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ABSTRACT Deep learning techniques have attracted much attention in the radar automatic target recog-
nition. In this paper, we investigate an acceleration method of the convolutional neural network (CNN) on
the field-programmable gate array (FPGA) for the embedded application of the millimeter-wave (mmW)
radar-based human activity classification. Considering the micro-Doppler effect caused by a person’s body
movements, the spectrogram of mmW radar echoes is adopted as the CNN input. After that, according to
the CNN architecture and the properties of the FPGA implementation, several parallel processing strategies
are designed as well as data quantization and optimization of classification decision to accelerate the CNN
execution. Finally, comparative experiments and discussions are carried out based on a measured dataset
of nine individuals with four different actions by using a 77-GHz mmW radar. The results show that the
proposed method not only maintains the high classification accuracy but also improves its execution speed,
memory requirement, and power consumption. Specifically, compared with the implementation of the same
network model on a graphics processing unit, it could achieve the speedup of about 30.42% at the cost of
the classification accuracy loss of only 0.27%.

INDEX TERMS Human activity classification, millimeter-wave radar, convolutional neural network, field-
programmable gate array, acceleration.

I. INTRODUCTION
Millimeter wave (mmW) radars are an emerging and promis-
ing technique in sensing systems. They generally operate
from about 30 GHz to 300 GHz [1]. Although severe atmo-
spheric attenuation limits their usefulness involved in the
long-range propagation, the millimeter-level waves of signals
provide some noticeable advantage in relatively short-range
sensing systems on the Earth. First, small components of
mmW radars are beneficial for the miniaturization of equip-
ment. For example, since the antenna’s physical aperture
is approximately proportional to its gain and square of
wavelength, mmW radars allow a small-size yet high-gain
antenna. Second, large bandwidth, e.g., 4 GHz [2], is avail-
able in mmW radars. It helps enhance their resolution and
accuracy performance in the range measurement. Third,
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the short wavelength means the high Doppler sensitivity,
which may improve their capabilities in targets’ macro-
and micro-motion analysis. Furthermore, the fast develop-
ment of compound semiconductor technology in recent years
advances and affords the implementation of mmW radar
systems on chip. They have attracted much attention in many
civilian applications, such as non-contact controlling devices
[3], driver assistant systems [4]–[7], foreign objects debris
detection [8], and so on.

The automatic target recognition is a desired capability
in modern radars. It is well-known that the human activity
classification is one of hot topics because of its wide involve-
ment in a variety of radar applications [9]–[11]. Chen et al.
introduce the radar micro-Doppler (mD) effect in the human
identification [12], which represents the frequency modula-
tion in radar echoes caused by micro-motions of targets, e.g.,
human gait, wheel rotation, and so forth. On the basis, a vari-
ety of radar mD features are extracted for the classification of
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different human activities and the estimation of total energy
expenditure [13], [14]. In [15], a Bayesian classifier is given
to distinguish between humans and vehicles by using radar
mD signals. With the success of deep learning techniques in
computer vision, they have becomemuch popular in the radar
mD based classification of human targets over past few years.
Such methods are able to automatically find useful features
instead of the handcrafted feature extraction in traditional
approaches. A deep convolutional neural network (CNN) is
presented in [16] for both human detection and activity clas-
sification. In [17], a Bayesian learning method is employed to
optimize the CNN architecture in the human activity classi-
fication with mD radar signals. The fusion of time-frequency
distribution and range map of radar mD signals is used as
inputs of stacked autoencoders for the fall detection [18].

It should be noted that most of previous deep learning
based studies rely on the graphics processing unit (GPU)
hardware. However, for their implementation in embedded
systems, field programmable gate arrays (FPGAs) are the
favorable platform nowadays owing to the small size, low
power consumption, parallel processing, public availabil-
ity, and so forth. Different from GPU, the optimization of
computation and memory resource usage as well as fixed
point arithmetic operations with restricted bitwidth would be
important issues in the acceleration of deep learning models
on FPGAs. In [19], a CNN accelerator on FPGA is designed
for the ImageNet classification. The dynamic-precision data
quantization and the singular value decomposition are used
to reduce computation burden and memory footprint, respec-
tively. A systematic design space exploration method is pro-
vided in [20] tomaximize the throughput of anOpenCL based
FPGA accelerator for CNN models. In [21], a CNN architec-
ture is designed for the latency-centric optimization on FPGA
by using the weights reloading transformation. In this paper,
considering the characterization of time-frequency represen-
tation of human mD signals, a FPGA based CNN accelera-
tion method is proposed for the human activity classification
by using mmW mD signals. Different from previous work,
it explores both the computation procedure of CNN and
the pipelining technique on FPGA to improve the execution
speed in the forward propagation through the network. In par-
ticular, several parallel processing schemes are provided for
the computation implementation involved in channels and
layers of the CNN, respectively. They help improve the speed
of the network on FPGA by reducing the waiting time and
caching time.

