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Breast cancer is a fatal disease and is a leading cause of death in women worldwide.*e process of diagnosis based on biopsy tissue
is nontrivial, time-consuming, and prone to human error, and there may be conflict about the final diagnosis due to interobserver
variability. Computer-aided diagnosis systems have been designed and implemented to combat these issues. *ese systems
contribute significantly to increasing the efficiency and accuracy and reducing the cost of diagnosis. Moreover, these systems must
perform better so that their determined diagnosis can be more reliable. *is research investigates the application of the Effi-
cientNet architecture for the classification of hematoxylin and eosin-stained breast cancer histology images provided by the
ICIAR2018 dataset. Specifically, seven EfficientNets were fine-tuned and evaluated on their ability to classify images into four
classes: normal, benign, in situ carcinoma, and invasive carcinoma. Moreover, two standard stain normalization techniques,
Reinhard and Macenko, were observed to measure the impact of stain normalization on performance. *e outcome of this
approach reveals that the EfficientNet-B2 model yielded an accuracy and sensitivity of 98.33% using Reinhard stain normalization
method on the training images and an accuracy and sensitivity of 96.67% using the Macenko stain normalization method. *ese
satisfactory results indicate that transferring generic features from natural images to medical images through fine-tuning on
EfficientNets can achieve satisfactory results.

1. Introduction and Background

One of the leading causes of death in women throughout the
world is breast cancer [1]. It is defined as a group of diseases
in which cells within the tissue of the breast alter and divide
in an uncontrolled manner, generally resulting in lumps or
growths. *is type of cancer often begins in the milk glands
or ducts connecting these glands to the nipple. In the be-
ginning stages of the illness, the small tumour that appears is
much easier to treat effectively, averting the disease’s pro-
gression and decreasing the morbidity rates; this is why
screening is crucial for early detection [2].

*e process of breast cancer diagnosis begins with
palpation, periodic mammography, and ultrasonic imaging
inspection. *e results of these procedures indicate whether
further testing is required. If cancer is suspected in a patient,

a biopsy is performed and tissue for microscopic analysis is
procured so that a pathologist may conduct a histological
examination of the extracted tissue to confirm the diagnosis
[2, 3]. Once the biopsy is complete, the tissue is analyzed in a
laboratory. *e tissue preparation process must begin with
formalin fixation and, after that, embedding in paraffin
sections. *e paraffin blocks are then sliced and fixed on
glass slides. Unfortunately, interesting structures such as the
cytoplasm and nuclei in the tissue are not yet apparent at this
point. *e lack of clarity in the tissue necessitates staining of
the tissue so that the structures can become more visible.
Typically, a standard and well-known staining protocol,
using hematoxylin and eosin, is applied. When added to the
tissue, the hematoxylin can bind itself to deoxyribonucleic
acid, which results in the nuclei in the tissue being dyed a
blue/purple color. On the other hand, the eosin can bind
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itself to proteins, and, as a result, other relevant structures
such as the stroma and cytoplasm are dyed a pink color.
Traditionally, after staining, the glass slide is coverslipped
and forwarded to a pathologist for examination [4]. Rou-
tinely, the expert gathers information on the texture, size,
shape, organization, interactions, and spatial arrangements
of the nuclei. Additionally, the variability within, density of,
and overall structure of the tissue is analyzed. In particular,
the information concerning the nuclei features is relevant for
distinguishing between noncarcinoma and carcinoma cells.
In contrast, the information concerning the tissue structure
is relevant for distinguishing between in situ and invasive
carcinoma cells [5].

*e noncarcinoma class consists of normal tissue and
benign lesions; these tissues are nonmalignant and do not
require immediate medical attention. In situ and invasive
carcinoma, on the other hand, are malignant and become
continuously more lethal without treatment. Specifically, in
situ carcinoma refers to the presence of atypical cells that are
confined to the layer of tissue in the breast from which it
stemmed. Invasive carcinoma refers to the presence of
atypical cells that invades the surrounding normal tissue,
beyond the glands or ducts from where the cells originated
[2]. Invasive carcinoma is complicated to treat, as it poses a
risk to the entire body [3]. *is threat means that the odds of
surviving this level of cancer decreases as the progression
stages increase. Moreover, without proper and adequate
treatment, a patient’s in situ carcinoma tissue can develop
into invasive carcinoma tissue. *erefore, it is of paramount
importance that biopsy tissue is examined correctly and
efficiently so that a diagnosis can be confirmed and, sub-
sequently, treatment can begin. Examples of histology im-
ages belonging to each of these classes are shown in Figure 1.

*e task of performing a practical examination on the
tissue is not simple and straightforward. On the contrary, it
is rather time-consuming and, above all, prone to human
error.*e average diagnostic accuracy between professionals
is around 75% [6]. *ese issues can result in severe and fatal
consequences for patients who are incorrectly diagnosed [7].

*e advancement of image acquisition devices that
create whole slide images (WSI) from scanning conventional
glass slides has promoted digital pathology [8]. *e field of
digital pathology focuses on bringing improvement in ac-
curacy and efficiency to the pathology practice [9] by as-
sociating histopathological analysis with the study of WSI
[8].

An excellent solution to address the limitations of hu-
man diagnosis is computer-aided diagnosis (CAD) systems,
which are developed to automatically analyze the WSI and
provide a potential diagnosis based on the image. *ese
systems currently contribute to improving efficiency and
reducing both the cost of diagnosis and interobserver var-
iability [5, 10]. Even though current CAD systems that
operate at high sensitivity provide relatively good perfor-
mance, they will remain a second-opinion clinical procedure
until the performance is significantly improved [10].

Recently, deep learning approaches to the development
of CAD systems have produced promising results. Previous
attempts to classify breast cancer histology images using a

combination of handcrafted feature extraction methods and
traditional machine learning algorithms required additional
knowledge and were time-consuming to develop. Con-
versely, deep learning methods automate this process. *ese
systems allow pathologists to focus on difficult diagnosis
cases [11].

Hence, to ensure early diagnosis in breast cancer can-
didates, increase treatment success, and lower mortality
rates, early detection is imperative. Although the advent of
and advancements in computer-aided systems have
benefited the medical field, there is plenty of room for
improvement.

1.1. Research Problem. In general, the shortage of available
medical experts [12], the time-consuming quest to reach a
final decision on a diagnosis, and the issue of interobserver
variability justify the need for a system that can automati-
cally and accurately classify breast cancer histopathology
images. Previous approaches to this problem have been
relatively successful considering the available data and
return adequate classification accuracies but tend to be
computationally expensive. *us, this work will explore the
use of seven lightweight architectures within the EfficientNet
family [13]. Since the EfficientNet models were designed to
optimize available resources, while maintaining high accu-
racies, a CAD system that performs at the level of the current
state-of-the-art deep learning approaches, while consuming
less space and training time, is desirable. Transfer learning
techniques have become a popular addition to deep learning
solutions for classification tasks. In particular, many state-
of-the-art approaches utilize fine-tuning to enhance per-
formance [14]. *erefore, this research explores the appli-
cation of seven pretrained EfficientNets for the classification
of breast cancer histology images. Furthermore, the addition
of stain normalization to the preprocessing step will be
evaluated. Hence, the primary question that this research
will answer is, “Can fine-tuned EfficientNets achieve similar
results to current state-of-the-art approaches for the ap-
plication of classifying breast cancer histology images?”

