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Abstract 

The offshore wind energy industry has grown exponentially; globally, there is 12GW of 

installed capacity of offshore wind, of which over 95% has been installed in the past ten years. 

Access and maintenance in offshore wind farms can be difficult and considerably more 

expensive than onshore wind farms. Additionally, with low availability levels and greater 

downtime due to failures, there is a growing interest in the optimisation of operation and 

maintenance (O&M) activities to maximise profitability. 

Traditionally, maintenance activities on critical components and subsystems have deployed 

two maintenance approaches; time-based preventative or corrective. Time-based 

preventative or scheduled maintenance approaches are based on intervening at fixed 

intervals, determined in advance for each component.  Scheduling is based on failure statistics 

such as mean time between failures (MTBF), mean time to repair (MTTR) or mean time to 

failure (MTTF).  These come either from publicly available databases or operational 

measurements. As part of preventive maintenance activities, there are annual services of the 

turbine to replace and maintain any component or assembly based on manufacturers’ 

indications. On the other hand, the corrective maintenance approach involves operating 

equipment until it fails and then restoring it, repairing it, or replacing it.  

Due to conservative estimates regarding the probability of failure, preventive and corrective 

maintenance approaches have financial implications associated with them. In the preventive 

approach, components are frequently replaced before they reach the end of their working 

life. In contrast, corrective maintenance guarantees that the serviceable life of a component 

is maximised, but it is subjected to long downtime, which is expensive regarding energy 

generation loss. Additionally, failure of the component may cause consequential damage to 

other parts of the wind turbine system, resulting in even greater repair costs, downtime and 

loss of revenue.  

A comprehensive literature review has been undertaken in the areas of maintenance, turbine 

reliability, turbine failure modes and causes, physics of failure, condition monitoring 

techniques, and costs.  The limitations and disadvantages of current operation and 

maintenance practices are identified, and new approaches combining the knowledge of the 
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condition of components and historical data are proposed and compared to achieve optimal 

turbine availability and maintenance cost reduction.  

A Failure Modes and Effects Analysis (FMEA) was performed for the functional modes of each 

system, subsystem, assembly and component following the British standard BS EN 

60812:2006. Currently, the most common offshore wind turbine uses three blades, a 3-stage 

gearbox, induction generator and a fully rated power converter.  The Siemens 3.6MW -120 

turbine is selected for this project as an example of this configuration.  The main objectives 

of undertaking this comprehensive FMEA are to identify critical components and their failures 

with significant impact on the wind turbine operation in terms of maintainability, safety and 

availability.  The assessment identified 500 components and almost 1000 failure causes.  The 

most critical assemblies identified in terms of severity, occurrence and undetectability of the 

failure are; the frequency converter, pitch system, yaw system and gearbox. 

The implementation of a condition-based maintenance philosophy, including the 

development of real predictive approaches which estimate the remaining useful life of 

degrading critical components has been analysed by the recent literature.  However, 

developing such capabilities for the critical assemblies identified is a significant technical 

challenge.  This study aims to develop and demonstrate the implementation of a 

methodology and appropriate algorithms to optimise O&M of offshore wind farms, by 

estimating the remaining useful life of critical components with greater accuracy using a 

combination of physics-based models, statistical-based models and data mining approaches. 

A register of trends and likely the main causes of failures of the power converter, gearbox, 

yaw system and pitch system was generated through a thorough literature search and 

participation in conferences and workshops during the project. The main sources of failure of 

the power converter and gearbox have been represented by algorithms and physics-based 

models developed in Python and proprietary software, respectively. These algorithms 

comprise two phases: diagnosis or learning phase using historical data (such as SCADA or 

digital information recorded by condition monitoring systems) and prognosis phase using 

simulated data (using as a basis the wind turbine aero-elastic software FASTv8).  The pitch 

system failure mechanisms were explored using a combination of data mining approaches 

and subject matter expert knowledge.  Examples of approaches investigated and 

implemented include: Support Vector Machine (SVM) to define normal behaviour and K 
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Nearest Neighbour (KNN) to classify new observations regarding operation state (green for 

normal operation, amber for abnormal operation, red for failure).  New observations with 

amber or red colours need to be analysed further, to diagnose potential failure modes using 

a decision tree algorithm with more variables related to the pitch system.  

The goals of developing a well-defined strategy for maintenance interventions and optimised 

management of wind farm logistics are required to effectively improve wind farm availability 

while reducing the cost of operations.  Additionally, a clear identification of uncertainties 

inherent in stochastic processes, necessary for estimating access, failure prognosis and failure 

probabilities is required for operators to make informed decisions.  The final output of this 

work is an O&M cost model which analyses and compares a conventional O&M strategy using 

a combination of preventive and reactive maintenance against an O&M strategy using the 

approaches described above for failure prognosis and diagnosis.  The analysis is performed 

for a fictitious offshore wind farm with one-year operational data.  The results include 

availability, downtime, the cost of repair, loss of production, revenue losses and the hidden 

CO2 emissions of the maintenance activities taking into account a combined probability level 

to account for the uncertainties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 

Acknowledgements 

First and foremost I would like to thank to my lead supervisor Dr Jonathan Shek for his career and 

academic advice and unconditional support. Besides my lead supervisor, I would like to thank to Dr 

Philipp Thies and Dr Erkan Oterkus for their comprehensive comments and hard questions, which help 

me to widen my research and knowledge from several points of views.  

My sincere thanks also go to my industrial supervisor, Peter Davies who provided me an opportunity 

to join their team in a great organisation. In particular, I am grateful to Dr Mark Spring who, besides 

Peter, encourage me to push myself to be a better person and engineer.  

Last but not the least, I would like to thank my all family, especially to my wife Paulina and my sons 

Antonio and Sebastian for supporting me on this process throughout writing this thesis and on any 

aspects of my life. Without their precious support and love, it would not be possible to conduct this 

project.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 

Declaration 

I declare that this thesis was composed by myself and that the material presented, except where 

clearly indicated, is my own work. I declare that the work has not been submitted for consideration as 

part of any other degree or professional qualification. 

 

Signed:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 

Contents 

List of Figures ........................................................................................................................................ 12 

List of Tables ......................................................................................................................................... 15 

Abbreviations ........................................................................................................................................ 17 

Definitions of key terms ........................................................................................................................ 19 

CHAPTER 1 - INTRODUCTION ................................................................................................................ 22 

1.1 Introduction ................................................................................................................................ 22 

1.2 Thesis Background ...................................................................................................................... 22 

1.3 Thesis Description ....................................................................................................................... 24 

1.3.1 Aims...................................................................................................................................... 24 

1.3.2 Thesis Outline ....................................................................................................................... 25 

1.3.3 Publications .......................................................................................................................... 27 

1.4 Thesis contribution to knowledge .............................................................................................. 28 

CHAPTER 2 – LITERATURE REVIEW ....................................................................................................... 29 

2.1 Offshore Wind Turbines – configuration and systems ............................................................... 29 

2.1.1 Components Functionality, Materials and Failure Characteristics ...................................... 31 

2.1.2 Critical Components of an Offshore Wind Turbine.............................................................. 40 

2.1.3 Condition Monitoring Techniques for Offshore Wind Turbines .......................................... 43 

2.1.4 Condition Monitoring using SCADA data ............................................................................. 50 

2.2 Maintenance of Offshore Wind Farms ....................................................................................... 52 

2.2.1 Reliability Centred Maintenance (RCM) .............................................................................. 55 

2.2.2 Spare parts management ..................................................................................................... 58 

2.2.3 O&M Strategy factors .......................................................................................................... 59 

2.2.4 Condition Based Maintenance ............................................................................................. 59 

2.2.5 Fault Prognostic ................................................................................................................... 60 

2.3 Risk Assessment Approach for Offshore Wind Turbines ............................................................ 63 

CHAPTER 3 – FAILURE MODES AND EFFECTS ANALYSIS (FMEA) .......................................................... 65 

3.1 Introduction ................................................................................................................................ 65 

3.1.1 Scope .................................................................................................................................... 66 

3.1.2 Wind Turbine System ........................................................................................................... 66 

3.2 FMEA and FMECA methodology ................................................................................................. 67 

3.2.1 Assumptions and Ground Rules ........................................................................................... 68 

3.2.2 Data sources ......................................................................................................................... 71 

3.2.3 Functional Block Diagram .................................................................................................... 72 

3.2.4 FMEA Worksheet ................................................................................................................. 75 



9 

3.2.5 Ratings .................................................................................................................................. 75 

3.2.6 Analysis Flowchart ............................................................................................................... 78 

3.3 Criticality Analysis ....................................................................................................................... 78 

3.4 Results Analysis ........................................................................................................................... 79 

3.4.1 RPN and Failure Contribution .............................................................................................. 79 

3.4.2 Consequential Damage ........................................................................................................ 86 

3.4.3 Failure Detectability and Criticality ...................................................................................... 87 

3.4.4 Criticality Analysis Results .................................................................................................... 89 

3.4.5 Top 30 chart for failure mechanisms ................................................................................... 91 

3.4.5 Sensitivity Analysis ............................................................................................................... 93 

3.4.6 3D Risk Matrix ...................................................................................................................... 94 

3.4.7 FMEA comparison with European projects ......................................................................... 95 

3.5 Confidence of the Accuracy of the Assigned Ratings (CAAR) ..................................................... 99 

3.6 Conclusion ................................................................................................................................. 102 

CHAPTER 4 – FAILURE PROGNOSIS BASED ON PHYSICS-BASED MODELS .......................................... 104 

4.1 Introduction .............................................................................................................................. 104 

4.2 Prediction methodology ........................................................................................................... 104 

4.2.1 Wind Turbine dynamic integrated system in FASTv8 ........................................................ 105 

4.2.2 Generation of future events for failure prognosis ............................................................. 109 

4.3 Gearbox physics-model ............................................................................................................. 111 

4.3.1 Gearbox failure investigation ............................................................................................. 113 

4.3.2 Physics-based model of the gearbox ................................................................................. 115 

4.3.3 Physics-based model outputs: Gearbox ............................................................................. 121 

4.4 Power converter physics-based model ..................................................................................... 122 

4.4.1 Failure investigation of power converter........................................................................... 123 

4.4.2 Induction generator model ................................................................................................ 124 

4.4.3 Power losses calculation .................................................................................................... 126 

4.4.4 Thermal model ................................................................................................................... 129 

4.4.5 Physics-based model outputs: Power converter ............................................................... 134 

4.5 Conclusion ................................................................................................................................. 136 

CHAPTER 5 – DATA MINING APPROACH FOR THE PITCH SYSTEM...................................................... 138 

5.1 introduction .............................................................................................................................. 138 

5.1.1 Pitch system technology .................................................................................................... 139 

5.1.2 Data mining approach objectives ...................................................................................... 140 

5.2 Data analysis ............................................................................................................................. 141 



10 

5.2.1 Data mining process ........................................................................................................... 141 

5.2.2 SCADA data analysis ........................................................................................................... 142 

5.2.3 Failure investigation outputs ............................................................................................. 145 

5.3 Support Vector Machine (SVM) ................................................................................................ 147 

5.4 Decision Tree Algorithm (DTA).................................................................................................. 150 

5.5 K-Nearest Neighbours (KNN) .................................................................................................... 152 

5.6 Data mining approach outputs ................................................................................................. 154 

5.7 Conclusion ................................................................................................................................. 156 

CHAPTER 6 - O&M COST MODEL ........................................................................................................ 158 

6.1 Introduction .............................................................................................................................. 158 

6.1.2 Objectives ........................................................................................................................... 159 

6.1.3 O&M cost model outline .................................................................................................... 160 

6.2 O&M of offshore wind farms .................................................................................................... 162 

6.2.1 Key offshore wind energy O&M market trends ................................................................. 164 

6.2.2 O&M logistics ..................................................................................................................... 165 

6.2.3 Spare part management .................................................................................................... 168 

6.3 O&M optimization overview ..................................................................................................... 169 

6.4 O&M cost model ....................................................................................................................... 171 

6.4.1 General description ............................................................................................................ 171 

6.4.2 Maintenance classes, repair actions and spare part availability ....................................... 172 

6.4.3 Wind turbine database ...................................................................................................... 175 

6.4.4 Digital sensors .................................................................................................................... 176 

6.4.5 Maintenance strategies ..................................................................................................... 177 

6.4.6 Meteorological conditions ................................................................................................. 181 

6.4.7 Wind turbine power output ............................................................................................... 183 

6.4.8 Economic parameters ........................................................................................................ 187 

6.4.9 O&M cots model outputs .................................................................................................. 189 

CHAPTER 7 – CONCLUSIONS AND DISCUSSIONS ................................................................................ 195 

7.1 General ...................................................................................................................................... 195 

6.2 Conclusions ............................................................................................................................... 196 

Physics-based models ................................................................................................................. 198 

Gearbox ....................................................................................................................................... 198 

Power converter ......................................................................................................................... 200 

Data mining approach ................................................................................................................. 200 

O&M cost model ......................................................................................................................... 202 



11 

6.3 Further work ............................................................................................................................. 204 

FMEA ........................................................................................................................................... 204 

Physics-based models ................................................................................................................. 205 

Data mining ................................................................................................................................. 205 

O&M cost model ......................................................................................................................... 206 

REFERENCES ........................................................................................................................................ 209 

ANNEX ................................................................................................................................................. 220 

Annex 1: FMEA Failure analysis ...................................................................................................... 220 

Annex 2: FASTv8 pre-processors ..................................................................................................... 223 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



12 

List of Figures 

Figure 1. Thesis structure – flow diagram ............................................................................................. 26 

Figure 2. Main parts of a wind turbine.  [21,,22] .................................................................................. 30 

Figure 3. Wind turbine taxonomy  [3] ................................................................................................... 30 

Figure 4. Typical Wind Turbine 3-stage Gearbox [31] .......................................................................... 33 

Figure 5. Gearbox vulnerability map  [31] ............................................................................................ 35 

Figure 6. Gearbox teeth. From healthy tooth (left) to missing tooth (right) ........................................ 35 

Figure 7. Hydraulic unit of pitching system (Turbine VESTAS V39/V4x/V90). [24] ............................... 37 

Figure 8. Example of wind turbine brake system [24] .......................................................................... 38 

Figure 9. Example of a yaw system.[42] ............................................................................................... 40 

Figure 10. Distribution of failures for wind turbine components  [21]. ............................................... 42 

Figure 11. Failure rates across wind turbine sub-assemblies  [45]. ...................................................... 42 

Figure 12. Typical development of a mechanical failure [21]. .............................................................. 46 

Figure 13. Vibration condition monitoring system formed by a data acquisition unit and 

accelerometers (yellow circles) mounted on the drive train and generator. The revolution speed of 

the generator shaft measured by a proximity switch (purple circle). [55] ........................................... 47 

Figure 14. Real time data exchange network structure  [57]. .............................................................. 50 

Figure 15. Maintenance strategies. [64,65] [62][3] .............................................................................. 52 

Figure 16. Corrective Maintenance compared to Scheduled Preventive Maintenance [3]. ................ 53 

Figure 17. RCM stages [66] [63]. ........................................................................................................... 57 

Figure 18. RCM framework [66] [63] .................................................................................................... 58 

Figure 19. Condition based maintenance compared to scheduled and corrective maintenance. [23] 

[23] ........................................................................................................................................................ 60 

Figure 20. Remaining useful life probability distribution [49]. ............................................................. 61 

Figure 21. Prognosis techniques [6] ...................................................................................................... 61 

Figure 22. Wind turbine market trends. ............................................................................................... 67 

Figure 23. Siemens Turbine SWT 3.6 -120. ........................................................................................... 67 

Figure 24. Hierarchical Wind Turbine Structure [84,85] [78,79]. ......................................................... 68 

Figure 25. Wind Turbine System Functional Diagram .......................................................................... 73 

Figure 26. Gearbox Functional Diagram ............................................................................................... 74 

Figure 27. Generator Functional Diagram ............................................................................................ 74 

Figure 28. FMEA procedure .................................................................................................................. 78 

Figure 29. Example of the FMEA spreadsheet. ..................................................................................... 79 

Figure 30. Average RPN per assembly. ................................................................................................. 81 

Figure 31. Average RPN of critical components. ................................................................................... 82 

Figure 32. Failure contribution per assembly. ...................................................................................... 83 

Figure 33. Main failure modes of critical assemblies. ........................................................................... 83 

Figure 34. Families of failure modes and their number of events. ....................................................... 84 

Figure 35. Failure modes and average RPN. ......................................................................................... 85 

Figure 36.Sensitivity Analysis ................................................................................................................ 93 

Figure 37. Sensitivity Analysis with three variables. ............................................................................. 94 

Figure 38. Example of a 3D risk matrix of critical assemblies. .............................................................. 95 

Figure 39. Failure contribution and onshore wind turbine failure rates. ............................................. 96 

Figure 40. Annual failure frequency and downtime per failure of WMEP, LWKF and Swedish survey.

 .............................................................................................................................................................. 97 



13 

Figure 41. Comparison of occurrence and severity values of the FMEA and the Annual failure 

frequency and downtime per failure of WMEP, LWKF, Swedish survey and ReliaWind technical report 

[85]. ....................................................................................................................................................... 98 

Figure 42. Goal decomposition graph ................................................................................................. 100 

Figure 43. CAAR Flow chart. ................................................................................................................ 101 

Figure 44. Normal Turbulence Model (NTM): Turbulence standard deviation [91]. .......................... 107 

Figure 45. Normal Turbulence Model (NTM): Turbulence intensity [91]. .......................................... 107 

Figure 46. Wind field using FASTv8 pre-processor TurbSim [91]. ....................................................... 108 

Figure 47. Discrete example of MCMC, transition graph and matrix. ................................................ 110 

Figure 48. Example of the probability distribution of load cases. ...................................................... 110 

Figure 49. Example of future scenario generation. ............................................................................ 111 

Figure 50. Block diagram of RUL estimation. ...................................................................................... 112 

Figure 51. Vulnerability map of a 5MW 3-stage gearbox  [31]. .......................................................... 114 

Figure 52. 3D view of Kisssys gearbox model ..................................................................................... 119 

Figure 53. Power converter physics-based approach to estimate accumulated damage. ................. 122 

Figure 54. Remaining useful life estimation flow diagram. ................................................................ 123 

Figure 55. Power converter module structural details [107] [98][109] [100]. ................................... 124 

Figure 56. Source of stresses with impact on electronic components [108] [99]. ............................. 124 

Figure 57. Induction machine simplified equivalent circuit [110]. ..................................................... 125 

Figure 58. The circuit for the examination of the IGBT switching and conduction losses [112] [103].

 ............................................................................................................................................................ 126 

Figure 59. IGBT output characteristics. Red lines are used for slope calculation, and blue lines are 

curve fitting approximations [113] [104]. ........................................................................................... 127 

Figure 60.  Diode output characteristics. Red lines are used for slope calculation and blue lines are 

curve fitting approximations [113] [104]. ........................................................................................... 127 

Figure 61. Typical energy losses. e1 and e2 represent slope [113] [104] ........................................... 129 

Figure 62. Static thermal model (Rth) without base plate [109]. ........................................................ 130 

Figure 63. Transient thermal impedance [109,113] [100,104] ........................................................... 131 

Figure 64. Temperature calculation process [109] [100]. ................................................................... 131 

Figure 65. Process to calculate temperatures incorporating ambient temperature in each step [109] 

[100] .................................................................................................................................................... 132 

Figure 66. Dependency of the power cycling value n for IGBT4 modules as a function of the 

temperature cycling amplitude ΔTj and the mean temperature Tjm [109] [100]. ............................. 134 

Figure 67. IGBTs and diode temperature. ........................................................................................... 135 

Figure 68. Probability distribution of the IGBT junction temperature. .............................................. 135 

Figure 69. Three-dimensional analysis of the pitch system using one year of historical data. .......... 139 

Figure 70. Idealised typical hydraulic pith system [121] [111]. .......................................................... 140 

Figure 71. Data mining approach ........................................................................................................ 141 

Figure 72. Turbine with pitch system failure ...................................................................................... 144 

Figure 73. SCADA data and O&M data analysis .................................................................................. 145 

Figure 74. Comparison between healthy turbine and turbine with pitch system failure. ................. 146 

Figure 75. Main findings of the failure investigation. ......................................................................... 147 

Figure 76. SVM data separation with feature space  [16]. ................................................................. 148 

Figure 77. SVM output. ....................................................................................................................... 149 

Figure 78. SVM output analysis. ......................................................................................................... 150 

Figure 79. Decision tree to assign a status vector to the training data. ............................................. 151 



14 

Figure 80. Wind turbine variables relationship  [40]. ......................................................................... 152 

Figure 81. KNN example. ..................................................................................................................... 153 

Figure 82. KNN main output ............................................................................................................... 155 

Figure 83. O&M optimisation tools and outputs. ............................................................................... 159 

Figure 84. O&M cost model outline. ................................................................................................... 162 

Figure 85. Asset integrity management of offshore wind turbines. ................................................... 163 

Figure 86. Maintenance team and logistics [117]. .............................................................................. 166 

Figure 87. Maintenance strategies. .................................................................................................... 168 

Figure 88. Prediction of accumulated damage techniques, accessibility and O&M strategy. ........... 170 

Figure 89. Optimal maintenance costs, turbine availability, distance to port and turbine age [117].

 ............................................................................................................................................................ 171 

Figure 90. Example of the wind turbine database. ............................................................................. 175 

Figure 91. Mean waiting time per month [140] [130] ........................................................................ 183 

Figure 92. Wind speed histogram for one year. ................................................................................. 184 

Figure 93. Siemens 3.6MW power curve [81]. ................................................................................... 185 

Figure 94. Total theoretical maximum energy production per month. .............................................. 187 

Figure 95. Electricity sales price [145] ................................................................................................ 188 

Figure 96. Repair cost breakdown for WT1. ....................................................................................... 193 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 

List of Tables 

Table 1. Number of grid connect turbines in Europe, 2016. [12] ......................................................... 23 

Table 2. Operational performance of four UK round 1 offshore wind farms. [14] .............................. 24 

Table 3. Composites and binders used in manufacturing wind turbine blades [5] .............................. 31 

Table 4. Share of total failure costs in the gearbox [34] ....................................................................... 34 

Table 5. Distribution of Failures per main component of rotating machines [35] ............................... 36 

Table 6. WT construction types. ........................................................................................................... 36 

Table 7. Average failure frequency for each subassembly of three databases. [19] ............................ 41 

Table 8. Characteristics of condition monitoring systems [50] ............................................................ 44 

Table 9. Possible failures, monitoring techniques and WT measured parameters. [49][20] [21][50] 

[40] ........................................................................................................................................................ 49 

Table 10. Maintenance strategies comparison. .................................................................................... 55 

Table 11. Generic OWT Failure Modes.[78][79] ................................................................................... 69 

Table 12. Prevention methods. [1][74] ................................................................................................. 70 

Table 13. Detection Methods associated with the type of failure modes. [21][20][3][50] .................. 71 

Table 14. Gearbox Functional Diagram Description ............................................................................. 73 

Table 15. Severity Levels ....................................................................................................................... 76 

Table 16. Failure rates from WSD, WSDK and LWK databases. ............................................................ 77 

Table 17.Occurrence Levels .................................................................................................................. 77 

Table 18.Detection Levels ..................................................................................................................... 77 

Table 19.Criticality Analysis Categories ................................................................................................ 79 

Table 20. FMEA summary ..................................................................................................................... 80 

Table 21. Minimum, average and maximum values of RPN of the components of each assembly. .... 80 

Table 22. Undetectable Identified Failure Modes ................................................................................ 86 

Table 23. Affected Components associated with failure modes .......................................................... 87 

Table 24. Undetectable and Critical failure Modes .............................................................................. 88 

Table 25. Criticality analysis results – Safety ranking ........................................................................... 90 

Table 26. Criticality analysis results – Environment ranking................................................................. 90 

Table 27. Criticality analysis summary. ................................................................................................. 91 

Table 28. Top 30 chart for wind turbine failure mechanism. ............................................................... 92 

Table 29. Comparison with an available database of failure rates and downtime of onshore WT. .... 97 

Table 30. Confidence factor. ............................................................................................................... 100 

Table 31. CAAR percentages ............................................................................................................... 101 

Table 32.Average CAAR per assembly ................................................................................................ 102 

Table 33. Design load cases. NTM (Normal turbulence model), NWP (Normal wind profile model) 105 

Table 34. Wind turbine classes [82]. ................................................................................................... 107 

Table 35. Example of FASTv8 outputs ................................................................................................. 109 

Table 36. Gearbox speed ratios [30]. .................................................................................................. 114 

Table 37. Gearbox failure cost share. ................................................................................................. 115 

Table 38. 3.6MW Gearbox specification ............................................................................................. 116 

Table 39. HSS and LSS diameter calculation results. .......................................................................... 119 

Table 40. Load spectrum as an input for KISSsoft using SCADA data. ................................................ 120 

Table 41. Gearbox physics-based model: damage of HSS bearings B1 and B2. ................................. 121 

Table 42. Material commonly used on power converters [98]. ......................................................... 130 

Table 43. Estimated damage of the IGBT. ........................................................................................... 136 

Table 44. Pearson correlation coefficient. .......................................................................................... 143 



16 

Table 45. SVM advantages and disadvantages [114].......................................................................... 149 

Table 46. New dataset with the status vector. ................................................................................... 152 

Table 47. OpEx breakdown[117]. ........................................................................................................ 165 

Table 48. Vessels utilization features [120]. ....................................................................................... 167 

Table 49. Maintenance classes’ description (continuous) [79][124][125] ......................................... 173 

Table 50. Maintenance classes’ description[79][124][125] ................................................................ 174 

Table 51. Repair actions per maintenance class[79]. ......................................................................... 174 

Table 52 Failure rate based on FMEA occurrence rating. ................................................................... 176 

Table 53. Digital sensors as inputs of the O&M cost model ............................................................... 177 

Table 54. Wind farm characteristics. .................................................................................................. 178 

Table 55. Percentage of scheduled and unscheduled maintenance hours. ....................................... 178 

Table 56. O&M information [126]. ..................................................................................................... 179 

Table 57. Planned maintenance based on component condition and risk. ....................................... 180 

Table 58. Case study: scheduled maintenance WT1. ......................................................................... 181 

Table 59. Case study: unscheduled maintenance WT1. ..................................................................... 181 

Table 60. Case study: digital sensors application. .............................................................................. 181 

Table 61. Mean waiting time and daylight hours ............................................................................... 183 

Table 62. Wind speed frequency per month. ..................................................................................... 184 

Table 63. Power output per wind speed and month. ......................................................................... 186 

Table 64. Average energy production per day. ................................................................................... 187 

Table 65. Economic parameters ......................................................................................................... 188 

Table 66. O&M outputs: downtime, loss of production and revenue losses due to scheduled 

maintenance. ...................................................................................................................................... 190 

Table 67. O&M outputs: spare part, labour and vessel cost due to scheduled maintenance. .......... 190 

Table 68. O&M outputs: downtime, loss of revenue and costs due to unscheduled maintenance. . 192 

Table 69. O&M outputs: summary of the case study. ........................................................................ 193 

Table 70. Comparison between the case study and the optimised case study. ................................. 194 

 

 

 

 

 

 

 

 

 

 



17 

Abbreviations 

 

A Availability 

AEP Annual Energy Production 

CBM Condition-Based Maintenance 

CM Condition Monitoring 

CAAR Confidence of Accuracy of Assigned Ratings 

CMS Condition Monitoring System 

CoE Cost of Energy 

DAQ Data Acquisition 

DFIG Doubly Fed Induction Generator 

DFT Discrete Fourier transform 

DAU Data Acquisition Units 

EWEA European Wind Energy Association 

FM Failure Mode 

FC Failure Cause 

FFT Fixed Charge Rate 

FMEA Failure Mode and Effect Analysis 

FMECA Failure Mode and Effect Criticality Analysis 

ICC Initial Capital Cost 

IG Induction Generator 

LCCA Life Cycle Cost Analysis 

LRC Levelized Replacement Cost 



18 

LWK  Survey Performed by the Schleswig Holstein LandWirtschaftsKammer 

MTBF Mean Time Between Failures 

MTTF Mean Time to Failures 

MTTR Mean Time to Repair 

NAREC National Renewable Energy Centre 

O&M Operation and Maintenance 

OEM Original Equipment Manufacturer 

OWT Offshore Wind Turbine 

PM Preventive or Scheduled Maintenance 

RPN Risk Priority Number 

SCADA Supervisory Control Alarm and Data Acquisition 

SHM Structural Health Monitoring 

WSDK  Windstats Surveys in Denmark and Germany 

WSD   Windstats Surveys in Germany 

WT Wind Turbine 

 

 

 

 

 

 

 

 

 



19 

Definitions of key terms 

Reliability ‘is the ability of an item to perform a required function under given conditions for 

a given time interval. Reliability represents the probability of items to perform their required 

functions for a desired period of time without failure in specified environments; however 

reliability does not account for any repair actions that may take place’ (IEC 60050-191) [1]. 

Risk is “defined as the combination of the probability of an event and its consequences 

(ISO/IEC Guide 73)” [2]. 

Maintainability ‘is the probability that a given active maintenance action for an item under 

given conditions of use can be carried out within a stated time interval, when the 

maintenance is performed under stated conditions and using stated procedures and 

resources’. 

Accessibility ‘is a qualitative or quantitative measure of the ease of gaining access to a 

component for the purposes of maintenance’. 

Availability ‘is the ability of an item to be in a state to perform a required function under 

given conditions at a given instant of time or over a given time interval, assuming that the 

required external resources are provided. In other words, availability represents the 

probability that a system is capable of conducting its required function when it is called upon, 

given that it is not failed or undergoing a repair action. Therefore, not only is availability a 

function of reliability, but it is also a function of maintainability’ [1][3].  

Life Cycle Cost Analysis ‘is the quantification of the expenses in different phases of the 

project. This is important due to capital costs and risk placement involved in offshore wind 

farms’  [4]. 

CAPEX (capital expenditures) are one-time expenditures and comprise the cost of planning, 

manufacturing and installing the offshore energy project.  

OPEX are expenditures occurring for marine energy project operation e.g. inspection, 

maintenance, repair.  

Failure is the inability of a sub-assembly to perform its required function under defined 

conditions [3].  

Failure Mode is the specific manner or way by which a failure occurs[3]. 
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Failure Root what caused the failure mode to occur[3]. 

Maintenance Optimisation is a process that attempts to balance the maintenance 

requirements (legislative, economic, technical, etc.) and the resources used to carry out the 

maintenance program (people, spares, consumables, equipment, facilities, etc.) [5]. 

Prognosis and Diagnosis differ in the nature of the analysis; diagnosis involves posterior event 

analysis identifying the occurrence of an event which has already happened. Prognosis is 

concerned with prior event analysis predicting the future behaviour of a system under 

observation [6] [6].  

Failure Mode and Effects Analysis is used to determine what parts fail, why they usually fail 

and what effect their failure has on the system[7]. 

Repair action can be an addition of a new part, exchange of parts, removal of a damaged part, 

changes or adjustment to settings, software update, lubrication or cleaning  [8]. 

Non-repairable system is discarded after a failure. Examples of non-repairable systems are 

small batteries or light bulbs  [8]. 

Repairable system: A system that, when a failure occurs, can be restored into operational 

condition after any action of repair, other than replacement of the entire system. Examples 

of repairable systems are WTs, car engines, electrical generators and computers  [8]. 

Mean time between failures defines the mean time between failures expressed in hours of 

operations for a specific module population. It does NOT mean that a module will operate for 

that many hours before failure [3]. 

Mean time to failure is used when evaluating no repairable systems. MTBF assumes that a 

device is to experience multiple failures in a lifetime, and after each failure a repair occurs. 