This paper is organized as follows. Section II briefly intro-
duces the time-frequency representation of human mD sig-
nals in the mmW radar with frequency-modulated continuous
wave (FMCW) waveforms. Section III describes the CNN
architecture with forward-propagation procedure. The accel-
eration method of CNN based the human activity classifica-
tion on FPGA is presented in Section IV. Experiments and
result discussion using measured data at 77 GHz are carried
out to validate the proposed method in Section V. Section VI
gives the conclusion.

II. MICRO-DOPPLER SPECTROGRAM
IN FMCW MMW RADAR
Radar mD features characterize the time-varying frequency
modulation of target’s micro-kinematics in received echoes.
In addition, due to their uniqueness for different targets with
micro-motions [22], the time-frequency representation of mD
signals could offer some advantage in the human activity clas-
sification. Especially in the case of mmW radars, their short
wavelength, which may cause wide dynamic range of mD
frequency corresponding to human gait patterns, gives the
benefit of mD measurement in the time-frequency domain.

Let us consider the linear FMCW waveform with
sawtooth-shaped frequency sweep, which is referred to as
FMCW for simplification if not especially noted in the paper.
The transmitted FMCW signal can be expressed as
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where τ is the fast time, T is the sweep period, fc is the carrier
frequency, ρ is the frequency sweep rate, ϕ0 is the initial
phase, and rect(·) is the unit rectangular window function
with the width of 1. Assume that the instantaneous distance of
any point scatterer on the human body from the radar is R(t),
where t is the slow time. Then the received FMCW signal is
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where A is the amplitude, and c is the speed of light.
The amplitude fluctuation is ignored herein to simplify the
analysis.

Using the stretch processing [23], we can obtain the beat
signal as
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where BW = ρT is the bandwidth, and the constant phase
term θ0 is given by

θ0 = πBWT − 2π fcT (4)

It should be noted that (3) is time divided into two parts
according to different intervals of the fast time in unit rect-
angular window functions. On the basis, we take the fast
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Fourier transform (FFT) of signal samples in each of sweeps
with respect to τ successively, and the result is denoted by
Ybeat (fτ , t). Since the mmW radar range for human target is
generally nomore than hundreds ofmeters, the quadratic term
and the second part in (3) could be omitted in Ybeat (fτ , t).
It can be found that for a given slow time t0, the maximum
amplitude of |Ybeat (fτ , t0)| appears at

fτ_peak (t0) =
2ρR (t0)

c
(5)

It indicates that the target distance at the slow time t is
estimated as cfτ_peak

/
(2ρ).

When there is no human body’s translational motion or
after compensation for it, we could obtain the baseband signal
within the given range gates in Ybeat (fτ , t) as

yibase (t) = Ai ·
[
T − 2

R0 + Rimd (t)
c

]
· exp

{
j2π

[
2fc
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c

−2
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]}
(6)

where R0 and Rimd (t) are radial distances of the human’s
geometric center from the radar and his i-th body part, respec-
tively, and the amplitude Ai is related to the radar cross
section of the body part. For the human gait measurement by
using mmW radars, T � 2[R0 + Rimd (t)]

/
c always holds.