1.2. ResearchContributions. In this research, the application
of seven versions of EfficientNets with transfer learning for
breast cancer histology image classification is investigated.
*e proposed architecture was able to effectively extract and
learn the global features in an image, such as the tissue and
nuclei organization. Of the seven models tested, the Effi-
cientNet-B2 architecture produced superior results with an
accuracy of 98.33% and sensitivity of 98.44%.

*e key takeaway from this investigation is that the
simple and straightforward approach to using EfficientNets
for the classification of breast cancer histology images re-
duces training time while maintaining similar accuracies to
previously proposed computationally expensive approaches.

1.3. Paper Structure. *e remainder of the paper is struc-
tured as follows: Section 2, the literature review, provides
details on previous successful approaches. Section 3, the
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methods and techniques, provides insight into the frame-
work followed in this study. Section 4, the results, provides
details of the results that were obtained during the research.
Finally, section 5 elaborates on the insights of this work and
concludes the paper.

2. Literature Review

Currently, computer-aided diagnosis (CAD) systems occupy
the position of aiding physicians during the process of di-
agnosis, by easing their workload and reducing the dis-
agreement that stems from the subjective interpretation of
pathologists. However, the performance of these systems
must be enhanced before they can be considered more
dependable than a second-opinion system [10].

2.1. Traditional Approaches. In the traditional approach,
expert domain knowledge is required so that the correct
features may be handcrafted; this is a time-consuming en-
deavor. Nevertheless, the approach yields acceptable results
on the datasets used. For instance, Kowal [15] used multiple
clustering algorithms to achieve nuclei segmentation on
microscopic images. Segmentation made it possible to ex-
tract microscopic, textural, and topological features so that
classifiers could be trained and images could be classified as
either benign or malignant. *e accuracy of patient-wise
classification was in the range of 96–100%. It is worth noting
that this method performs poorly when an image contains
overlapping nuclei or a small number of nuclei. In this case,
either the approach fails to identify the nuclei or the clus-
tering algorithms could return unreliable results. *erefore,
in order to attain an acceptable detection accuracy, a large
number of sample images are required. Hence, it is evident
that accurate nuclei segmentation is not a straightforward
task; this can also be attributed to the variability in tissue
appearance or the presence of clustered or tightly clumped
nuclei [5].

An alternative approach is utilizing information on
tissue organization as in the work by Belsare et al. [16], which
presents a framework to classify images into malignant and
nonmalignant. Firstly, segmentation was done using spatio-
color-texture graphs. After that, statistical feature analysis
was employed, and classification was achieved with a linear
discriminant classifier. *e choice of this classifier consid-
erably impacted the outcome of this approach, as the result
outperformed the use of k-nearest-neighbor and state vector

machine classifiers, especially for the detection of nonma-
lignant tissue. Accuracies of 100% and 80% were achieved
for nonmalignant and malignant images, respectively.

2.2. Deep Learning Approaches. *e increase in the avail-
ability of computing power has led to the emergence of
advanced architectures called convolutional neural networks
(CNNs). Contrary to the conventional approach, no expert
domain knowledge is required to define algorithms for
segmentation, feature extraction, and classification, but
instead expert knowledge is needed to annotate the dataset
for a CNN to achieve superior results. Instead, these net-
works can automatically determine and extract discrimi-
native features in an image that contribute to the
classification of the image. Generally, a CNN will use a
training set of images to learn features that are unique to
each class so that when a similar feature is detected in an
unseen image, the network will be able to assign the image to
a class with confidence.

2.2.1. Convolutional Neural Network Approaches. *e suc-
cess of convolutional neural networks (CNNs) with general
computer vision tasks motivated researchers to employ these
models for classifying histopathology images. For the clas-
sification of hematoxylin and eosin-stained breast cancer
histology images, both Araújo et al. [5] and Vo et al. [17]
used the Bioimaging 2015 dataset [18] and classified the
images into four classes (normal, benign, in situ, and in-
vasive) and two groups (carcinoma and noncarcinoma). *e
former work [5] proposes a CNN that can integrate in-
formation from multiple histological scales. *e process
begins with stain normalization via the method proposed by
Macenko et al. [19] in a bid to correct color discrepancies.
After that, 12 512 × 512 overlapping patches were extracted
from each image. *e chosen size of the patches ensures that
no relevant information is lost during extraction and,
therefore, every patch can be appropriately labeled. *en,
data augmentation was used to increase the number of
images in the dataset. Finally, a patch-wise trained CNN and
a fusion of a CNN and support vector machine classifier
(CNN+ SVM) were used to determine the patch class
probability. Image-wise classification was attained through a
patch probability fusionmethod.*e evaluation showed that
using majority voting strategy as the fusion method pro-
duced the best results. Considering all four classes, patch-
wise classification with the CNN achieved an accuracy rate of

Normal

(a)

Benign

(b)

In situ

(c)

Invasive

(d)

Figure 1: Different classes of histology microscopy images: (a) normal; (b) benign; (c) in situ; (d) invasive.

Computational Intelligence and Neuroscience 3



66.7%, while the CNN+SVM achieved an accuracy rate of
65%.*e image-wise classification achieved higher results at
77.8% accuracy for both classifiers. With only two classes,
patch-wise accuracy for the CNN was 77.6%, and for the
CNN+SVM, the approach yielded 76.9% accuracy. *e
image-wise classification for the 2-class task produced the
best results at 80.6% for the CNN and 83.3% for the
CNN+SVM. *e reason for the lower patch-wise classifi-
cation is that imagesmay contain sections of normal-looking
tissue. Since during patch generation the extracted patches
inherit the image’s label, this may confuse the CNN. *e
increase in image-wise classification accuracy is due to the
fusion method that is applied. *e authors also recorded the
sensitivity rates for each of the classes. It is worth noting that
overall, for image-wise classification, the approach was more
sensitive to the carcinoma class than the noncarcinoma class.
*is outcome, although not ideal, is preferable since the
architecture that was proposed focuses on correctly classi-
fying the carcinoma (malignant) instances [5].

