2015, pp. 1–5.

[31] R. Muñozm et al., ‘‘SDN/NFV orchestration for dynamic deployment of
virtual SDN controllers as VNF for multi-tenant optical networks,’’ in
Proc. Opt. Fiber Commun. Conf. Exhib. (OFC), Mar. 2015, pp. 1–3.

[32] M. Gholami and B. Akbari, ‘‘Congestion control using OpenFlow in
software defined data center networks,’’ in Proc. 19th Int. ICIN Conf.-
Innov. Clouds, Internet Netw., Mar. 2016, pp. 1–3.

[33] (2018). OpenDaylight Platform Overview. [Online]. Available: https://
www.opendaylight.org/what-we-do/odl-platform-overview

SIKANDAR EJAZ received the B.Sc. degree
in telecommunication and networking from
COMSATS University Islamabad, Pakistan.
He is currently a Post-Graduate Researcher
with the Department of Computer Science,
University of Engineering and Technology at
Taxila, Taxila, Pakistan. His research interests
include software-defined networking and network
function virtualization.

VOLUME 7, 2019 46657

S. Ejaz et al.: Traffic Load Balancing Using SDN Controller as Virtualized Network Function

ZESHAN IQBAL received theM.S. degree in com-
puter engineering from the Center for Advance
Studies in Engineering, Islamabad, Pakistan,
in 2006, and the Ph.D. degree in computer engi-
neering from the University of Engineering and
Technology at Taxila, in 2013, where he is cur-
rently an Assistant Professor with the Depart-
ment of Computer Science. His research interests
include software-defined networks, network func-
tion virtualization, information centric networks,

routing protocols optimization, and wireless body area networks.

PEER AZMAT SHAH received the Ph.D. degree
fromUniversiti Teknologi PETRONAS,Malaysia,
in 2014. He is currently Postdoctoral Researcher
with the Erik Jonsson School of Engineering and
Computer Science, The University of Texas at
Dallas, Richardson, TX, USA. He is also an Assis-
tant Professor with the Department of Computer
Science, COMSATSUniversity Islamabad, Attock
Campus, Pakistan. His research interests include
mobility management in wireless networks, the

Future Internet, and modeling and optimization of network protocols and
algorithms.

BILAL HAIDER BUKHARI received the M.Sc.
degree in computer science from Griffth College,
Dublin. He is currently pursuing the Ph.D. degree
in computer science with Bahria University at
Islamabad. He has been an Assistant Professor
with COMSATS University Islamabad at Attock
Campus (CIIT Attock Campus), Pakistan, since
2013. He also served as Manager in information
system with CIIT Attock Campus, until 2017. His
research interests include vehicular ad hoc net-

works, intelligent transportation systems, and software-defined networks.

ARMUGHAN ALI is currently an Assistant Pro-
fessor with the Computer Science Department,
COMSATS University Islamabad at Attock Cam-
pus, Attock, Pakistan. He is serving in this
entrenched institute for the last ten years. Along
with extraordinary pedagogical skills, he also
marked his name as one of the leading researchers
in the university. His research interests include
wireless networks, and optimization of networks
using machine learning and artificial intelligence.

FARHAN AADIL received the B.S. degree in com-
puter science from Allama Iqbal Open University,
Pakistan, in 2005, and the M.S. and Ph.D. degrees
in software engineering and computer engineering
from the University of Engineering and Technol-
ogy at Taxila, Taxila, Pakistan, in 2011 and 2016,
respectively. He pursued a career in computer sci-
ence for four years, from 2005 to 2009. He is
currently an Assistant Professor with the Depart-
ment of Computer Science, COMSATSUniversity

Islamabad at Attock Campus. His research interests include vehicular ad hoc
networks, machine learning, and evolutionary algorithms.

46658 VOLUME 7, 2019

	INTRODUCTION
	BACKGROUND

	RELATED WORK
	NFV FRAMEWORK AND SCOPE
	NFV INFRASTRUCTURE
	VIRTUAL NETWORK FUNCTIONS (VNFS)
	NFV MANAGEMENT AND ORCHESTRATION (NFV-MANO)
	SCOPE
	DECOUPLING OF RESOURCES
	DYNAMIC FUNCTIONALITY OF VNFS
	FLEXIBLE EMPLACEMENT OF NETWORK FUNCTIONS

	SYSTEM DESIGN AND IMPLEMENTATION
	PROVISIONING OF VSDN CONTROLLER
	CONGESTION DETECTION
	VSDN CONTROLLER DUPLICATION AND MIGRATION
	TRAFFIC LOAD BALANCING USING VSDN CONTROLLER

	EXPERIMENTAL VALIDATION
	RESULTS AND DISCUSSIONS
	CONCLUSION
	REFERENCES
	Biographies
	SIKANDAR EJAZ
	ZESHAN IQBAL
	PEER AZMAT SHAH
	BILAL HAIDER BUKHARI
	ARMUGHAN ALI
	FARHAN AADIL