For non-repairable systems, there is no repair. Therefore, in the lifetime of a non-repairable 

device, the device fails once and MTTF represents the average time until this failure occurs 

[3]. 

Weather window is a period of time during which if a given maintenance operation is started, 

it can be completed  [9]. 
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CHAPTER 1 - INTRODUCTION 

 

“In the last 20 years turbines have increased in power 

by a factor of 100, the cost of energy has reduced, 

and the industry has moved from an idealistic fringe 

activity to the edge of conventional power 

generation” 

“A modern wind turbine operates for about 13 years 

in a design life of 20 and is almost always unattended. 

A motor vehicle, by comparison, is manned, 

frequently maintained and its design life of about 

150,000 kilometres is equivalent to just 4 months of 

continuous operation.” 

European Wind Energy Assoc., Wind Energy - The Facts, 2005 

1.1 Introduction 

This chapter aims to provide a general understanding of the project and current the 

methodologies to optimise the O&M of offshore wind turbines; section 1.2 describes the 

current state of the offshore wind industry, procedures and challenges. Section 1.3 describes 

the objectives of the project, thesis structure and publications, and finally, section 1.4 

describes the contribution to the knowledge of the thesis.  

1.2 Thesis Background 

Renewable energy resources that directly or indirectly come from the sun and moon have 

different operational availabilities, which is the ability of a system to perform its function 

under certain operational conditions and time. Currently, among renewable energy 

technologies, wind energy technology is the most available and mature. The contribution of 

offshore wind energy has made an impact on the energy systems during recent years 

compared with other technologies [10]. In Europe, 18GW of offshore wind has been installed 

since 2008, of which over 95% has been installed in the past ten years [11].  

The largest offshore wind market is in the UK with 36% of the global installed capacity, 

followed by Germany with 29%. In 2016, China took third place with 11% leaving Denmark in 
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the fourth place with 8.8%  [12]. Table 1 shows the total number of offshore wind turbines 

connect to the grid in European countries.  

 

Table 1. Number of offshore grid connect turbines in Europe, 2016. [12] 

Country Belgium Germany Denmark Spain Finland Ireland Netherlands Norway Sweden UK Total 

No. of Farms 6 18 13 1 2 1 6 1 5 28 81 

No. of turbines connected 182 947 517 1 11 7 365 1 86 1472 3589 

Capacity Installed (MW) 712 4108 1271 5 32 25 1118 2 202 5156 12631 

 

The offshore wind industry has grown in the past years in European waters, and further 

growth is expected in Europe with the target of 20% of renewable energy by 2020. Wind 

energy plays a key role around the world to satisfy future energy demand  [13]. The UK 

government considers that offshore wind power should play a major part in meeting the UK’s 

renewable energy and carbon emission targets by 2020. Therefore, it is developing a strategy 

of having a diverse mix of low-carbon energy sources  [14].  

In offshore wind turbines, the cost of maintenance is a considerable part of the total life-cycle 

cost, between 20 – 35% of the lifetime power generation cost  [15]. Studies have shown that 

most of the downtime is due to some critical components of the turbines. Reliability and 

productivity can be improved by optimising maintenance practices and focused condition-

based maintenance for those critical components ewhile reducing costs and improving safety 

[8].  

One of the major targets of the marine energy industry is to reduce the cost of energy. When 

considering future wind farms located far offshore, in remote locations, with increased power 

rating, maintenance strategies and advanced O&M tools are likely to be expensive, requiring 

large resources and will be technically challenging [1][16]. According to the International 

Energy Agency (IEA), US$380 trillion are needed to meet the projected worldwide energy 

demand until 2035, and a significant portion is due to maintenance and operation of wind 

energy systems  [17]. Typical maintenance costs for the offshore situation, including costs for 

maintaining the farm infrastructure, civil structures, etc. are given below  [18]: 

• Preventive maintenance 0.003 to 0.006 (€/kWh) 

• Corrective maintenance 0.005 to 0.010 (€/kWh) 
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Table 2 below shows the operational performance in the early operation in 2010 of four UK 

offshore wind farms. The annual average technical availability for reporting the UK round 1 

offshore wind farms is 80.2%, much less than the average availability of 97% achieved by 

onshore wind farms in the UK or the availability at 93.3% achieved by an established EU 

offshore wind farm [14]. In 2018, the UK’s offshore wind farms showed an operational 

availability above 94% [19] 

Table 2. Operational performance of four UK round 1 offshore wind farms. [14] 

Offshore Wind 

Farm 

Annual 

average wind 

speed (hub 

height): m/s 

Specific energy 

yield: 

kWh/m/year 

Capacity 

factor: % 

Performance 

factor: % 

Availability: 

% 

Barrow 9.15 996 24.1 68.9 67.4 

North Hoyle 8.36 1220 35.0 100.0 87.7 

Scroby Sands 8.08 943 27.1 77.4 81.0 

Kentish Flats 

V90 

7.88 1146 27.7 79.1 80.4 

Annual average     80.2 

 

1.3 Thesis Description  

1.3.1 Aims 

The main aim of this work is to reduce the cost of maintenance activities and to improve 

turbine availability through the development of new methodologies for failure prognosis and 

diagnosis. The failure prognosis will be based on a deterministic model in combination with a 

risk-based assessment. The proposed project will be delivered by the completion of the 

following objectives: 

• Initial literature review of failure rates, mode and analysis of critical components of 

offshore wind turbines.  

• To create a risk model to analyse structural, mechanical and electrical failure modes 

of critical components of the offshore wind turbine. 
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• To create a physical model of the device to calculate loads associated with identified 

failure modes. 

• To create a deterministic model with algorithms of individual damage accumulation 

based on a combination of measurements and numerical model simulations. 

• To develop a cost function for maintenance tasks and data processing system. 

 

The datasets used for this project come from disparate data sources. The following lists 

some key inputs: 

• FMEA of a generic wind turbines 

• Recognised and peer-reviewed long-term reliability data (for instance from the EU 

Framework 7 Project, Reliawind) 

• Lloyd’s Register experience built up from working with wind farm operators 

• Operational data of a UK’s offshore wind farm: Maintenance task reports, 

technicians’ logs, marine coordinators’ records, vessel skippers records, personnel 

tracking systems, Automatic Identification System records (AIS), showing vessel 

movements 

• Reliability data from SCADA databases (UK’s offshore wind farm) 

• Reliability data from other industrial sectors for similar components under 

equivalent conditions of operation. 

1.3.2 Thesis Outline 

Figure 1 describes the thesis structure:  

Chapter 1 and Chapter 2 introduce the research problem and present a literature review of 

the factors impacting Operation and Maintenance (O&M) optimisation of offshore wind 

farms. Furthermore,  these chapters explore key findings, outputs and definitions related to 

the research problem of key offshore wind industry stakeholders. 

Chapter 3 describes a risk assessment using the tool Failure Mode and Effect Analysis (FMEA). 

The risk assessment is performed for the turbine Siemens 3.6MW-120. The chapter describes 

the procedure based on standards, data sources, a new methodology for data and uncertainty 

control, results and final discussion. The main output of this section is the definition of the 

four most critical assemblies in the Siemens 3.6MW-120, which are explored further in the 

following chapters. 
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Chapter 4 describes the physics-based models of the gearbox, power converter and yaw 

system, respectively. The models determine the accumulated damage and the remaining 

useful life. This chapter also introduces the methodology proposed to generate future events 

for prognostic purposes. The aero-elastic computer-aided engineering tool for horizontal axis 

wind turbines FASTv8 developed by NREL is used to represent the turbine structural and 

mechanical behaviour. The outputs of this section are several variables such as torque, wind 

turbulence, wind speed and rotational speed. A methodology is proposed to predict these 

variables for several months in advance.  

Chapter 5 aims to describe a data mining approach to detect any abnormal behaviour in the 

pitch system using subject matter expert knowledge. The approach proposes a decision tree 

algorithm to diagnose failure mode using a combination of SCADA data variables.  

Finally, Chapter 6 presents the development of the O&M cost function, which includes 

outputs such as cost of repair, downtime, availability, Mean Time to Repair, etc.. The cost 

model is able to analyse the most salient aspects of the O&M strategy including turbine 

availability, spare parts logistic, access, cost of components and others.  

 

Figure 1. Thesis structure – flow diagram 
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1.3.3 Publications 

The following publications were presented during this project: 

 

Chapter 3: Failure mode and effects analysis (FMEA) 

• Marco Sepulveda, Dr Jonathan Shek, Dr Philipp R. Thies. Risk assessment of an 

offshore wind turbine and development of a physics of failure based approach to 

estimate the remaining useful life (RUL) of the power converter. International 

Conference on Offshore Renewable Energy CORE 2016. Glasgow, UK. 

• Marco A. Sepulveda, Dr. Jonathan Shek, Dr. Philipp Thies, Dr. Erkan Oterkus, Mr. Peter 

Davies, Dr. Mark Spring, Cengiz Yilmaz. Remaining Useful Life Estimation of Gearboxes 

through Combined Statistical and Physics-based Offshore Wind Turbine Modelling. 

American Wind Energy Association (AWEA) Conference, Warwick USA, 2016. 

• Marco Sepúlveda, Mark Spring, Peter Davies, Dr Jonathan Shek, Dr Philipp R. Thies, Dr 

Erkan Oterkus. Risk Management in O&M for Offshore Wind Generation. Offshore 

Wind Operations & Maintenance Forum BIS Group, London, 2016. 

• Mark Spring, Marco Sepúlveda, Peter Davies, Gerard Gaal. Top 30 Chart for wind 

turbine failure mechanisms. European Wind Energy Association (EWEA) Conference 

2015. Paris.  

Chapter 4: Failure prognosis based on physics-based models   

• Marco A. Sepulveda, Dr. Jonathan Shek, Dr. Philipp Thies, Dr. Erkan Oterkus, Mr. Peter 

Davies, Dr. Mark Spring. Physics-based gearbox failure model for multi-MWMW 

offshore wind turbines. Proceedings of the 36th International Conference on Ocean, 

Offshore & Arctic Engineering ASME OMAE17, Trondheim, Norway, 2017. 

• Marco A. Sepulveda, Dr. Jonathan Shek, Dr. Philipp Thies, Dr. Erkan Oterkus, Mr. Peter 

Davies, Dr. Mark Spring, Cengiz Yilmaz. Remaining Useful Life Estimation of Gearboxes 

through Combined Statistical and Physics-based Offshore Wind Turbine Modelling. 

American Wind Energy Association (AWEA) Conference, Warwick USA, 2016. 

• Marco Sepulveda, Dr Jonathan Shek, Dr Philipp R. Thies. Risk assessment of an 

offshore wind turbine and development of a physics of failure based approach to 

estimate the remaining useful life (RUL) of the power converter. International 

Conference on Offshore Renewable Energy CORE 2016. Glasgow, UK. 
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• Krishnamoorthi Sivalingam, Dr Mark Spring, Peter Davies, Marco Sepulveda. A Review 

and Methodology Development for Remaining Useful Life Prediction of Offshore Fixed 

and Floating Wind turbine Power Converter with Digital Twin Technology Perspective. 

IEEE, 2nd International Conference on Green Energy and Applications (ICGEA), 

Singapore, 2018. DOI: 10.1109/ICGEA.2018.8356292.  

Chapter 5: Data mining approach of the pitch system 

• Marco A. Sepulveda, Dr. Jonathan Shek, Dr. Philipp Thies, Dr. Erkan Oterkus, Mr. Peter 

Davies, Dr. Mark Spring. Pitch system failure identification using a combination of 

subject matter expert knowledge of offshore wind turbines and machine learning 

techniques. Offshore Wind Energy Conference WindEurope, London, 2017. 

Chapter 6: O&M Cost Model 

• Marco A. Sepulveda, Dr. Jonathan Shek, Dr. Philipp Thies, Dr. Erkan Oterkus, Mr. Peter 

Davies, Dr. Mark Spring. Offshore wind farm O&M optimisation: using an integral 

approach for failure diagnosis and prognosis. All-Energy Conference and Exhibition, 

Glasgow, 2017. 

1.4 Thesis contribution to knowledge 

The main contribution of this project is the identification, development and demonstration of 

methodologies applied in the optimisation of offshore wind farm O&M. It is based on the 

synthesis, combination and demonstration of established approaches of previous studies, 

which have combined deterministic and probabilistic methods to identify factors contributing 

to the O&M costs and turbine availability. The specific contributions are: 

• Development of a rigorous, systematic and consistent index to manage data and 

uncertainties in the risk assessment of the offshore wind turbine. 

• Application of methods and software routinely used in design analysis for O&M 

diagnostics including the calculation of damage accumulation and remaining useful 

life for critical assemblies.  

• Development of a comprehensive approach for O&M cost analysis including outputs 

such as turbine downtime, cost of repair, logistic delay time; and inputs such as virtual 

sensors, failure rates and weather windows, cost of spare part, spare part availability 

and time to repair.  
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CHAPTER 2 – LITERATURE REVIEW 

This chapter critically reviews publications relevant to O&M of offshore renewable energy 

systems, particularly literature related to offshore wind turbine reliability and maintenance 

optimisation. Maintenance optimisation is a key part of the research, and it is described from 

different point of views. In order to understand the component’s functionalities and materials 

used in the construction and design of offshore wind turbines, Section 2.1 presents a turbine 

description and analysis of components and failure characteristics.  

In Section 2.2, current maintenance strategies for wind farms and relevant factors for their 

optimisation are presented. A review of failure detection approaches are presented in this 

section, which is the base for Section 2.3; a risk based assessment for wind turbines.  

2.1 Offshore Wind Turbines – configuration and systems 

The differences of the terms used to describe the several parts of the wind turbine are a 

common problem when different wind turbine failure surveys are analysed. The following 

terminology used in [20] [20] will be adopted in this work: 

• System: for the entire wind turbine and the connection infrastructures. 

• Subsystem: to generically indicate part of the wind turbine that deals with the same 

form of energy, for example the entire drive train. 

• Subassembly: to indicate devices performing more specific functions for which the 

failure data are recorded separately, for example, the gearbox. 

• Component: to indicate small devices typically non repairable constituting the 

subassemblies, for example, the gearbox/generator coupling. 

 

This section discusses the functions, design materials and condition monitoring of the main 

components, subassemblies and subsystems of a wind turbine shown in Figure 2. It also 

identifies from the literature critical components, probabilities, causes of failure, 

consequences of failures and, diagnosis techniques.  
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Figure 2. Main parts of a wind turbine.  [21,,22]  

 

In [3], the author defines taxonomy as the structure that names the main features of a WT in 

standard terminology. An example of the adopted taxonomy for this thesis is shown in Figure 

3.  

 

Figure 3. Wind turbine taxonomy  [3] 
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2.1.1 Components Functionality, Materials and Failure Characteristics 

Rotor and Blades 

Due to their physical characteristics such as achieving high strength and stiffness to weight 

ratio, blades are usually made from composite materials in Table 3. They have good corrosion 

resistance for the hostile environment and good electrical insulation  [23]. 

Table 3. Composites and binders used in manufacturing wind turbine blades [5] 

Composites Binders or Resins 

Fibreglass Polyester (unsaturated) 

Carbon fibre Vinyl ester 

Wood Epoxy 

  

Blades comprises two main parts: the spar and the skin. The spar gives the structural stiffness 

and, the skin shapes the airfoil. The three most common shapes of blades are defined based 

on wind turbine technology and aerodynamic considerations; near optimum, linear taper and 

constant chord [5]. Blades also have bushes glued into their root which copes with the 

dynamic loads, and are linked to the hub by bolts [5,20,24] [5,20,24]. 

Usually, blades failures are produced by cycling loading which comes from the interaction 

between centrifugal, gravitational forces and, wind thrust and turbulence. Blades can fail due 

to cracks arising from fatigue during normal operation as well as materials defects, lightning 

strikes and icing [5]. The author in ] [25] describes the four main failure mechanisms of 

composite materials: fibre fracture, fibre/matrix debonding, matrix cracking and 

delamination. 

Other rotor faults are described by the authors in  [26] and [27]: blade surface roughness due 

to pollution such as dirt and insects, damages of the painting in the surface such as cracks and 

blowholes and, icing. The imbalance in the rotor and aerodynamic asymmetry may be caused 

by the following reasons: manufacturer defects, non-uniform accumulation of ice or 

moisture, or accumulated damage to the rotor blades. It is necessary to stop the turbine when 
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there is a severe imbalance. Production tolerances or permanent deformation during 

operation could be another cause of imbalance. 

Main Shaft 

The drive train is a crucial subsystem for the reliability of the wind turbine. It includes the 

main shaft, the main bearings, the coupling, the generator and the gearbox. The main shaft 

connects the hub with the gearbox supported by the main bearing and transmitting rotational 

forces. Usually, the main shaft is made from forged alloy steel or graphite iron to allow more 

complex shapes. It also has a hole bored down the centre to enable communications and 

monitoring and to reduce the overall weight  [5,20,24]   

Failures of the main shaft will be analysed separately in the following sub-sections. 

Main Bearings 

The purpose of the main bearing is to decrease friction in the connection of hub and the main-

shaft. The main bearing is attached to the nacelle. It is typically designed specifically for wind 

energy applications with spherical roller shape. To deal with radial loads and axial forces, the 

main bearing has two sets of rollers. The spherical shape allows the rings of the bearing in 

operation to have a maximum of a half degree of misalignment without damaging [5] [5]. 

Among the main causes of failure in the main bearings are poor lubrication, wear, pitting and 

deformation of bearing components  [26].   

Gearbox 

The gearbox is the heaviest and most expensive parts of the turbine. It constitutes 13% of the 

value of a typical onshore wind turbine. There are 175,000 geared turbines in operation with 

1,200 failures reported each year with a cost in the range of US$200,000 to US$300,000  [28]. 

The replacement of the complete gearbox, including equipment, crane time, labour and lost 

production, can reach up to $500,000 [29]. The author in  [30] states that gearboxes cause 

only 6.7% of total turbine stops but 55% of the downtime.  

The gearbox increases the low speed of the rotor in the main shaft to high speed in the 

generator, usually around 1500 to 1800 rpm. A three-stage planetary gearbox is usually used 

in a multi-megawatts turbine, see Figure 4 [31]. The first two stages are planetary 

configuration, and the third one is a parallel. The planetary parts comprise a ring wheel which 

is an interior toothed gear wheel, three or more planet wheels which are smaller toothed 
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gear wheels and the sun wheel, a toothed gear wheel in the centre [5].  The high speed shaft 

of the gearbox is connected to the generator through a flexible coupling made from rubber 

to absorb and allow misalignments between the gearbox and the generator [32].   

 

 

Figure 4. Typical Wind Turbine 3-stage Gearbox [31] 

 

The gearbox as one of the most problematic critical components based on the latest 

literature. Mean time between failures (MTTF) of gearboxes is projected to be approximately 

ten years [33]. The most important issue in the reliability in the drive train is the wear of the 

gear teeth and bearings in the gearbox  [27]. The main causes of failure of the gearbox include: 

particles in the oil owing to contamination during assembly, corrosion and wear; variations in 

rotor speed owing to imbalance, variations in wind speed, etc., The main failure modes are: 

the gear teeth to chatter, causing fretting and generating particles; stress concentrations in 

gear teeth due to wear or machining; mechanical interference or other manufacturing 

problems such as heat treatments or surface finish out of specification; loss of oil or oil 

circulation, see figure 5, 6 and 7. Additionally to the mentioned causes of failure, it is also 

possible to add false brinelling due to vibrations of small loads or small contact areas with 

very large local stress that can arise during transport or long periods of "parked-braked-

status". For that reason, the main shaft of the gearbox can be rotated slowly during transport 

to vary contact location and distribute lubrication over rolling elements of bearings and gear 

teeth.  

Common gearbox failures identified in  [28]are manufacturing defects, cracking of bearing 

coatings, and ineffective lubrication. Based on [34], one major cause of -bearing failures in 
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the gearbox is axial cracking, identified with irregular white areas that appear when affected 

bearing surfaces are examined. Axial bearing cracking are lengthwise cracks on the bearing’s 

inner ring along the roller path. Axial-cracking failures are common in bearings of the 

intermediate and high-speed stages.  

The main causes of failure identified in [35] are insufficient or contaminated lubrication, the 

share of total failure costs are shown in Table 4. The author also concluded that half of the 

failures were caused by the bearings and caused by poor fitting, poor lubrication, 

contamination and fatigue. On the other hand, gearwheel failures represent the highest 

downtime. The causes of the main failures of the gears are fretting corrosion and bending 

fatigue. 

Table 4. Share of total failure costs in the gearbox [35] [35] 

Failure Mode Failure cost as percentage of total cost 

High speed shaft bearing failure 27.8% 

Broken intermediate shaft 21.2% 

Intermediate shaft bearing failure 10.1% 

Planet bearing failure 9.6% 

Broken centre post 6.2% 

High speed shaft bearing black spot 5.4% 

Sun gear - Broken teeth 5.3% 

Low-speed shaft bearing failure 5.0% 

Intermediate shaft bearing failure 4.8% 

High speed shaft grinding temper failure 2.3% 

Broken low-speed wheel 1.2% 

Oil pump failure 0.8% 

Intermediate shaft splash plate failure 0.2% 

 

The author in [30] represents the criticality of the gearbox components in a vulnerability map, 

Figure 5. This map is based on the fatigue damage of gears and bearings  [31]. The most critical 

components are the high-speed bearings and the high-speed gears.  
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.  

Figure 5. Gearbox vulnerability map  [31] 

 

 

Figure 6. Gearbox teeth. From healthy tooth (left) to missing tooth (right) 

 

Generator 

Due to its advantages of mature technology, low cost and compact structure, induction 

generators are commonly used in wind and marine turbines. Studies present that wind 

turbine generators show a higher failure rate than steam turbo-generators. The author in  

[36], shows the distribution of failure (stator, rotor, and bearings) summarised in Table 5. 

Failure in rotating machines depends on size, voltage and type of machine. It is also possible 

to conclude, based on the surveys described in this study that the larger the wind turbine 

generator, the less reliable it is as dielectric stress and vibration are more significant than in 

small machines [37]. 
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Table 5. Distribution of Failures per main component of rotating machines [36] 

 Types of Machines 

<150kW <750kW >150KW- MV & HV Generators >11kW 

Bearings 75% 95% 41% 42% 

Stator 9% 2% 37% 13% 

Rotor 6% 1% 10% 8% 

Other 10% 2% 12% 38% 

 

The main cause of failure of an induction generator occurs in the bearings, so maintenance is 

mainly focused on lubrication. Generators can operate at different power frequencies, 

however, overheating and torque pulsations may occur if it is connected to a weak grid with 

an unbalanced three-phase load [5][23]. 

There are different types of WT configurations therefore; there are different types of 

generators with different reliability and failure modes. A common configuration is WT with 

gearbox, high-speed asynchronous generator and partially rated converted DFIG. On the 

other hand, a less common configuration is a direct drive WT without gearbox, low-speed 

synchronous generator and a fully rated converter.  

Table 6. WT construction types. 

Type of generation system Turbine concept Gearbox Converter 

Single Cage Induction Generator (SCIG) fixed speed multiple stages 
 

variable speed multiple stages full scale 

Permanent Magnet Synchronous Generator 

(PMSG) 

variable speed 
 

full scale 

variable speed single or multiple 

stage 

full scale 

Doubly Fed Induction Generator (DFIG)  variable speed multiple stages partial scale 

Electrically Excited Synchronous Generator 

(EESG)  

variable speed 
 

partial and full 

scale 

Wound Rotor Induction Generator (WRIG)  limited variable 

speed 

multiple stages partial scale 

Brushless Doubly Fed Induction Generator 

(BDFIG)  

variable speed multiple stages partial scale 
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Pitching System 

The blade pitching system is one of the control systems of a wind turbine to maximise energy 

conversion, limits power extraction and, evade stress or damage in the components due to 

variable wind. The pitch system is designed to work within a minimum and maximum wind 

speed. The pitching system has two purposes; aerodynamic power control and aerodynamic 

braking [24][38].  

 

Figure 7. Hydraulic unit of pitching system (Turbine VESTAS V39/V4x/V90). [24] [24] 

Each blade has an independent pitching actuator which comprises a hydraulic cylinder and 

piston rod [5]. An example of the hydraulic unit of the pitching system is shown in Figure 7. 

Unexpected distribution of stress within the bearing due to raceways flexibility is the main 

cause of failure. The hydraulic system can show failure modes such as leakages, overpressure 

and corrosion [38].  

Mechanical Brakes 

A mechanical brake is essential for any turbine since a fault in braking the wind turbine 

rotation may result in loss of the whole structure or catastrophic failure [24]. 

The mechanical braking system has two objectives: to support the function of the pitch 

system and its aerodynamic brake when the rotational speed of the drive train reaches 

intolerable levels and, to brake the wind turbine when it is not operating. The mechanical 

brake is usually located on the high speed shaft, between the gearbox and the generator and 

it comprises a brake disc, brake pads and callipers  [5] [23]. See figure below. 
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Figure 8. Example of wind turbine brake system [24] [24] 

Mechanical brake failures can be caused by excessive wear on brake linings. The hydraulic 

system pump can present failures caused by contamination of hydraulic fluid, wrong oil 

viscosity, premature failure of cylinders as a result of high hydraulic fluid temperature, 

hydraulic valve failure caused by cavitation, faulty circuit protection devices, and seal failure  

[5]. 

Control System 

The control system is defined in IEC 612400-2 as “…a sub-system of wind turbine that receives 

information about the condition of the wind turbine and/or its environment and adjusts the 

turbine in order to maintain it within its operating limit”. The design requirements of the 

control system can be found in the standard IEC 61400-1  [5].  The main objective of the 

control system is to avoid excessive mechanical load, to maximise power output and power 

quality [39].  

There two main control strategies in variable speed wind turbines: below-rated power where 

the speed controller will adjust the rotor speed to maintain the maximum power coefficient 

at that speed level. The second strategy occurs above the rated wind speed, where the pitch 

angle is controlled to maintain a constant rotor speed [40]. 

Despite the fact that the sensors, cables, software and hardware have a high quality, damaged 

sensors giving false positive or false negative can result in WT shutdown. National Renewable 

Energy Laboratory (NREL) states that software reliability is not estimated and its failure modes 

are not predictable. It is extremely difficult to test all in-put sequences therefore; a large 

number of harmful faults in the software will not be detected [5]. 

 

 



39 

Electrical System 

In addition to the generator which constitutes a different subassembly, the electrical system 

comprises all the electro-mechanical devices that allow the connection of the generator to 

the network. The electric system of a wind turbine is by far the most complex subassembly. 

The complexity of the electric system is reflected in the frequency of failure, which is generally 

high, if not the highest in the wind turbine systems of the selected databases. 

The main components of this subsystem are: power converter, transformer, switchgear, 

power cables, protection relays, power factor correction units, circuit breaker and the 

earthing system. Failures in these components depend on different mechanical or electrical 

failure modes  [20].  

Structure: Tower, Foundation and Nacelle 

The structure comprises four main parts: the foundation, the tower, nacelle and the yaw 

system [20]. The nacelle is the housing for most of the main components of the WT: gearbox, 

generator, brake system, low and high-speed shaft, and others. The nacelle also provides the 

proper environmental conditions in terms of temperature, pressure, humidity and salinity, to 

allow the normal operation of the components [23].  

It is worthy to mention the scour activity around the offshore wind turbine foundations, which 

comprises many technical challenges related to the following issues [41]: 

• Reduction of the structure’s stability 

• Vertical, horizontal and angular misalignment of the tower 

• Increased hydraulic loading on the vertical face of the structure 

• Increased maximum moments at the foundation structure 

• Decrease and variation in the natural frequency of the turbine 

• Need for more complicated foundation design requirements 

• Increased bending stresses on cables, which may exceed the design limits. 

Yaw System 

The yaw system allows the nacelle to align with the wind direction, and it is essential to the 

functioning of a turbine with an upwind rotor  [20]. The specific type of yaw system is defined 

based on the topology of the rotor, there are two types of yawing systems; active and free. 

Active yaw consists of a motor that actively aligns the turbine with the wind direction, see 
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Figure 9  [5]. A WT could have, depending on the WT types and construction, between 4 and 

8 independent hydraulic or electric yaw drive systems. See figure below. 

 

Figure 9. Example of a yaw system.[42] [42] 

Bearing failures, pinion and bull gear teeth pitting, yaw brake failure, pinion and bull gear 

teeth wear-out are the main causes of failure of a yaw system  [5][43]. 

2.1.2 Critical Components of an Offshore Wind Turbine 

A reliability study can be useful in areas of risk analysis, optimisation of operations and 

maintenance. Reliability data is analysed to provide information as a basis for the decision. 

This work identifies critical wind turbine components based on the analysis of reliability data 

in previous studies. These identified critical components will optimise the necessary resources 

to performed risk-based assessment of the wind turbine. The risk analysis is a way of 

identifying probability of causes and consequences of failure events, and the optimization is 

a way of telling how failures can be prevented, where to focus the efforts on and how to 

improve the availability of a system [23]. 

This section identifies critical components based on cost, failure rates, consequences of 

failure that represent significant financial loss and downtime. One of the hardest matters of 

reliability engineering is obtaining accurate failure data. Offshore wind turbines are a 

technology highly specialised and due to the commercial sensitivity of failure data of wind 

turbines, operators and manufacturers are reluctant to disclose data about reliability or 

failure patterns. Consequently, the sources of information are restricted to databases of 

onshore wind farms publicly available [10,20]. 



41 

WindStats D (WSD), WindStats DK (WSDK) and LWK are three examples of publications 

collecting failure data of different populations of wind turbines and constitute the main 

source of information to select critical components  [23].  

Table 7. Average failure frequency for each subassembly of three databases.  [20] 

 
WSD (1291-4285 WTs) 

failures/turbine/year 

WSDK (851-2345 WTs) 

failures/turbine/year 

LWK (158-643 WTs) 

failures/turbine/year 

Electrical system / 

Grid / Electrics 

0.294 0.0468 0.32 

Rotor or blades / 

Hub / Blades 

0.191 0.0486 0.19 

Electrical control / 

Electronics 

0.182 0.15 0.239 

Yaw system  0.108 0.0645 0.116 

Generator  0.105 0.0497 0.139 

Hydraulic system  0.0958 0.0451 0.131 

Gearbox  0.0929 0.0425 0.134 

Pitch control / 

Mechanical Control 

0.0893 0.0141 0.0834 

Air brakes / Rotor 

Brake 

0.0411 0.0164 0.0397 

Mechanical brake  0.033 0.0289 0.0554 

Main shaft / 

Bearing 

0.0212 0.0145 0.0311 

Anemometry, 

Sensors, Other /  

Other  

0.188 0.209 0.367 

 

The failures frequency of wind turbines varies with the scale and type, and it is only possible 

to find in failure analysis based on onshore wind turbine databases as it is shown in Table 7. 

There is an overall tendency of an increasing failure rate with turbine size, so it is possible to 

assume the initial failure rate as the turbine size will increase for offshore applications. Studies 

showed the distribution of failures of the main components divided into five groups; electrical 

system, control system, hydraulic system, sensors, and rotor blades, are responsible for 67% 

of failures as shown in Figure 10 and Figure 11 [21][16]. 
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Figure 10. Distribution of failures for wind turbine components  [21].  

It is not possible to detect all the faults occurring in an offshore wind turbine using a limited 

number of sensors and huge amount of data to be analysed. The study done by Wisznia, 

shows a criterion to select critical components of offshore wind turbines. It states that faults 

must be detectable using simple, reliable and demonstrated instrumentation; failures have 

to be detected in the early stages to allow maintenance plan and, this early detection must 

lead to a significant cost reduction in maintenance activities [44]. 

 

Figure 11. Failure rates across wind turbine sub-assemblies  [45]. 