Therefore, the baseband echoes from the complete human
body micro-motion could be approximated as

ybase (t) ≈ T
K∑
i=1

Ai exp
{
j
[
4π fcRimd (t)

c
+ ϕ0

]}
(7)

where K denotes the number of human body parts in some
corresponding kinematic models, and ϕ0 = 4π fcR0

/
c. More-

over, different from the radial distance, the instantaneous
Doppler shift is proportional to the carrier frequency besides
its dependence on the aspect angle of humanmoving direction
from the radar line of sight (LOS). It indicates that the high
carrier frequency of mmW radars may mitigate the influ-
ence of aspect angles close to 90◦ to some extent. There-
fore, we shall take advantage of high Doppler sensitivity
in mmW radars for the human activity classification. Using
the short-time Fourier transform (STFT), the spectrogram of
baseband echoes could be given by [24]

∣∣TF (t ′, f )∣∣ =
∣∣∣∣∣∣
+∞∫
−∞

ybase (t)w
(
t − t ′

)
e−j2π ftdt

∣∣∣∣∣∣ (8)

where w(t) denote the window function. Equation (8) actu-
ally presents a mapping process of mD signals from the
one-dimensional time domain to the two-dimensional time-
frequency domain by means of a sliding time window. Since∣∣TF(t ′, f )∣∣ indicates the time-varying mD frequency modula-
tion caused by human gaits, the spectrogram is used as input
to the CNN for human activity classification.

III. CNN ARCHITECTURE AND ITS COMPUTATIONAL
WORKLOAD
TheCNN is one of themost outstanding deep learningmodels
in the object recognition. It is structured as a pipeline of
layers. From the network architecture viewpoint, the CNN
applied in the classification generally consists of convo-
lutional layer (Conv), pooling layer, activation function,
fully connected layer (FC), and classifier. Some linear and
non-linear processing involved in successive groups of these
layers is performed for mapping the input spectrogram to a
one-dimensional feature space. On the basis, a classifier is
used to make the prediction of its category. It should be noted
that there are two directions of information flow in CNN,
namely, backpropagation in training and forward propagation
in test. Since the proposed acceleration method of FPGA
based CNN focus on the test phase, we briefly introduce the
computation workload theoretically involved in its forward
propagation as follows.

A convolutional layer always contains a few two- or
three-dimensional kernels for the convolution operation with
corresponding input. In this study, the classical square kernel
is utilized herein. Let sizes of input data and kernels of the
j-th convolutional layer be Mj × Nj × Lj and Kj × Kj ×
Lj, respectively. Especially for the first convolutional layer,
Lj = 1 depending on the data dimension of mD spectrogram.
Hence, the output of the convolutional layer in the case of
stride 1 can be given by

DConvO
j (m, n, h) =

Lj∑
l=1

Kj∑
q=1

Kj∑
p=1

wjh (p, q, l)× DConvI
j

× (m+ p, n+ q, l)+ bConvjh (9)

where wjh denotes the h-th kernel of the j-th convolutional
layer, DConvI

j and DConvO
j are its input and output data, and

bConvjh is the bias parameter. Assume that there existHj kernels
in the j-th convolutional layer, namely that the number of
channels in this layer is Hj. Considering the distribution of
mD signals in spectrogram and feature maps as well as com-
putation efficiency, no zero padding is used herein. Therefore,
the dimensionality of output DConvO

j of the j-th convolutional
layer is (Mj − Kj + 1) × (Nj − Kj + 1) × Hj. Accordingly,
the amount of multiplication and addition required in the j-th
convolutional layer is

O (Conv)=2Kj × Kj×Lj×
(
Mj − Kj + 1

)
×
(
Nj − Kj + 1

)
× Hj (10)

An activation function may define a nonlinear mapping
from its input to output. The widely-used rectified linear
unit (ReLU) [25] and Hard Tanh [26] are adopted herein
after convolutional layers and the first fully connected layer,
respectively, because of its two merits: 1) the mitigation of
gradient vanishing problem in training [27]; 2) computation
efficiency. Suppose that the dimensionality of input to the
activation function isU . According to properties of these two
activation functions, it only involves comparison operations
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in the amount of {
O (ReLU) = 1× U
O (HT) = 2× U

(11)

A pooling layer performs the downsampling to ReLU
results. It helps reduce the size of feature map to alle-
viate computational burden for the following layers, and
increase the robustness of feature extraction against its trans-
lation to some extent. As to the three-dimensional data after
the multi-channel convolution and ReLU, i.e., DReLUO

j =

ReLU(DjConvO), the pooling operation is employed to the
ReLU result of every submatrix from each of channels in the
j-th convolutional layer. In this work, we use the 2 × 2 max
pooling, which could be expressed as