*e approach taken by Vo and Nguyen [17] proposed a
combination of an ensemble of deep CNNs and gradient
boosting tree classifiers (GBTCs). Stain normalization via
Macenko et al. [19] and data augmentation were the initial steps
of the process. Unlike the standard data augmentation method
of rotating and flipping images, the proposed method [17]
incorporates reflection, translation, and random cropping of the
images. *e normalized and augmented data was then used to
train the proposed architecture. Specifically, three deep CNNs
(Inception-ResNet-v2) were trained using three different input
sizes: 600 × 600, 450 × 450, and 300 × 300.*en, visual features
were extracted and fed into GBTCs, which increased classifi-
cation performance. *e majority voting strategy was used to
merge the outputs of the GBTCs, resulting in a much more
robust solution. Recognition rates of 96.4% for the 4-class
classification and 99.5% for the 2-class classification were re-
ported. *is result surpasses state-of-the-art achievements. An
interesting note is that the authors added global average pooling
layers in place of dense (fully connected) layers, and this did not
negatively impact the accuracy of the ensemble. Similar to
Araújo et al. [5], the authors of this work recorded the sensi-
tivities of their approach.*e results indicate that, for the 4-class
task, the proposedmethod struggles with the classification of the
in situ instances, while the other three classes have incredibly
high sensitivities. For the 2-class task, the approach yields a
100% sensitivity on carcinoma instances and 98.9% on non-
carcinoma instances. *ese results indicate that the approach
was able to successfully learn both local and global features for
the multiclass and binary classification. However, the downfall
of this approach is the computational expense.

2.2.2. Convolutional Neural Network with Transfer Learning
Approaches. For the TK-AlexNet proposed by Nawaz et al.
[3] to classify breast cancer histology images, the classifi-
cation layers of the AlexNet architecture were replaced with
a single convolutional layer, and a max-pooling layer was
added before the three fully connected layers with 256, 100,
and 4 neurons, respectively. *e input size of the proposed
network [3] was increased to 512×512. *e transfer learning

technique used in this application was to fine-tune the last
three layers on the ICIAR2018 dataset after having the entire
network trained on the ImageNet dataset. *e images were
stain-normalized with the method proposed in Macenko
et al. [19]. An interesting fact is that the authors compared
the performance of the model with both non-stain-nor-
malized and stain-normalized images and concluded that
using the latter resulted in a gain in performance. After that,
data augmentation techniques such as mirroring and ro-
tation were applied, and overlapping patches of size 512 ×

512 were extracted from each image. Hence, there was a total
of 38400 images generated. Evaluation of the model was
done using a train-test split of 80%–20%.

*e image-wise accuracy reported in [3] was 81.25%, and
the patch-wise accuracy was 75.73%. A noteworthy obser-
vation is that the normal and benign classes were classified
with 85% sensitivity; however, the in situ and invasive
carcinoma classes were classified with 75% sensitivity. For a
model to be practical as a second-opinion system, it should
ideally have a higher sensitivity to the carcinoma class given
the dangers of misdiagnosis.

For this classification task, the Inception-ResNet-v2 was
used by Ferreria et al. [20]. *e classification layers of the
base model were replaced by a global average pooling layer, a
dense (or fully connected) layer with 256 neurons, a dropout
layer with a dropout rate of 0.5, and a final dense layer of 4
neurons. Moreover, the input size of the network was
changed to 244 × 244. Reshaping the images does not sig-
nificantly impact the form of the cellular structures; how-
ever, it does reduce computational cost [20].*e authors did
not incorporate stain normalization into their experiments.
Data augmentation techniques such as image flips (hori-
zontal and vertical), a 10% zoom range, and shifts (hori-
zontal and vertical) were used to increase the dataset. *ese
particular techniques were chosen with care because if the
augmentation causes too much distortion, the anatomical
structures in the image could be destroyed [20], and this may
result in the network having difficulty extracting discrimi-
native features during training.

Two forms of transfer learning were used in this ex-
periment. At first, only the dense (fully connected) layers of
the model were trained. *is technique is referred to as
feature extraction since the network is using pretrained
features (from ImageNet) to classify the breast cancer his-
tology images. *e result of this step is that only the weights
of the dense layers were adjusted. *is aids in overfitting
[20]. Afterwards, a certain number of layers were unfrozen
so that the network could be fine-tuned. Early stopping with
a patience of 20 epochs, and a checkpoint callback moni-
toring minimum validation loss were the additional tech-
niques implemented to avoid overfitting. *e dataset was
randomly split into 70% training, 20% validation, and 10%
testing. *e test set achieved an accuracy of 90%.

In a study by Kassani et al. [21], five different archi-
tectures (Inception-v3, Inception-ResNet-v2, Xception,
VGG16, and VGG19) were investigated for the classification
of the ICIAR2018 dataset. Two stain normalization methods
were observed in this study: Macenko et al. [19] and
Reinhard et al. [22]. Data augmentation included vertical
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flips, contrast adjustment, rotation, and brightness correc-
tion. *e data was split into 75% and 25% for training and
testing, respectively. *e images were resized to 512 × 512
pixels with the help of bicubic interpolation. For each of the
models, features were extracted from specific blocks, par-
ticularly the layer after a max-pooling layer. *e extracted
features were put through a global average pooling layer and
then concatenated to form a feature vector which was fed
into an MLP (multilayer perceptron) set with 256 neurons
for final classification. Of these models, the modified
Xception network trained with Reinhard stain-normalized
images performed the best, with a reported accuracy score of
94%. Overall, the Xception architecture performed the best
for both of the stain normalization methods, and the
Reinhard [22] technique produced higher accuracies than
Macenko [19]. *e other architectures ranked in the fol-
lowing order: Inception-v3, Inception-ResNet-v2, VGG16,
and VGG19. Interestingly, the approximate parameters for
these architectures are 23 million, 54 million, 138 million,
and 143 million, respectively. One could hypothesize that an
increase in parameter count translates to a decrease in ac-
curacy of this dataset. *is indicates that the bigger archi-
tectures may have more difficulty extracting critical features
from training images, even if measures are taken to enlarge
the dataset being used. *e results of this study also em-
phasize the benefit of incorporating stain normalization into
preprocessing and how choosing the correct method im-
proves accuracy significantly. Table 1 shows a comparison
summary of related deep learning techniques in the
literature.

3. Methods and Techniques

*e process followed in this research is depicted in Figure 2.
*emethod consisted of twomajor phases. In the first phase,
all the images in the ICIAR2018 dataset were stain-nor-
malized using two techniques: Reinhard [22] and Macenko
[19]. For a better understanding of the impact of stain
normalization, experiments with nonnormalized images
were also conducted. *en specific data augmentation
techniques were randomly applied to the images. *ese
augmentation techniques were chosen so that the images
would not be too distorted, to avoid the risk of losing
distinguishing features. For the second phase, the Effi-
cientNet models were extended to perform classification.
For this architecture, sufficient regularization was necessary
as the dataset used was relatively small compared to what
deep learning models require. *is limitation introduces the
possibility of overfitting, and employing regularization
techniques counteracts this. Figure 3 depicts the proposed
method.

3.1. Dataset. *e dataset used in this research is called the
ICIAR2018 breast cancer histology images dataset [14] and is an
extension of the 2015 Bioimaging breast cancer histology images
dataset [5]. It contains 400 high-resolution microscopy images
and is separated into four classes: normal, benign, in situ
carcinoma, and invasive carcinoma. All four classes are equally

represented. Two medical professionals annotated each image,
and if the professionals disagreed on a particular image’s an-
notation, the image was either discarded or confirmed through
immunohistochemical analysis. *e dataset is available in
RGB.tiff format, and each image is 2048 × 1536 pixels in size,
with a pixel scale of 0.42μm × 0.42μm (which refers to the area
of tissue covered by a pixel) with a magnification of 200×.