The consequence of a failure event can be measured according to numerous criteria, 

commonly failure modes effects analysis (FMECA or FMEA) is used to evaluate the criticality. 
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Unfortunately, the failure data do not allow a practical and rather accurate criticality index 

such as the total cost of the repair however; downtime information is available and can be 

used as a criticality index. Availability of spare parts, availability of personnel, accessibility to 

the WT site, weather conditions and the corrective maintenance policy are factors that might 

affect downtime of the turbine [20]. 

The author in [15] concluded that the failure contribution of critical assemblies out of the 

total is: pitch system (16%), frequency converter (12%), yaw system (12%), control system 

(14%), generator (6%) assembly and gearbox (5%).  

Blades, gearbox, generator, yaw system, hydraulic system, electrical and control system are 

shown in Figure 11, as the main sources of failure. Likewise, the blades, gearbox, generator, 

electrical, drive train and control system are cost significant items within a wind turbine in 

terms of downtime. Therefore, it is essential to focus the maintenance efforts on the 

identified critical components [5][21]. 

2.1.3 Condition Monitoring Techniques for Offshore Wind Turbines 

An efficient condition monitoring system relies on the correct understanding of the machine 

and its subassemblies, objective and analysis of reliability data, correct selection of critical 

components or subassemblies, proper data acquisition techniques, correct analysis of 

monitored data and reasonable strategy for machine condition assessment [46].  

Due to clear benefits of offshore wind energy compared with the industry onshore, including 

a greater capacity factor, there is a wide number of condition monitoring techniques currently 

available [47][16]. 

Condition monitoring techniques have been used in many industrial sectors. Different 

systems have become commercially available for application to wind turbines, such as 

vibration monitoring systems for bearings and gearboxes, online oil monitoring systems as 

well as the temperature of bearings, generator windings, etc. [47] [48]. 

The reduced offshore availability and accessibility and increasing trend for offshore wind 

deployment require an effective and reliable condition based maintenance process with 

condition monitoring systems instead of the combination of reactive and scheduled 

maintenance strategy. The goal of a condition monitoring system is to enhance the availability 

of expensive critical assets and reducing overall O&M costs. Condition based maintenance 
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approach aims to reduce maintenance costs by reducing the number of planned PM actions; 

thus only when there is evidence of irregular behaviour, maintenance staff will perform 

actions [49][50]. Furthermore, insurance companies give another reason for installing a 

condition monitoring system. Insurance companies require for example, that the complete 

drive train of the wind power plant has to be overhauled after 40.000 hours of operations. 

The exception to this clause is if a condition monitoring system recognised by the insurance 

company is installed. The leading insurance companies within wind power have created 

requirements for condition monitoring systems on wind power plants [23]. 

CMS, detection and diagnosis of failures techniques have been increasingly used in the 

offshore wind energy sector. CMS has been regarded as a crucial tool for achieving their 

expected availability as a result of the economic loss caused by the unexpected breakdown. 

Furthermore, the added values of their CM can be further extended to guarantee the quality 

of the power they generated [24,37]. The main reasons to use CMS are: 

• Maintenance cost reduction 

• Detection and prediction of faults in the early stages 

• Reliability and availability improvements 

The importance of monitoring system due to its characteristics are listed in Table 8: 

Table 8. Characteristics of condition monitoring systems [51] 

Characteristics Advantages Benefits 

Early warning -Avoid breakdowns 

-Better planning of maintenance 

-Avoid repair costs 

-Minimise downtime 

Identification of 

problem 

-Right service at the right time 

-Minimising unnecessary 

replacements.  

-Problems resolved before the time of 

guarantee expires 

-Prolonged lifetime 

-Lowered maintenance costs 

-Quality-controlled operations 

during time of guarantee 

Continuous 

monitoring 

-Constant information that the wind 

power system is working 

-Security. Less stress 

  

Condition monitoring system (CMS) involves several sensors gathering physical data from the 

functional subsystems of the offshore wind or tidal turbine. Sensors also transfer the data to 
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a centralised node for processing. The final aim of the CMS is to predict the fault of a critical 

component to optimise the required actions and improve the reliability and availability of the 

OWT. It is important to mention that any failure within the sensors creates an extra 

maintenance cost for the installed system.  

CMS can be divided into three stages, first detecting an unusual operation condition that is 

outside of the right theoretical behaviour or healthy range. The second stage is diagnosing 

the failure root responsible for the unusual operation condition and third forecasting the 

remaining life of the component based on physics of failure of probabilities  [44].  

Wind turbine CMS commercially available shown in surveys [22] [43][50] show a clear trend 

towards vibration signals based techniques. The vibration monitoring mainly covers the 

turbine drive train where rotating machinery is involved. Other techniques such as fibre optic 

based strain measurement for blades and oil debris analyses for gearboxes  are also used to 

monitor key subsystems and components of offshore wind turbines.  

Based on  [52], CMS with the basis of a significant change is a symptom of a developing failure, 

include combinations sensors and signal processing equipment that provide constant signs of 

the component, subsystem and system condition. CMS could be performed on-line to provide 

real-time condition feedback or, off-line where data are collected at regular time intervals 

using measurement systems that are not integrated with the equipment. The following 

techniques possibly applicable for offshore wind turbine have been identified based on the 

literature  [43] [50][51]: 

Vibration analysis  

Vibration analysis is the most known technology applied for rotating equipment. The types of 

sensors used depend on some degree on the frequency range relevant for the monitoring. 

Some sensors of this technique are position transducers for the low-frequency range, velocity 

sensors in the middle frequency area, accelerometers in the high-frequency range and 

spectral emitted energy sensors for very high frequencies (acoustic vibrations). Vibration 

analysis is used in wind turbines to monitor the wheels and bearings of the gearbox, bearings 

of the generator and the main bearing [51,53].   

Fast Fourier transformation is the signal processing technique commonly used to convert a 

time-domain signal into a frequency-domain signal. The vibration analysis technique is 
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applied to shafts, bearings, gearboxes, and blades, and it is standardised in ISO10816 which 

defines the positioning and use of sensors. Vibration analysis methods are easy to implement 

in existing equipment and have a high level of interpretation, making it easy to locate the 

exact damaged component, see Figure 12. However, this approach comprises the use of 

additional hardware and software, which increases the production costs [21]. 

In [54], the author explores the problem of automatic signal validation. A number of typical 

signal inaccuracies encountered in large databases were shown. As a result of the research, 

the authors show an algorithm for automatic validation of vibration signals. The algorithm for 

automatic signal validation was extended to the statistical signal description, followed by a 

short discussion on additional vibration signal constrains concerning random impacts, 

transient states and signal offset. 

 

Figure 12. Typical development of a mechanical failure [21]. 

An example of implementation and allocation of accelerometers of a Vestas turbine is shown 

in Figure 13. Sensors measure absolute position of the rotor to perform phase sensitive 

narrow band analysis, the nacelle oscillation induced by the rotational speed of the rotor with 

static accelerometers and the vibration induced by bearings and gearwheels [51]. 

Oil analysis 

Oil debris monitoring is a practical condition monitoring technique for the early detection of 

faults in bearing and gears of the gearbox. 80% of gearbox problems can be attributed to the 

bearings with consequential damage to the gearing [21]. 
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Figure 13. Vibration condition monitoring system formed by a data acquisition unit and 

accelerometers (yellow circles) mounted on the drive train and generator. The revolution 

speed of the generator shaft measured by a proximity switch (purple circle). [55] 

This technique could have two aims; protection of the oil quality which can be contaminated 

by parts or moist and, protection the components involved. It is typically performed off-line, 

by taking samples but, for protecting the oil quality on-line sensors application is increasing. 

Condition monitoring of oil filter state by measuring the pressure loss over the filter now is 

mostly applied for hydraulic as well as for lubrication oil. Excessive filter pollution, oil 

contamination or change in component characteristics can give an indication of components 

with excessive wear [22,51]. 

This analysis uses the pumped oil in a closed-loop system of the component, and metal debris 

from cracked gearbox wheels or bearings is caught by a filter. The amount and type of metal 

debris can indicate the health of the component. Six main tests are mentioned in [21]: 

Viscosity analysis, oxidation analysis, water content or acid content analysis, particle count 

analysis, component condition (wear) analysis and temperature. 

The technology for on-line detection can be broadly divided into three subcategories 

depending on the sensing techniques applied: electromagnetic sensing, flow or pressure-drop 

sensing, and optical debris sensing. In terms of cost, size, accuracy, and development, suitable 

oil monitoring technologies are online ferrography, selective fluorescence spectroscopy, 

scattering measurements, Fourier transform infrared (IR) spectroscopy, photo acoustic 

spectroscopy, and solid-state viscometry [33][50]. In  [56] the author presented a high-

throughput, high-sensitivity inductive sensor for the detection of micro-scale metallic debris 

in nonconductive lubrication oil. The device is able to detect and differentiate ferrous and 

non-ferrous metallic debris in lubrication oil with high efficiency. The main disadvantages of 
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this technique are that it is very expensive, and it is only focused to detect a failure in the 

gearbox [50]. 

Thermography and Temperature Measurement 

Thermography technique is usually applied in electronic and electric components. 

Deterioration, damage or bad contact of these type of components generate higher 

temperatures (hot spots) that can be identified with this technique. It is applied offline, and 

often involves visual understanding.  Currently, it is not particularly designed for online 

condition monitoring however, the necessary equipment, such as cameras and software, are 

starting to become available [22][51] 

On the other hand, temperature measurement technique is able to detect excessive 

mechanical friction due to faulty bearings and gears, insufficient lubricant properties, and 

loose or bad electrical connections [42]. It provides an indication of the ongoing deterioration 

process. Due to each component or equipment has a limited operational temperature this 

technique is considered reliable however, as the temperature develops slowly, the 

temperature measurement technique is not sufficient for early failure prognosis and 

diagnosis. It can also be affected by ambient conditions  [50].  

Electrical effects 

Condition monitoring of electrical equipment such as power converter, generators and 

transformer is typically performed using voltage and current analysis. Discharge 

measurements are used for medium and high voltage grids. A spectral analysis of the stator 

current in the generator can be used for detecting isolation faults in the cabling without 

influencing WT operation [22]. 

Nuisance Alarms 

Nuisance alarms have been an issue for operators due to the additional cost that they might 

cause. The author in [54] developed an algorithm for the automatic validation of vibration 

signals in the condition monitoring system to minimise the risk of anomalies in a wind farm. 

Based on amplitude validation, the vibration data are validated via an original implementation 

of Parseval’s theorem. The “N-point” rule is a simple and powerful technique for automatic 

signal error detection [21,54]. 

 



49 

Summary of CMS for wind turbines 

Table 9 summarises condition-monitoring techniques for each of the main assemblies  

Table 9. Possible failures, monitoring techniques and WT measured parameters.  [50][21] 

[22] [51] [41] 

 

Subsystem Component Failures Component Subsystem 
Analysis 

Method

Blades
Deterioration, cracking, 

and adjustment error

Ultrasound, fibre optic and 

active thermography

FFT frequency 

domain

Bearings

Spalling, wear, defect of 

bearing shells and rolling 

element

Vibration, oil analysis, accoustic 

emission, shock pulse method, 

and performance monitoring

FFT frequency 

domain, 

Acceleration 

enveloping

Shaft

Fatigue, and crack 

formation, shaft 

displacement

Vibration analysis
Time domain 

and FFT

Main haft 

bearing
Wear, and high vibration

Vibration, shock pulse method, 

temperature, and acoustic 

emission

Time domain 

based on initial 

'fingerprint'

Mechanical 

Brake
Locking position Temperature

Gearbox

Wearing, fatigue, oil 

leakage, insufficient 

lubrication, braking in 

teeth, displacement, and 

eccentricity of toothed 

wheels

Temperature, vibration, shock 

pulse method, particles in oil, 

and acoustic emission

FFT frequency 

domain 

analysis, 

Envelope 

analysis, Time 

domain analysis

Generator

Wearing, electrical 

problems, slip rigs, winding 

damage, rotor 

asymmetries, bar break, 

overheating, and over 

speed

FFT amplitude 

spectraFFT 

envelope 

spectraTime 

domain 

magnitudeCom

b filtering, 

whitening, 

Kurtogram 

analysis

Yaw system
Yaw motor problem, brake 

locked, and gear problem

Pitch system Pitch motor problem

Hydraulic 

system

Pump motor problems, and 

oil leakage

Sensors
Broken, and wrong 

indication

Control 

system

Short circuit, component 

fault, and bad connection

Current consumption, and 

temperature

Power 

electronics

Short circuit, component 

fault, and bad connection

Current consumption, and 

temperature

High voltage Contamination, and arcs Arc guard, temperature

Nacelle Fire, and yaw error
Smoke, temperature and noise 

measurement, flame detection

Time Domain, 

FFT frequency 

analysis

Tower

Crack formation, fatigue, 

vibration, and foundation 

weakness

Transformer

Problem with 

contamination, breakers, 

disconnectors, and 

isolators

Wind Turbine

Rotor

Drive Train

Auxiliary 

Systems

Electrical 

System

Condition Monitoring Method

Torque, acoustic 

and strain 

meaurement, visual 

inspection, 

proximity probe

Torque, power 

signal analysis, 

thermography, 

acoustic emission, 

and performance 

monitoring

Generated effect, temperature, vibration, SPM, OM, 

torque, power signal analysis, electrical effects, 

process parameters, performance monitoring, and 

thermography

Motor current

O&M

O&M, process parameter, performance monitoring

Thermography

Thermography, and 

visual inspection

Vibration, shock 

pulse method, strain 

measurement, 

temperature and 

acoustic 

measurement and 

Thermography

Tower
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2.1.4 Condition Monitoring using SCADA data 

The Standard IEC61400-25 is used as a basis for the data exchange and communication 

software and procedures between condition monitoring techniques, the wind turbine 

controller, the SCADA System, Farm Server and human users. Data has to be made available 

without any time delay, "real-time data". For this type of data, hardware signals must be 

made available according to analogue and digital bus system. Figure 14 shows an exchange 

network structure for real-time data  [57]. 

 

 

Figure 14. Real time data exchange network structure  [57]. 

The SCADA system has been used in the wind industry for more than 35 years. SCADA sends 

turbine operational and meteorological data, usually in a 10-minute averaged, in real-time to 

a remote central computer via a communication system  [50][52]. SCADA system provides 

data of the rotational speed and pitch angle of the rotor, information of the drive train such 

as the gearbox oil and bearing temperatures, power output from the generator, wind speed 

and ambient temperature. This operational health data of the turbines can be used as part of 

a general turbine condition monitoring system [16].  

Condition monitoring based SCADA has the advantage over traditional CMS of significantly 

lower cost due to the lack of need of expensive sensors. Using accelerometers to obtain 

vibration signals is an example of expensive systems. Furthermore, CMS has a significantly 

greater volume of data to be analysed than the SCADA system and also a greater requirement 

of data storage. The higher frequency of sampling, defined in  [50], is more than 10kHz 
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sampling frequency for a vibration monitoring system and the SCADA system samples has a 

frequency of less than 0.002Hz [16].  

Techniques that are commonly used for traditional wind turbine condition monitoring 

including the approaches based on turbine physics and data-based modelling, can be 

implemented using SCADA data. According to  [58], 10 minutes averaged signals often 

monitored in modern SCADA systems include: 

• Active power output (and standard deviation over 10 min interval) 

• Anemometer-measured wind speed (and standard deviation over 10 min interval) 

• Gearbox bearing temperature 

• Gearbox lubrication oil temperature  

• Generator winding temperature 

• Power factor 

• Reactive power 

• Phase currents 

• Nacelle temperature (1-hour average).  

Most modern SCADA systems comprise additional alarm settings based on temperature 

transducers and based on vibration transducers in the gearbox, generator bearings and the 

turbine main bearing. Vibration being observed over the 10 minutes average period is the 

basis of alarms. ReliaWind carried out a research of CMS through SCADA  [7]. 

SCADA combined with other machine learning’s techniques represent a powerful tool. The 

study in  [7] proposes and compares two methods to detect and identify incipient faults in 

key components of wind turbines, such as main bearing, gearbox and blades. The analysis of 

this SCADA data comprises two methods: Artificial Neural Network (ANN) and mathematical 

model method. In [59] presents a machine learning methodology to detect and diagnose the 

delamination of the wind turbine blades. Delamination is the separation of the composite 

material layers and generates stress concentration in certain points. The techniques applied 

in this study are: autoregressive Yule-Walker model, K-nearest neighbours and ANN. Most 

recently, a complete review of machine learning techniques for condition monitoring of wind 

turbines is presented in [60]. ANN, support vector machines and decision trees are the most 

common techniques for blade fault detection and generator temperature monitoring.  
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2.2 Maintenance of Offshore Wind Farms 

British Standard (BS) 3811 defines maintenance as “…the combination of all technical and 

associated administrative actions intended to retain an item or system in, or restore it to, a 

state in which it can perform its required function”. Internationally, it is defined that the 

highest priority for O&M is the safety of personnel and to facilitate the remote control access 

of turbine control systems in order to investigate, rectify and re-set trips where possible [61] 

[59]. 

 

There are different ways of reducing the operation and maintenance costs, for example, by 

reducing the need for maintenance. Maintenance optimisation can be achieved by designing 

a simpler wind turbine, reducing the number of components and using components with high 

reliability. However, even with a very reliable wind turbine, maintenance will be necessary 

[62] [60][63] [61]. 

Studies suggest that the cost O&M represents 14% to 30% of an offshore wind farm total 

operation cost. O&M activities are governed by regulations requirements, condition 

monitoring techniques available in the market and their associated costs  [13]. It is estimated 

that optimal maintenance could reduce 40-70% of the direct O&M cost and could improve 

7% of the turbine availability  [5]  [17]. 

 

 

Figure 15. Maintenance strategies. [64,65] [62][3]  

Maintenance 
strategy

Corrective 
Maintenance 

(CM)

Preventive 
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condition based 
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The most common maintenance approaches are Corrective Maintenance (CM) activity which 

is performed after the failure occurs and Preventive Maintenance (PM) activity which is 

performed before the failure of a component, see figure 3. CM strategy is typically applied 

when failure consequences do not represent revenue losses or health and safety impact [23]. 

Failures of critical components of a turbine can be catastrophic with severe operational and 

Health, Safety and Environmental consequences. Therefore, the feasibility of a CM strategy is 

given by the consequences of failures on the electricity network and revenue generation [5]. 

PM activities can be divided into two different techniques; statistical based and condition 

based preventive maintenance.PM activity following a predefined schedule, e.g. once a year, 

is called Scheduled Maintenance (SM) and based on statistics of failures. PM activity planned 

based on sensor information or condition of the component, is called Condition Based 

Maintenance (CBM) [64] [62][65]. PM strategy, commonly also called Time-Based 

Maintenance (TBM), includes periodic maintenance actions at regular intervals of time. This 

strategy is often implemented due to warranty reasons with the OEM and to maintain critical 

components with known failure data under control. Nevertheless, the selection of the proper 

length of the interval of time to perform the maintenance tasks has the disadvantages; Figure 

16 shows frequent maintenance actions will increase operational costs, it wastes production 

time and it unnecessary replaces components in good condition [5].  

 

Figure 16. Corrective Maintenance compared to Scheduled Preventive Maintenance [3].  

As it is stated before, O&M management of offshore wind turbines has gained big significance 

with the increase of wind energy capacity installed in the electric power systems. Several 
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maintenance strategies focused on optimising the cost have been developed by experts. It is 

important to understand the reliability of a wind turbine to formulate an optimal 

maintenance strategy however; offshore wind turbine failure statistics are not freely available 

due to commercial restrictions. In his study Spinato [20] presented results of reliability 

analysis on a subassembly level based on publicly available databases from Germany and 

Denmark [64] [62].  

In the literature, different approaches for reliability analysis of wind turbines have been 

proposed. Reliawind project was founded by EU FP7 to improve the design, maintenance and 

operation of wind turbines. Within Reliawind project a reliability analysis procedure has been 

outlined to give procedures for performing reliability evaluation of wind turbines.  

To effectively manage the reliability and availability of offshore wind turbines, a number of 

tools and techniques taking into account economic, health, safety and environmental issues 

have been proposed. These techniques include  [5]: 

• Reliability-Centred Maintenance (RCM)  

• Failure Mode and Effect Analysis (FMEA) 

• Hazard and Operability studies (HAZOP) 

• Hazard Analysis (HAZAN)  

• Fault Tree Analysis (FTA) 

• Event Tree Analysis (ETA) 

• Critical Task Analysis (CTA) 

• Quantified Risk Analysis (QRA)  

• Total Productive Maintenance (TPM) 

• Risk Based Inspection (RBI) 

• Root Cause Analysis (RCA)  

• Structured What-if Technique (SWIFT) 

 

The following table summarises e advantages and disadvantages of the three most common 

maintenance strategies [23]: 
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Table 10. Maintenance strategies comparison. 

Maintenance Strategy Advantage Disadvantage 

Corrective  Low cost 

Maximum lifetime of 

components 

High risk of consequential 

damage 

Complex spare part logistics 

Long spare part delay time 

Planned Low downtime 

Simple spare part logistics 

 

Not maximisation of 

component life time 

Higher cost than CM 

Condition-Based Maximisation of component 

lifetime 

Low downtime 

Simple spare part logistics 

Complex failure prediction is 

required 

Hardware and software  

Extra cost for the strategy 

Immature market for wind 

turbines 

 

2.2.1 Reliability Centred Maintenance (RCM) 

The author in [66] [63] defines RCM as “an approach that employs reactive, preventive, and 

proactive maintenance practices and strategies in an integrated manner to increase the 

probability that a machine or component will function in the required manner over its design 

lifecycle with minimum maintenance”. 

Large and complex technology systems such as aircraft and wind turbines must be reliable 

and maintainable in order to operate in both ways, safe and cost-effective. This task requires 

the application of sound engineering effort from design to decommissioning.  

The integration between the RCM with reliability and maintainability engineering practices 

was first done the 1970s in the airline's industry. RCM is now extensively applied by several 

industries, including power plants.   

The author in [67] [64] states that RCM is based on the premise that more efficient life time 

maintenance and logistic support programs can be developed using a disciplined decision 

logic analysis process. This process is focused on the consequences of failure and the 

necessary preventive maintenance tasks. RCM is  technique, that can be applied in every step 

of the project development, from design to development process and re-assessed after 

deployment, during operation.  

The main tasks of the RCM process are performed based on the following areas: 
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• Hard-time replacement (HTR): degradation due to age and usage before functional 

failure can be prevented by replacement or overhaul at a fixed interval or loading 

cycles. 

• On-condition maintenance: degradation before failure is detected by inspections and 

assessments during a certain period. The inspection interval should be the largest that 

comprises a reasonable probability of successful detection.  

• Condition monitoring: degradation before failure is detected by a sensoring system 

(e.g. temperature, vibration, pressure, etc.). This represents a permanent surveillance 

using built-in test equipment.  

 

In general, terms, the complete RCM process can be described as follows: 

1. Critical component identification using a failure modes analysis tool.  

2. Definition and application of the RCM decision logic to each critical component. This 

will allow the optimal combination of hard-time replacement, on-condition 

maintenance and condition monitoring tasks. It will also define if a new design is 

required. 

3. Implementation of maintenance tasks and definition of data requirements for logistics 

analysis.  

4. RCM process optimisation using operational data.  

 

The risk assessment tool, FMECA is one of the most relevant data sources since it provides a 

strong foundation for the RCM decision logic. The Author in [67] [64], states that RCM 

structure for an operating system might be used as an information management system. RCM 

is able to register failure and their consequences, assess reliability based on the age of critical 

assemblies, incorporate new maintenances tasks, assess on-going tasks, and deal with 

unexpected failures.  

The application of the RCM technique comprises design features and operational functions 

information of the system, its failures and consequences to select the most effective CMS, 

on-condition maintenance and HTR maintenance tasks. The overall objective is to develop a 

maintenance strategy focused on the consequences of failure and designed to generate the 

expected safety and reliability level, while the cost of maintenance is reduced.  
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RCM of wind turbines 

RCM in wind farms is the way to manage turbine downtime and poor performance by failure 

prevention. It comprises a proactive approach of O&M however, for large wind farms the 

complexity increases due to the large number of interactions between individual elements.   

The authors in [65] present a RCM approach using a sequence of several activities and steps 

(see Figure 17) that can be summarised in two steps [66] [63]: 

• Inductive analysis of potential failures: use of FMEA tool to define critical components 

or assemblies.  

• Application of logical decision diagrams: specification of preventive maintenance 

activities, replacements, etc. 

 

Figure 17. RCM stages [66] [63]. 

 

The author in [66] [63] presents the RCM framework described in Figure 18, where it is possible to 

analyse how RCM stages interact with each other. Data collection and analysis are crucial input for 

RCM and spans across the lifecycle of the project [66] [63]. 
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Figure 18. RCM framework [66] [63] 

2.2.2 Spare parts management 

Spare part management has been identified as a key factor in O&M strategies and can account for 

between 8.3% and 16.7% of the total O&M costs [68] [65]. Therefore, its successful deployment can 

lead to cost reductions. Each wind turbine can have around 8000 of components, therefore, to 

minimise the downtime due to spare part availability, there must be sufficient access to them at all 

times [69] [66]. There is a lack of understanding of the related information and data. ORE Catapult 

organisation in [68] [65] compares the offshore wind industry with the aerospace industry, which 

shares the same asset lifetime, technology complexity level, supply chain and logistics challenges.  

The positives impacts of tools and solution related to spare part logistics in the aerospace industry are 

a reduction of aircraft on-ground time which is equivalent to offshore turbine downtime, reduction of 

the value of the spare part in inventory, and improving the spare part availability.  

There are thousands of components in each offshore wind turbine and to minimize any logistic delay 

time, the access to replacements need to be expeditious.  

The key performance indicators defined in [68] [65] to control the spare part logistics are: 

• Unscheduled downtime 

• Spare part availability 

• Inventory management 

• Response time 

• Abortive work, parts delayed 
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2.2.3 O&M Strategy factors 

There are three factors used to select an appropriate maintenance strategy for any physical 

asset such as a wind turbine; failure consequences, predictability of lifetime, and the 

feasibility of installing CMS on the wind or tidal turbine. A maintenance strategy that is 

appropriately optimised now may not be optimal in the near future due to the 

unpredictability of factors such as interest rate, components cost, failure behaviour, etc. Thus, 

maintenance optimisation is a continuous process which requires periodic evaluation of 

performance and improving based on previous actions [5]. 

2.2.4 Condition Based Maintenance 

Condition-based maintenance involves continuous monitoring of system data to provide an 

accurate assessment of the component status of a wind turbine and taking actions based on 

its observed health. To be able to assess the status of a wind turbine components, it is 

necessary improved sensor technologies, data collection, storage and processing capabilities, 

and continuous improvements in algorithms and data analysis techniques. It uses real-time 

system monitoring and data processing as described in section 2.6. The aim of this approach 

is to provide an accurate estimation of the remaining useful life and the current condition of 

the monitored critical component; this is called failure prognosis  [49] [27].  

Condition monitoring of components enables planning of maintenance prior to failure and 

will minimise downtime and repair costs since components remaining life will be optimised 

and the coordination of spare parts will be easy. Additionally, trends and statistical data such 

as mean time to failure can be provided which is important for getting reliable data for the 

remaining lifetime of components in the system. With site-specific data the prediction of the 

remaining time for the components can be more precise [23]. Figure 19 shows a comparison 

between condition-based, corrective and preventive maintenance strategies. 
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Figure 19. Condition based maintenance compared to scheduled and corrective 

maintenance. [23] [23] 

The Authors in [70] and [65] propose a maintenance strategy selection method to improve the cost 

effectiveness of offshore wind systems. These methods comprise an algorithm to optimise grouping 

several maintenance tasks. The algorithm has inputs such as turbine reliability, weather condition, 

maintenance tasks characteristics, power generation and so on.  

2.2.5 Fault Prognostic 

The author in [71] [67] reviews some of the most important issues concerning fatigue 

degradation, test methods for materials characterisation, and how the damage mechanisms 

behave. Most life prediction models are experiential and are based on macroscopic 

measurements. There are many empirical relations for predicting fatigue life such as power 

laws like Baquin’s relation, straight fits to S-log N data, Coffin and Manson’s relation.  

Prognosis is based on the assumption that failure is a process, not an event. Therefore, early 

detection of the failure will give more flexibility to manage the degradation process [27]. 

Failure prognosis is the process of generating predictions and pattern understanding of a 

signal or fault indicator. The final aim is to estimate the remaining useful life (RUL) [72] [68]. 

The main limitation of failure prognosis is the uncertainties associated with the predictions 

and it can be approached with to techniques; uncertainty representation and uncertainty 

management.  

Figure 20 shows the probability density function of the RUL generated by a prognosis process, 

giving a distribution of when is likely the failure occurs in time. At time tp, the remaining life 

prediction is made and a maximum allowable probability of failure has to be selected to define 
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what is called “just on time point” at which it is carried out the corrective maintenance actions 

[49]. 

 

Figure 20. Remaining useful life probability distribution [49]. 

 

The lead time interval provides a real-time estimate of the remaining time before a system 

operates above the maximum allowable probability of failure (PoF). Maintenance actions 

must be performed before this time elapses. Factors such as safety, criticality and economic 

considerations determine the maximum allowable probability of failure. [49].   

The author in [6] [6] divided prognostic techniques into three categories: experience-based 

approaches, trending or data-driven approaches and model-based approaches. See Figure 21. 

 

 

Figure 21. Prognosis techniques [6] 
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Experience-Based Prognostic Approach is the simplest technique due to it depends on 

statistical historical failure rates of wind turbine components. Models of components’ lifetime 

can be developed in terms of distributions of failure rates over time using preventive 

maintenance schedules. Mean time between failures (MBTF), derived from lifetimemodels, is 

a parameter used to define the maintenance actions’ intervals. This approach does not have 

any prognostic ability and cannot be considered as really predictive prognostic technique. 

However, such approaches are used in situations where sensor data is not available and the 

criticality or cost of the component is low.  

On the other hand, a model-based prognostic technique has ability to incorporate physical 

understanding of the component behaviour, predicting degradation under variable or 

oscillating loads and operating conditions. It uses the physics of failure models of the system 

or component under observation. The most popular application of this approach is fatigue 

models for modelling the initiation and propagation of cracks in structural components.  

Finally, the last approach is used when the complexity of the systems under observation does 

not allow deriving accurate models for prognosis. Data-Based prognostic technique model the 

relationship between monitored signals, and the remaining life of the system. An example of 

data-driven techniques is Artificial Neural Networks (ANN) [6].  

ANNs are defined in [49] as a tool “to model relationships between input and output variables 

with a model structure inspired by the neural structure of the brain. The network weights and 

biases, which define the interconnections between the neurons, are adapted during a training 

process to maximise the fit between the input and output data on which the models are 

trained”. 

The author in [73] summarises the methods to predict the remaining useful life of wind 

turbines. They are categorised into four groups: 

1. Knowledge-based models 

2. Life expectancy models 

3. Artificial neural networks 

4. Physical models 

Most of the techniques for failures prognosis are applied to gearboxes, main bearing and, 

blade and pitch control.  
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Another Data-Driven approach for fault detection of wind turbines is proposed in [74]. This 

study uses random forests and xgboost techniques to classify failures.  

One of the most relevant limitations of these models representing degradation of 

components is the type of data available. SCADA data sample does not have the resolution 

require for some applications. On the other hand, the sensoring system installed in a turbine 

can degrade or improve reliability. Additionally, the condition monitoring system are 

designed to diagnose a particular component using certain parameters that are not always 

useful to conclude about the overall health of the turbine.  