DPLO
j (m, n, h) = max

[
DReLUO
j (2m− 1, 2n− 1, h) ,

DReLUO
j (2m, 2n− 1, h) ,

DReLUO
j (2m− 1, 2n, h) ,

DReLUO
j (2m, 2n, h)

]
(12)

We can see that the max pooling layer require some compar-
ison operations, and their number is

O (PL)=3×
⌊
Mj − Kj + 1

2

⌋
×

⌊
Nj − Kj + 1

2

⌋
×Hj (13)

where b·c denotes the floor function.
A fully connected layer actually makes the matrix multi-

plication as well as the addition of bias. Denote the FC input
vector by DFCI . The equation of this layer is given by

DFCO
= vDFCI

+ bFC (14)

where DFCO is the FC output vector, v is the weight matrix
in this fully connected layer, and bFC is the corresponding
bias parameter vector. Assume that dimensionalities of DFCI

andDFCO areUFCI andUFCO, respectively. Then the amount
of multiplication and addition required in the fully connected
layer is

O (FC) = 2× UFCI
× UFCO (15)

The softmax is a normalized exponential function defined
by [28]

ηk = exp
[
DFCO (k, 1)

]/UFCO∑
j=1

exp
[
DFCO (j, 1)

]
(16)

It is used herein as a classifier, and converts output values
of the last fully connected layer to the form of probabilities
corresponding to each class of human activities.

IV. OPTIMIZED IMPLEMENTATION OF CNN ON FPGA
A. QUANTIZATION
Nowadays the development of FPGA technique has allowed
more digital signal processor (DSP) slices available on chips.
However, many of them still work in the fix-point mode,
and computation resources as well as on-chip memory are

still limited. It may result in the low efficiency or even
incapability of executing traditional CNNs on the FPGA sys-
tem. Therefore, considering the bitwidth constraint of FPGA,
we apply a series of quantization strategies to different types
of data used in the CNN model. The 16-bit fixed-point num-
ber representation is taken herein for feature maps and weight
parameters according to a reasonable compromise between
precision and hardware efficiency [29].

First, the spectrogram is normalized to the interval [0, 1].
Due to the non-negativity of its values, quantized results
of the input data of CNN on FPGA can be represented by
1 integer bit and 15 fraction bits as

Dq_TF =

⌊
Dn_TF × 215

⌋
(17)

where Dn_TF is the normalized spectrogram of radar mD
signals.
Second, it is found that weight values of the network model

yield −1 < αwt < 1. Thus we take 1 bit for the sign and
15 bits for the fractional part in the quantization of weights,
namely,

αq_wt =
⌊
αwt × 215

⌋
(18)

Third, considering the variation of inter-layer data,
the dynamic fixed-point quantization is used for featuremaps.
As stated in Section III, these inter-layer data undergo multi-
plication and addition in the last convolutional layer as well
as the comparison involved in the last activation function and
pooling layer. We know that the multiplication may change
the bitwidth of fractional part in the data, the addition may
change the range of data values, and the activation function
could have impact on both. Moreover, when the bitwidth of
data is larger than 16 bits, they are truncated according to
maximum of cell values in the corresponding feature maps.
This guarantees the preservation of all the integer bits in
the data.

Last but not least, biases in convolutional and fully
connected layers are employed in the addition operation.
As shown in (9) and (14), the integer and fraction bits of
bias values should be aligned with those of multiplier output,
respectively. Therefore, biases are quantized with dynamic
configuration.

B. PARALLELIZATION PROCESSING
As a logic device, one advantage of FPGA is the ability of
highly parallel computing. In order to explore it for the FPGA
based CNN accelerator in human activity classification, four
parallel processing strategies are offered as follows according
to data flow and computation patterns in the network model.

1) INTER-CHANNEL PARALLEL COMPUTING
Within a convolutional layer, multiple channels share the
same input data, and those two- or three-dimensional con-
volution kernels of each channel are independently applied.
Therefore, the multi-channel convolution between input data
and kernels could be executed in parallel as shown in Fig. 1.
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FIGURE 1. Inter-channel parallel computing in the convolutional layer.
Dotted-line cuboids in each column denote the shared input data used
for the convolution in parallel, and circled times signs denote convolution
operations.