3.2. Preprocessing. Preprocessing is crucial for the classifi-
cation of histology images. *e images in the dataset [14] are
rather large while convolutional neural networks are typi-
cally designed to take in much smaller inputs. *erefore, the
resolution of the images must be decreased so that the
network is able to receive the input while maintaining the
important features. *e size of the dataset is much smaller
than what is generally required to train a deep learning
model properly; data augmentation is utilized to increase the
amount of unique data in the set. *is technique contributes
toward avoiding overfitting, a phenomenon whereby the
model learns the training data well but is entirely unable to
generalize and classify unseen images.

3.2.1. Stain Normalization. Many factors contribute to color
inconsistencies in histology images, but they are primarily
due to the tissue preparation and histology staining process.
Other factors may include the conditions and small dif-
ferences in the labs where the slides are prepared. *e
techniques used in the process and fixation delays as well as
the conditions during slide digitization using a scanner, such
as changes in light sources, detectors, or optics, contribute to
the discrepancies [4]. *ese discrepancies in colors in the
images could negatively impact the training process in
CNNS. [23]. *ere have been many stain normalization
techniques proposed. In this research, two techniques were
applied, proposed by Reinhard et al. [22] and Macenko et al.
[19].

*ese techniques aid in improving the efficiency and
accuracy of a network by reducing the color inconsistencies
in the images. Moreover, without stain normalization, the
network may learn staining patterns instead of extracting the
relevant features [14].

However, the majority of the top performing methods
reported in the “ICIAR2018 Grand Challenge” paper [14]
did not use any form of stain normalization, so we also
conducted experiments with images that were not
normalized.

Images must be converted from the BGR color space to
the RGB color space in order for the stain normalization
techniques to function as expected.

(1) Macenko Stain Normalization. *is technique [19]
accounts for the staining protocol used during the prepa-
ration of the tissue slide. Firstly, the colors are converted to
optical density (OD) via the simple logarithmic
transformation.

A value, β, is specified and used as a threshold to remove
data with higher OD intensity. Singular value decomposition
(SVD) is applied to the optical density tuples from the first
step in order to determine a plane.*is plane corresponds to
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the two largest singular values found. *e optical density-
transformed pixels are then projected onto this plane so that
the angle at every point concerning the first SVD direction
can be determined.*en, the color space transform resulting
from the previous steps is applied to the original breast
cancer histology image, and the histogram of the image is
stretched such that the range covers the lower (100–α)% of
the data. Minimum and maximum vectors are calculated
and projected back into the optical density space. *e he-
matoxylin stain corresponds to the former vector, and the
eosin stain corresponds to the latter vector. *e concen-
trations of the stains are appropriately determined, and the
resulting matrix represents the RGB channels and OD in-
tensity. *e values α and β are recommended to be set to 1
and 0.15, respectively, and are kept the same for these
experiments.

(2) Reinhard Stain Normalization. *is technique [22]
focuses on mapping the color distribution of an over- or
under-stained image to a well-stained image. *e use of
linear transformation from RGB to lαβ color space by
matching mean and standard deviation values of the color
channels achieves this. Essentially, the mean color within the
selected target image is transferred onto the source image.
*is method preserves the intensity variation of the original
image.*is, in turn, preserves its structure, while its contrast
is adjusted to that of the target. In the lαβ color space, the
stains are not precisely separated. *e lαβ color space must
be converted back into RGB to attain the normalized image.

Figure 4 shows examples of the stain normalization
techniques applied in this study. In this figure, (a) represents
the target image that was used for both techniques. Es-
sentially, the techniques aim to normalize the colors in the
original images to those of the target. An example of the
original image is shown in (b). *e subfigures (c) and (d)
show the result of using (a) on (b) with the Macenko and
Reinhard techniques, respectively.

3.2.2. Data Augmentation. For this step, combinations of
methods that are provided by the Keras library were
tested to observe the impact on overfitting and contri-
bution to improving classification accuracy. *e process
of analyzing histology images is rotationally invariant,
which means that, irrespective of the angle at which a
pathologist views a microscopy image, he/she is still able
to examine the image. *erefore, applying a rotation
augmentation to the image should not negatively impact
the training of the architecture. *e rotation augmen-
tation is customized (as in the approach in [5]) such that
an image is rotated (90k)° in a clockwise direction where
k � 0, 1, 2, 3{ }. Additionally, a width and height shift,
zoom range, and horizontal and vertical flips were ran-
domly applied to rescaled images. *is step is imple-
mented in a way that allows the augmentation to be done

Hematoxylin and Eosin-stained
histology images

Stain-normalize and augment data

Train efficientNet models with new
classification layers

Evaluate the model

Convert probabilities into
predictions

Figure 2: Training process of the experiments.

Table 1: Summary of related techniques in the literature.

Reference Dataset Pretrained Architecture Input size Stain normalization Image-wise accuracy

Araújo et al. [5] Bioimaging 2015 No Custom CNN 512 × 512 Macenko
4-class: 77.8%
2-class: 80.6%

Vo et al. [17] Bioimaging 2015 No 3 × Inception-ResNet-v2
600 × 600

Macenko
4-class: 96.4%

450 × 450 2-class: 99.5%300 × 300
Nawaz et al. [3] ICIAR2018 Yes AlexNet 512 × 512 Macenko 81.25%
Ferreria et al. [20] ICIAR2018 Yes Inception-ResNet-v2 244 × 244 Nonnormalized 90%

Kassani et al. [21] ICIAR2018 Yes VGG16 512 × 512 Macenko 83%
Reinhard 87%

Kassani et al. [21] ICIAR2018 Yes VGG19 512 × 512 Macenko 80%
Reinhard 84%

Kassani et al. [21] ICIAR2018 Yes Inception-ResNet-v2 512 × 512 Macenko 90%
Reinhard 88%

Kassani et al. [21] ICIAR2018 Yes Xception 512 × 512 Macenko 91%
Reinhard 94%

Kassani et al. [21] ICIAR2018 Yes Inception-v3 512 × 512 Macenko 90%
Reinhard 90%
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dynamically; therefore, no extra storage is required. *e
normalized images are randomly augmented as they are
fed into the model for training. Figure 5 shows an image
normalized with Reinhard [22], resized, and randomly
augmented with the methods mentioned in Table 2. *e
images were resized according to the recommended input
size of each EfficientNet architecture as shown in Table 3.
Table 3 contains the relevant information for each Effi-
cientNet resolution. Resizing the images directly causes a
loss of local features but preserves global features in the
image. *erefore, the success of the experiments depend
on the architecture’s ability to recognize and learn these
global features [23].