2.3 Risk Assessment Approach for Offshore Wind Turbines 

Quantitative analyses of failure data have shown important features of failure rate values and 

trends  [46]. Failure Mode and Effects Analysis (FMEA) has been extensively used by wind 

turbine assembly manufacturers for risk and reliability analysis. Basically, each failure mode 

of the wind turbine is evaluated in the FMEA taking into account Severity (S), Occurrence (O), 

and the difficulty of detection (D). The combination of the three results in the Risk Priority 

Number (RPN). 

Several limitations are associated with its implementation in offshore wind farms:  

• Unreliable data: failure data gathered the data systems such as SCADA system, is often 

missing or unreliable. The risk assessment regarding severity, occurrence, and fault 

detection are mainly based on subject matter expert knowledge.  

• Uncertainties and assumption: it is difficult for subject matter experts to precisely 

evaluate the risk factors. 

• Factors weights: the relative importance among the risk factors is considered in the 

evaluation therefore, the results may not necessarily represent the true risk priorities. 

To express fuzzy linguistics terms, the author in [75] [69] proposes a grey theory analysis to 

incorporate the relative importance of the risk factors into the determination of risk priority 

of failure modes.  

The advantages of this approach are:  

• An organised framework to combine the qualitative and quantitative data as inputs 

in the FMEA. 

• The relative importance weights of severity, occurrence and detection factors.  
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A fuzzy-FMEA approach for risk and failure mode analysis in offshore wind turbine systems is 

proposed in [76] [70]. Fuzzy logic is a tool for transforming the vagueness of human feeling 

and recognition into a mathematical formula. It also provides a meaningful representation of 

measurement for uncertainties and vague concepts expressed in natural language. In line 

with this, there has been a growing trend in FMEA literature to use fuzzy linguistic terms for 

describing the three risk factors S, O, and D.  

A probabilistic model of Risk-based Maintenance is presented in [77] [71]. Here, a prior 

damage model is combined with data from load measurements, inspections, and the SCADA 

system to improve the estimate of the probability of failure. To make probabilistic graphical 

models that represent the relationship between random variables, it is possible to deploy 

Bayesian networks  [16]. Bayesian networks are graphical models based on Bayes’s Rule. This 

rule presents the probabilistic relationship between variables with uncertainties [78] [72].  
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CHAPTER 3 – FAILURE MODES AND EFFECTS ANALYSIS (FMEA) 

A risk assessment is required to identify critical assemblies and components of the Offshore 

Wind Turbine (OWT). This section comprises a qualitative analysis of failure mechanisms, 

global and local effects and, the maintenance effort required to improve the condition of the 

assemblies.  

The FMEA comprises almost 500 components with about 1000 failure modes in total. This risk 

assessment gives details of the failure impacts at the component level. The comprehensive 

FMEA also delivers two analysis in parallel; operational risk with the Risk Priority Number 

(RPN) and the criticality analysis with four categories, environment, asset integrity, safety and 

operation. Additionally, new data sources management tools are designed. This tool allows 

identifying those areas where more research or real data are required. Finally, this thesis 

proposes a three-dimensional risk assessment adding to the traditional FMEAs with failure 

consequence and frequency, the variable failure detectability.  

3.1 Introduction 

This chapter presents the results of Failure Modes and Effects Analysis (FMEA) conducted for 

the horizontal axis OWT described in section 3.1.2. The FMEA was performed for the 

functional modes of each subsystem, assembly and component following the British standard 

BS EN 60812:2006 described in section 3.2.5. This risk assessment was an iterative process 

and outcome of a combination of available data and practical experience with the operation 

of wind farms.  

The main objectives of the FMEA are to identify failures with significant impact on the wind 

turbine operation and to highlight areas of risk for maintainability and availability. Critical 

components and failure modes will be explored further in Chapter 3  and 4 which are related 

to physics-based models and data mining. The procedure allocates numerical values from 1 

to 5 to each risk associated with a failure, using Severity, Occurrence and Detection as 

categories. The values of the ranking rise when the risk increases. These are then combined 

into a Risk Priority Number (RPN), which can be used to analyse the system. By targeting high 

RPN values the riskiest components and assemblies can be further studied. RPN is calculated 

by multiplying the Severity, Occurrence and Detection of the risk. 

Additionally, this chapter comprises the description of a Criticality analysis to assess the 

impact of a failure mode from an environmental, financial and reputational point of view. 



66 

Based on EN 60812:2006, Criticality can assume different meanings; for the purposes of this 

study Criticality is defined as “a qualitative measure of the magnitude of the failure mode 

effect in different categories: Environment, Safety, Asset Integrity and Operation.” 

3.1.1 Scope 

This analysis delivers an assessment for the proposed Offshore Wind Turbine (OWT) mounted 

in a monopile foundation. FMEA provides a bottom-up approach to the analysis of each main 

assembly in order to identify potential failure modes and, the local and global effects in the 

system. It also provides current monitoring techniques and methods to prevent failure.  

The qualitative FMEA will answer the following questions for each assembly’s component: 

• How can a component fail? How many failure modes each component can have? 

• What are the causes of each failure mode? 

• What are the effects of the failure on the wind turbine? 

• How critical are the effects? How frequent are the effects? Can be the effects 

detected? 

• How is the failure detected? 

• What are the critical components/assemblies? 

Critical components analysis provides a summary of the selected components whose failure 

modes can represent a negative impact on the system in different severity categories: asset 

integrity, environmental impact, operational impact and safety.   

The FMEA is intended to be a living tool that will be iterated in order to represent real failure 

modes and contribute to improve reliability, maintainability, availability and survivability of 

offshore wind turbines. This tool is also crucial to assess the amount of maintenance required.  

3.1.2 Wind Turbine System 

Until 2014, 2488 offshore wind turbines were installed representing 8GW of capacity 

connected to the grid in Europe. In 2018, the total amount of grid-connected offshore wind 

turbines was 4.545, reaching 18.5GW of installed capacity in 11 European countries. The UK 

and Germany accumulate more than 14GMW today [11]. 63% of this capacity is installed in 

the North Sea. 91% of these turbines use a monopile foundation type installed in an average 

water depth of 22.4m. In terms of wind turbine manufactures, Siemens Company reached 

86.2% of market share in 2014 [79] [73]. The market is dominated by Siemens and followed 
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by Vestas with a percentage of 15% to 20%. Among the population of turbines installed in 

Europe the turbine configuration with a fully rated power converter, 3 blades, monopile 

foundation, 3 stages gearbox and induction generator is the most common one. As it is shown 

in Figure 22, 64% of the turbines use Squirrel Cage Induction Generator (SCIG), 29% Double 

Fed Induction Generator (DFIG) and 7% Permanent Magnet Synchronous Generator (PMSG). 

Therefore, 93% of the turbines are using asynchronous generators of which 63% with fully 

rated power converter as the turbine Siemens SWT 3.6-120 [79,80] [73,74].  

 

Figure 22. Wind turbine market trends. 

Based on the market description above, the turbine configuration of the Siemens SW3.6 

corresponds to the most utilised turbine technology of the European offshore wind energy 

market in 2014.  Then, this FMEA is done for the proven technology of the world’s most 

popular offshore wind turbine. SWT3.6 is an axial three-bladed rotor turbine with pitch 

regulation and asynchronous squirrel cage generator with fully rated power converter[81] 

[75].  

  

Figure 23. Siemens Turbine SWT 3.6 -120. 

3.2 FMEA and FMECA methodology 

The FMEA and FMECA are conducted in accordance with the international standard IEC 

described in the British Standard BS EN 60812:2006 “Analysis techniques for system reliability 
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- Procedure for failure mode and effects analysis (FMEA)”. This standard provides procedural 

steps necessary to perform the analyses identifying appropriate terms, assumptions, 

criticality measures and failure modes. [82] [76] 

The analysis consists of the following five main stages: 

• Establishment of the basic ground rules for the FMEA/FMECA and defining the scope.  

• Defining systems structure including information on different system elements with 

their characteristics, performances, roles and functions. 

• Executing the FMEA using the appropriate worksheet with a pre-defined system 

boundary and level of the analysis.   

• Summarising and reporting of the analysis to include any conclusions and 

recommendations made. 

• Updating the FMEA as the new inputs are incorporated. 

3.2.1 Assumptions and Ground Rules 

The analysis has been undertaken for the each subsystem and component function. In order 

to perform the FMEA, the following assumptions and ground rules are defined [83] [77]: 

1. The evaluation of the severity, occurrence and detectability will be performed at the 

component level of the following hierarchical structure which is based on the structure 

proposed in the project ReliaWind [84] [78]:  

 

Figure 24. Hierarchical Wind Turbine Structure [84,85] [78,79]. 

2. Each component’s failure mode will be evaluated for the local and global impact on the 

system. Local impact is considered as the impact on other components or sub-assemblies 

directly mechanically, electrically or structurally connected. 

3. A failure mode will be allocated a severity level based on the most critical consequence of 

that failure. 

System Offshore Wind Turbine

Sub-system
Collection System, Drive train Module, Electrical Module, 
Nacelle Module, Rotor Module, Support Structure

Assembly
For example: Gearbox, Generator, Frequency Converter, Yaw System, Pitch 
System, Tower, Blade, Control System, Aux. Elect. System, Main Shaft set

Sub-
assembly

For example: Bearings, Cooling System, Gears, Housing, Lightning Protection System, 
Lubrication System, Mechanical Brake, Acces Equipment.

Component
For example: Temperature Sensor, Breaker, Bolts, Cable, Carrier bearing, Contactor, Control Board, 
Cooling Fan, Coupling, DC Chopper
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4. A failure mode will be assigned an Occurrence category based on the data available.   

Occurrence refers to the frequency that a Cause of Failure (CoF) is likely to occur, 

described in a qualitative way e.g. remote or occasional. 

5. Each failure mode identified has a Detection category based on the techniques 

commercially available. Due to this FMEA forms part of a project to predict failures with 

greater accuracy, Detection category refers to the likelihood of detecting a failure in terms 

of “prognostic horizon” or advance warning.  

6. The potential failures modes for each component of each subassembly described in Figure 

24 are identified. Potential failure modes are assigned based on the following criteria 

listed in order of relevance: 

o Numerical data analysis 

o Expert opinions 

o Theoretical data analysis 

o Pre-defined generic failure modes: In the absence of an expert opinion of a 

particular failure mode, failure modes listed in [86] [80] and Lloyd’s Register's 

experts [87] [81] have been used in the FMEA. Generic failure modes were defined 

to cover all the possible failure modes that can occur in the offshore wind turbine. 

This is shown in  Table 11. 

 

Table 11. Generic OWT Failure Modes.[86] [80][87] [81] 

 

7. Prevention methods are defined based on the common practice in the offshore wind 

industry. It is listed all the methods available and defined in the literature review. 

Generic OWT Failure Mode Description

Brittle Fracture Failure for metallic component(very rare)

Fatigue Fracture Failure for metallic component(this would not be as rare as brittle fracture)

Structural Failure Failure of any part or assembly that forms part of a supporting structure

Electrical Failure Failure of a part or assembly as a result of an electrical defect

Mechanical Failure Failure of a part or assembly as a result of a stress related defect

Material Failure  Failure of a part or assembly as a result of a defect/nonhomogeneous composiYon of thematerial with which the part is made

Detachment Failure of a part or assembly where by it is unintentionally no longer rigidly connected to its frame or structure

Electrical Insulation Failure Failure of a part or assembly with a high resistance to the flow of electrical current, resulting in leakage of current from a conductor

Thermal Failure Failure of a part or assembly as a result of an incapacity to tolerate any exposed high temperatures, resulting in a reduction in rigidity

Output Inaccuracy Failure of a part or assembly as a result of a signal output inaccuracy

Misalignment Failure of a part or assembly as a result of an unintentional change in the parts position or orientation, with particular reference to

Intermittent output Failure of a part or assembly as a result of an irregular and uncontrollable change or pause of the intended output

Blockage Failure of a part or assembly as a result of a reduction in flow of a Fluid- typically caused by debris and increased viscosity of the

Abrasion Failure of non-metallic hoses

Fatigue Failure of non-metallic hoses

Sudden external damage Failure of non-metallic hoses (e.g. dropped object).

Prime mover fails Failure of pumps

Seals fail Failure of pumps

Electrical Failure Failure of a part or assembly as a result of an electrical defect

Not working at all Failure of sensors

Giving false positive Failure of sensors

Giving false negative Failure of sensors

Fretting Corrosion Failure of All gears

Bending Fatigue Failure of All gears
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Redundant items are considered in this thesis as a prevention method because this 

strategy allows detecting a failure of a critical component without stopping the operation 

of the system and giving an alert of deviations from the normal behaviour of the 

component.  

Table 12. Prevention methods.  [1][82] [76] 

 

 

8. Condition Monitoring Techniques were selected regarding their availability in the market 

and assigned to the components and assemblies based on studies (Tchakoua et al. 2014, 

Marquez et al. 2012 and Hameed et al. 2009) and expert opinions. See table 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Preventive maintenance tasks

A check of the gearbox and hydraulic system oil levels. 

Inspections for oil leaks. 

Inspections on the cables running down the tower and their supporting system.

Observation of the machine while running to check for any unusual drive train vibrations.

Inspections of brake disks and brake adjustment.

Inspections of the emergency escape equipment.

Checking the security of fixings, e.g. bolt torque, blade attachment, gearbox hold down, yaw bearing attachment.

Checking high speed shaft alignment.

Checking performance of yaw drive and brake.

Bearing greasing.

Oil filter replacement.

Inspecting overspeed protection systems.

Blade inspection tecniques (e.g Torque, acoustic and strain measurement, visual  inspection, proximity probe) and  cleaning from gradual build up of dirt.

test output regularly

Equipment inspection

lubrication

part replacement

cleaing and adjustments

Alternative means of operation

Redundant Item
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Table 13. Detection Methods associated with the type of failure modes.  [22][21] [3] [51] 

Subsystem Component Failures Condition Monitoring Method 

Rotor 

  

Bearings Spalling, wear, defect of bearing 

shells and rolling element 

Vibration, oil analysis, acoustic emission, shock pulse 

method, and performance monitoring 

Shaft Fatigue, and crack formation, 

shaft displacement 

Vibration analysis 

Drive Train 

  

  

  

Main haft 

bearing 

  

Wear, and high vibration Vibration, shock pulse method, temperature, and 

acoustic emission 

  Torque, power signal analysis, thermography, 

acoustic emission, and performance monitoring 

Mechanical 

Brake 

Locking position Temperature 

Gearbox Wearing, fatigue, oil leakage, 

insufficient lubrication, braking in 

teeth, displacement, and 

eccentricity of toothed wheels 

Temperature, vibration, shock pulse method, 

particles in oil, and acoustic emission 

Generator   Wearing, electrical problems, slip 

rings, winding damage, rotor 

asymmetries, bar break, 

overheating, and over speed 

Temperature, vibration, SPM, OM, torque, power 

signal analysis, electrical effects, process 

parameters, performance monitoring, and 

thermography 

Auxiliary 

Systems 

  

  

  

Yaw system Yaw motor problem, brake 

locked, and gear problem 

Motor current 

Pitch system Pitch motor problem O&M 

Hydraulic 

system 

Pump motor problems, and oil 

leakage 

O&M, process parameter, performance monitoring 

Sensors Broken, and wrong indication Thermography 

Electrical 

System 

  

  

  

Control 

system 

  

Short circuit, component fault, 

and bad connection 

Current consumption, and temperature 

  Thermography and visual inspection 

Power 

electronics 

Short circuit, component fault, 

and bad connection 

Current consumption and temperature 

High voltage Contamination, and arcs Arc guard, temperature 

Tower 

  

  

Nacelle 

  

Fire, and yaw error 

  

Smoke, temperature and noise measurement, flame 

detection 

Vibration, shock pulse method, strain measurement, 

temperature and acoustic measurement and visual 

inspection 

Tower Crack formation, fatigue, 

vibration, and foundation 

weakness, scour 

 Capacitive sensors 

Transformer   Problem with contamination, 

breakers, disconnectors, and 

isolators 

Thermography 

Wind 

Turbine 

  

  

  

  

  

Wind turbine measurements (SCADA) 

Failures cannot be detected remotely (testing will be 

needed)  

 

3.2.2 Data sources 

Failure mechanisms in offshore wind turbines and their consequences arise from several data 

sources. Using a consistent approach, a knowledge base can be developed in order to assess 

events in the offshore wind turbine. Disparate sources of data or information are used to 

develop the FMEA: 
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• Recognised and peer-reviewed long-term reliability data (for instance from the EU 

Framework 7 Project, Reliawind)  

• Lloyd’s Register experience working with wind farm operators which allow having access 

to expert knowledge of maintenance technicians and managers, maintenance task 

reports, technicians’ logs, marine coordinators’ records, vessel skippers’ records. 

• Reliability data from SCADA databases. 

• Reliability data from other industrial sectors for similar components and operational 

conditions. 

• On-going measurements and observations. 

 

3.2.3 Functional Block Diagram 

To aid the analysis, symbolic representations such as functional diagrams of the system and 

operation are very useful. Functional diagrams are created highlighting all the crucial 

functions of the wind turbine. Blocks representing components are linked together by lines 

that represent mechanical, electrical or hydraulic inputs and outputs, as described in Table 

14. 

The diagrams show redundancies and functional interdependencies of the components that 

allow the analysis of failure through the system. 

The block diagram contains the following items: 

• Breakdown of the system (Figure 25) into major subsystems, assemblies and components 

(e.g. Figure 26 and Figure 27) including functional relationships. 

• Appropriately labelled block with names, inputs and outputs.  

• Redundancies, alternative signal paths and other engineering features which provide 

protection against system failures. 
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Figure 25. Wind Turbine System Functional Diagram 

 

 

Table 14. Gearbox Functional Diagram Description 

ITEM DESCRIPTION 

Blue lines Mechanical contact, torque and load 

transference 

Red lines  Hoses 

Green lines:  Electrical connections 

Blue boxes:  Gearbox components 

Red boxes:  Other assemblies 

Purple boxes:  Connection components 

Orange boxes:  Hydraulic systems 

 

DRIVE TRAIN

ROTOR BLADES HUB MAIN SHAFT GEARBOX GENERATOR

PITCH SYSTEM PITCH BEARING

ROTOR MODULE

ELECTRICAL MODULE

CONVERTER

BRAKE SYSTEM

CONTROL & COMMUNICATION 

SYSTEM

TRANSFORMER

NACELLE MODULE

HYDRAULICS SYSTEMNACELLE AUXILIARIES

NACELLE STRUCTURE

YAW SYSTEM

SUPPORT STRUCTURE

TOWER FOUNDATION

COLLECTION CABLE
POWER ELECTRICAL 

SYSTEM

MAIN BEARING
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Figure 26. Gearbox Functional Diagram 

 

Figure 27. Generator Functional Diagram 
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3.2.4 FMEA Worksheet 

Based on the standard BS EN 60812:2006, terms and definitions are defined to carry out the 

FMEA: 

Item:  part or component that can be individually considered. 

Failure: termination of the ability of an item to perform a required function. 

Failure Local Effect: consequence of a failure mode in terms of the operation, function or 

status of the item. The expression “local effects” refers to the effects of the failure mode on 

the system element under consideration. 

Failure Global Effect: A failure effect may also influence the next level up and ultimately the 

highest level under analysis. Therefore, at each level, the effect of failures on the level above 

should be evaluated. When identifying end effects, the impact of a possible failure on the 

highest system level is defined and evaluated by the analysis of all intermediate levels 

Failure Mode: the way in which an item fails. 

Failure Mode Reference Number:  The failure mode reference number is a unique identifying 

number assigned to each component of the system being analysed. 

System: a set of interrelated or interacting elements. 

Failure Severity: the significance of the failure mode’s effect on item operation, on the item 

surrounding, or on the item operator. 

Detection: For each failure mode, it is determined the way in which the failure is detected 

and the means by which the user or maintainer is made aware of the failure. 

3.2.5 Ratings  

The basis of the FMEA is the Risk Priority Number (RPN) which is a multiplication of the 

numerical values of severity, occurrence and detection ratings assigned to each failure modes.  

Severity Classification Definitions 

To facilitate the analysis of severity and occurrence ratings and further correlation with 

previous quantitative surveys or studies it is used reliability concepts based on [3] [3]. The list 

below described key concepts of reliability to associate a qualitative FMEA with quantitative 

variables.  
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• Availability (A): (technical availability: percentage of time that an individual turbine 

WT or wind farm is available to generate electricity expressed as a percentage of the 

theoretical maximum. 

• Mean time to failure MTTF 

• Mean time to repair MTTR 

• Logistic delay time LDT 

• Downtime MTTR+LDT 

• Mean time between failure MTBF = MTTF 

• MTBF=MTTF+MTTR+LDT 

• Failure rate:  λ=1/MTBF 

• Repair rate: μ=1/MTTR 

• Commercial availability: A=(MTBF-MTTR)/MTBF=1-(λ/μ) 

• Technical availability: A=MTTF/MTBF<1-(λ/μ)  

Regarding BS EN 60812:2006, Severity is an assessment of the significance of the failure 

mode’s effect on item operation. 

Table 15. Severity Levels 

Label Value Description 

Catastrophic 5 wind turbine inoperable with destructive failure without warning 

Critical 4 wind turbine inoperable with equipment damage 

Marginal 3 wind turbine operable with significant degradation of performance 

Minor 2 wind turbine operable with minimal interference 

None 1 no effect on wind turbine operation 

 

The severity ratings in Table 15, give an indication of MTTR, which at the same time is 

represented by repair rate μ. Downtime is the sum of mean time to repair and the logistic 

delay time.  

Occurrence Classification Definitions 

Regarding BS EN 60812:2006, the probability of occurrence of each failure mode should be 

determined in order to adequately assess the effect or criticality of the failure mode. This 

parameter is associated with the failure rate. When there is no access to registered failure 

rates of offshore wind farms, a good starting point for estimation is the failure rates data 
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available in public databases. The table 16 shows the failure rate from different databases of 

onshore wind farms. 

Table 16. Failure rates (failures/turbine/year) from WSD, WSDK and LWK databases. 

 

Table 17 shows the description of the occurrence rating and its association with MTBF. 

Table 17.Occurrence Levels 

Label Value Description 

Inevitable 5 failure is almost inevitable, will definitely occur 

Frequent 4 repeated failures with regular occurrence 

Occasional 3 occasional but not necessarily regular failures 

Rare 2 rare and irregular failures 

Extremely-Unlikely 1 failure almost never occurs, extremely unlikely 

 

Where λ=1/MTBF is the failure rate.  

Detection Classification Definitions 

Since the aim of the project, of which this FMEA takes part of, is to optimise the O&M activities 

by improving the accuracy of failure prognosis, this rating is defined in terms of the prognostic 

horizon or advance warning. This categorisation allows for identifying hidden failures.  

Detection classifications are classified from 1 to 5 regarding the following criteria in Table 18 

Table 18.Detection Levels 

Label Value Description 

Undetectable 5 Undetectable until failure occurs 

Detectable by O&M 4 Detectable by maintenance team in an average of 3 month routine 

Detectable by CMS 3 Detectable by safety system when operational parameters are 

exceeded 

Early Prognosis 2 Early prognosis, detectable by the control system during normal 

production 

Detectable 1 Detectable before the turbine starts production 

WSD (1291-4285 WTs) WSDK (851-2345 WTs) LWK (158-643 WTs) Average Failure rate Average MTBF

Electrical system / Grid / Electrics 0.294 0.0468 0.32 0.22 4.54

Rotor or blades / Hub / Blades 0.191 0.0486 0.19 0.14 6.98

Electrical control / Electronics 0.182 0.15 0.239 0.19 5.25

Yaw system 0.108 0.0645 0.116 0.10 10.40

Generator 0.105 0.0497 0.139 0.10 10.21

Hydraulic system 0.0958 0.0451 0.131 0.09 11.03

Gearbox 0.0929 0.0425 0.134 0.09 11.14

Pitch control / Mechanical Control 0.0893 0.0141 0.0834 0.06 16.06

Air brakes / Rotor Brake 0.0411 0.0164 0.0397 0.03 30.86

Mechanical brake 0.033 0.0289 0.0554 0.04 25.58

Main shaft / Bearing 0.0212 0.0145 0.0311 0.02 44.91

Other (Anemometry, Sensors, Others) 0.188 0.209 0.367 0.25 3.93
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3.2.6 Analysis Flowchart 

Figure 28 shows the steps followed by the analyst to allocate the right information for each 

component in the FMEA. After all the components are listed, the analyst performs the analysis 

of the components one by one.  

                         

Figure 28. FMEA procedure 

The last step is to register the data source used in the assessment by assigning a Confidence 

Level index described in section 3.5. 

3.3 Criticality Analysis 

Criticality concept could assume different perspectives; in this study, criticality analysis aims 

to qualitatively measure the magnitude of a failure effect in the different categories as it is 

described in Table 19: safety, environment, asset integrity and operation. It considers a wider 

context than the approach of the FMEA previously described. It comprises environmental, 

financial and regulatory aspects of wind farm developments. This criticality analysis is 
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RPN sensitivity analysis
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performed in parallel with the assessment of the RPN for each failure mode and component, 

as shown in an example of the FMEA spreadsheet in Figure 29. In order to have consistency 

between the criticality and the RPN analysis, the failure frequency remains the same.  

Table 19.Criticality Analysis Categories 

 

 

Figure 29. Example of the FMEA spreadsheet. 

3.4 Results Analysis 

3.4.1 RPN and Failure Contribution 

Table 20 shows a summary of the FMEA describing the total number of components per 

assembly, the average number of failure per component and, the failure contribution of the 

assemblies. The FMEA comprises 18 main assemblies, 76 sub-systems and 493 components. 

963 potential failures modes are identified and classified by the Risk Priority Number (RPN).  

The failure contribution is the number of the failures modes identified for each assembly out 

of the total number of failures modes in the turbine.  
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Table 20. FMEA summary 

Assembly Total 

Number of 

Components 

Number 

of 

Potential 

Failures 

Average 

Number of 

Failures per 

component 

FAILURE 

CONTRIBUTION 

nacelle structure 15 15 1.0 2% 

power electrical 

system 

15 18 1.2 2% 

nacelle auxiliaries 13 26 2.0 3% 

foundation/transition 

piece/tower/cable 

25 31 1.2 3% 

auxiliaries electrical 

systems 

37 37 1.0 4% 

Blade/Hub 38 38 1.0 4% 

main shaft 24 47 2.0 5% 

hydraulic system 27 49 1.8 5% 

pitch system 28 82 2.9 9% 

generator 56 83 1.5 9% 

control and 

communication 

systems 

38 84 2.2 9% 

yaw system 39 125 3.2 13% 

gearbox 46 156 3.4 16% 

frequency converter 92 172 1.9 18% 

  493 963     

 

The RPN is calculated multiplying the values of the three ratings for each component; severity, 

occurrence and detection. Table 21 and Figure 30 show the average, minimum and maximum 

values of the RPN for each assembly. Some of the components with maximum values of RPN 

for each assembly are identified. 

Table 21. Minimum, average and maximum values of RPN of the components of each assembly. 

 

Assembly Min RPN Av RPN Max RPN

gearbox 16 30.1 48

generator 12 27.6 40

main shaft 12 27.0 40

auxiliaries electrical systems 10 17.8 40

control and communication systems 16 28.1 30

frequency converter 8 38.3 60

power electrical system 20 25.0 40

hydraulic system 18 18.0 18

nacelle auxiliaries 16 29.0 36

nacelle structure 16 16.0 16

yaw system 16 30.8 48

Blade/Hub 12 19.7 24

pitch system 15 33.9 48

foundation/tower/export cable 8 12.0 32

root structure, paint

motor, pinions, bearings

export cable

Components with maximun RPN

capacitors

transformer

pressure and level sensors, motor, pump

anemometer, wind vane

sensors, firefighting system, lightning protection

brakes

shaft bearing

sensors

bearings

grid protection relay

sensors
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Figure 30 presents the average RPNs with the standard deviation, which gives an indication 

of the range of RPN values among the components of one particular assembly. The standard 

deviation of the RPNs for each assembly is calculated using the following equation: 

� � � 1� � 1 ��	
�� � 	
�′
��
���  

Where RPN’ is the mean value of the risk priority number, and N is the number of components 

for each assembly.  

The assemblies nacelle structure and hydraulic system have little variations of RPN values 

while the frequency converter has a wide range of RPN values amongst its components.  

 

Figure 30. Average RPN per assembly. 

 

In order to identify those assemblies that are critical for the wind turbine, severity ratings are 

filtered. Those components with “marginal”, “critical” and “catastrophic” impact on the WT’s 

performance are analysed and highlighted in red in the figure below.  
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Figure 31. Average RPN of critical components. 

Figure 32 presents failure contribution as a percentage of the total number of potential failure 

modes in the offshore wind turbine. This is compared with the number of failures per 

component of each assembly. It is possible to see that the frequency converter has the largest 

failure contribution, but its components have fewer ways in which to fail. On the other hand, 

assemblies such as pitch system and nacelle structure, represent a lower contribution to the 

total number of failure however, their components have a wider range of failure mechanism. 

From the graph, it is possible to conclude that the assemblies with greater failure contribution 

are frequency converter, gearbox and the yaw system. Amongst these three assemblies, 

frequency converter has the highest failure contribution of the whole wind turbine system 

with 18%, however its identified number of failures per component is approximately the half 

of the number of failures per component of the gearbox with 16% of failure contribution. The 

number of failure per component could be considered as an indication of component 

reliability, therefore, if the number of failure per component if high, the estimated reliability 

of that component could be degraded as it has more chances to fail due to different failure 

root causes. 
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Figure 32. Failure contribution per assembly. 

Once critical assemblies are identified, it is necessary to identify how they can fail to put more 

efforts on avoiding those failures with greater impact on the assembly and therefore, on the 

turbine operation. The figure below shows that the main failure modes for the gearbox and 

frequency converter are electrical failures, and most of the main failure modes of the yaw 

and pitch system are mechanical failure. 

 

Figure 33. Main failure modes of critical assemblies. 
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To analyse the failure modes in the FMEA, they are grouped into major families of failures.  

Figure 34 shows the major failure mode families and the number of events counted per failure 

type in the FMEA analysis. It is evident that sensor system failure, and electrical failure are 

the most common type of failures in the wind turbine. Material and mechanical failure is also 

above average. This graph shows what is the type of failures that could represent the greatest 

cost in O&M due to their probability of occurrence and where some new strategy could be 

implemented to focus the effort on that number of the identified failure modes. 

 

Figure 34. Families of failure modes and their number of events. 

Figure 35 shows the unique types of failure modes identified and their RPN in the FMEA. Here 

it is possible to observe that the majority of the failure in the list has an electrical nature. 

However, the number of events per failure mode, as it is described above; do not represent 

the severity of the failure or the impact on O&M activities. The FMEA shows that failure 

modes with a low number of events like “loose bar” or “shaft scuffing” have high RPN which 

means that this kind of failure needs to be addressed for further analysis due to their 

consequences in the system.  
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Figure 35. Failure modes and average RPN. 
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Table 22 is listing the undetectable failure mode identified in the FMEA and their RPN. There 

are 173 undetectable failures in the entire WT selected by using the detection rating: 

Undetectable: Undetectable until failure occurs.  

Table 22. Undetectable Identified Failure Modes 

 

3.4.2 Consequential Damage 

The determination of affected components and consequential damage is another capability 

of the FMEA.  

Using a detailed functional diagram of each main assembly, it is possible to determine 

functional interdependencies between components and therefore, the potential 

consequential damage and affected components. Each failure mode of a component might 

affect directly another component. The connection between both components could be 

mechanical, electrical or hydraulic.  An example of failure modes and potentially affected 

components are shown in the table below.  