FIGURE 2. In-channel parallel computing in the convolutional layer.

For a given convolutional layer, a series of kernels are con-
voluted with the identical input data separately to achieve the
speedup of computation.

2) IN-CHANNEL PARALLEL COMPUTING
In each channel of a convolutional layer, the depth of kernels
is accordant with that of its input data. Based on the pro-
cess in (9), two parallel schemes, including data parallelism
and computation parallelism, are used in the implementation
of in-channel convolution. Without loss of generality, let
us consider a channel of some middle convolutional layer
in the CNN, as shown in Fig. 2. The three-dimensional
data are passed in parallel from the previous layer to the
current convolutional layer. Then all the two-dimensional
data matrices in width and height dimensions are simulta-
neously convoluted with corresponding kernel slices along
the depth direction. Finally, parallel addition of matrices of

FIGURE 3. Timeline illustration of convolutional and pooling layers
execution in the pipeline fashion for one spectrogram input.

these results as well as the bias parameter is made to produce
the output of the channel.

3) INTER-LAYER PARALLEL COMPUTING
From the overall viewpoint of CNNmodel, it could be viewed
as a time series structure. The spectrogram of mmW radar
mD signals from human targets is transferred and handled
sequentially between layers. However, based on the compu-
tation patterns in CNN, we could see that there is actually no
need to start the execution of some layer until the completion
of the previous one. Thus the running of the CNN model
is organized in the pipeline fashion. For example, each step
of the convolution operation in the convolutional layer only
requires a small data patch, which has the same size as
the corresponding kernel. The operation in the convolutional
layer would be launched when the data patch is produced
from the previous one. A similar process is also employed
to the implementation of pooling layers. Fig. 3 shows work-
ing and waiting time in the execution of convolutional and
pooling layers for one spectrogram input. It indicates that
such inter-layer parallel computing helps reduce the overall
execution time.

4) CONVOLUTION GROUP PARALLEL COMPUTING
The input of pooling manipulation comes from activation
results, whose dimensions are identical with the output of
previous convolutional layer. According to pooling rules,
the cache before the pooling layer may be not needed any
more if the data cluster of a pooling region is provided in
parallel. On the basis, a convolution group parallel computing
is designed to operations in one channel for the optimization
of caching usage and time. Fig. 4 illustrate one step process
of this parallelism by taking a 2 × 2 pooling as an example.
A group of 4 multiplication as well as the addition of bias in
one step of the channel in the convolutional layer is calculated
at the same time, and results are passed through activation
function and pooling layer in parallel.

C. OPTIMIZATION OF CLASSIFICATION DECISION
The softmax would transform output of the last fully con-
nected layer into some numerical representations in the form
of probability by using (16). In the classification application,
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FIGURE 4. Illustration of convolution group parallel computing by taking
a 2× 2 pooling as an example. Dotted-line cuboids denote shared kernels
for the multiplication in parallel.

FIGURE 5. Logic diagram of the classification decision in the case of
k = 1, 2, 3 and 4.

for a given spectrogram of mD signals, the class label of
human activity may be predicted corresponding to the maxi-
mum value of probabilities ηk . It should be noted in (16) that
ηk is monotonically increasing with respect to DFCO(k, 1).
It indicates that the node with maxima of DFCO(k, 1) also
corresponds to the same prediction of class label as using
maxima of ηk . Therefore, we could get rid of the softmax
function in the classification decision. Then the class label for
an input spectrogram would directly be determined by com-
paring element values of the vector DFCO. Fig. 5 shows the
logic diagram of the optimized classification decision when
dimensionality of the last fully connected layer output is 4×1.
It is obviously beneficial for the computation reduction by
removing the softmax step.

V. EXPERIMENTS AND DISCUSSIONS
A. DATASET
To validate the proposedmethod, somemeasuredmmW radar
data from a variety of human activities are collected. We use
a Texas Instruments AWR1443 automotive radar sensor [30],
which operates at about 77 GHz. The effective bandwidth of
radar signals is about 1.536 GHz. Repeat measurements of 9
single persons are carried out. Every individual is positioned
3 meters in front of the mmW radar, and performs 4 actions
in place, including walking, jogging, jumping, and walking

TABLE 1. Numbers of records in the dataset used for experiments.