3.3. Transfer Learning. Transfer learning (TL) can be de-
scribed as follows: “given a source domain DS and learning
taskTS, a target domainDT and learning taskTT, transfer
learning aims to help improve the learning of the target
predictive function fT (·) inDT using the knowledge inDS

and TS, where DS ≠ DT, or TS ≠ TT” [24].
*e earlier and middle layers of a CNN detect edges and

generic shapes, while the layers toward the end of a CNN
detect problem-specific features. *e concept of transfer
learning is based on utilizing the general features learned in
the earlier layers from the source dataset, and a specified
number of layers at the end of the model are retrained on the
target dataset. *e main benefits of TL are saving training

Original dataset Stain-normalized,
resized, and
augmented

dataset

EfficientNet architecture

Global average pooling

Dropout layer

Fully connected layer

Benign

In situ

Invasive

Normal

Figure 3: Proposed model for classification of histology microscopy images using deep learning.
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time, improving performance of the neural network, and
circumventing the limitations caused by lack of data [25].
*is technique has been effective in overcoming the issue of
small datasets [26].

In the work of Shallu et al. [27], the application of
transfer learning for breast cancer histology image classifi-
cation was investigated.*e pretrained networks used in this
study were VGG16, VGG19, and ResNet-50. In order to
evaluate the effect of using pretrained weights with these
models, the authors used the networks as feature generators,
extracted features from the images, and used these features
to train a logistic regression classifier. *e results of these

tests were then compared to the results of a full-trained
network (trained from scratch with randomly initialized
weights). It was proven that fine-tuning significantly im-
pacted the reported precision, recall, F1, accuracy, AUC, and
APS scores. *e VGG16 model, which is the smallest model
investigated (depth-wise, having only 16 convolutional
layers) in the experiment, performed the best on the fine-
tuning tests, reaching an accuracy of 92.6%. A supposition
one can make from the reported fine-tuning results of this
study is that the CNN architectures that were larger (depth-
wise) had lower accuracy scores: VGG16 obtained 92.6%
accuracy, VGG19 obtained 90% accuracy, and ResNet-50
obtained 79.4% accuracy with a train-test split of 90%–10%.
*is indicates that network capacity is an important factor to
consider when choosing a network to fine-tune. A con-
clusion made in this study was that the fine-tuned networks
were more robust to the different sizes of train-test splits
than the fully trained networks were.

*ere are, of course, various challenges with the appli-
cation of transfer learning to medical image classification, as
reported in [28]. One challenge is that medical image
classification tasks do not have a sufficient amount of an-
notated data that is available for training CNNs [29]. *is
can be attributed to the expense and complexity of the
process of annotating images [14]. *is lack of data means
that large CNNs that generally perform well in applications
such as ImageNet would have difficulty avoiding overfitting
on these datasets. *erefore, an ample amount of regula-
rization in different forms is needed. Overparameterization
is another one of these challenges, and it refers to the great
number of parameters in a network. *e more trainable
parameters a network has, the longer the network will re-
quire training, the larger the number of required epochs will
be, and themore computation it will require.*is is not ideal
in the real-world application of these models. A possible way
to circumvent these challenges is to use lightweight

(a) (b) (c) (d)

Figure 4: Examples of original and normalized images: (a) target image; (b) original image; (c) Macenko-normalized; (d) Reinhard-
normalized.
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Figure 5: Random data augmentation applied to a normalized image.

Table 2: Values for data augmentation applied to the stain-nor-
malized images.

Augmentation type Value
Rescaling 1./255
Rotation range 5°
Width shift range 0.1
Height shift range 0.1
Zoom range 0.3
Horizontal flip True
Vertical flip True
Additional rotation 0°, 90°, 180°, 270°

Table 3: *e number of parameters in each EfficientNet and the
recommended input size.

Models Trainable parameters (million) Input size
B0 ∼4.3 224 × 224
B1 ∼6.8 240 × 240
B2 ∼8.0 260 × 260
B3 ∼11.0 300 × 300
B4 ∼17.9 380 × 380
B5 ∼28.7 456 × 456
B6 ∼41.1 528 × 528
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architectures that are smaller in size and have fewer pa-
rameters, which results in more efficient use of computa-
tional power [28]. EfficientNet [13], SqueezeNet [30], and
MobileNet-v2 [31] are a few of the recently proposed
lightweight architectures.

Multiple forms of transfer learning have been pro-
posed. *is includes weight initialization, feature ex-
traction, and fine-tuning. For this application, empirical
observations revealed that the combination of feature
extraction and fine-tuning did not enhance accuracy. On
the contrary, the feature extraction phase could not ef-
fectively transfer features from the source dataset to
classify the breast cancer histology images. *is outcome
can be attributed to the fact that the source dataset
consists of natural images which bear no resemblance to
the histology images. *erefore, high-level features found
in the pretrained model’s upper layers do not contribute
to this specific classification task. *ese experiments
resulted in extreme overfitting even though the various
preventative measures were taken. Hence, we can con-
clude that fine-tuning the architecture with the dataset
and utilizing the source dataset’s low-level features yield
far more acceptable results in this study.

Fine-tuning is described as freezing a certain number of
layers in the model such that the generic features extracted at
the beginning layers are well utilized. For this study, these
generic features come from training on the ImageNet dataset
[3, 20]. *is dataset contains approximately 14 million
natural images with 22 thousand visual categories. Figure 6
depicts the process of fine-tuning.

Choosing the most suitable layer to begin fine-tuning
from requires extensive testing. Studies such as [12] have
investigated which block to tune from such that results are
optimal. *e authors [12] concluded that fine-tuning the top
layers of a network is much more beneficial than the entire
network. However, for this study, fine-tuning began at the
third block. We note that beginning fine-tuning from higher
blocks results in slight overfitting.

In addition to ImageNet weights, noisy-student weights
[32] were also employed to train the models. Empirical
observations showed that ImageNet weights were more
appropriate for this application.

3.4.EfficientNet. *e process of scaling convolutional neural
networks is not well understood and is sometimes done
arbitrarily until a satisfactory result is found. *is process
can be tedious because manual tweaking of the relevant
parameters is required [13].*e earlier proposed methods of
scaling a network include scaling a model by depth [33], by
width [34], and by image resolution [35]. Tan and Quoc [13]
studied the influence of these scaling methods in a bid to
develop a more systematic way of scaling network archi-
tecture. *e key findings of their research can be summa-
rized into two specific notes: Firstly, scaling up any single
dimension of network resolution, depth, or width will im-
prove accuracy; however, this accuracy gain will diminish for
larger models. Secondly, to achieve improved accuracy and
efficiency, it is essential to balance the dimensions of a

network’s depth, width, and resolution, instead of focusing
on just one of these. Considering these findings, the authors
presented a novel scaling method that uses a robust com-
pound coefficient, ϕ, to scale up the networks in a much
more structured manner. Equation (1) represents how the
authors [13] suggest scaling the depth, width, and resolution
with respect to ϕ.

d � αϕ,

w � βϕ,

r � c
ϕ
,

s.t. α · β2 · c
2 ≈ 2,

α≥ 1, β≥ 1, c≥ 1,

(1)

where d, w, and r represent the depth, width, and resolution
of the network, respectively, while the constant terms α, β,
and c are determined by a hyperparameter tuning technique
called grid search. *e coefficient ϕ is user-specified and
manages the resources that are available for model scaling.
*e constants define how the additional resources are
assigned to the dimensions in the network. *e “floating
point operations per second” (FLOPS) is a measure of
computer performance [36] and essentially measures how
many operations are required to execute the network. If the
network’s depth is doubled, the number of FLOPS required
is doubled too. If the network’s width or resolution is
doubled, the number of FLOPS required is quadrupled.
*erefore, the constraint in (1) indicates that, for any in-
crease in the ϕ value, the new number of FLOPS will increase
by 2ϕ. Furthermore, the constant terms must be greater than
or equal to one because none of the dimensions should be
allowed to be scaled down. *e aim of this method [13] is to
scale network depth, resolution, and width, such that the
accuracy of the network, and the consumption of memory
and FLOPS are optimized according to the available
resources.