Undetectable Failure Modes Count of Failure Modes Average of RPN

Battery Cells Failure 1 40.00

communication signal failure 1 40.00

Control Panel Fault 19 32.63

dc-link failures (earth or short circuit fault) 1 45.00

Degradation/Loss of capacitance 1 45.00

Detachment 2 10.00

Electrical Failure 48 26.35

Electrical Insulation Failure 6 40.00

Electrical Supply Failure 1 20.00

 ElectrolyteevaporaIon 1 45.00

failure to charge battery 1 40.00

failure to provide AC 1 40.00

failure to provide DC 1 40.00

Giving false negative 18 32.78

Giving false positive 18 32.78

grid power monitoring failure 1 40.00

Intermittent output 3 23.33

max torque alarm failure 1 40.00

Mechanical Failure 1 20.00

motor position monitoring failure 1 40.00

Not working at all 18 32.78

Open circuit 3 46.67

Output Inaccuracy 4 30.00

Panel Failure 2 40.00

PLC communication failure 1 40.00

Power supply Failure 3 30.00

safety signal failure 1 40.00

self diagnosis failure 1 40.00

Software Failure 6 30.00

torque monitoring failure 1 40.00

vibration monitoring failure 1 40.00

Short circuit 5 41.00
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Table 23. Affected Components associated with failure modes 

Assembly Component Potential Failure Mode Affected 

Component 

Auxiliary 

Electrical 

System 

Grid 

Protection 

Relay 

Electrical Failure TRANSFORMER 

Control and 

Communication 

System 

cable Electrical Insulation Failure CONTACTOR 

Foundation Monopile Bending/ Misalignment TRANSITION PIECE 

Foundation Monopile Local Buckling TRANSITION PIECE 

Foundation Monopile Loss of Structural Integrity/ 

Deformation 

TRANSITION PIECE 

Foundation Monopile Uprooting TRANSITION PIECE 

Gearbox Carrier 

Bearing 

bearing collapse or 

separates 

SUN SHAFT 

Gearbox FAN Bearing Failure  ELC. MOTOR 

Gearbox FAN brittle fracture ELC. MOTOR 

Gearbox FAN Electric Motor Failure  ELC. MOTOR 

 

3.4.3 Failure Detectability and Criticality 

The RNP comprises the rating ‘detection’ to assess each failure mode from a failure prognosis 

point of view. 173 undetectable failures are identified. Amongst this group of failures, there 

are 27 failure modes that bare been identified as critical in terms of operation (Ref: Severity 

rating, Critical: wind turbine inoperable with equipment damage) and undetectable in terms 

of early prognosis. (Ref: Detection rating, Undetectable: Undetectable until failure occurs). 

See Table 24.  
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Table 24. Undetectable and Critical failure Modes 

Assembly Component 
Potential 

Failure Mode 

Severity 

(S) 

Occurrence 

(O) 

Detection 

(D) 

Risk Priority 

Number (RPN) 

Auxiliary Electrical 

System 

Grid 

Protection 

Relay 

Electrical 

Failure 
Critical Rare Undetectable 40 

Frequency 

Converter 

Capacitor 
Open 

circuit 

Critical Occasional Undetectable 60 

Critical Occasional Undetectable 60 

Critical Occasional Undetectable 60 

Critical Occasional Undetectable 60 

Contactor 
Electrical 

Failure 
Critical Rare Undetectable 40 

Power Electrical 

System 

Machine 

Transformer  

Electrical 

Failure 
Critical Rare Undetectable 40 

Yaw System 

power 

cables - yaw 

motor 

brake to 

drive 

Open circuit Critical Rare Undetectable 40 

Short to earth Critical Rare Undetectable 40 

Panel Failure Critical Rare Undetectable 40 

Short beween 

cables 
Critical Rare Undetectable 40 

Power 

Cables: yaw 

motor to 

drive 

Open circuit Critical Rare Undetectable 40 

Short to earth Critical Rare Undetectable 40 

Panel Failure Critical Rare Undetectable 40 

Short beween 

cables 
Critical Rare Undetectable 40 

Battery 
Battery Cells 

Failure 
Critical Rare Undetectable 40 

inverter 

failure to 

provide AC 
Critical Rare Undetectable 40 

failure to 

provide DC 
Critical Rare Undetectable 40 

Electrical 

Failure 
Critical Rare Undetectable 40 

failure to 

charge battery 
Critical Rare Undetectable 40 

controller 

Electrical 

Failure 
Critical Rare Undetectable 40 

torque 

monitoring 

failure 

Critical Rare Undetectable 40 

max torque 

alarm failure 
Critical Rare Undetectable 40 

vibration 

monitoring 

failure 

Critical Rare Undetectable 40 

motor position 

monitoring 

failure 

Critical Rare Undetectable 40 

grid power 

monitoring 

failure 

Critical Rare Undetectable 40 

self diagnosis 

failure 
Critical Rare Undetectable 40 

PLC 

communication 

failure 

Critical Rare Undetectable 40 

safety signal 

failure 
Critical Rare Undetectable 40 

communication 

signal failure 
Critical Rare Undetectable 40 
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Further analysis of the failures has been performed in Annex 1: FMEA Failure analysis. Here, 

graphs show the failures that can be detected by CMS (28), failure detectable by the O&M 

team (58) and failures able to generate turbine shutdown (24).  

3.4.4 Criticality Analysis Results 

In this study, criticality analysis was designed to complement the RPN analysis identifying 

those failure modes that have a negative impact in other areas such as environment and 

safety. It is also identified the severity of failure in asset integrity and operation to validate 

the RPN, i.e. acting as a “double check” of the operational consequence of failure. 

The values assigned for each category are described in Table 19, and the identified 

components and failures modes that have a greater impact on the environment and safety 

are shown in Table 25 and Table 26, respectively.  

Those components and failures modes that are not identified by the RPN as severe damage 

to the personnel or the environment are identified by criticality analysis. For example, the 

high friction of the components of the gearbox like spur gears could produce risky high 

temperature for personnel. Leakage on hoses could have a negative impact on the 

environment or health if it is in direct contact with the skin. There are other dangerous failures 

modes for personnel in the auxiliary electrical system like live wires with loss of insulation, or 

mechanical damage in the firefighting system in the nacelle. The results shown in Table 25 

and Table 26 allow the analyst to identify failure for components that can be critical for the 

other wind farm stakeholders: operator, manufacturer, investor, regulators and on. It also 

shows the ranking for the asset integrity and operational categories. These two categories 

validate the independent RPN as a combination of both would give the analyst a better 

approach and an “error checking system” in the allocation of values for severity, occurrence 

and detection ratings of the RPN. 
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Table 25. Criticality analysis results – Safety ranking 

Assembly Component Potential 

Failure 

Mode 

Potential 

Root Causes 

Safety Environment Asset 

integrity 

Operation 

Main Shaft Set Slip Ring Mechanical 

Failure 

External 

Accidental 

Damage 

16 4 20 20 

Main Shaft Set Disk stuck off mechanicall

y seized 

15 6 15 15 

Auxiliary 

Electrical 

System 

Power Point  Electrical 

Failure 

Connection 

failure 

12 3 6 12 

Main Shaft Set Calliper stuck on loss of 

hydraulic 

pressure 

12 3 15 15 

Auxiliary 

Electrical 

System 

Protection 

Cabinet  

Electrical 

Insulation 

Failure 

Insulation 

degradation 

12 3 6 9 

Control and 

Communication 

System 

contactor Electrical 

Failure 

Connection 

failure 

12 3 6 12 

 

Table 26. Criticality analysis results – Environment ranking 

Assembly Component Potential 

Failure 

Mode 

Potential 

Root Causes 

Safety Environment Asset 

integrity 

Operation 

Nacelle 

Auxiliaries 

Firefighting 

System  

Mechanica

l Damage 

External 

Accidental 

Damage 

8 8 10 10 

Nacelle 

Auxiliaries 

Firefighting 

System  

Electrical 

Failure 

Connection 

failure 

8 8 10 10 

Main Shaft Set Pad low 

friction 

Installation 

Defect 

4 8 16 20 

Main Shaft Set Disk stuck off mechanically 

seized 

15 6 15 15 

Transition Piece Navigation 

Light 

Electrical 

Failure 

Connection 

Failure, 

Aging, 

Installation 

Defect 

10 6 2 2 

Gearbox Hose Blockage Presence of 

Debris 

9 6 3 6 

Gearbox Hose Abrasion Maintenance 

Fault 

9 6 3 6 

Gearbox Hose Fatigue Low Cycle 

Fatigue 

9 6 3 6 

 

 

As RPN only combine aspects related to turbine operation, criticality analysis is performed to 

show an integral analysis with interesting aspects for different wind farm stakeholders.  
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There are four categories: safety, environment, asset integrity and operation.  

To have consistency in both analyses, the operation category in the criticality analysis 

assumes the same values assigned to the Severity rating in the RPN evaluation. All the 

categories take into the account a frequency which is also matched to the occurrence rating 

of the RPN.  

Table 27 shows that the assembly “Main shaft set” is the only assembly with high values in all 

the categories. 

Table 27. Criticality analysis summary. 

 

3.4.5 Top 30 chart for failure mechanisms 

The FMEA allows determining the top 30 chart of failure mechanisms of a generic offshore 

wind turbine. The first 10 failures are in the frequency converter, mainly power electronics 

components at both sides of the converter, generator and grid side. The type of failures is 

short or open circuit failures due to overheating or insulation degradation. The second ten 

failures are in the frequency converter but also in the pitch system with a combination of 

electrical and mechanical failures. Finally, the last ten failures are in the yaw system and 

frequency converter.  
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Table 28. Top 30 chart for wind turbine failure mechanism. 

Assembly Potential Failure Mode Potential Root Causes Average of Risk 

Priority Number 

(RPN) 

Frequency Converter Open circuit Ageing/degradation in 

the dielectric material 

60 

Frequency Converter Open circuit Bushing Insulation Lost 60 

Frequency Converter Open circuit Corrosion 

(electrodes) 

60 

Frequency Converter Open circuit Increase in the 

internal pressure 

60 

Frequency Converter Open circuit Insulation degradation 48 

Frequency Converter Insulation Failure Overheating 48 

Frequency Converter Line fault (ground, line to line) Insulation degradation 48 

Frequency Converter Line fault (ground, line to line) Overheating 48 

Pitch System bearing collapse or separates bolt failure 48 

Pitch System bearing collapse or separates multiple roller failure 48 

Pitch System bearing collapse or separates raceway 48 

Pitch System Brushes Failure Excessive Brush Wear 48 

Pitch System Mechanical Failure Insufficient Lubrication 48 

Yaw System high friction Maintenance Fault 48 

Yaw System low friction Maintenance Fault 48 

Yaw System stuck off mechanically seized 48 

Yaw System stuck off Presence of Debris 48 

Yaw System stuck on loss of hydraulic pressure 48 

Yaw System stuck on Presence of Debris 48 

Frequency Converter dc-link failures (earth or short 

circuit fault) 

Insulation degradation 45 

Frequency Converter Degradation/Loss of 

capacitance 

Charging/discharging 

cycles 

45 

Frequency Converter Degradation/Loss of 

capacitance 

Excess ripple 

current 

45 

Frequency Converter Degradation/Loss of 

capacitance 

High ambient 

temperatures 

45 

Frequency Converter Degradation/Loss of 

capacitance 

Over voltage 

stress 

45 

Frequency Converter Electrical Insulation Failure Installation Defect 45 

Frequency Converter Electrical Insulation Failure Overheating 45 

Frequency Converter Electrolyte 

evaporation 

Internal temperature 

Increase 

45 

Frequency Converter Electrolyte 

evaporation 

Prolonged use-degradation 

due to nominal operation 

45 

Frequency Converter Short circuit Bushing Insulation Lost 45 

Frequency Converter Short circuit Charging/discharging 

cycles 

45 
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3.4.5 Sensitivity Analysis 

Sensitivity analysis provides the sensitivity of each output variable such as RPN, to its input 

variables such as severity and occurrence. It is possible to identify the most influential inputs 

affecting RPN or other output in the criticality analysis. In this study there are two kinds of 

sensitivity analysis, the first one is shown in Figure 36, here once the RPN is computed all the 

ratings are decreased by one value and increased by one value to calculate the minimum and 

maximum RPN possible. The second sensitivity analysis is only varying the severity and 

occurrence variables; this is shown in Figure 37.  

RPN sensitivity analysis aims to establish the best and worst scenario regarding the estimation 

of the variables “severity”, “occurrence” and “detection”. This allows determining the impact 

of an incorrect estimation in the final conclusions given by the analyst.  

Severity, occurrence and detection ratings are the inputs of the sensitivity analysis and vary 

from 1 to 5. The analysis delivers the minimum and maximum values of the RPN based on the 

nominal or assigned values of the inputs for each failure mode. For example Figure 36 shows 

the item in the first column of the FMEA spreadsheet: Gearbox-> Carrier Barings->Failure 

mode: Bearing Stuck->Failure cause: Tooth Failure->RPN:32 

 

Figure 36.Sensitivity Analysis 

Once the critical components of the assemblies are identified, the three-variable sensitivity 

analysis will be performed. This analysis is shown in Figure 37, where the detection variable 

is assumed to be certain or with a high degree of confidence of the rating. Detection rating is 

based on techniques commercially available and well recognised in the industry. Then, once 

the detection variable is defined, the appropriate matrix can be analysed varying severity and 

occurrence only.  
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For example: Figure 37 is the sensitivity analysis of the carrier bearing of the gearbox with a 

failure mode of “bearing stuck” due to a “tooth failure”. The assigned RPN is 32 and the 

“detection rating” is considered as the low chance that the control system will detect 

potential cause or mechanism and failure mode, which represents a value of 4. Therefore, the 

sensitivity analysis is carried out with the fourth matrix. Here we can see that the variation of 

one unit of either occurrence or severity the RPN would be 40 of 48, which is still in an 

acceptable “yellow colour band”. The conclusion of this is that even though the analyst, based 

on the information available, made a mistake allocating the severity or occurrence values, the 

impact of this specific mistake on the FMEA results is negligible.  

If the sensitivity analysis of a particular component shows that varying a value of occurrence 

or severity makes the colour band turns orange or red, that means that the allocation of the 

severity and occurrence values need to be analysed with greater accuracy to reduce the 

impact on the final FMEA results. 

 

 

Figure 37. Sensitivity Analysis with three variables. 

3.4.6 3D Risk Matrix 

The 3D risk matrix developed in this study aims to analyse the criticality of failures looking at 

the risk severity, occurrence and detection ratings at the same time. The 3D risk matrix shows 

a clear different between failures of the four most critical assemblies: frequency converter, 

gearbox, pitch system and yaw system.  Figure 38 shows an example of the RPN values of one 

assembly in a 3D graph.RPN values toward the top part of the 3D graph mean that the failures 

tend to be hidden or undetectable failures. It is possible to see that the frequency converter 

has value mostly in the top part. The gearbox and the yaw system values tend to be 

concentrated in the centre, and the yaw system has one value highly undetectable but with 

very low consequence.  
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The analysis also delivers the most critical failures per assembly and their number of 

occurrence. The RPN values are also counted in each 3D matrix.  

 

Figure 38. Example of a 3D risk matrix of critical assemblies. 

3.4.7 FMEA comparison with European projects 

Figure 39 shows a comparison of the failure contribution of each assembly obtained with the 

FMEA and the average failure rates of onshore wind turbines regarding the WSD, WSDK and 

LWK databases. Those assemblies with a failure contribution greater than 6% have also the 

greatest failure rates in the databases. By contrast with the number of failure per components 

of the gearbox and frequency converter, in this case gearbox has lower value of failure rate 

than the frequency converter, showing that in an onshore situation the components of the 

gearbox are more reliable than the components of the frequency converter despite the larger 

number of failure modes per component.   
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Figure 39. Failure contribution and onshore wind turbine failure rates. 

Table 29, Figure 40 and Figure 41 are created to compare the FMEA outputs with the 

ReliaWind project outcomes. Table 29 shows the approximated values of failure rate and 

downtime in days of WMEP, LWKF and the Swedish surveys and, the average occurrence and 

severity rating values assigned. In order to be able to compare the outcomes of the FMEA and 

the old surveys it was necessary to group the assemblies as it is shown in the table. 
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Table 29. Comparison with an available database of failure rates(failures/turbine/year)and 

downtime (days) of onshore WT. 

Assembly 

WMEP 

Failure 

rate 

1993-

2006 

LWKF 

Failure 

rate 

1993-

2006 

Swedish 

Survey 

Failure 

rate 

1997-

2005 

WMEP 

Downtime 

1993-2007 

LWKF 

Downtime 

1993-2007 

Swedish 

Survey 

Downtime 

1997-2006 

FMEA Av. 

Occurrence 

/10 

FMEA 

Av. 

Severity 

FMEA assemblies 

Electrical 

system 

0.55 0.35 0.10 5.5 1.4 4.5 0.29 3.20 Power electrical system and 

frequency converter 

Electrical 

control  

0.45 0.25 0.05 1.8 1.7 7.8 0.00   Control and communication 

system 

Other 0.25 0.4 0.1 2.6 5.5 2.0 0.29 4.00 Auxiliary electrical system, nacelle 

auxiliaries, nacelle structure, 

Foundation & Tower & Cable 

Hydraulic 

system  

0.25 0.15 0.05 2.8 1.2 1.8 0.00   Hydraulic system  

Yaw system  0.2 0.15 0.05 2.9 2.5 10.9 0.22 3.55 Yaw system  

Rotor Hub 0.2 0.1 0 6.9 3.9 0.7 0.00   Hub and pitch system 

Mechanical 

brake  

0.15 0.05 0 2.5 3.0 5.2 0.30 4.00 Mechanical brake  

Rotor Blades 0.1 0.25 0.04 11.4 3.2 16.0 0.30   Rotor Blades 

Gearbox 0.1 0.15 0.05 14.1 6.2 10.7 0.29 3.20 Gearbox 

Generator  0.1 0.16 0.02 2.6 5.8 8.9 0.27 2.95 Generator  

Drive train 0.05 0.05 0.01 10.7 6.0 12.1 0.22 3.44 High and low speed shaft plus 

sensors 

 

In order to compare the results of the FMEA and the failure information available in databases 

shown in table 29, the original graphs are combined in figure 41.   Figure 40 is the original 

graph showing the results of WMEP and LWKF. Here is possible to appreciate that electrical 

system and control systems have the highest values of annual failure rates and, rotor blades 

and gearbox represent one of the highest downtime in days of the surveys. 

  

Figure 40. Annual failure frequency and downtime per failure of WMEP, LWKF and Swedish survey. 
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Figure 41 aims to reproduce the original graph in Figure 40 along with the FMEA outputs. The 

identified assemblies with highest average values of occurrence rating that vary from 1 to 5 

are rotor hub and mechanical brake. On the other hand, the assemblies with highest average 

values of severity rating are drive train and mechanical brake. To represent in a better way 

the results of the FMEA, only those components with a significant impact on the turbine 

performance have been selected. Regarding the Severity rating, values related to “marginal”, 

“critical” and “catastrophic” represent the significant degradation of performance, 

equipment damage and destructive failure.  

 

 

Figure 41. Comparison of occurrence and severity values of the FMEA and the Annual failure frequency and 

downtime per failure of WMEP, LWKF, Swedish survey and ReliaWind technical report [85]. 

It is possible to see in Figure 41 that both studies, the FMEA (in red) and the data in WMEP, 

LWKF and Swedish survey, match with the four most critical assemblies.  
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3.5 Confidence of the Accuracy of the Assigned Ratings (CAAR) 

In order to enable continuous improvement, to ensure consistency and to incorporate new 

information, a structured audit approach and indexhave been developed; Confidence of the 

Accuracy of the Assigned Ratings (CAAR). The main aim of the CAAR index is to answer the 

question of how confident the analyst of the FMEA is. The main purpose is to standardise the 

confidence level of the accuracy of the assigned ratings of severity, occurrence and detection 

for each component and assembly. CAAR index is also a data control strategy registering the 

type of data source used in each evaluation for each component. The confidence level 

assessment is based on the availability of the following information and is assessed at the 

component level. The type of data used in the FMEA is categorised as follows: 

• Numerical raw data: quantitative information coming from a data system such as 

SCADA data. 

• Expert review: subject matter expert review of the FMEA spreadsheet in a particular 

assembly. 

• Theoretical data: information available in the literature review with outputs based on 

theory.  

• Analyst judgement: non-expert opinion.  

 

To define criteria on which the confidence can be assessed, it is performed a goal sketching 

technique, goal decomposition graph, which helps to identify main goals and its sub goal to 

reach it. The figure below shows a goal decomposition graphwhere the main goal is to obtain 

a good accuracy of the assigned ratings of severity, occurrence and detection for each failure 

mode [88] [82]. In this graph, the main goal can be reached using the analyst judgment (sub-

goal) or using expert opinions (sub-goal). The green circle represents that the sub-goal is 

enough to reach the main goal; in this case, the expert opinion will satisfy the condition to be 

very confident of the FMEA conclusions. Likewise, the sub-goal “analyst judgement” is divided 

into two sub-goals: analyst judgement using raw numerical data; and analyst judgement using 

theoretical data.  
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Figure 42. Goal decomposition graph 

From the goal decomposition graph, it is clear that there five options to comply with the main 

goal with different percentages of confidence. 

• Numerical raw data (100% Confident) 

• Expert review (90% Confident) 

• Theoretical data (70% Confident) 

• Analyst judgement only (20% Confident) 

• No data at all (0% Confident) 

 

To quantify and standardise the confidence level, a flow chart is developed, Figure 43. It is 

also considered that for all of the options above there are uncertainties associated with 

processes and different criteria, therefore, “assumptions” is defined as a confidence factor 

which describes “the confidence that the assumption is sound”. This confidence factor is used 

in the flow chart shown in Figure 43 and described in Table 30. 

Table 30. Confidence factor. 

 

Assumtion Level (AL)

1

2

3

multiply by

0.8

0.9

1

Description

Low Confidence

Moderate Confidence

High Confidence
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The algorithm described in the flow chart assigns percentages regarding the information 

availability and the level of assumptions performing the sub-goal to reach the main goal. The 

final percentage is multiplied by the assumption level (AL) so the CAAR is calculated by: 

CAAR=% * AL. 

 

Figure 43. CAAR Flow chart. 

All the possible results of the CAAR flow chart are summarised in Table 31. There are three 

ranges A, B and C with different colours. RPNs in the Range C are considered with a high level 

of confidence in the accuracy of the assigned ratings. RPNs in Range A and B need to be 

reviewed further to improve accuracy based on more information.  

Table 31. CAAR percentages 

Enough 

information?

analyst 

judgement only? 

CAAR=20%

Access to 

Numeical Data? 

AL=1?

AL=2?

AL=3

CAAR=100% * 0.8 = 80%

CAAR=100% * 0.9 = 90%

CAAR=100%

Access to 

Theoretical Data? 

AL=1?

AL=2?

AL=3

CAAR=70% * 0.9 = 63%

CAAR=70%

CAAR=70% * 0.8 = 56%

AL=1?

AL=2?

AL=3

CAAR=90% * 0.9 = 81% CAAR=90%

CAAR=90% * 0.8 = 72%

Expert Review

Data Constraint

CAAR=0%

YES

NO

YES

NO

YES

YES

YES

NO

NO

NO

NO

NO

YES

YES

YES

YES

YES

NO

NO

NO
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Table 32 shows the result of the CAAR analysis. There are 5 assemblies above 80% of 

confidence in the accuracy of the conclusions using the data available for this study. This 

means that the rest of assemblies need to be refined with more information or expert 

opinions.   

Table 32.Average CAAR per assembly 

 

 

 

3.6 Conclusion 

A risk assessment of an offshore wind turbine is crucial to generate a database of turbine 

failure rates, failure modes and causes. It is a common tool in the industry to stablish 

inspections intervals. The FMEA tool has been the foundation of this work identifying critical 

assemblies in terms of operation and consequences of failure. A comprehensive analysis and 

methodology are proposed to explore the reliability of the components. The definition of the 

taxonomy of the wind turbine has been essential for the development of this FMEA and to 

Value CAAR

1 0%

2 20%

3 56%

4 63%

5 70%

6 72%

7 80%

8 81%

9 90%

10 100%

using numerical data with moderate assumtion confidence or expert judgement high assumtion confidence

using numerical data with high assumtion confidence

Description

A

B

C

No information at all.

based on analyst judgement only

using theoretical data with low assumtion confidence

using theoretical data with moderate assumtion confidence

using theoretical data with high assumtion confidence

based on expert judgement with low assumtion confidence

using numerical data with low assumtion confidence

based on expert judgement with moderate assumtion confidence

Assembly

Average 

CAAR

nacelle structure 63%

power electrical system 81%

nacelle auxiliaries 78%

foundation/transition piece/tower/cable 81%

auxiliaries electrical systems 81%

Blade/Hub 63%

main shaft 77%

hydraulic system 77%

pitch system 79%

generator 80%

control and communication systems 79%

yaw system 73%

gearbox 81%

frequency converter 81%
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establish the interfunctional relationship between components. Based on the European 

project ReliaWind, a comprehensive turbine breakdown was proposed using a hierarchical 

structure. 

The RPN has been developed using three ratings: severity, occurrence and detectability of the 

failure. The detectability dimension of the analysis allows to explore areas of the condition 

monitoring system and to identify the type of failures that are difficult to detect.  

The FMEA results are the basis for the physics-based and data mining models as well as for 

the O&M optimisation allowing the determination of consequential damage and local and 

global effects of failures. Gearbox, pitch system, yaw system and power converter have been 

identified as the most critical assemblies in the FMEA.  
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CHAPTER 4 – FAILURE PROGNOSIS BASED ON PHYSICS-BASED MODELS 

The critical assemblies identified in the previous chapter, power converter and gearbox, are 

analysed using physics-based models of the main failure mechanisms. This chapter describes 

the process and the main assumptions and outputs.   

4.1 Introduction 

This chapter describes the methodology developed to estimate accumulated damage of 

critical components. Section 4.2 presents a method to generate future data to estimate the 

remaining useful life of a particular component of a wind turbine in a particular location. The 

prognosis process comprises the digital representation of the turbine Siemens SWT3.6-120 

and Monte Carlo Markov Chain (MCMC) Simulations. Sections 4.3 and 4.4 present the physics-

based model approaches for the gearbox and power converter.  

The power converter and gearbox have been identified in the FMEA as one of the most critical 

assemblies regarding risk to the turbine operation. A method to estimate the remaining useful 

life (RUL) of a fully-rated power converter and a gearbox in a variable speed wind turbine is 

proposed.  

There are two main sources of data used in the physics-based models are: 

• SCADA data commonly available for offshore wind farm operators. This historical data 

is used to estimate the accumulated damage. This is called “diagnostic model”  in 

Figure 50. 

• Wind turbine simulation (FASTv8). These outputs are used to predict damage in the 

future and the RUL for a particular assembly in a specific location. This is called 

“prognostic model” in Figure 50. 

4.2 Prediction methodology 

In order to assess the accumulation of damage within the power converter and gearbox, it is 

necessary to realistically emulate the same operational conditions in terms of turbine 

structural and electro-mechanical behaviour, and wind profile. The digital representation of 

the offshore wind turbine and operation conditions are developed using the aero-hydro-

servo-elastic simulator FASTv8 developed by National Renewable Energy Laboratory (NREL). 

The methodology proposed to create variables in the future for failure prognosis uses a 

Monte Carlo Markov Chain technique.  
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4.2.1 Wind Turbine dynamic integrated system in FASTv8 

To achieve realistic results, load cases proposed by the IEC 61400-3 (power production 

category) using FASTv8, are used. The standard proposes some design situations representing 

the various modes of operation that an offshore wind turbine would experience during its 

operational life; each design situation leads to a number of Design Load Cases (DLCs). The IEC 

standard distinguishes two types of load cases, ultimate and fatigue load cases and 

recommends appropriate load factors to be associated with these load cases to evaluate the 

structural integrity. The selected load cases are shown in Table 33. A turbulent full-field wind 

matrix is created by TurbSim [89] [83] as an input to FASTv8.  

The analysis is based on the three-bladed horizontal 3.6MW turbine model, variable speed 

control system, mounted on a monopile with a rigid foundation, induction generator, 3 stage 

gearbox and fully power converter. Wind condition is site-specific.  

Table 33. Design load cases. NTM (Normal turbulence model), NWP (Normal wind profile 

model), NWLR (Normal Water Level Range), COD (Co-Directional), MUL (Multidirectional) 

Design 

situation 
DLC 

Wind 

condition 
Waves 

Wind and wave 

directionality 

Sea 

currents 

Water 

level 

Other 

conditions 

Type of 

analysi

s 

Partial 

safety 

factor 

Power 

production 
1.2 

NTM 

Vin<Vhub<Vout 

NSS joint 

probability 

distribution of 

Hs, Tp, Vhub 

COD, MUL 
No 

currents 

NWLR 

or 

>MSL 

 F * 

Power 

production 

plus 

occurrence 

of fault 

2.4 
NTM 

Vin<Vhub<Vout 

NSS 

Hs = E[Hs|Vhub] 
COD, MUL 

No 

currents 

NWLR 

or 

>MSL 

Control, 

protection

, or 

electrical 

system 

faults 

including 

loss of 

electrical 

network 

F * 

Start up 3.1 
NWP 

Vin<Vhub<Vout 

NSS (or NWH) 

Hs = E[Hs|Vhub] 
COD, MUL 

No 

currents 

NWLR 

or 

>MSL 

 F * 

Normal 

shut down 
4.1 

NWP 

Vin<Vhub<Vout 

NSS (or NWH) 

Hs = E[Hs|Vhub] 
COD, MUL 

No 

currents 

NWLR 

or 

>MSL 

 F * 

Parked 

(standing 

still or 

idling) 

6.4 
NTM 

Vin< 0.7Vref 

NSS joint 

probability 

distribution of 

Hs, Tp, Vhub 

COD, MUL 
No 

currents 

NWLR 

or 

>MSL 

 F * 

Parked and 

fault 

conditions 

7.2 
NTM 

Vin< 0.7V1 

NSS joint 

probability 

distribution of 

Hs, Tp, Vhub 

COD, MUL 
No 

currents 

NWLR 

or 

>MSL 

 F * 

Transport, 

assembly, 

maintenan

ce and 

repair 

8.3 
NTM 

Vin< 0.7Vref 

NSS joint 

probability 

distribution of 

Hs, Tp, Vhub 

COD, MUL 
No 

currents 

NWLR 

or 

>MSL 

No grid 

during 

installatio

n period 

F * 
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In this design situation DLC 1.2, a wind turbine is running and connected to the electric load. 

DLC 1.2 represents the requirements for loads resulting from the atmospheric turbulence that 

occurs during normal operation of a wind turbine throughout its lifetime (NTM). DLC 2.4 

describes a transient event triggered by a fault or the loss of an electrical network connection 

while the turbine is producing power. DLC 3.1 includes all the events resulting in loads on a 

wind turbine during the transients from any standstill or idling situation to power production. 

DLC 6.4 comprises a number of hours of non-power production time at a fluctuating load 

appropriate for each wind speed where significant fatigue damage can occur to any 

components. Finally, DLC 7.2 considers deviations from the normal behaviour of a parked 

wind turbine, resulting from faults on the electrical network or in the wind turbine [90] [84].  