TABLE 2. Configuration and computational workload of the CNN model.

FIGURE 6. MD spectrogram samples of the person 1 with different
actions in place at the aspect angle of 0◦. (a) Walking. (b) Jogging. (c)
Jumping. (d) Walking while holding a stick.

while holding a stick, respectively. In addition, two aspect
angles of human gaiting direction, i.e., 0◦ and 90◦, are con-
sidered in every action case. Taking into account the normal
periodicity of these human activities, the measurement dura-
tion is 2.1 s. The dataset totally consists of 11520 records,
as listed in Table 1.

In the STFT processing, a 51.2 ms Hamming window is
applied. It slides forward by 20 ms at a time until 100 steps
are reached. Hence, according to (8), the size of amD spectro-
gram, which acts as the CNN input, is 256×100. Fig. 6 shows
some mD spectrogram samples of the person 1 with different
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TABLE 3. Classification accuracy of the CNN model on human activities with various training and test data sets.

actions in place when he behaves facing toward the radar
LOS. We can see that the differences of time-varying mD
frequency herein are obvious in the time-frequency domain
owing to his normal movements during the measurements.
The influence of individual activities on the classification
performance is also discussed later in detail.

B. CLASSIFICATION PERFORMANCE ANALYSIS OF THE
CNN MODEL
For learning parameters of the CNNmodel, a training dataset
is generated by using some of measured mmW radar data
from 7 out of the 9 individuals performing 4 actions in place.
The other data from the remaining 2 individuals are used
as the test dataset. Table 2 shows the configuration of CNN
model used in the work for the human activity classification
as well as computational workload for each layer. The opera-
tions summarized herein include addition, multiplication and
comparison as stated in Section III.

Considering potential impact of training dataset composi-
tion, we make a series of experiments with possible groups
of training data. Classification results in these cases are listed
in Table 3. The value in each cell suggests the classification
accuracy of human activities on a test dataset of two target
persons in corresponding row and column while spectro-
grams from the other seven persons are used as the training
data. We can see that most of results exceed 80% except the
group case of persons 3 and 8, and averaged accuracy over
all the cases could achieve about 88.08%. It indicates that
the CNN model for mmW radar mD based human activity
classification is adaptive to the change of training data sets to
some extent.

We would further study the worst case, where data from
persons 3 and 8 makes up the test set while the other data are
taken as the training set. Tables 4 and 5 elaborate the classifi-
cation accuracy of four activities for both target persons in the
case.With the comprehensive consideration of Table 3, it may
be inferred that jogging and jumping in place performed by
persons 3 and 8 have much resemblance, but are dissimilar
to those of other persons. On the other hand, there is actually
little difference of the two actions from both persons 3 and
8 in the data collection procedure, as shown in Fig. 7.

TABLE 4. Confusion matrix of classification results for target person 3 in
the worst case.

TABLE 5. Confusion matrix of classification results for target person 8 in
the worst case.

C. ACCELERATION PERFORMANCE ANALYSIS OF THE
CNN IMPLEMENTATION ON FPGA
According to Section IV.A, a variety of quantization strate-
gies are used for the representation of spectrogram input data,
inter-layer input data (i.e., feature maps), as well as weight
and bias parameters, as shown in Table 6. Table 7 presents
the memory requirement of different types of data in the
CNN before and after quantization. We can see that memory
resources, most of which are consumed by weight parameters
and inter-layer input data, are approximately reduced by a
half after quantization. Due to the small number of bias
parameters, they are designed to retain the same bitwidth as
original ones while the dynamic configuration is still applied
for the purpose of data bit alignment.
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FIGURE 7. MD spectrogram samples of persons 3 and 8 performing
jogging and jumping in place, respectively. (a) Jogging in place from the
person 3. (b) Jumping in place from the person 3. (c) Jogging in place
from the person 8. (d) Jumping in place from the person 8.

TABLE 6. Data quantization used for FPGA based CNN accelerator.

TABLE 7. Comparison of memory requirement before and after
quantization.