To solidify the concept and prove the effectiveness of the
compound scaling method, the authors [13] then developed
a mobile-sized baseline network by applying the neural
architecture search (a technique used to optimize efficiency
and accuracy with respect to FLOPS), which was called the
EfficientNet-B0. *e model uses inverted residual blocks,
consisting of squeeze-and-excitation optimization [37] and
swish activation [38]. Swish is defined as

Swish(x) � x∗ sigmoid(x). (2)

*e inverted residual block was introduced in the
MobileNet-v2 architecture [31] and makes use of depth-wise
separable convolution to decrease the number of parameters
and multiplications needed to execute the network. *is
modification results in faster computation without adversely
affecting performance. *e inverted block consists of three
major components: a convolutional layer (called the ex-
pansion layer) which expands the number of channels to
prepare the data for the next layer, a depth-wise convolu-
tional layer, and another convolutional layer (the projection
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layer) which is meant to project the data from a large
number of channels to a small number of channels. *e first
and last layers of a residual block are connected via a skip
connection.*erefore, during fine-tuning, it is imperative to
train entire blocks. Disobeying this restriction can damage
the way the network learns [39]. *e squeeze-and-excition
block consists of a global average pooling (GAP), a
reshaping, and two convolutional layers. *e GAP layer
extracts global features, and then the number of channels is
squeezed according to a predefined squeeze ratio.

*e compound scaling method was then used to create
the EfficientNet family which included the versions B1 to B7;
the constants α, β , and c were fixed; and ϕ was scaled.

*e efficacies of the models were tested on the
ImageNet dataset and surpassed state-of-the-art con-
volutional neural networks, with magnitudes being
smaller and faster on CPU inference. *e outcome
(shown in Figure 7) revealed that even though the models
have smaller magnitudes than established models in both
number of parameters and number of FLOPS, they
performed phenomenally.

*ese models have been successfully used for other
histopathology image classification [40–45]. However, at the
time of this research, the EfficientNet architecture had not
yet been investigated for classification of the ICIAR2018
dataset. We limit our experimentation to the first six Effi-
cientNets due to computational resource restrictions.

3.5. Experimental Settings. In order to ensure that results
were reproducible, seeds were set for all packages and
methods that allowed this. Specifically, a function was used
to split the dataset into the training and validation subsets
and was seeded; this value was kept constant throughout all
experiments. *erefore, all training and validation images
across all experiments are the same.

*e dataset was divided into train-test sets with split of
85%–15%, as this split produced the highest results and had
less difficulty with overfitting. *e images in both subsets
were stratified, meaning that the classes were equally

represented. Stain normalization of the images was ac-
complished using a package provided by [46].

*e implementation of this approach was dependent on
the Keras package within the TensorFlow Python library.
Specifically, the Keras ImageDataGenerator [47] was used to
create augmentation generators for the training and vali-
dation data. Publicly available pretrained EfficientNet
models were utilized [48].

Each EfficientNet was extended with a global average
pooling layer, a dropout layer with a rate of 0.5, followed by a
dense layer of 256 neurons with the ReLU activation
function, then another dropout layer with a rate of 0.4, and
finally a dense layer of 4 neurons with the softmax activation
function. *e pooling layer performs subsampling. Essen-
tially, the layer reduces the dimensions of the previous layer
by combining the neuron clusters into a single neuron [49].
A dropout rate represents the rate at which input units are
set to 0 in a dropout layer. If the units are not set to 0, they
are updated and scaled up by a value of 1− 1/dropoutrate to
ensure that the sum over all the inputs does not change. Each
neuron in a dense layer is connected to every neuron in the
previous layer.*erefore, these layers increase the parameter
count in a network substantially. *e softmax function
enables the output of the network to be a vector of prob-
abilities of the input image belonging to each of the four
classes. *e Adam optimizer was used with a learning rate of
0.0001; this value was empirically tested and found to
produce the best results. When the learning rate is too high,
the network learns recklessly and is not able to retain in-
formation. When the learning rate is too low, the model
training progresses very slowly, which means that more
epochs, computational resources, and training time are
required. Moreover, early stopping with a patience of 10
epochs, reducing learning rate on plateau with a patience of
8 epochs and minimum learning rate set of 0.000001, and
model checkpoints were used during each experiment.
*erefore, models with the lowest validation losses were
saved while training continued until early stopping ended
the execution. *e batch size was fixed to 16 for the Effi-
cientNets-B0–B4, the size was set to 5 for the B5 and B6 (due

ImageNet dataset Source network ImageNet task

ICIAR dataset Pretrained Trainable ICIAR task

DS S TS

DT S’

S’

T TT

Figure 6: Visualization of fine-tuning.
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to memory constraints), and all models were set to train for
50 epochs. Categorical cross-entropy was employed as the
loss function, as it is best suited for multiclass classification.
*is function is defined as

CCE � −
1
N

􏽘

N

i�1
log Pmodel yi ∈ Cyi􏽨 􏽩⎛⎝ ⎞⎠, (3)

where N represents the number of instances and
log Pmo de l[yi ∈ Cyi] represents the probability predicted by
the model for the ith instance.

All tests were run on the Google Colaboratory platform
which provides 25GB RAM and a 12GB NVIDIA Tesla K80
graphics processing unit.

4. Results and Discussion

4.1.EvaluationCriteria. *e performance of eachmodel was
evaluated by calculating the precision, recall, F1-score, and
accuracy. *e equations below represent the manner in
which these metrics are determined.

Accuracy �
TP + TN

TP + TN + FP + FN
× 100, (4)

Precision �
TP

TP + FP
× 100, (5)

Recall �
TP

TP + FN
× 100, (6)

F1 − score � 2 ×
Precision × Recall
Precision + Recall

, (7)

where TP, TN, FP, and FN represent true positives, true
negatives, false positives, and false negatives, respectively.
*e precision and recall scores recorded are averaged over all
four classes.

4.2. Experimental Results. Table 4 provides the average
precision and recall (across the four classes) and the accuracy
of each model with the stain normalization methods.
Moreover, the average accuracy obtained by the EfficientNet
model is calculated.

Accuracy and sensitivity (precision) are of paramount
importance in this task. Hence, these metrics will be further
analyzed and discussed.