The range of wind speeds may be represented by a set of discrete values, in which case the 

resolution shall be sufficient to assure the accuracy of the calculation.  In general, a resolution 

of 2 m/s is considered sufficient. Therefore taking into account the cut-in and cut-out wind 

speeds [81] [75], the wind speeds bin are: 

Vin= 5 (m/s) 

Vout= 25 (m/s) 

Wind speeds (m/s) to the model are 11 bins:  

5 7 9 11 13 15 17 19 21 23 25 

 

Normal turbulence model (NTM)  

For NTM, the representative value of the turbulence standard deviation, σ1, shall be given by 

the 90 % quantile for the given hub height wind speed. This value for the standard wind 

turbine classes in Table 34, is being given by: 

�1 = �����0.75�ℎ�� + �
; � = 5.6�"# 
 

Where Vhub is the wind speed at the hub height. Iref is the expected value of hub-height 

turbulence intensity at a 10 min average wind speed. Vref is the reference wind speed average 

over 10min. A, B and C designate the category for higher, medium and lower turbulence 

characteristics. Iref is the expected value of the turbulence intensity at 15 m/s.  
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Table 34. Wind turbine classes [90] [84]. 

 

Values for the turbulence standard deviation σ1 and the turbulence intensity hub σ1/Vhub 

are shown in Figure 44 and Figure 45.   Values for Iref are given in Table 34. 

Figure 44. Normal Turbulence Model (NTM): Turbulence standard deviation [91]. 

Figure 45. Normal Turbulence Model (NTM): Turbulence intensity [91]. 

FASTv8 can create a full-field, turbulent-wind simulation. A time series of three-component 

wind-speed vectors at points in a two-dimensional vertical rectangular grid that is fixed in 

space is created to represent operational conditions, see Figure 46 [89] [83]. 
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Figure 46. Wind field using FASTv8 pre-processor TurbSim [91]. 

 

The detailed explanation of FASTv8 pre-processors in giving in Annex 2: FASTv8 pre-

processors. 

FASTv8 outputs 

FASTv8 is able to deliver many types of variables from mechanical and structural parameters 

to electrical variables. For the estimation of the remaining useful life of the gearbox and 

power converter, the variables power output, low-speed shaft torque, low and high-speed 

shaft rotational speeds, generator current and generator voltages are selected. 

The load case DLC 1.2 represents most of the situations of the turbine operational conditions. 

Simulations are categorised by Wind speed [m/s], Turbulence intensity [%], Significant Wave 

Height [m], Wave spectral period [s], Yaw error [deg], and Turbulent wind speed.  

For DLC 1.2 there are 66 simulations of 620 second each. For each wind speed, there are six 

simulations for three different yaw errors (-8, 0, 8 degrees) with two turbulent wind seeds. 

An example of the outputs is given in Table 35. 
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Table 35. Example of FASTv8 outputs 

DLC 

Wind 

Speed 

(m/s) 

Turbulence 

Intensity 

(%) 

Significant 

Wave 

Height 

(m) 

Wave 

Spectral 

Period 

(s) 

Yaw 

Error 

(deg) 

Seed 
Simulated 

Time (s) 

Outputs 

Variables 

Probability 

of 

Occurrence 

derived 

from 

SCADA 

data 

Simulation 

ID 

1.2 4 I4 Hs4 Tp4 8 1 620 

RotSpeed  

GenSpeed 

GenPwr    

GenTq 

RotorTq 

X% S1 

1.2 4 I4 Hs4 Tp4 8 2 620 

RotSpeed  

GenSpeed 

GenPwr    

GenTq 

RotorTq 

X% S2 

1.2 4 I4 Hs4 Tp4 0 3 620 ……. Y% S3 

1.2 4 I4 Hs4 Tp4 0 4 620 ……. Y% S4 

1.2 4 I4 Hs4 Tp4 -8 5 620 ……. Z% S5 

1.2 4 I4 Hs4 Tp4 -8 6 620 ……. Z% S6 

1.2 6 ……. ……. ……. ……. ……. ……. ……. ……. ……. 

……. 6 ……. ……. ……. ……. ……. ……. ……. ……. ……. 

……. ……. ……. ……. ……. ……. ……. ……. ……. ……. ……. 

1.2 24 I24 Hs24 Tp24 8 1 620 ……. A% S50 

1.2 24 I24 Hs24 Tp24 8 2 620 ……. A% S51 

……. ……. ……. ……. ……. ……. ……. ……. ……. ……. ……. 

 

4.2.2 Generation of future events for failure prognosis 

After the simulation of FASTv8, it is necessary to establish a methodology to create a future 

time series of variables to estimate RUL of the components. This innovative approach starts 

with the assumption that not all the simulated load cases in Table 33, wind speeds and 

random seeds are experienced by the turbine in 1-year period. Therefore, it is necessary to 

derive statistical (probabilities of occurrence) information of load cases and wind speeds from 

the SCADA data. A decision tree is proposed to filter and identify load cases, wind speeds and 

turbine operational conditions in the data set. Thus, the probability of each simulation output 

of FASTv8 is determined and added to Table 35, in red. These probabilities are the input for 

the Markov Chain Monte Carlo (MCMC) tool to create a random sequence of variables and 

their respective simulated time until a future year is created.  

MCMC tool is selected assuming stationary transition probabilities. A sequence of random 

elements of some set, such as wind speeds or load cases, can be defined by MCMC if the 

conditional distribution Xn+1 given X1, X2…, Xn depends on Xn only [92] [85]. Figure 47 shows 

an example of a transition graph and transition matrix of a discrete MCMC where each event 
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in the sequence only depends only on the events occurring directly before. For instance, when 

the current state is load case 1 (LC1), there is a probability of 0.6 to move to LC2, then there 

is a probability of 0.3 to stay in LC2, a probability of 0.1 to go back to LC1, a probability of 0.4 

to move to LC3 and so on. Therefore, it is possible to generate future scenarios of variables 

by applying MCMC with probabilities distribution of load cases and wind speeds, Figure 48.  

The simulation of each load case in FASTv8 gives the same outputs in the time domain which 

are related to structural loading, bending moments, and operation parameters such as 

rotational speed, wind speed and direction, shaft torques and power output. These FAST 

outputs are the inputs for the physics-based models of the gearbox and power converter. 

 

Figure 47. Discrete example of MCMC, transition graph and matrix. 

 

Figure 48. Example of the probability distribution of load cases. 

The IEC standard suggests simulation time for each load case (620 seconds with a resolution 

of 0.05 seconds), these time periods are concatenated in order to generate the whole period 

(1 year) in the future for prediction purposes. Figure 49 shows an example of a future scenario 

LC1 LC2 LC3 LCx

LC1 0 0.6 0 0

LC2 0.1 0.3 0.4 0.6

LC3 0.5 0 0 0.5

LCx 0 0 0 0



111 

of variables such as torque, rotational speed and power output, to be used in the failure 

prognosis process.  

 

Figure 49. Example of future scenario generation. 

4.3 Gearbox physics-model 

Figure 50 shows the approach outline for the gearbox. The diagnostic models using historical 

SCADA data and the predictive model using FASTv8 simulations. Both models will create a 

load spectrum and result in accumulated damage. The physics-based model of the gearbox is 

developed in the proprietary software KISSsoft, explained in the next sections.   
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Figure 50. Block diagram of RUL estimation. 
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4.3.1 Gearbox failure investigation 

The complexity of failure interaction is extensively reviewed in the fields of WT reliability. The author 

in [93], describes three types of failure interactions: first, failure of a component results in the total 

failures of all other components; second, failure of component 1 increases the failure rate of 

component 2 and; third, a system can presents a combination of the option 1 and 2. In this study, the 

overall condition is represented by the failure with the known highest failure rate.  A probabilistic 

approach is proposed in [94], where a Bayesian Network (BN) is used to represent the conditional 

dependency between failure root causes.  

The gearbox to be modelled consists of three stages: two planetary and one parallel stage 

with helical gears. The load spectrum for failure diagnosis to estimate the current damage and 

the load spectrum for failure prognosis to estimate the Remaining Useful Life (RUL) are 

obtained through historical SCADA data and FASTv8 simulation outputs, respectively.  

A vulnerability map of the gearbox has been generated to focus the computational efforts on 

the weakest gearbox parts which represent the health of the assembly. The fatigue damage is 

estimated by counting load cycles in bearings and gears in conjunction with material S-N 

curves. The load cycles accumulated in the future for prognosis purposes are estimated using 

a representative one-year load spectrum based on outputs from FAST simulations of the 

fatigue load cases described in IEC 61400-1/3.  

A gearbox failure investigation was performed to identify the main sources of stress and 

vulnerable components. The author in [31] presents a detailed analysis of the design of a high-

speed gearbox for a 5MW baseline offshore wind turbine. Wind turbine technical 

specification, environmental conditions, and load response analysis are considered to define 

the vulnerability map of a 3-stage gearbox; two planetary stages and one parallel stage, in 

Figure 51. High-Speed Shaft (HSS) bearings, second stage planet bearings, Low-Speed Shaft 

(LSS) sun gear and third stage gears are the most critical components in term of fatigue 

damage. The analysed gearbox has an input shaft speed of 12.1 (rpm), and the ratios for this 

gearbox are given in Table 36. Failure investigation shows that the high-speed shaft bearings 

are one of the gearbox components with a higher probability of fatigue damage.  
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Table 36. Gearbox speed ratios [31]. 

 Ratio 

First stage 1:3.94 

Second stage 1:6.16 

Third stage 1:3.95 

 

 

 

Figure 51. Vulnerability map of a 5MW 3-stage gearbox [31] [31]. 

Gearbox failure modes and causes are described in [95] [86]. The presence of foreign objects 

and manufacturing defects are identified as common failure causes. The author in [96] [87] 

states gearboxes have historically experienced failures in both planet and HSS bearings. The 

HSS bearings can be replaced on site. However, planet bearings failures require the removal 

of the gearbox for it to be repaired at the port. For that reason, the gearbox represents 25% 

of the maintenance cost.  

A comparative study between a 2MW 3-stage gearbox prototype and gearbox model was 

performed in [97] [88]. The results of the tooth root stress for both analyses show the highest 

values for contact and pitting stress are experienced in the HSS.  
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In terms of consequences of failure related to the gearbox, the study in [35] [35] found that 

the HSS bearings and the 2 stage shaft and bearing failures could account for more than 50% 

of the total gearbox failure cost; see Table 37. 

This gearbox vulnerability map ranks the gearbox components from highest to lowest fatigue 

damage. The gearbox vulnerability map and, conclusions of the literature review allow the 

most critical components within the gearbox to be identified: the high-speed shaft and second 

stage bearings and the sun gear of the first stage and the parallel gears of the high-speed 

shaft. 

Table 37. Gearbox failure cost share. 
Failure Mode Share of total 

failure costs (%) 

High-speed shaft bearing failure 27.8 

Broken intermediate shaft 21.2 

Intermediate shaft bearing failure 10.1 

Planet bearing failure 9.6 

Broken center post 6.2 

High-speed shaft bearing black spot 5.4 

Sun gear – broken teeth 5.3 

Low-speed shaft bearing failure 5.0 

Intermediate shaft bearing failure 4.8 

High-speed shaft grinding temper 

failure 

2.3 

Broken low-speed wheel 1.2 

Oil pump failure 0.8 

Intermediate shaft splash plate failure 0.2 

 

 

4.3.2 Physics-based model of the gearbox 

The gears, bearings, and shafts follow the design standard IEC 61400-4 described in [98] [89]. 

The general gearbox specifications are given in Table 38. The design lifetime is calculated, 

assuming that the turbine will be operating 60% of the time; it will have a capacity factor of 

60%.  Damage accumulation is calculated using the respective S-N curves for all mechanical 

elements and each step of the load spectrum. The damage is accumulated continually and 

transformed into a lifetime at the end of the analysis. The analysis of the gears is according to 

DIN, ISO or AGMA standards, the analysis of the bearings according to standard L10 calculation 

or DIN/ISO 281 [15]. 
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Table 38. 3.6MW Gearbox specification 

Parameter Value 

Type Two planetary, one parallel 

Total ratio 1-119 

First stage ratio 1-4.9 

Second stage ratio 1-5 

Third stage ratio 1-4.857 

Designed power (MW) 4 

Rated input shaft speed (rpm) 13.4 

Rated output shaft speed (rpm) 1600 

Rated input shaft torque (kNm) 2934 

Rated output shaft torque (kNm) 33 

System efficiency 0.96 

Design Lifetime (hrs) (24x365x20 years)x60% 105120 

 

Torque and shaft diameters are calculated as follows [99] [90]: OWT with an electrical 

generator of 3.600 kW of power output. The low-speed shaft (LSS) rotates at 12 rpm, and the 

high-speed shaft (HSS) rotates at 1600 rpm. Maximum stress recommended for solid steel 

shafts available is 55MPa [12]. The gearbox efficiency at rated power is 0.94, and generator 

efficiency at rated power is 0.93. Using the terminology described in table 39, the rotational 

speed (angular velocity) is calculated: 

w%&& = 2π�12
60 = 1.256	rad/sec 
(1) 

 

w1&& = 2π�1600
60 = 167.46	rad/sec 
(2) 

 

Power is calculated: 

P1&& = 36000.93 = 3870	KW 
(3) 

 

P%&& = 38700.94 = 4118	KW 
(4) 

Torque is calculated: 
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T1&& = P1&&w1&& = 3870	KW167.46	rad/sec = 23.11	KNm/rad 
(5) 

 

T%&& = P%&&w%&& = 4118	KW1.256	rad/sec = 3278.7	KNm/rad 
(6) 

 

The diameter of the shafts to carry a given torque can be calculated by selecting a maximum 

shearing stress which will be allowed for a given shaft material. This stress take place at r=r0. 

Based on [99] , the shearing stress in a solid shaft is given by : 

�< = =>? 	� �"�
 
(7) 

 

Where r is the distance from the axis of the shaft to point of maximum shearing stress and, J 

is the shaft’s polar moment of inertia. 

? = @>AB�  (m4) 
(8) 

Where r0 is the shaft radius.  

The maximum stress is usually selected with a significant safety factor (x2) for designing 

purposes. The shaft diameter to bear the maximum stress is given by: 

D1&& = 2r = 2DE2T1&&πfG = 2DE2x23110	Nm/rad3.14x55x10I = 0.13m 

(9) 

 

D%&& = 2r = 2DE2T%&&πfG = 2DE2x3278700 Nmrad3.14x55x10I  

(10) 
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= 1.498m 

Likewise, and based on Lloyd’s Register rules for main propulsion shafts, the LSS and HSS are 

calculated as follows to validate the previous calculations [100] [91]: 

d1&& = FkE
LMM	LMM � 560�N + 160
O �mm
 

(11) 

 

d%&& = 100kE
PMM	PMM � 560�N + 160
O �mm
 

(11) 

 

Where dHSS and dLSS are the diameter of the high and low speed shaft, respectively, k is equal 

to 1,22 for a shaft is fitted with a continuous liner and is oil lubricated, su is the specified 

minimum tensile strength of the shaft material, in N/mm2, P is the maximum shaft power in 

kW and R is the rotational speed in rpm. This equations disregard losses in gearboxes and 

bearings.  

The results are shown in Table 39. Both methods concluded that the LSS diameter should be 

around 15cm and the LSS should have a diameter between 1.5m and 3m.  

 

The gearbox to be modelled consists of three stages: two planetary and one parallel stage 

gears. This detailed model of the gearbox is achieved by the use of the proprietary software 

Kisssys [101] [92], see Figure 52.  
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Table 39. HSS and LSS diameter calculation results. 
High-Speed Shaft 

Variable Value Unit Description 

F 100   For turbine installation 

k 1   Shaft with integral coupling 

d 500 N/mm2 Minimum tensile strength 

with vibratory stresses 

P_HSS 3870 KW Power  

R_HSS 1200 rpm Rotational speed 

d_HSS 165.4196 mm Diameter HSS 

d_HSS 16.54196 cm Diameter HSS 

Low-Speed Shaft 

Variable Value Unit Description 

F 100   For turbine installation 

k 1.22     

d 600 N/mm2 Minimum tensile strength 

with vibratory stresses 

P_LSS 4118 KW Power  

R_LSS 12 rpm Rotational speed 

d_LSS 2887.482 mm Diameter LSS 

d_LSS 288.7482 cm Diameter LSS 

 

 

 
 

Figure 52. 3D view of Kisssys gearbox model  

 

There is two parts of the remaining useful life (RUL) model as shown in Figure 50: i) prognostic 

model using one year historical SCADA data (Table 40) and ii) predictive model using 

simulations (FASTv8). Both cases will generate a load spectrum of 19 torque bins as an input 

for the KISSsoft gearbox model defining frequencies (sum of all frequencies = 1), the relative 

torque and rotational speed.  
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For each part of the load spectrum, the KISSsoft software calculates the damage for all 

mechanical elements, using the respective S-N curves. The damage is accumulated continually 

and being transformed into a lifetime according to DIN, ISO or AGMA standards for gears and 

according to standard L10 calculation or DIN/ISO 281 for bearings [102] [93]. The RUL of gears 

is calculated based on the theory that every load cycle produces damage. The amount of 

damage depends on the stress level, and for lower stress, the damage is considered null. 

Bending and pitting fatigue life of the gears is an estimate based on the accumulation of 

discrete damage until failure occurs and using the load spectrum (derived from SCADA and 

FASTv8 simulations), material fatigue properties given in the KISSsys gearbox model (S-N 

curves) and the damage accumulation method (Palmgren-Miner rule) described in IEC 

standards [103] [94]. 

 

 

Table 40. Load spectrum as input for KISSsoft using SCADA data. 

 

Number 
Frequency 

(%) 

Speed (rpm) Power 

(kW) 

Torque 

(Nm) 

1 15 -728 -103 1361 

2 4 -762 -217 2723 

3 5 -830 -355 4085 

4 6 -944 -538 5446 

5 6 -989 -705 6808 

6 6 -1126 -963 8170 

7 5 -1217 -1215 9531 

8 5 -1285 -1466 10893 

9 4 -1376 -1766 12255 

10 4 -1444 -2060 13617 

11 3 -1501 -2355 14978 

12 2 -1501 -2569 16340 

13 2 -1513 -2804 17702 

14 2 -1518 -3032 19063 

15 2 -1513 -3236 20425 

16 2 -1518 -3465 21787 

17 2 -1521 -3687 23148 

18 3 -1523 -3910 24510 

19 2 -1524 -4130 25872 
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Table 40 shows a load spectrum derived from SCADA of an offshore wind farm in the UK.  The 

rotational speed and torque variation are counted using a rain-flow counting method with 19 

bins.  

4.3.3 Physics-based model outputs: Gearbox 

The most vulnerable components in the gearbox that have been selected for further analysis 

are the HSS bearings. They are assigned as B1 and B2 in Table 41. The method outlined in ISO 

281 for determining the bearing life assumes a constant load. However, methods have been 

proposed for determining the bearing life when the loading is fluctuating. For example, 

reference [104] [95] proposes a method for deriving an equivalent mean constant load (from 

a fluctuating loading). Such a method is incorporated into the proprietary Kisssys [14] 

software. The damage is calculated for each torque bin in Table 40 and then added up to 

obtain the total damage done in 1 year (historical SCADA data). B1 shows 3.11% of damage or 

consumed lifetime and, B2 shows 3.45% of damage. Assuming the load spectrum remains 

similar to the that shown in Table 40, and since the data for this analysis was representative 

of one year's operation, the remaining useful life for B1 is 100 / 3.11 = 32 years approximately.  

 

Table 41. Gearbox physics-based model: damage of HSS bearings B1 and B2. 

 

Bin Number Damage 

Bearing B1 (%) 

Damage 

Bearing B2 (%) 

1 0.30 0.30 

2 0.08 0.08 

3 0.10 0.10 

4 0.12 0.12 

5 0.12 0.12 

6 0.12 0.12 

7 0.10 0.10 

8 0.10 0.10 

9 0.08 0.08 

10 0.08 0.08 

11 0.06 0.06 

12 0.04 0.04 

13 0.04 0.04 

14 0.04 0.05 

15 0.06 0.07 

16 0.07 0.08 

17 0.09 0.10 

18 0.15 0.18 

19 1.36 1.61 

Total Damage 3.11(%) 3.45(%) 
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4.4 Power converter physics-based model 

Similar to the methodology proposed for the gearbox, a systematic physics-based method has 

been proposed to predict the damage accumulation of power converter of offshore wind 

turbines. The approach was implemented using python codes. The total fatigue life is 

calculated in two steps shown in Figure 53: 

• Historical estimation of pre-existing damage, accumulated during operation (diagnosis 

model). 

• Future estimation of simulated accumulated damage (predictive model). 

 

Figure 53. Power converter physics-based approach to estimate accumulated damage. 

This section explains each block of the flow diagram shown in Figure 54. The predictive model 

takes into account the thermal cycling in power electronic components as the main source of 

stress in the predictive model.  
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Figure 54. Remaining useful life estimation flow diagram. 

 

4.4.1 Failure investigation of power converter 

An Isolated Gate Bipolar Transistor (IGBT) is very similar to a metal oxide semiconductor field 

effect transistor (MOSFET) driving a gate of a bipolar junction transistor but with superior on-

state conductivity. The MOSFET has a gate that is very easy to drive, meaning that it is not 

drawing too much current. A fully rated power converter, or back to back converter comprises 

a rectifier (generator side, conversion of AC to DC) and an inverter (grid side, conversion of 

DC to AC). These two independent systems are connected via a DC link to deal with different 

and incompatible electrical parameters such as frequency voltage and short-circuit capacity. 

The power electronic converter has shown high failure rates in the risk assessment, SCADA 

data analysis and literature review [105] [96]. Reliability of power electronics is a critical and 

developing need for offshore wind farm operators; the assessment is essential for design as 

well as for the lifetime extension which leads to a reduction of energy cost [106] [97]. 

Damage accumulation or ageing of power converter modules is due mainly due to differing 

properties of adjacent materials, especially different coefficients of thermal expansion of 

adjacent layers, see Figure 55. Bond wire lift-off and solder delamination have been identified 

as the main failure modes [107] [98].  Based on [108] [99], the main source of stress giving 

rise to failures of power electronic components is temperature cycling. Figure 56 shows that 

55% of the failure mechanisms are triggered by thermal activity, followed by vibration with 

20%.  



124 

 

Figure 55. Power converter module structural details [107] [98][109] [100]. 

 

Figure 56. Source of stresses with impact on electronic components [108] [99]. 

For this project, failure in the IGBTs and diodes on both sides of the power converter due to 

thermal cycling represent the overall health of the assembly. 

4.4.2 Induction generator model 

The details of the electrical drive to extract electrical variables are not usually modelled in 

FAST; instead, the focus is on getting the torque-speed curve correct, which effects turbine 

loads.  For an induction machine, the most sophisticated built-in model available in FAST is 

the Thevenin-Equivalent Circuit (TEC) model. The analysed turbine uses a squirrel cage 

induction generator (SCIG); therefore, a model to extract voltage and current variables are 

proposed to complement FAST simulations.  

SCIG is a three-phase induction machine and has three windings in the stator and three 

windings more in the rotor, although, these can be imaginary.  Generators can be described 

with the same set of the equation than motors, see Figure 57. To simplify the equations, the 

following hypothesis is commonly used [110] [101]: 



125 

• Symmetric and balanced three-phase induction machine, with a single winding rotor 

(Squirrel cage simple) and constant gap.  

• The material is assumed to be linear, that is to say, the iron saturation is discarded. 

• The iron magnetic permeability is assumed to be infinite in front of the air permeability, 

which means that the magnetic flux density is radial to the gap. 

• All kind of losses in the iron are neglected. 

• Both the stator windings and the rotor windings represent distributed windings which 

always generate a sinusoidal magnetic field distribution in the gap 

 

Figure 57. Induction machine simplified equivalent circuit [110]. 

From the equivalent circuit it is possible to derive the following equations: 

Q = RQ � RSRQ  (1) 

 

TU = VUQ � WXU (2) 

      

TY = TUTZTU + TZ 
(3) 

T[R = T\ + TY (4) 

       

Where s is the slip which represents the difference between rotational speed (nr) and 

magnetic field rotation speed (ns). R and X is electrical resistance and inductance, respectively. 

The impedances Z are calculated as an imaginary number using R and X. Rated rotational 
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speed, magnetic field rotation speed, resistances and inductances and provided by the 

manufacturer and used to calculate output voltage, current and power factor.   

The mechanical input power (Pm) and stator power output (Ps) are computed are based on 

the general relation between mechanical torque (Tm) and electrical power [111] [102]: 

P] � T]ω_; 	PG � T̀ ωG (5) 

Taking into account the SCIG efficiency (η) 

PG � ηP] (6) 

Therefore, AC voltage (V) and current (I) can be derived from the following relationships: 

V � IZef; 			S � PG � jQ (7) 

Where S is the complex power, P is electrical active power and Q is reactive power. 

4.4.3 Power losses calculation 

IGBT and Diode power losses can be divided into conduction losses (Pc), switching losses (Psw) 

and blocking (or leakage) losses (Pb) which is normally neglected.  

Power	losses � Pl � PGm � Pn o Pl � PGm (8) 

IGBT Conduction losses can be calculated as follow:  

uqr�il
 � uqrt � rlil (9) 

Where uCE0 is the DC voltage source, rc is the collector-emitter on-state resistance, ic is the 

collector current as shown in Figure 58.  

 

Figure 58. The circuit for the examination of the IGBT switching and conduction losses [112] 

[103]. 
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The same approach can be used for the anti-parallel diode: 

uu�iu
 = uut + ruiu (10) 

The parameters rD and rC can be derived directly from the IGBT Datasheet (see Figure 59 and 

Figure 60). In order to take into account ambient and junction temperature changes in every 

simulation step, the uCE0 and uD0 values are read from the diagram as temperature dependant 

extrapolating junction temperature values between 25oC and 125oC. 

 

Figure 59. IGBT output characteristics. Red lines are used for slope calculation, and blue 

lines are curve fitting approximations [113] [104]. 

 

Figure 60.  Diode output characteristics. Red lines are used for slope calculation and blue 

lines are curve fitting approximations [113] [104]. 
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To describe the temperature dependency of the curve for the conduction losses calculation 

in the IGBTs the coefficients (a=rc,b) can also be made temperature dependent [114] [105]. 

rl�Tj
 � a�Tj
 � at � at�Tj (11) 

 

and, b�Tj
 � bt � bt�Tj (12) 

Therefore, the relationship between collector current and voltage is given by:  

Iq�Vqr, Tj
 � �at � at�Tj
Vqr � �bt � bt�Tj
 (13) 

With rc and rD derived from Figure 59 and Figure 60 are junction temperature dependent. 

Based on [112] [103], the switching losses in the IGBT and the diode are a product of switching 

energies and switching frequency (fsw). This characteristic is given by manufacturers as is 

shown in Figure 61. As current values would be varying due to a stochastic characteristic of 

the wind and turbulence intensity, the switching losses will be dependent on the input current 

using the slope in Figure 61 [115] [106]. 

 

(14) 

Finally, the total power losses in the IGBT and the diode can be expressed as the sum of the 

conduction and switching losses [109] [100][112] [103]: 

 

(15) 
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Figure 61. Typical energy losses. e1 and e2 represent slope [113] [104] 

4.4.4 Thermal model  

Power losses have to be conducted through the connection layers and insulation layers to the 

heat sink as it is shown in Figure 55. The heat dissipation generated during forward on-state 

and blocking state and during switching is expressed by the difference of temperatures 

between the layers described by the following equation:  

 

(16) 

As mentioned before, different materials used during power converter module construction 

have different thermal expansion coefficients. This feature of the physics is represented by 

the thermal resistance and thermal impedance of the material which comprises geometry, 

conductivity and heat transfer area. The thermal resistance can be calculated as follow: 

 

(17) 

Where d is material thickness, λ is heat conductivity and A is heat flow area. 

 

e1=∆I/∆E 

e2=∆I/∆E 
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Table 42. Material commonly used on power converters [109] [100]. 

 

Similarly to an electrical circuit, the thermal model of the power converters can be expressed 

with an equivalent circuit as shown in Figure 62. Here power loss is the input (representing 

the current in an electrical circuit), the difference in temperature is analogous to the drop in 

the electrical voltage and thermal resistance is analogous to the electrical resistance. 

The temperature differences ΔT over the thermal resistances are calculated for constant 

power dissipation PT of the IGBT switches and Diodes inside the power module as follows: 

 
(18) 

 

Figure 62. Static thermal model (Rth) without base plate [109]. 
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After losses have been calculated, the temperature during stationary operation can be 

calculated with the aid of thermal resistances Rth, final values of the Zth curve given by 

manufacturers (Figure 63).  

 

Figure 63. Transient thermal impedance [109,113] [100,104] 

Temperature calculation starts from the ambient temperature Ta outside to the inside as it is 

shown in Figure 64.  

When there is more than one heat source on the heatsink, all the sources are added up.  Each 

loss of electrical power in the electrical circuit represents a source of heat which is input to 

the heatsink. 

 

Figure 64. Temperature calculation process [109] [100]. 

T (s) 
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For example, for a power converter with 6 IGBTs and 6 Diodes, the total loss is used to 

calculate the heatsink temperature, as follows: 

Tx`yzGef{ � n}P~�zy������ � P~�zy�������� ∗ Rx`yzGef{�y]ne`fz � Ty]ne`fz (19) 

Now the junction temperature Tj for IGBTs and Diodes have been modified a new power loss 

has to be calculated as it is explained in Figure 65.  

 

Figure 65. Process to calculate temperatures incorporating ambient temperature in each 

step [109] [100] 

Temperature fluctuations experienced by the internal connections within the power modules 

produce ageing, through accumulating fatigue damage, caused by thermal stress cycles. As 

explained before, the fatigue of material is produced by thermal stress due to the different 

expansion coefficients of the connected materials or adjacent layers. During normal operation 

at frequencies of few Hz and especially at duty cycle operation, the internal connections of 

the layers in a power converter module will experience temperature cycling. At frequencies 

around 100Hz, the temperature variation (ΔT) is small so low energy dissipation is 

counterbalanced by elastic deformation [109] [100]. Temperature variations have been 

measured and simulated in [116]; here the author shows two temperature oscillations 

superimposed. Once, the power modules are in stand by; the temperature is stabilized to 30 

oC and every 100 seconds, there is a rise in the temperature of 50oC. When the temperature 
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reaches the maximum, it is possible to see a higher frequency variation in the temperature of 

320ms cycle time. The study concluded that one cycle every 100s is most likely to damage the 

IGBTs.  

Rainflow counting method is applied to estimate the frequency and amplitude ranges of the 

thermal cycles [108,117,118] [99,107,108]. The rainflow counting method is adapted from 

material science and applied to power electronics [118] [108]. This method identifies local 

highs and lows in the data as peaks and valleys where the range between them are all 

considered to be half cycles. The algorithm pairs the half cycles to generate complete cycles 

regarding a mean [119] [109].  

A script for the ASTM E 1049-85 (2005) Rainflow Counting Method is used as a reference [120] 

[110].  

Based on [106] [97][109] [100], an empirical correlation between a number of cycles to failure 

Nf and temperature cycling amplitude ΔTj is given: 

�� = � ∗	∆=�� ∗ � �������  
(20) 

Where: 

• Nf represents the number of cycles to failure of the device. 

• ΔTj is the junction temperature thermal cycle amplitude. 

• Tjm represents the mean absolute junction temperature.  

• A, α and Ea are constant values given by the manufacturer. 

• kb represents Boltzman constant. 
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Figure 66. Dependency of the power cycling value n for IGBT4 modules as a function of the 

temperature cycling amplitude ΔTj and the mean temperature Tjm [109] [100]. 

The proposed method to estimate the lifetime of power modules is based on Figure 66 which 

is provided by the manufacturer in [109] [100]. Once temperature cycles are counted using 

the rainflow counting method, temperature cycling amplitude and the mean absolute 

junction temperature are calculated.  

In Figure 66, an initial point is selected using the counted number of cycles and the calculated 

ΔTj. Then, the deference between final cycles to failure for the estimated mean junction 

temperature curve (blue, green, etc.) at the calculated ΔTj and the initial point of a counted 

number of cycles would result in the remaining cycles to failure.  