To validate the proposed acceleration method for mmW
radar mD based human activity classification, we use the
Xilinx ZynqXC7Z045 board [31] for the performance assess-
ment. It is implemented using Vivado HLx 2016.4 design
tools on the Linux operation system, and the timing constraint
is 150MHz. Fig. 8 shows optimized results of cache usage
in convolutional and pooling layers by utilizing inter-layer
parallelism and convolution group parallelism. There is a
slightly higher consumption of on-chip cache in convolu-
tional layers when the convolution group parallelism is intro-
duced, because more cached feature map data are required

FIGURE 8. Cache usage in convolutional and pooling layers with different
parallelism.

TABLE 8. Utilization of logic elements in the FPGA based CNN accelerator.

TABLE 9. Averaged execution time of proposed CNN accelerator on FPGA
for MMW RADAR MD based human activity classification.

for multiple convolution operations in parallel, as illustrated
in Fig. 4. However, more benefit is obviously obtained from
such design, namely that no cache is needed any more in
max pooling layers. It means that more efficient usage of
cache would be achieved from the overall network perspec-
tive by employing both inter-layer and convolution group
parallelism. In addition, considering the limitation of DSP
resources on the hardware as well as the pipeline fashion
between layers, 16 groups of convolution parallel computing
are used in the first convolutional layer. Then 4 groups occur
in the second and third convolutional layers. It should be
emphasized that some waiting time arises in the third con-
volutional layer in order to buffer enough feature map data
for its convolution group parallel computing. Table 8 sum-
marize logic resources on FPGA used for the proposed CNN
accelerator.

On the basis, a number of comparative experiments are
carried out to further verify the effectiveness of proposed
acceleration method. First, Table 9 lists averaged computa-
tion time of every convolutional layer and the entire CNN
network when accelerating it on the Xilinx FPGA device.
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TABLE 10. Comparison of acceleration performance in FPGA based CNN accelerators.

TABLE 11. Comparison of the CNN acceleration on FPGA and GPU.

It is obvious that there exists much runtime overlap between
layers as a result of pipeline processing and multiple par-
allelism strategies. Hence, the CNN execution by using the
proposed acceleration method is considerably faster than
the serial computing for human activity classification based
on mmW radar mD signals. Second, we further evaluate
its acceleration performance from the perspective of FPGA
implementation and in comparison with some related existing
work, as shown in Table 10. Due to the difference of applica-
tion task, network complexity and FPGA devices with vary-
ing available resources, assessment metrics, including giga
operations per second per DSP (GOPs/DSP), GOPs per kilo
lookup tables (GOPs/kLUTs) and GOPs per Watt (GOPs/W),
are preferable for their comparison. We can see that the
proposed acceleration method achieves higher GOPs/DSP,
GOPs/kLUTs and GOPs/W. It indicates that the proposed
accelerator has higher efficiency of FPGA resource usage
than others. Finally, Table 11 summarizes the performance of
CNN acceleration on the Xilinx Zynq XC7Z045 board and
one NVIDIA GeForce GTX 1080 Ti GPU [32], respectively.
The contrast results show that the classification accuracy is
only reduced by 0.27% owing to the fixed-point number
presentation of model parameters and data. However, the pro-
posed FPGA based CNN accelerator is significantly superior
in execution speed and power consumption.

VI. CONCLUSION
In this paper, we present an acceleration method of CNN on
FPGA for the mmW radar based human activity classifica-
tion. First, it takes advantage of the high Doppler sensitivity
ofmmWradar, and thus uses themD spectrogram represented
in the time-frequency domain as the CNN input. Second,
according to the FPGA architecture and the computational
process of CNN model, a series of acceleration designs are
provided and comprehensively implemented. Since convo-
lution layers consume considerable computation resources,
the pipeline parallelism of FPGA is deeply exploited for
those inter- and in-channel operations. Moreover, some data

quantization and classification decision strategies are adopted
herein to further optimize the hardware utilization, memory
requirement and power consumption. Finally, a measured
radar dataset of real human targets is collected with a 77 GHz
FMCW radar for the performance evaluation of the proposed
method. Results based on some general assessment metrics
on FPGA show that it achieves more efficient usage of
the hardware resources. Besides, the proposed acceleration
method on FPGA outperforms that on a NVIDIA GPU by
about 30.42% in the averaged execution time of CNN in test,
and could still reaches the classification accuracy of about
87.81% (i.e., only 0.27% decrease).
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