4.3. Discussion

4.3.1. Analysis of Results. *e Grand Challenge [14] out-
comes revealed that the best performing models were pre-
trained on ImageNet and fine-tuned. Even though many
approaches incorporate patch-wise classification to utilize
local features, [3, 5, 14] state that using the entire image for
classification was found to produce better results. *is in-
sight implies that extracting nuclei and tissue organization
features is more valuable for deciphering the image classes
than nuclei-scale features [14]. *e image-level classification
in this research observes the ability of the architecture to
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Figure 7: A comparison of EfficientNets with established architectures on the classification of the ImageNet dataset (source: [13]).
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extract global features in the breast cancer histology images
and use it to classify unseen images.

*e results of the experiments show that the EfficientNet
models perform well on the ICIAR2018 dataset. *e Rein-
hard technique [22] outperforms Macenko in the Effi-
cientNet-B0, -B2, and -B4. *e Macenko technique [19]
returned the highest accuracy for the EfficientNet-B3, and
nonnormalized images performed the best for the Effi-
cientNet-B5 and -B6. For the EfficientNet-B1, bothMacenko
and Reinhard produced the same results. Table 5 shows the
average accuracy results obtained by each stain normali-
zation method. In this table, the average results of the
nonnormalized method are inferior to that of those Rein-
hard and Macenko techniques. *erefore, it can be con-
cluded that, on average, applying stain normalization to
images as part of the preprocessing step is beneficial.

Notably, the EfficientNet-B2 model produced superior
results compared to the other six, which indicates that this
architecture was the most successful at extracting and
learning the global features in the training set. *e average
accuracy achieved by this model (95.83%) is higher than
those reported in the literature. *e additional benefit of this
approach is that it is simple, requiring fewer parameters,
which implies less training time compared to the previous
approaches.*e use of images normalized with the Reinhard
technique returned the highest sensitivity and accuracy for
this model, at 98.33%. Following closely is the result from the

use of images stained with the Macenko technique, with a
sensitivity and accuracy of 96.67%. *e EfficientNet-B1
returns identical results for training the images stained with
Reinhard and Macenko, with a sensitivity and accuracy of
95.00%.*e difference between the number of parameters in
the EfficientNets-B1 and -B2, and the input size both models
receive are similar. For this specific dataset, the input sizes of
240 × 240 and 260 × 260 are appropriate for successfully
extracting global features in the histology images. From
Table 4, it is interesting to note that the average accuracy gain
seems to increase at first (for EfficientNets-B0–B2), decrease
with larger models (for EfficientNets-B3–B5), and then pick
up slightly (EfficientNet-B6). *e EfficientNet-B0 model has
the fewest parameters but does not perform the best. *is
may be owing to the small input size that the model receives.
Resizing the large images to 224×224 may affect the
structures in the image, making it more difficult for the
model to capture the features. For the larger models that did
not perform as well, this may be a consequence of over-
parameterization relative to the size of the dataset.

Table 6 provides additional insight by showing the
models’ sensitivity and specificity concerning each class. *e
R, M, and N next to each model name refer to the stain
normalization method used on the dataset (Reinhard,
Macenko, and nonnormalized). As previously mentioned,
high sensitivity is crucial for this problem. It is a widely used
metric to determine the proportion of correctly identified

Table 4: Results for the EfficientNet architectures with each stain normalization method.

EfficientNet Stain normalization technique Precision Recall F1-score Accuracy

B0

Reinhard 93.65 93.33 93.32% 93.33%
Macenko 91.67 91.67 91.67% 91.67%

Nonnormalized 92.37 91.67 91.37% 91.67%
92.9%

B1

Reinhard 94.99 95.00 94.94% 95.00%
Macenko 94.99 95.00 94.94% 95.00%

Nonnormalized 93.32 93.33 93.27% 93.33%
94.7%

B2

Reinhard 98.44 98.33 98.33% 98.33%
Macenko 96.88 96.67 96.66% 96.67%

Nonnormalized 94.03 93.33 93.29% 93.33%
95.3%

B3

Reinhard 92.50 91.67% 91.62% 91.67%
Macenko 93.54 93.33 93.27% 93.33%

Nonnormalized 91.94 91.67 91.66% 91.67%
92.2%

B4

Reinhard 92.38 91.67 91.69% 91.67%
Macenko 91.94 91.67 91.66% 91.67%

Nonnormalized 88.56 88.33 88.31% 88.33%
90.6%

B5

Reinhard 88.44 88.33 88.14% 88.33%
Macenko 91.80 91.67 91.53% 91.67%

Nonnormalized 92.49 91.67 91.56% 91.67%
90.6%

B6

Reinhard 92.65 91.67 91.67% 91.67%
Macenko 92.46 91.67 91.68% 91.67%

Nonnormalized 93.54 93.33 93.39% 93.33%
92.2%
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positives (as shown in (6)). As expected, the EfficientNet-B2
model shows consistent high sensitivity throughout all four
classes; however, it is less sensitive toward the in situ car-
cinoma class. *e EfficientNet-B4 and -B5 return the lowest
sensitivity to all four classes but especially to the non-
carcinoma classes. *e sensitivity toward the carcinoma
class must be maximized, as an incorrect prediction of this
tissue could lead to misdiagnosis and severe consequences.
Aresta et al. [14] state that the benign class affects the
performance of the networks due to the structural similarity
with normal tissue. *is class contains more morphological
variability than the others, which translates to increased
difficulty in learning discriminative features. *is statement
is consistent with the results reported in this study, as the
benign class typically returns the lowest sensitivity relative to
the other classes.

4.3.2. Analysis of Accuracy and Loss Curves. *e graphs in
Figure 8 show the accuracy and loss curves for three models:
the EfficientNet-B2, -B4, and -B6 trained with Reinhard-
normalized images. *e curves represent the progress of the
training and validation accuracy and loss during the training
of the models. *ese metrics are recorded per epoch.

In graphs (a) and (b), both curves are very close to each
other. *e evident noise in the curves is caused by the data
augmentation, as no single image is fed into the convolu-
tional neural network twice. In graphs (c) and (d), it is
obvious that the training is proceeding well; however, the
validation accuracy and loss are not. *is indicates that the
B4 architecture is learning features adequately but it is not
able to generalize at the same level. Hence, the validation loss
curve is extremely noisy and does not fit perfectly. Finally, in
graphs (e) and (f), the architecture clearly has difficulty
learning the distinguishing features.*e training curve in (e)
does not increase at the same rate that (a) and (c) do.
Similarly, in (f ), the validation loss does not descend below
0.2 as it does for the B2 and B4 models in (b) and (d),
respectively. A possible reason for the validation loss curve
being below the training loss curve in (f) is that the ar-
chitecture finds the validation set to be unrepresentative of

the entire dataset and easier to predict than the training set
[52].

Figure 9 shows the confusion matrices corresponding to
the graphs in Figure 8. From these matrices, it can be seen
that the larger models do not predict the noncarcinoma
classes well. *is indicates that the larger models do not
learn the features from the normal and benign classes well.