IGBTs and Diodes junction temperature time series are separately analysed and then the 

lifetimes are combined using the Miner’s rule [106] [97].  

A cross-multiplication (or rule of three) between counted numbers of thermal cycles 

associated with a period of prediction (in minutes or hours) and the remaining cycles to failure 

would result in a predicted failure date.  

4.4.5 Physics-based model outputs: Power converter 

200,000 seconds derived from the SCADA database have been simulated. Temperatures of 

the IGBTs and diodes during this period are shown in Figure 67.  
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Figure 67. IGBTs and diode temperature. 

Figure 68 shows the probability distribution of the IGBT junction temperature, which has a 

pick value between 50 and 60 degrees Celsius.  

 

Figure 68. Probability distribution of the IGBT junction temperature. 

The estimated damage for a period of two and half days is described in Table 43. Under these 

operational conditions, there is a total of 75,075 cycles and accumulated damage of 

0.00000143%. Since the damage of the power converter is related to the number of cycles for 

a particular temperature range, It is possible to see that larger estimated damage is generated 

in the range between 9 and 12 degrees Celsius.  
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Table 43. Estimated damage of the IGBT. 

Range (*C) DTj(K) Tjm(K) cycle count Number of 

cycles to 

failure (Nf) 

Estimated 

Damage 

38.5 42.77 4.27 317.61 2 1.25882E+12 1.59E-12 

34.22 38.5 4.28 273 0 4.96101E+13 0.00E+00 

29.94 34.22 4.28 323.23 0.5 8.40471E+11 5.95E-13 

25.66 29.94 4.28 320.65 0.5 1.00455E+12 4.98E-13 

21.39 25.66 4.27 322.03 1 9.23656E+11 1.08E-12 

17.11 21.39 4.28 318.76 4 1.14684E+12 3.49E-12 

12.83 17.11 4.28 322.14 5.5 9.05925E+11 6.07E-12 

8.55 12.83 4.28 317.47 16452.5 1.25651E+12 1.31E-08 

6.42 8.55 2.13 316.93 9884.5 4.39545E+13 2.25E-10 

4.28 6.42 2.14 315.89 31873.5 4.62459E+13 6.89E-10 

2.14 4.28 2.14 315.09 16718 4.8987E+13 3.41E-10 

1.07 2.14 1.07 331.43 16 5.24991E+14 3.05E-14 

0 1.07 2.14 330.84 117 1.6596E+13 7.05E-12 

total number of cycles 75075 
 

1.44E-08 

 

4.5 Conclusion 

Since statistical-based methods for O&M optimisation do not consider the actual condition of 

the component, failure date prediction can be at any point in time. This might represent a 

greater consequential economic cost. Nowadays, data-driven approaches use operational 

data (CMS or SCADA) to understand the normal behaviour of critical assets or components. 

When a clear deviation from normal behaviour is identified, a failure can be detected. The 

predictability of failure in the offshore wind industry is a combination of programming, 

statistics and subject matter expert knowledge. An inspection might detect a well-developed 

failure without leaving any time to respond in a cost-effective manner. Accumulated damage 

determination in the time domain using physics-based models is discussed as one of the 

methodologies with greater capability to predict failure far in advance, even from the 

installation date of the component.  

The patterns of seasonal variations can change yearly. The procedure described in this 

chapter allows observed load spectra to be used as inputs, enabling the estimated 

accumulated damage to be updated throughout the life of the component. The simulated 

spectra represent future loading scenarios and open up the possibility of using the statistics 

of the wind climate.  
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Based on the failure investigation and the vulnerability map of gears and bearings it is noted 

that bearing failures caused by fatigue damage occurs on several of the shafts in the gearbox, 

but predominately in the HSS shaft bearings. HSS shaft failures are responsible for 50% of the 

repair cost in the gearbox.  

The load distribution of the three-stage gearbox is calculated using SCADA data and the 

model. The proposed physics-based model of the gearbox helps to optimise O&M activities 

by feeding the RUL into the decision-making process of wind farm operators. Around 3% of 

lifetime consumption is estimated in both HSS bearings, B1 and B2.  

A physics-based method to estimate damage accumulation of IGBTs and Diodes and to predict 

the RUL of power converters have been proposed. The simulations do not require a large 

computational effort, therefore it is suitable for day-to-day use. The algorithm comprises one 

glue code and four main pre-processors; generator, power losses, thermal model and the 

rainbow counting method. The main inputs of the methodology to estimate accumulated 

damage are the torque and rotational speed in the high-speed shaft. For prediction purposes, 

the proposed methodology is to calculate the torque and rotational speed using the aero-

servo-elastic-hydro simulation tool FAST. FAST uses as inputs the load cases derived from IEC 

standards representing all the operational conditions an offshore wind turbine may 

experience at a particular site. A period of two and half days is simulated, which is not long 

enough to extrapolate the damage for the whole year as it does not include all the operational 

conditions. The total number of thermal cycles is 75075 and represent very small accumulated 

damage, 1.44E-08%.  

The power losses and junction temperatures depend on the ambient temperature. The power 

losses and thermal algorithms require information provided by the manufacturer.  

Similar to the gearbox, the RUL method of the power converter could be used to inform 

maintenance decisions to optimise resource allocation considering weather conditions 

throughout the year. Unexpected failures, which represent huge production losses, as well as 

time finding failures could be avoided by scheduling maintenance or inspection activities 

based on the RUL estimation. 
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CHAPTER 5 – DATA MINING APPROACH FOR THE PITCH SYSTEM 

5.1 introduction 

Automatic and intelligent systems are needed to minimise human intervention during the 

operating life. The pitch system has been identified as one of the most critical assemblies in 

terms of turbine operation. For the pitch system, the limited number of signals available 

through the SCADA system obstructs the identification of failure causes, the development of 

physics-based approaches to quantify degradation, estimate risk and hence schedule 

maintenance tasks.  It is clear however, that the health of the pitch system may be discerned 

from the available data.  The challenge is to identify how to combine existing signals.  

Therefore, machine learning and data mining methodologies have been used to understand 

the normal behaviour of the pitch system.  Observed deviations from normal behaviour in 

SCADA data can be categorised as positive or negative in terms of the deduced risk profile.  

Consequently, critical modes of failure of the pitch system have been anticipated in advance. 

The initial criteria to select data mining techniques for this project are: 

• Ease to understand the codes and interpret the outputs: one of the requirements of 

the sponsor company is to propose a methodology simple to understand for both, the 

end user and the developer.   

• Cost effective with low computational effort:  A super computer is no required and 

the implementation is done in the open source Python code.  

• Unsupervised: taking into account the large amount of data and variables, the first 

step in this process is to identify how a turbine behaves under certain operational 

conditions without giving the model inputs.   

• Prediction capability: ideally, the proposed methodology needs to be able to diagnose 

and prognoses failures.  

Therefore, the methodology and process in this section are based on simple and commonly 

used techniques of data mining. The implementation is made in python code.  

The proposed method involves an unsupervised one-class Support Vector Machine (SVM), 

used for novelty detection.  Given a set of samples, the SVM detects the soft boundary of that 

dataset.  Many different variables may be incorporated into the analysis as inputs.  In two 

dimensions, the soft boundary can be displayed as a contour.  A decision tree is used to take 
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into account expert knowledge of offshore wind turbine technology and operation and to 

include more variables to the analysis in three dimensions or more. Figure 69 shows the 

analysis of 1-year historical data of the wind speed and blade position (2D) and, the addition 

of a third variable (3D), the oil pressure of the hydraulic system to determine the failure mode. 

It is possible to associate points in the graph by the time stamp of the original dataset. The 

final frontier of normal operation is defined and a status variable assigned to the training data 

(green, yellow, red).   

 

Figure 69. Three-dimensional analysis of the pitch system using one year of historical data. 

The classification technique used is the K-Nearest Neighbour (KNN).  KNN enables new SCADA 

data observations to be categorised and operation status to be assigned.  The KNN model 

searches for a number of observations from the training data and then calculates the 

numerical distance between the unknown “status” of the new observation and the training 

data.  Then the KNN model selects the nearest known status for the new observation. This 

methodology is less computationally demanding and will allow pitch system anomalies to be 

identified.  More SCADA database variables can then be included in the analysis of anomalies 

to diagnose the failure mode and cause.   

5.1.1 Pitch system technology 

Pitch systems can consist of electric or hydraulic power actuators. The generic offshore wind 

turbine of this project uses a hydraulic pitch system as it is shown in Figure 70.  
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Figure 70. Idealised typical hydraulic pith system [121] [111]. 

5.1.2 Data mining approach objectives 

The structure of the data mining approach is shown in Figure 71. The general aim of this 

section is to design and deploy data mining approaches to diagnose failures in the pitch 

system of an offshore wind turbine as early as possible. The specific objectives are: 

• To understand failure modes and causes of the pitch system and their correlation with 

the available data of the SCADA system. 

• To identify normal behaviour and the learnt frontier using an unsupervised Support 

Vector Machine (SVM) technique. 

• To combine Subject Matter Expert Knowledge (SMEK) with SCADA data and the learnt 

frontier to assign a risk status to the training data. 

• To develop a K Nearest Neighbours (KNN) technique to assess new observations or 

data points based on the created risk status.  
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Figure 71. Data mining approach 

5.2 Data analysis 

The data mining process and analysis is performed using a python code and its machine learning and 

data analysis tool, scikit-learn. This tool is selected due to it is open source, commercially usable and 

built-in commonly known python libraries; NumPy, SciPy, and matplotlib.  

5.2.1 Data mining process 

This section describes a combination of machine learning techniques which is used in the 

literature as a hybrid classifier. Commonly, SVM and KNN are used together to reduce 

misclassifications. As one of the main objectives of the data mining approach is to incorporate 

subject matter expert knowledge into the model, the unsupervised SVM technique is used to 

identify boundaries and understand turbine behaviour. The proposed data mining process 

used in this project is described below:  

1. Wind turbine and pitch system understanding: First, it is necessary to understand the 

objectives clearly and identify what are the potential failure modes of the pitch 

system.  

2. To identify data variables in the SCADA system associated with the pitch system 

failures.  
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3. To select data mining techniques, assumptions, and constraints.  

4. SCADA data understanding (data exploration): This step comprises data collection, 

including data load and data integration. Next, data exploration is performed using 

visualisation and Pearson correlation coefficient to identify patterns based on the 

wind turbine understanding. Then, it is necessary to identify if there is any missing 

value in the acquired data.  

5. Data preparation: This step aims to prepare the final data set. The data identified 

needs to be formatted into a .csv format to be read by the python code.  

6. Modelling: Data mining techniques are selected to be used for the prepared dataset. 

5.2.2 SCADA data analysis 

There are systems in the offshore wind turbine that have limited access or their knowledge 

about the multiple dynamic interactions between their subsystems does not exist. The SCADA 

database is already available and provides a large amount of operational data that can be 

used to give an indication of the health of the system. The information in the SCADA system 

varies from status signals to measurement signals such as wind speed, temperatures, 

pressures, voltages, currents, blade position, etc. [122] [112].  

The normal behaviour of systems and changes or deviations from normal behaviour can be 

detected in an early stage of failure using sophisticated signal analysis techniques. Normal 

behaviour is established using two input signals from historical operational data during 

periods where the turbine is normally operating. Correlation of signals is studied to identify 

those that once are combined they can indicate the system condition. Table 44 shows the 

results of the Pearson’s correlation coefficient test between several SCADA database 

variables related to the pitch system. The Pearson correlation coefficient is a simple linear 

analysis. This analysis quantifies the linear relationship between two variables (X and Y), with 

a series of pairs xi and yi ,with i: 1,2,…n. It varies between +1 and −1 where: 

• 1 is total positive linear correlation. 

• 0 is no linear correlation. 

• −1 is total negative linear correlation.  

The Pearson’s coefficient rxy is calculated as follows [123] [113]: 

��� = ∑��� � �̅
� � �  ¡
�¢ � 1
����  



143 

Where, �̅ and  ¡ are the mean values of X and Y and, sx and sy are the standard deviation of X 

and Y.  

Table 44. Pearson correlation coefficient. 

 

Table 44 analyses several SCADA variables: wind speed, rotational speed, yaw and blade 

position and, hydraulic system pressure. As it is expected, there is a clear positive linear 

correlation between wind speed and rotational speed. But also, it is possible to see in the 

table a strong negative linear correlation between blade position and rotational speed and, 

between oil pressure and blade position.  

Likewise, Figure 72 visually explores the correlation between turbulence intensity and blade 

position, wind speed and oil pressure. The turbulence intensity is derived from SCADA data 

by dividing the standard deviation of 10 minutes wind speeds series by the mean wind speed. 

The scatter plots in Figure 72 shows variables of a turbine with pitch system failures. The 

failure was registered and reported on a specific date by the O&M team of a specific offshore 

wind farm. SCADA data from 6 months before the failure and 6 months after the failure was 

selected. It is possible to visually inspect the dataset and identify where most of the points 

are and if there is any outstanding outlier point.  

 

 

Wind_Speed_ms Wind_Speed_stddev_ms Generator_RPM Yaw_position_degrees Blade_A_position_degrees Blade_A_position_stddev Oil_pressure_Blade_A_Bar

Wind_Speed_ms 1

Wind_Speed_stddev_ms 0.62799877 1

Generator_RPM 0.808742898 0.549481447 1

Yaw_position_degrees -0.125021943 -0.03954417 -0.068176086 1

Blade_A_position_degrees -0.024470984 0.000780576 -0.497982916 0.005892143 1

Blade_A_position_stddev 0.038812024 0.140537951 -0.042870492 0.00399471 0.128917173 1

Oil_pressure_Blade_A_Bar -0.097335886 -0.154429112 0.150686591 -0.001428805 -0.559675413 -0.098140546 1



144 

 

Figure 72. Turbine with pitch system failure 

 

 

In order to understand turbine behaviour is necessary to cross two data sources: SCADA data 

and maintenance logs. Using maintenance logs and maintenance team reports, it is possible 

to identify specifics dates of failures of a specific turbine in the wind farm. Therefore, the time 

variable and turbine ID are used to cross or correlate both sources of information: 

maintenance logs and SCADA data. The proposed approach is shown in Figure 73. The flow 

diagram shows the reasoning behind the process. Analysing the O&M reports it is possible to 

extract failure mode, date and turbine ID. When the failure mode is related to the pitch 

system, the proper SCADA data variables are selected for the period of time before the 

identified date of failure. 
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Figure 73. SCADA data and O&M data analysis 

 

5.2.3 Failure investigation outputs 

Failure investigation is crucial to understand patterns in SCADA data. First, using the approach 

described in Figure 73, it is possible to explore SCADA data before a pitch system failure 

occurs. Figure 74 shows a comparison of 1-year SCADA data between a turbine with a 

registered pitch system failure and a healthy turbine. It is possible to see that the turbine with 

a known pitch system failure experienced approximately 10% higher frequency of turbulence 

intensity during one year before the failure date.  
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Figure 74. Comparison between healthy turbine and turbine with pitch system failure. 

Hydraulic actuators modify the blade pitch or angle during the hydraulic pitch system 

operation. A hydraulic pump and a pressurised tank providing back up, constantly run to 

maintain pressure. Springs are used to securing operation safety since, in case of a failure, the 

blade will pitch to a safe position. Maintenance activities of hydraulic systems mainly involve 

regular checks for leaks of fluid and to ensure that there is no excessive play in the 

mechanisms. The pitch system accounts for 20% of the total turbine downtime. Hydraulic 

pitch systems might present failure modes such as leakage, contamination, component 

malfunction and electrical faults. Proportional valve leakage is identified as the main failure 

mode of hydraulic pitch systems [121] [111]. 

The author in [124] [114] identifies that states in the control system represent potential 

failures of the active control power system. The most common states are:  
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• Fault blade load control: this state means that an undue effort was exercised in the 

blade, the turbine is still operating but with reduced power and the maintenance 

service needs to rectify the failure.  

• Pitch control error: a difference of the angles of the three blades, which leads to the 

turbine shutdown. The turbine restarts automatically for a number of times before 

the maintenance service is required.  

 

The main outputs of the failure investigation based on SCADA data analysis, O&M information 

and literature review, are encoder error, hydraulic system failure, valve failure and actuator 

failure, Figure 75. The maintenance reports after failure and SCADA data analysis described a 

generic hydraulic system failure, but non or limited information about the repair actions is 

provided. On the other hand, in the literature review, the most common failure of the 

hydraulic pitch system are described. These failures are linked with SCADA data variables such 

as oil pressure, blade position and wind speed. 

 

 

Figure 75. Main findings of the failure investigation. 

5.3 Support Vector Machine (SVM) 

Due to the design understanding of the relationship of the blade position and wind speed and, 

the correlation of these variables with the failure modes of the hydraulic pitch system; the 
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variables to be used in the SVM techniques are the wind speed and the blade position as it is 

shown in Figure 77.  

SVM has been used for data pattern recognition, classification, regression and outliers 

detection since 1995. The main idea of SVM is to map the input vectors not linearly separable 

like in Figure 76 (a) into a higher dimensional feature space to use hyperplanes for optimal 

separation of mapped data like in Figure 76 (b)  [16].  

 

 

a) vector linearly separable b) Linearly separable data in feature space with hyperplane 

Figure 76. SVM data separation with feature space  [16]. 

Support vectors are the data points of observations of SCADA data nearest to the defined 

hyperplane. Therefore, these points are critical elements of the data set. The further the data 

points are from the hyperplane, the more confidence there is that the points are classified 

correctly. The hyperplane can be found by calculating the distance to the nearest data points, 

known as the margin in Figure 76 (a). The main idea is to select the greatest margin possible. 

In order to classify the dataset that is no clearly separable, it is necessary to move from 2D to 

3D, this process of moving the data to a higher dimension is called kernelling [125] [115]. 

There are several kernel functions: linear, nonlinear, polynomial, radial basis function (RBF), 

and sigmoid. The only kernel function that does not require prior knowledge of the data is 

RBF.  

As it is described in section 5.1, this step of the process is unsupervised or without entering 

the knowledge of the data, therefore, the kernel function selected for this study is RBF which 

is an exponential function: 

RBF = exp	��¤	��� � �¥���
, where y is the radio greater than 0 of the closed ball centred at 

x’ in a graph. 

Margins 
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The main advantages and disadvantages of SVM technique is shown in Table 45. 

Table 45. SVM advantages and disadvantages [126] [116] 

Advantages Disadvantages 

Effective in high dimensional spaces Kernel function choosing is crucial when 

the number of features is greater than the 

number of samples 

Effective when the number of dimensions is 

greater than the number of samples 

It does not provide probability estimates 

directly (probability can be derived using a 

five-fold cross-validation) 

Memory efficient as it uses a subset of 

training points (support vectors) 

 

The decision functions are versatile as it can 

be defined by different Kernel functions 

 

 

Figure 77 shows the main output of the SMV with an exponential kernel function, RBF with a 

gamma of 0.01 . One year historical SCADA data is used to asses the methodology. The main 

frontier or contour is used to understand turbine normal behaviour in combination with 

subject matter expert knowledge, presented in the following section. The contour is called 

learn frontier.  

 

 

Figure 77. SVM output. 
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5.4 Decision Tree Algorithm (DTA) 

After the learnt frontier in Figure 77 is defined, it is necessary to combine it with technical 

knowledge of the offshore wind turbine. Now, the methodology and analysis become three-

dimensional. Thus, the graph in Figure 77 (wind speed v/s blade position) is divided and 

analysed in the main sections, as it is shown in Figure 78.  These sections are selected 

identifying the main concentration of points from SVM output. Then, using subject matter 

expert knowledge, each sections is analysed correlated to a normal or abnormal behaviour 

based on the original design of the turbine components and control system.  The sections and 

their correlation with the behaviour oif the turbine is used in the decision trees methodology.  

 

Figure 78. SVM output analysis. 

A decision tree algorithm (DTA) is developed to assign a status to the points of the training 

data in each section of the graph, an example of the flow diagram of the DTA is shown in 

Figure 79. Green status is normal behaviour, yellow status is abnormal behaviour and red 

status is a failure. The DTA comprises subject matter expert knowledge to interrogate the 

data intelligently.  
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Figure 79. Decision tree to assign a status vector to the training data. 

 

Some of the considerations (subject matter expert knowledge) for this process are: 

• There is normally a phase in the start-up where the turbine will wait at ~30deg pitch 

before deciding whether to go ahead with starting up.  

• 12 m/s rated wind speed 

• From 12-24m/s – pitch control strategy 

• From 0-11m/s – torque control strategy  

• Pitch angle - 00° - low wind speed, pre-cut-in 

• Pitch angle - 80° - high wind speed cut-out 

• Dynamic behaviour, 10min average values is much time. The turbine could be shutting 

down during this time. Observations or data points in the “transition” areas need to 

be analysed further, including the time variable. 

• The system works against springs that, in case of a failure, will pitch the blade to a safe 

position. 

• The difference in the angles of the blades leads to shut down the turbine. 

• A hydraulic pump constantly runs to maintain pressure (200 (bar)), with a pressurised 

tank providing back-up. 

• It is also possible to create lookup tables to incorporate the relationship between 

variables and methodologies used in control system strategies as it is presented in  
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[40]. For example; the relationship between power output and wind speed and, the 

relationship between power coefficient, tip speed ratio and blade position. See Figure 

80 a) and b). 

  

a) Power v/s Rotor Speed v/s Wind Speed b) Power Coefficient v/s Tip Speed v/s Pitch Angle 

Figure 80. Wind turbine variables relationship  [40]. 

To manage the large amount of data, a python code of the DTA is developed in this project. 

The output of the DTA is a new status vector, which is added to the original training data as it 

is shown in Table 46. 

Table 46. New dataset with the status vector. 

 

 

5.5 K-Nearest Neighbours (KNN) 

Once the status vector is assigned to the training data, the process requires a simple and fast 

assessment of the new observations. Additionally, this step needs to comprise a low 

computational effort. KNN is selected due to it is easy to interpret outputs, it has short 
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calculation and simulation time and, it has the prediction capability. Once, the training data 

and the status vector is created in Table 46, new data points are assessed using the KNN 

technique. This KNN is a two-dimensional (2D in Figure 69) process, analysing only wind speed 

and blade position points to identify anomalies that might represent failures in the pitch 

system.   

The principle of the KNN technique is to find a number of training data points or predefined 

samples and estimate the closest distance to the new observation and assign a status label 

such as green, yellow or red. The distance can be any metric measure such as any standard 

Euclidean distance.  

¦��,  
 = §��1 �  1
� � ��2 �  2
� � ⋯ . ���¢ �  ¢
� 

This method is known as non-generalizing machine learning method as it simply remembers 

all the training data with a fast indexing structure in Python [126] [116].  

The “K” is the number of neighbours that are used to assess the status of the new observation. 

For example: in Figure 81, the new observation (e.g. wind speed vs blade position) is the blue 

point; red, yellow and green points are the training dataset with a pre-assigned status (green, 

yellow and red); the number of neighbours to be analysed is K = 5; and the dashed blue circle 

with the blue point as a centre encloses the five data points on the plane. Four out of five 

points are red therefore the new observation status is assigned red.  

 

Figure 81. KNN example. 
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The optimal selection of the value K is highly dependent on the data, a larger K-value would 

reduce the effects of noise. However, it would make the classification boundaries less distinct 

[126] [116]. 

Usually, the nearest neighbours’ classification method uses uniform weights, which means 

that the value assigned to a new observation is calculated from a simple common election of 

the nearest neighbours. In this study, due to the unknown behaviour of the pitch system, it is 

better to assign weights to the neighbours based on proximity. In other words, the nearest 

neighbours contribute more to the status selection. The variable weights = 'distance' in Figure 

82, assigns weights proportional to the inverse of the distance from the new observation 

[126] [116]. 

5.6 Data mining approach outputs 

The main output of the KNN technique is shown in Figure 82. The 3-class classification is 

performed using a K-value of 10 and assigning weights to the proximity of neighbours to the 

new observation. Green areas represent the normal behaviour of the pitch system; yellow 

areas represent potential failure events or component (variable) transition from one state to 

another. Finally, red areas represent anomalies in one or two variables, a failure in the 

hydraulic pitch system (e.g. low oil pressure < 200 (bar)). The background colour tells what 

the predicted response value (status) would be. The KNN method with the new status vector 

is applied to 1 year SCADA data of a turbine with a failure in the pitch system known in the 

wind farm maintenance logs. Before 17 days, the wind speed is less than 5 m/s and the blade 

angle registered in SCADA is around -0.9 degrees (Figure 82-A). During the day 17, an angle of 

50 degrees is identified with a wind speed of 2.9 m/s (Figure 82-B), which is detected as red 

status (2) by KNN algorithm. In day number 22, the oil pressure decreased from an average 

of 208 bar to an average of 123 bar. The wind speed and blade angle associated with this 

event are detected by the method (Figure 82-C). Finally, figure 82 D and E shows the 

simulation of 6 months and one year, respectively. The new data points with low pressure or 

abnormal behaviour defined in the DTA were located near neighbours with yellow and red 

status.  
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Figure 82. KNN main output 
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5.7 Conclusion 

The pitch system failure modes and causes representing the overall condition were identified 

in the literature review. External leakage due to wear in the seals between the actuator rod 

and the cylinder, hydraulic supply line failure, valve connection failure, and internal leakage 

due to the wear of the piston seal are the most common failures. The development of 

algorithms representing the physics of failure using the SCADA data available is challenging. 

The SVM technique is applied to determine the normal behaviour of a known healthy turbine. 

This algorithm delivered a learn frontier boundary which was analysed to establish the normal 

behaviour. However, the uncertainty accompanying the outputs is not calculated.  The learnt 

frontier shows areas in the relationship between wind speed and blade position that are 

understandable only knowing the control philosophy of the turbine.  

Subject matter expert knowledge of the offshore wind turbine is required to analyse the 

learnt frontier and assign conditions status to the variables pair. A decision tree algorithm is 

proposed to analyse the data based on the learnt frontier. The data is analysed in sections of 

the wind speed and blade position and interrogated using more variables; oil pressure and 

power output. These sections (e.g. 0-5m/s of wind speed and 0-10 degrees of blade position) 

may be reduced to improve the resolution of the analysis. The training data is 1 year of SCADA 

data. Each dataset point (wind speed, blade position) is interrogated by the decision tree and 

assigned a status value green if it is normal, yellow if it is abnormal and red if it is a failure.  

The accuracy of this approach may be calculated by validating the model using historical 

SCADA data and maintenance logs with pitch system failures.  

The final step of the proposed methodology is to interrogate new observations in real time 

using the KNN techniques. The KNN algorithm will use the training data with the status vector 

to assign a status to the new observation (wind speed and blade position). The main 

advantages of this approach are that it needs only two variables to detect abnormal 

behaviour. Therefore, it requires less computational effort and it is straightforward to 

implement. The accuracy of the KNN method also needs to be refined  using more than one-

year historical SCADA data for several turbines operating in different operational conditions.  

Even though, data mining is a tool widely used in O&M of offshore wind farms, the 

combination of the decision tree and KNN methodologies is a novel alternative that allows 
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improving the accuracy of the analysis process by including subject matter expert and 

reducing computational effort.  
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CHAPTER 6 - O&M COST MODEL  

6.1 Introduction 

The O&M cost model is the final step in this project. It integrates the FMEA, physics-based 

models and data mining technique outputs to estimate availability and maintenance costs of 

a particular turbine in a specific location. Figure 83 shows the whole process to optimise 

O&M; the tools developed in previous chapters and the cost model, potential improvements 

for operators and, the main source of uncertainties. Profit maximisation comes from three 

different sources: improvements of turbine availability, reduction of maintenance costs and 

from, mean waiting time (due to logistics and weather) reduction.. The investment in 

maintenance efforts impacts the availability of the turbine and reduces the indirect cost of 

loss of revenue. The cost of maintenance increases exponentially near 100% availability 

(Figure 89). Knowing that there is a trade-off between turbine availability and maintenance 

cost, reaching an optimum at around 95% based on the SPARTA project outputs the O&M 

optimisation relays on the optimal maintenance strategy identification. This is an optimal 

combination of preventive, predictive and corrective strategy. Turbine reliability and 

meteorological conditions are identified as the main source of uncertainties. However, failure 

prognosis and data mining also comprise probabilities and assumptions that need to be taken 

into account.  
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Figure 83. O&M optimisation tools and outputs. 

6.1.2 Objectives 

The O&M cost model can assist owners and operators of offshore wind farms to better 

estimate and control the costs of offshore wind farms integrating the approaches described 

in previous chapters. The final objective of this tool is to be a decision support system, a 

computer algorithm that analyses the measured data and visualises it in order to support the 

decision-making process.  

Since O&M costs are driven by mainly unexpected failures and corrective maintenance [118], 

the task is to predict with greater accuracy if failures will occur, how many and what costs are 

associated with these failures on the short, medium and longer term. An O&M cost model 

uses the experience and data from the offshore wind farm as well as physics-based models, 

probabilistic models and data mining models to diagnose and predict accumulated damage 

and then, to update the cost estimates during the operating life.  

The specific objectives are: 
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• To develop two maintenance strategies. First, an O&M strategy without failure 

prognosis outputs and second, an O&M strategy incorporating the physics-based 

models and probabilistic approaches to failure diagnosis and prognosis.  

• To estimate the logistic delay time. 

• To estimate the downtime of the turbine. 

• To estimate the loss of production in kWh and monetary loss  

• To estimate the turbine availability. 

• To estimate the cost of repair including labour and vessels cost. 

• To estimate hidden CO2 emissions. Offshore wind farms comprise hundreds of 

turbines and the trend indicates that the number will increase in the future, therefore, 

the CO2 emissions of vessels need to be considered into the decision-making process 

of operators during the project life cycle [1] [1] [127] [117].  

6.1.3 O&M cost model outline 

The process to include and compute the inputs and partial outputs are described in Figure 84. 

The O&M model was wholly implemented in Microsoft Excel. As the data that was used comes 

from different sources, the model will have input blocks to define and modify the original 

inputs. The input blocks are shown in yellow in the O&M cost model outline: 

• Input block 1 – Maintenance classes: All maintenance actions, equipment, costs and 

logistics information for each failure mode are classified. O&M resources: labour, crew 

transport strategy, spare parts logistics, etc. 

• Input block 2 – Wind turbine database: the FMEA is the basis to create the wind 

turbine database. Turbine breakdown model at a component level, critical assemblies 

regarding risk to the operation, component IDs and manufacturer, installation date, 

failure modes and causes. It also comprises the maintenance class per failure to 

include information such as repair equipment, MTTR, number of technicians to repair, 

repair actions, spare part availability.  

• Input block 3 – Digital sensors: these inputs come from the previous chapters of 

physics-based models for the gearbox and power converter and, data mining 

approach for the pitch system. Physics-based failure predictions estimate the 

accumulated damage per assembly per turbine, remaining useful life and estimated 
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failure date. Data mining tool gives an indication when failure starts. The data mining 

model provides failure diagnosis with an alarm with low, medium and high failure risk. 

• Input block 4 – Power output: wind probability distribution of the site derived from 

SCADA and, the power curve of the turbine Siemens SWT3.6MW-120.  

• Input block 5 – Wind farm information: Wind farm characteristics: layout, distance 

from the port, inter-turbine distances, number of turbines and, turbine location, etc. 

This block will allow estimating of travels times, fuel consumption, CO2 emissions and 

so on.  

• Input block 6 – Meteorological simulation: wave height, wind speed and direction, 

lightening, visibility, safety thresholds. The final output is the mean delay time in days 

per month.  

• Input block 7 – O&M Strategy: selection of maintenance activities and intervals based 

on failure rates and criticality of the components, condition monitoring system and 

digital sensors.  