4.3.3. Comparison with Previous Approaches. *e results of
this study must be compared with similar approaches to
understand the effect of using the EfficientNets instead of
other architectures. Table 7 summarizes the pretrained ar-
chitectures used in previous approaches and the accuracies
obtained for four-class, image-wise classification. It is worth
noting that, among the architectures listed in this table, the
EfficientNet-B2 has the lowest number of parameters (ap-
proximately 8 million) and is computationally cheaper than
the other approaches, as it is a lightweight model. *e
ResNet-50 and Inception-v3 networks also perform well on
this dataset, and both architectures have around 23 million
parameters. On the other hand, the VGG16 and VGG19
architectures have over 100 million parameters and produce
inferior results. *is shows that smaller architectures pro-
duce higher accuracies for this dataset.*e results prove that
transfer learning with the EfficientNet-B2 yielded superior
results in comparison to other architectures. Both the
Reinhard stain normalization technique and Macenko stain
normalization technique yielded satisfactory results on the
EfficientNet-B2.

4.3.4. Challenges with 9is Approach. *e major challenge
faced in these experiments was combatting overfitting. Due
to the size of the dataset, overfitting on the large architec-
tures was ensured. Incorporating data augmentation tech-
niques to increase the number of unique samples that the
CNN would see was not sufficient, so other forms of reg-
ularization had to be explored. *ese forms include dropout
layers, early stopping, and model checkpointing. *e ap-
propriate dropout rate was found through a grid search,

Table 6: Specificity (spec.) and sensitivity (sens.) of the EfficientNet models.

Model
Normal Benign In situ Invasive

Spec. (%) Sens. (%) Spec. (%) Sens. (%) Spec. (%) Sens. (%) Spec. (%) Sens. (%)
B0 (R) 93.33 93.33 87.0 93.33 100 6.7 93.75 100
B1 (R) 92.86 86.7 93.75 100 3.3 93.3 100 100
B2 (R) 93.5 100 100 100 00 93.3 100 100
B3 (M) 100 6.67 86.67 86.7 93.75 100 93.75 100
B4 (R) 100 6.67 92.86 86.7 83.33 100 3.33 93.3
B5 (N) 100 0.00 92.86 86.7 83.33 100 93.75 100
6 (N) 93.33 93.33 87.50 93.33 93.3 93.33 100 93.33

Table 5: *e average accuracy results of the stain normalization techniques, Reinhard and Macenko.

Stain normalization technique Accuracy (avg)
Reinhard 92, 86%
Macenko 93, 10%
Nonnormalized 91, 90%
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Figure 8: Noteworthy accuracy and loss graphs: (a) EfficientNet-B2 Reinhard accuracy graph; (b) EfficientNet-B2 Reinhard loss
graph; (c) EfficientNet-B4 Reinhard accuracy graph; (d) EfficientNet-B4 Reinhard loss graph; (e) EfficientNet-B6 Reinhard accuracy
graph; (f ) EfficientNet-B6 Reinhard loss graph.
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along with optimal batch size and number of dense layers.
Alternative loss and activation functions were investigated
but contributed more to overfitting and unstable learning.
ReLU was chosen as the activation function for this network
as it is computationally efficient, is simple, and has been
empirically proven to work well [53].

4.3.5. Limitations of the Study. *e main objective of this
research was to observe the ability of EfficientNet archi-
tecture to classify the images of the ICIAR2018 dataset into
four classes: normal, benign, invasive carcinoma, and in situ
carcinoma. However, classifying the images into the groups
carcinoma and noncarcinoma is valuable and helpful pursuit
and should return improved accuracies [5, 17]. *is binary
classification requires the efficient extraction of local features
in the images. *e architectural additions proposed in this
study perform well in extracting global features for the
multiclass classification but do not perform equally in the

binary classification. A reasonable explanation for this is that
the loss of information caused by resizing images translated
to the network having difficulty in locating discriminative
local features.

5. Conclusion

*e EfficientNet family is a set of state-of-the-art con-
volutional neural networks that achieved preeminent results
on established image datasets by carefully balancing the
crucial dimensions in a network such that accuracy and
efficiency were maximized. *e field of medical image
analysis suffers from a paucity of publicly available data,
which results in researchers having to utilize small and,
often, unbalanced datasets. Transfer learning techniques
offer support in this area by enabling the reuse of generic
features from large source datasets for small target datasets.

In this research, the application of seven versions of
EfficientNets with transfer learning for breast cancer his-
tology image classification was investigated. Transfer
learning was employed in the form of fine-tuning. *e
experimental results confirm that this architecture was able
to effectively extract and learn the global features in an
image, such as the tissue and nuclei organization. *ese
features were then used to classify an image into four classes:
normal, benign, invasive carcinoma, and in situ carcinoma.
Among the seven models tested, the EfficientNet-B2 ar-
chitecture which has approximately 8 million parameters
produced superior results with an accuracy of 98.33% and
sensitivity of 98.44%. *e results achieved showed that the
number of feature maps and the number of parameters (8.0
million) for EfficientNet-B2 are optimum for the research
problem in question. Furthermore, the effects of two dif-
ferent stain normalization techniques were observed, and
the outcomes were compared to the use of nonnormalized
images. From the results of the experiments, no specific stain
normalization proved to be superior to the other. Instead,
the smaller models performed better with the Reinhard
technique, and the larger models performed better with no
stain normalization.

For future work, considering the results of this research,
it would be interesting to observe the impact of an ensemble
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Figure 9: Confusion matrices for the three models: (a) EfficientNet-B2; (b) EfficientNet-B4; (c) EfficientNet-B6.

Table 7: Comparison with previous approaches using pretrained
architectures for classification of the ICIAR2018 dataset.

Reference Architecture Stain
normalization Accuracy

Nawaz et al. [3] AlexNet Macenko 81.25%
Ferreria et al.
[20]

Inception-
ResNet-v2 None 90%

Kassani et al.
[21] VGG16 Macenko 83%

Reinhard 87%
Kassani et al.
[21] VGG19 Macenko 80%

Reinhard 84%
Kassani et al.
[21]

Inception-
ResNet-v2

Macenko 90%
Reinhard 88%

Kassani et al.
[21] Xception Macenko 91%

Reinhard 94%
Kassani et al.
[21] Inception-v3 Macenko 90%

Reinhard 90%
Golatkar et al.
[50] Inception-v3 Vahadane 85%

Vesal et al. [51] Inception-v3 Reinhard 97.08%
Vesal et al. [51] ResNet-50 Reinhard 96.66%
Our approach EfficientNet-B2 Reinhard 98.33%
Our approach EfficientNet-B2 Macenko 96.67%
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of EfficientNets for this application. Furthermore, the
possibility of these lightweight architectures performing well
on other histology image datasets such as PatchCamelyon
would be worth exploring [54]. Since multistage transfer
learning has proved to be advantageous [55], investigating
this technique for breast cancer histology images may
produce similar enhanced accuracies.*erefore, this is also a
path worth pursuing. Lastly, we expect to explore whether
the proposed model is suitable for incremental learning.

Data Availability

*e data used to support the findings of this study are in-
cluded within the article.
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