• Input block 8 – O&M information: information related to the O&M strategy and the 

wind farm characteristics such as number and type of vessels and, number and shift 

of technicians.  

• Input block 9 – Economic parameter prediction: fuel cost, spare part cost, labour cost 

and electricity sales price. 

Results of the O&M cost model 

The main outputs of the O&M cost model are time-varying cost estimations, green blocks 

(input and outputs) and pink bubbles (maintenance strategies) in Figure 84. 

o Optimal maintenance strategy selection. Three types of maintenance are 

considered (Figure 87): Annual time-based maintenance, condition-based 

maintenance including digital sensors, risk-based maintenance and 

unscheduled maintenance.  

o Turbine downtime and availability, loss of production, revenue losses, cost of 

repair and CO2 emissions.  



162 

 

Figure 84. O&M cost model outline. 

6.2 O&M of offshore wind farms 

The O&M optimisation of offshore wind farms is integrated into the asset management 

framework proposed by Lloyd’s Register shown in Figure 85. The flow diagram describes the 

process that needs to be taken to performed asset integrity service of offshore wind farms. 

The figure identifies three key phases: integrity goals definition, risk understanding and risk 

management. O&M optimisation factors such as FMEA, strategy, condition monitoring etc. 

can be identified in all the three key phases.  
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Figure 85. Asset integrity management of offshore wind turbines. 

The analysis of market segmentation and market strategy allows the identification of the 

requirements for the asset management tool and, therefore for O&M optimisation. The main 

drives of asset management are:  

• To understand offshore turbine operation under certain conditions 

• To understand failure mechanisms in order to design a preventive maintenance 

strategy 
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• To identify hidden failure to reduce downtime and unscheduled maintenance 

activities 

• To optimise O&M resources such as vessels, technicians, ports, spare parts and 

equipment.  

6.2.1 Key offshore wind energy O&M market trends 

 

Based on previous studies [128] [118] [129] [119] [130] [120] and [131] [121], key offshore 

wind energy market trends are identified and used as a reference to develop the O&M cost 

model: 

• Average OPEX of a typical offshore wind turbine is £70,000/MW/year.: “The estimated 

OPEX for a typical offshore wind turbine ranges from £60,000 / MW/year (E&Y, 2009) to 

£87,500 /MW/year (BVG Associates, 2012). These figures do not include leases paid to 

The Crown Estate (TCE), Transmission Network Use of System (TNUoS) charges or 

operational insurance premiums”[128] [118].  

• Catapult 2015. Studies suggest that the cost of O&M represent between 15% and 30% of 

the LCOE [128] [118].  

• Reliability target of main components: O&M products need to focus on increasing 

reliability and availability to maximise energy production or to the minimise levelised cost 

of energy (LCOE). 

• Offshore wind farms out of the warranty period (~2700 turbines in 2020 in Europe): 

offshore wind farm operators or asset owners have to use a tool to optimise O&M.  

• Unscheduled maintenance activities represent an important percentage of O&M 

resources. Based on the SCADA data analysis,unscheduled maintenance hours can reach 

40% of the total time of maintenance.  Additionally, 21% of the total time is recorded as 

a fault-finding maintenance activity [130] [120].  

• The reduction of unscheduled maintenance tasks might be accelerated by implementing 

an integral O&M approach considering the risk to the operation, failure prognosis, 

weather forecasting and financial models.  

• A lack of effective interpretation of data increases reactive activities and therefore, the 

cost of O&M. 
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• O&M activities represent between 15% to 30% of the LCOE and 60% of the OPEX [131] 

[121]. 

• The OPEX breakdown is described in the following table [129] [119]: 

 

Table 47. OpEx breakdown[129] [119]. 

Item Value (%) 

Crane barges or vessels 25 

Part and consumables 15 

Vessels and logistics 11 

Service provider profit and risk margin 10 

technicians 8 

insurance 9 

Balance of plant maintenance  3 

Onshore based personnel 1 

Onshore service base 1 

Other OpEx 17 

 

• When estimating the costs of O&M of offshore wind farms, maintenance costs can be 

categorised as follows: 

� Costs of unscheduled maintenance to repair failures 

� Costs of scheduled preventive maintenance activities 

� Costs of scheduled major replacements of the wind turbine. Major 

replacement activities need to be included in the cost model as they affect 

the component or assembly reliability and therefore the maintenance cost 

estimation.  

6.2.2 O&M logistics 

Based on the reports [128] [118][129] [119][132] [122][133] [123], a typical maintenance 

team and logistics are described in Figure 86.  

The distance from the port, port facilities and weather conditions at the location govern the 

O&M logistic strategy [132] [122]. Commonly there are three options: 

• Port-based work boats; 
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• Port-based work boats plus helicopter support;  

• Fixed or floating offshore base (e.g. ‘motherships’). 

Table 48 describes different scenarios for the utilisation of different vessels.  

 

 

Figure 86. Maintenance team and logistics [117]. 
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Table 48. Vessels utilization features [132] [122]. 

O&M strategy 
Relative 

cost 

Operability 

(weather 

conditions) 

Transit 

speeds 

Distance port to 

wind farm 

Work boats: based at a coastal 

port. 
Low 

Limited: 

maximum 

wave 

height of 

1.5m. 

Slow: 

~20knots 
Less than 75km 

Helicopter access for work 

boat support or primary 

access. 

High 

High: 

Visibility 

restrictions 

only 

Quick: 

~135knots 
 

Fixed or floating offshore base. High High NA More than 75km 

 

The operation comprises monitoring, controlling and coordinating the day to day activities 

including remote monitoring, port facilities management, vessels for crew transfer and 

electricity sales. 

• Monitor & control the turbines 

• Monitor & control the HV and auxiliary systems 

• Control the turbines, HV systems and BOP to facilitate maintenance & repair activities 

Maintenance takes into account all the actions required to efficiently run turbines and 

balance of plant. The balance of plant comprises all infrastructural and facilities of an offshore 

windfarm with the exception of the turbine and all its elements. The balance of plant 

therefore mainly comprises of the following items. 

• Crane pads/ Hard standings 

• Foundations 

• Substation Civil and Electrical 

• Road upgrades and Construction 

• Cabling to substation and Grid 

• SCADA 

• Transformers 

• Miscellaneous Costs 
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Maintenance comprises preventive (scheduled) and corrective (unscheduled) activities of 

repair and inspections. See Figure 87. 

 

Figure 87. Maintenance strategies. 

6.2.3 Spare part management 

As described in the literature review, spare part management is a crucial part of O&M 

optimization. It accounts for a range between 8.3% and 16.7% of the total O&M costs [68] 

[65]. The positive impacts that are identified in spare part logistics improvements are offshore 

turbine downtime reduction, reduction of the value of the spare part in inventory and, spare 

part availability improvements. 

The key performance indicators that depend on effective spare part management are: 

• Unscheduled downtime 

• Spare part availability 

• Inventory management 

• Response time 

• Abortive work, parts delayed 

 

Offshore wind 
farm O&M

Operation Maintenance 

Scheduled or 
preventive 

maintenance

Annual  time based maintenance, such 
as bolt torque checks, greasing etc and 

inspection of subsea cables and 
structures

Conditon based maintenance

Risk or Reliabilty based  
mainetenace strategies

Unscheduled or 
reactive 

mainteance

Unplanned activity, typically occurring 
offshore, ranging from correcting simple 
trip events to major component failures
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Based on [134] [124], 70% of the time the spare part is available in the local depot which 

represents no delay in the O&M logistics, 25% of the time the spare part is available in another 

depot which represents 1 day of delay and, 5% of the time the spare part is not available and 

need to be ordered with the manufacturer which can represent until 7 days of logistics delay 

time.  

6.3 O&M optimization overview 

An offshore wind turbine has thousands of components; each of them may fail in different 

ways. Figure 88 shows a holistic view of the prognosis and diagnosis of failure modes and their 

impact on the O&M strategy. Different failure modes, failure mode 1, 2 and 3 in the figure, 

have a different mean time to repair (MTTR) and consequently different turbine downtime. 

There are several ways to predict and diagnose failure modes and they have different 

technical and economic implications. For example, the statistical-based approach is 

inexpensive. However, it is only able to predict failure events after they occur. Inspections are 

quite reliable, but they can only detect a failure when it is already advanced. New condition 

monitoring systems are more accurate for failure prognosis and allow more time to plan 

maintenance activities before failure, however; they might also reduce or degrade turbine 

reliability with the incorporation of more systems. Data mining and physics-based models are 

inexpensive and have the capability to diagnose and predict failures; nevertheless, they 

require considerable engineering effort and validation.   

Figure 88 gives an example of the O&M optimisation challenge. It correlates failure modes 

with access windows and maintenance strategies. For example, access windows are defined 

using the significant wave height under a certain safety threshold for a specified period. The 

planned maintenance activities are already set for the whole period. Failure mode 1 occurs 

during a no-access period; therefore, it will comprise loss of production and potential 

consequential damage of other components. Choosing one of the failure prognosis and 

diagnosis techniques with enough time in advance, failure mode 1 might be avoided if it is 

included in planned maintenance 2.  
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Figure 88. Prediction of accumulated damage techniques, accessibility and O&M strategy. 

 

There is a trade-off between O&M cost reduction and availability improvement. Figure 89 

shows qualitatively that after a certain point of availability improvement or maintenance 

effort, the cost of maintenance starts rising again. The direct cost of O&M such as vessels, 

spare part and technicians increases exponentially with maintenance efforts to improve 

availability. The indirect costs, such as loss of production, decrease linearly with the 

maintenance efforts. Therefore, based on [123] there is a point in the graph around 95% 

availability where the cost of O&M starts increasing again.  

Turbine availability depends on wind farm characteristics such as turbine location and turbine 

age. The report in [135] [125] shows that availability improves with age and decreases with 

the distance to the port.  

1 2 3 4

1 2 3 
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Figure 89. Optimal maintenance costs, turbine availability, distance to port and turbine 

age [117]. 

To optimise O&M, it is necessary to predict a failure and access window far enough in 

advance. The necessary resources to repair a failure will depend on the wind farm and turbine 

characteristics. Logistical delay time improvements will also contribute to optimise O&M by 

reducing the waiting time for technicians and spare parts.   

6.4 O&M cost model 

6.4.1 General description  

This cost model is based on the methodology proposed in [136] [126] and developed in 

Microsoft Excel using a fictitious offshore wind farm with 24 turbines. The O&M cost model 

includes a wind farm model with actual specific wind farm data, and damage accumulation 

algorithm (time-dependent variable) for each turbine in the offshore wind farm.  

In case of a failure event, the next process is adopted for this cost model: 

1. Alarm will be notified (operation office) 

2. The operator needs to decide between the following: 

a. Turbine can be restarted remotely without a visit to the turbine 

b. A visit is required to determine whether the turbine can be restarted without 

maintenance or whether maintenance activities are required first.  
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3. Operator organise repair actions 

4. Time to Repair (TTR) is divided into the following periods: 

a. Logistics time: crew, spare part and equipment are ready to depart. 

b. Waiting time: period of time that the weather does not allow safe access to 

the turbine. 

c. Transit time: travel time from port to the turbine. 

d. Repair time: the time needed to repair the failure. 

e. Return time: travel time to return to port. 

 

6.4.2 Maintenance classes, repair actions and spare part availability 

Maintenance classes are crucial for the development of this O&M cost model. They are 

assigned to every single failure mode identified in the FMEA to correlate the failures with 

costs and resources necessary to repair them, as well as the logistic delay time.  

Each failure mode and its associated repair actions are classified based on repair actions, crew 

and equipment required to repair. The maintenance classes are defined in Table 49 and Table 

50 based on studies in [137] [127], [136] [126] and Lloyd’s Register experience with offshore 

wind farm operators.  
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Table 49. Maintenance classes’ description (continuous) [79][124][125] 

Class Value Visit to turbine Type of repair Vessel 

required 

Number of 

technicians 

Spare parts 

requirements 

A 1 remote reset – no visit to the turbine 

required 

remote reset no vessel 0 no parts 

B 2 turbine visit (inspection) – manual 

reset may be required on site – 

minor part replacement, top up 

lubrication, replace consumables 

such as filters 

manual reset CTV 2 no parts or minor 

parts or consumables, 

carried by technicians 

C 3 second visit required – possibly 

additional trouble-shooting required 

– incorrect tools or spares carried on 

first visit 

minor-medium 

repair 

CTV 3 larger parts lifted in 

bag using on-board 

crane (either turbine 

davit crane or 

standard crane on 

CTV) 

D 4 overnight stoppage of turbine – 

repair which cannot be fixed 

immediately – may take longer than 

a single day – may need rope-access 

to less accessible external parts of 

turbine 

major repair CTV/FSV 4 specialist spare parts 

(may be small or 

large) 

E 5 Major turbine outage – specialist 

vessels required to be chartered 

from the spot market, such as jack-

up barge.  

major 

replacement 

specialist 

vessel/HLV 

6 significantly large 

items, entailing 

significant logistical 

requirements for 

transport and 

transfer to turbine – 

heavy-lift crane 

required – examples 

include blade, 

gearbox, main 

bearing, transformer 

F 6 visit to the turbine due to planned 

maintenance  

planned 

maintenance 

CTV 2 minor parts or 

consumables, carried 

by technicians or 

larger parts lifted in 

bag using on-board 

crane (either turbine 

davit crane or 

standard crane on 

CTV) 

G 7 annual service annual service CTV 3 minor and larger 

parts or consumables, 

carried by technicians 

or larger parts lifted 

in bag using on-board 

crane (either turbine 

davit crane or 

standard crane on 

CTV) 
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Table 50. Maintenance classes’ description[79][124][125] 

Class Spare 

part 

weight 

(kg) 

Spare parts 

availability 

Spare part 

logistic time 

(days) 

Weather 

window 

Repair 

time 

(days) 

Min spare 

part Cost 

(£) 

Max spare part 

Cost (£) 

A <2000 no parts 0 no delay due to 

weather 

0.167  £                     

-    

 £                             -   

B <2000 spare parts available 

on board SOV 

0 technician 

transfer CTV to 

turbine – 

duration of 

tasks between 1 

and 4 hours 

0.167  £                     

-    

 £                    

500.00  

C <2000 spare parts available 

from port or near 

onshore warehouse  

0 each task 

between 4 and 

8 hours each 

0.33  £           

500.00  

 £              

20,000.00  

D <2000 spare parts available at 

port or potentially 

order readily-available, 

generic part from 

supplier 

1 2 or more 

separate 

weather 

windows each 

of several hours 

duration 

1.5  £     

20,000.00  

 £              

74,000.00  

E >2000 long logistical delay – 

spare parts ordered 

from supplier, possibly 

bespoke part from 

Siemens or single 

supplier 

7 several days for 

each visit, 

reasonable 

weather 

required over 

several weeks 

or months 

5  £     

74,000.00  

 £            

340,000.00  

F <2000 spare parts available 

on board SOV 

0 no delay due to 

weather 

4  £        

1,000.00  

 £              

19,000.00  

G <2000 spare parts available 

on board SOV 

0 no delay due to 

weather 

2  £        

1,000.00  

 £              

19,000.00  

 

It is also necessary to describe how the repair is going to be carried out and how the 

equipment is going to be used. This process is used to estimate the time to repair a failure in 

the maintenance classes. An example of this process for maintenance class B is shown in Table 

51. 

Table 51. Repair actions per maintenance class[79]. 

Event Maintenance Class B 

1 travel of access vessel with 2 technicians and spare part  

2 transfer of technicians from vessel to turbine 

3 inspection of failure and decision of replacement 

4 in case of replacement, spare part is lifted using the internal crane in the platform 

5 failed component is removed from the turbine using the internal crane in the nacelle 

6 spare part is mounted using the internal crane in the nacelle 

7 failed component is moved from the platform to the vessel using the crane 

8 return to port 
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6.4.3 Wind turbine database 

The wind turbine database comprises information for all the turbines in the offshore wind 

farm. It contains the location of each turbine and a comprehensive hierarchical breakdown of 

components of each turbine based on the FMEA previously developed.  The FMEA is the base 

of the wind turbine database. The information per component is complemented with 

operation data such as installation date and manufacturer per component, maintenance class 

per failure mode, turbine ID and SCADA systems detection methods. An example of the 

database spreadsheet for each wind turbine in the wind farm is given in Figure 90.  

 

Figure 90. Example of the wind turbine database. 

The failure rate is assigned to each failure mode and cause using the occurrence rating which 

was defined using operation data and offshore wind farm operators experience. The failure 

frequency in Table 52 is given by technicians of an offshore wind farm.  
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Table 52 Failure rate based on FMEA occurrence rating. 

Value Failure 

Rate/year 

Label Description Failure frequency 

1 0.040 Extremely-

Unlikely 

failure almost never occurs 25 years (once per 

turbine lifetime) 

2 0.111 Rare irregular and unlikely failures 8–10 years 

3 0.286 Occasional occasional but not necessarily 

regular failures 

2–5 years 

4 1.000 Frequent repeated failures with regular 

occurrence 

12 months 

5 2.000 Inevitable failure is almost inevitable, will 

definitely occur 

1–6 months 

 

The wind turbine database will be used to stablish the O&M strategy by selecting those 

failures and components that may require maintenance actions within a period.  

6.4.4 Digital sensors 

The digital sensors are the outputs of the physics-based and data mining models explained in 

chapter 3 and 4 respectively. Table 53 shows the digital sensors for all the assemblies. Only 

the outputs of the gearbox, power converter and pitch system digital sensor are considered 

within the O&M cost model.  
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Table 53. Digital sensors as inputs of the O&M cost model 

Assembly 
Sub-assembly 

or Component 
Failure Mode 

Maintenance 

Class 

Accumulated 

Damage 

(%/year) 

Remaining 

Useful Life 

(months) 

Estimated 

Failure Date 

(month/ 

year) 

Condition 

(green, 

yellow, red) 

hydraulic station        

induction generator        

gearbox HSS bearings 
deformation 

due to fatigue 
class E 4% 288 2039  

control system        

rotor lock        

tower        

transformer        

electro- magnetic 

rotor 
       

frequency 

converter 
PC-Module Diode, IGBT class B 60% 4 Aug-17  

generator main 

bearing 
       

yaw system Gears  Class E 50% 12 Jan-18  

switchgear        

mechanical brake        

generator cooling 

system 
       

blade        

pitch system 
Hydraulic 

system 
leakage class B    yellow 

nacelle auxiliary 

structure 
       

transition piece        

nacelle primary 

structure 
       

foundation        

generator stator        

lightning protection        

pitch bearing        

nacelle auxiliaries        

power export cable        

hub        

 

6.4.5 Maintenance strategies 

In order to analyse the cost of repair, availability and loss of production, using the digital 

sensors developed in previous chapters, a case study is established and presented in the 

following.  

Wind farm and operational data 

The wind farm case study of 86MW is based on a group of turbines of a real offshore wind 

that is anonymised. The turbines are selected taking into account the original position of the 

turbines within the wind farm design as well as 1 year SCADA data. The fictitious wind farm 

used for this study is described in Table 54. The calculations of the main outputs: availability, 

downtime, costs and other KPIs, are performed for one turbine only.  
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Table 54. Wind farm characteristics. 

Item Value Unit 

Distance to Port 30 km 

Inter-turbine distance in a line 1 km 

Distance between turbine lines 1 km 

Number of turbines 24 
 

Turbine power capacity 3.6 MW 

Wind farm MW installed 86.4 MW 

 

The operational data in the O&M cost model is used to indicate the percentage of corrective 

maintenance activities that a real offshore wind turbine can experience. This information is 

used to set up the number of unexpected failures and the corresponding component in the 

case study (Table 55). The unscheduled and scheduled hours per year allocated per turbine 

are derived from 1 year SCADA data.    

Table 55. Percentage of scheduled and unscheduled maintenance hours. 

Turbine Unscheduled (hrs/yr) Scheduled 

(hrs/yr) 

Unscheduled (%) Scheduled (%) 

WT1 12.65 94.11 12% 88% 

WT2 29.84 67.84 31% 69% 

WT3 4.8 7.92 38% 62% 

WT4 30.52 95.85 24% 76% 

WT5 26.31 103.83 20% 80% 

WT6 17.97 84.98 17% 83% 

WT7 27.52 68.92 29% 71% 

WT8 18.3 57.73 24% 76% 

WT9 32.02 27.27 54% 46% 

WT10 18.54 81.32 19% 81% 

WT11 15.74 40.86 28% 72% 

WT12 14.14 95.66 13% 87% 

WT13 48.45 138.85 26% 74% 

WT14 27.3 78.61 26% 74% 

WT15 15.78 19.15 45% 55% 

WT16 12.13 91.57 12% 88% 

WT17 94.47 70.81 57% 43% 

WT18 52.24 67.86 43% 57% 

WT19 19.25 54.4 26% 74% 

WT20 17.81 93.5 16% 84% 

WT21 61.18 75.88 45% 55% 

WT22 25.41 67.42 27% 73% 

WT23 36.11 55.2 40% 60% 

WT24 42.25 79.61 35% 65% 

Average 29.20 71.63 29% 71% 
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O&M information 

More information about the O&M resources of the wind farm is required to establish a strategy since 

technical capabilities of the items such as vessels’ maximum wave height, and fuel consumption are 

essential for the O&M process [138] [128].  

Table 56. O&M information [138] [128]. 

Number of helicopters 0 
     

Number of crew transfer vessels 2 
     

CTV speed 24 knots 1.852 km/hr / Knot 44.448 km/hr 

Fuel Consumption 446 litres/hour 
    

Charter rate 3250 £/day 
    

CO2 emissions 2.68 kgCO2/l Diesel 
   

Operation wave height 1.5 m     

Jack-up barge 1 
     

Charter rate 80000 £/day 
    

Total number of technicians available 7 
     

Single shift of technicians 12 hr 8am-8pm 
   

 

O&M strategies 

Case study: Current O&M situation – at the beginning of a wind farm project the O&M 

strategy is usually set-up based on assumptions and estimations using generic data. This 

strategy comprises a time-based and unplanned corrective maintenance. Typically, turbines 

are being visited twice a year, and the duration of each visit is between 3 to 5 days (4 days 

average). The case study comprises 24 Siemens 3.6MW turbines with a total capacity of 86.4 

MW located 30km offshore.  

When a component is not maintained in time or properly, component degradation increases 

and eventually, the component will experience a failure. Therefore, unplanned corrective 

maintenance is carried out. Based on 1 year of operation data, each of the 24 turbines has a 

certain percentage of unscheduled and scheduled maintenance hours, which is used to set 

up the baseline case study. When the component is maintained in time, the maintenance 

activity is performed during the period of low wind speeds and vessels are ready to depart 

immediately. In this situation, the logistic waiting time of the turbine is zero.  

Technicians have on average a working day shift of 10 hours, constant throughout the year 

during the daylight. The total number of staff reported (onshore and offshore) ranges 

between 0.37 to 0.75 persons per turbine and 60% of them are technicians [139] [129]. 
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Therefore, a wind farm of 24 turbines should have an average of 12 staff in total and 7 turbine 

technicians.  

The power curve of the turbine and 1-year historical wind speed data from the SCADA system 

are used to estimate the total electricity production in kWh at given wind speeds per month.   

Based on Figure 87, there are two categories of maintenance: 

• Scheduled maintenance 

o Annual time-based maintenance: Class G in maintenance classification (Table 

49) 

o Condition Based Maintenance (CBM): Power converter (Class B) 

o Risk-Based Maintenance: Pitch system and gearbox (Class F) 

• Unscheduled maintenance 

o Unplanned activity: based on Table 55, the average percentage of unscheduled 

maintenance hours per year is around 30%.  

Table 57. Planned maintenance based on component condition and risk. 

Assembly Maintenance 

Class  

Power converter (RBM) B 

Gearbox (CBM) F 

Pitch system (RBM) F 

Annual service G 

 

Table 58 shows that the assemblies gearbox and pitch system have a planned maintenance 

activity, which comprises a visit to the turbine with minor parts carried by technicians in the 

CTV and lifted by the turbine crane. Maintenance class F take place in April (after winter) and 

August (necessary inspection during summer time to be prepared before). Based on O&M 

operational data and previous failure reports, the power converter is likely to experience 

more than one failure per year. Therefore Table 58 shows a maintenance class B in April for 

the power converter. Finally, the annual service for WT1 is selected in the summertime where 

the waiting time due to weather conditions is expected to be zero.  

 

 



181 

 

Table 58. Case study: scheduled maintenance WT1. 

CASE STUDY - WT1 REPAIR TIME 

Scheduled Maintenance 

(Repair Time per turbine) 

Maintenance 

Class 
Jan. Feb. March Ap. May Jun. Jul Aug Sep. Oct. Nov Dec 

Repair 

Time 

TOTAL(hr) 

Time-Based  Maintenance Class F    96    96     192 

Condition Based 

Maintenance 
Class B    4         4 

Annual Service Class G      48       48 

Total number of hours of Repair Time 0 0 96 4 0 48 0 96 0 0 0 0 244 

 

Table 59 shows the unscheduled maintenance activities assumed for the WT1 due to failure 

or abnormal behaviour in the power converter and pitch system assemblies. It is assumed to 

expect a power converter failure in June and a pitch system failure during winter in December.  

Table 59. Case study: unscheduled maintenance WT1. 

Assembly January February March April May June July August September October November December 

Power converter      Class B       

Pitch system            Class C 

 

Optimised case study: integration of predictive maintenance with “digital sensors” into the 

original case study. Tools to estimate the damage of critical components are used, and failures 

class B and C in Table 59 are reduced or eliminated. Table 60 shows that the unscheduled 

maintenance class B for the pitch system is carried out in April instead of June as scheduled 

maintenance and, the unscheduled maintenance class C of the pitch system is now carried 

out in August as scheduled maintenance class B.  

Table 60. Case study: digital sensors application. 

Assembly January February March April May June July August September October November December 

power converter    Class B  Class B       

pitch system        Class B    Class C 

 

6.4.6 Meteorological conditions  

The calculation of the mean waiting time for an access window, shown in Figure 91, is based 

on the study in [140] [130]. The number of days per month in the figure describes the delay 

time due to the availability of technicians and spare part. The calculation process is described 

below and the values of the mean waiting time are adopted for the offshore wind farm in the 

O&M cost model. 
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Accessibility – weather windows 

Weather data is a key input for the O&M cost model. A concise model of the weather 

conditions will ensure that the O&M strategy is modelled more realistically with more 

accurate cost estimations.  

A Monte Carlo based approach, Markov Chain model (MCMC) has been proposed to 

determine accessibility and to estimate the power capture and therefore the loss of revenue. 

MCMC is a probabilistic approach using a dataset with sea states able to produce a time series 

of the meteorological variables [140] [130]. 

Time series variables: 

• Significant wave height 

Wind speed 10m above sea level is also necessary to stablish a 24 hours period where 

significant wave height and wind speed remain under safety threshold. This parameter will 

vary based on wind farm location and vessels characteristics.  

MCMC has been created using a SCADA dataset with a 1-year period at 10-minute intervals. 

In order to identify sea states, it is necessary to define bins of the parameters. The range of 

the data bins gives the resolution of the values since a greater or smaller number of data 

points will fall into each bin: 

• Significant wave height: 0.25m to 9.75m with steps of 0.5m 

• Wind speed: 0m/s to 25m/s with steps of 1m/s 

The dataset is also organised in months to identify seasonal changes in the sea states. A 

fundamental property of MCMC is to determine a “sea state” at any given point based on the 

previous “sea state” at a previous interval. Therefore, the monthly data comprises 5 days of 

the previous and next month, and for each 24-hour interval, the next interval sea state is 

recorded.  
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Figure 91. Mean waiting time per month [140] [130] 

The average number of hours of daylight derived from [141] [131] is shown per month in 

Table 61. The daylight hours per month is used to assess if one day is enough to repair a failure 

based on the shift of technicians and repair actions description. 

Table 61. Mean waiting time and daylight hours 

Month Mean Wait Time (days) Av. Hours of Daylight Season 

December 2.5 8 winter 

January 2.8 8 winter 

February 2.2 9 winter 

March 1.8 11 spring 

April 1.5 13 spring 

May 1.2 15 spring 

June 0.9 16 summer 

July 0.8 16.5 summer 

August 0.7 16 summer 

September 1 14 autumn 

October 1.5 11 autumn 

November 2 10 autumn 

 

6.4.7 Wind turbine power output 

Wind speed distribution 

Using 1-year historical SCADA data a wind speed distribution is plotted in Figure 92 at hub 

height. 
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Figure 92. Wind speed histogram for one year. 

This wind speed distribution is further analysed by month and with wind speed bins of 1 m/s 

as it is shown in Table 62. Frequency corresponds to 10 minutes averaged measurements.  

Table 62. Wind speed frequency per month. 

Wind Speed (m/s) Frequency – Jan (31days) Frequency - Feb (28 days) 

1 65 294 

2 61 153 

3 60 124 

4 132 151 

5 157 189 

6 152 210 

7 207 210 

8 286 255 

9 368 265 

10 313 283 

11 272 265 

12 219 275 

13 280 262 

14 243 239 

15 213 168 

16 221 143 

17 205 116 

18 224 132 

19 225 140 

20 226 96 

21 148 33 

22 101 17 

23 38 10 

24 28 1 

25 19 0 
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Power curve 

Using the power curve in Figure 93 provided by the manufacturer, it is possible to derive the power 

generation per wind speed in Table 62, for the turbine Siemens 3.6MW.  

 

 

 

Figure 93. Siemens 3.6MW power curve [81]. 

 

Power output per wind speed and per month 

Finally using the power output per wind speed of the Siemens 3.6MW turbine and the wind speed 

frequency per month previously calculated, the maximum energy generation is estimated per month 

as is shown in Table 63. 
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Table 63. Power output per wind speed and month. 

Wind Speed (m/s) Power (W) January [kWh] February [kWh] 

1 0 0 0 

2 0 0 0 

3 33.9 339 700 

4 135.1271834 2973 3401 

5 302.04528 7904 9514 

6 551.0542439 13960 19287 

7 898.5722484 31001 31450 

8 1361.017467 64875 57843 

9 1954.808073 119895 86337 

10 2696.36224 140660 127178 

11 3600 163200 159000 

12 3600 131400 165000 

13 3600 168000 157200 

14 3600 145800 143400 

15 3600 127800 100800 

16 3600 132600 85800 

17 3600 123000 69600 

18 3600 134400 79200 

19 3600 135000 84000 

20 3600 135600 57600 

21 3600 88800 19800 

22 3600 60600 10200 

23 3600 22800 6000 

24 3600 16800 600 

25 3600 11400 0 
 

Total Energy Produced (kWh) 1978806 1473911 

 

To estimate the loss of production per day, it is necessary to know the number of days per month. 

The final output of the power output calculation, the average energy production per day is shown in 

Table 64. 
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Table 64. Average energy production per day. 

Number of days Month Total Energy (kWh) Average Energy Production(kWh/day) 

31 January 1978806 63832 

28 February 1473911 52640 

31 March 1643181 53006 

30 April 1130137 37671 

31 May 1459698 47087 

30 June 1244976 41499 

31 July 1440903 46481 

31 August 1159981 37419 

30 September 1223373 40779 

31 October 1252838 40414 

30 November 2032466 67749 

31 December 2438144 78650 

 

Figure 94 shows the theoretical maximum energy production (kWh) required to estimate the 

availability based on energy generation.  

 

Figure 94. Total theoretical maximum energy production per month. 

6.4.8 Economic parameters 

The electricity sales price is highly affected by subsidies available. One of the main policy 

mechanisms to incentive investment in offshore wind is the UK Contract for Difference (CfD). 

The offshore wind industry was classified as a less-established technology due to the 

allocation of CfD. A CfD is a private law bilateral contract between generators and the 

government owned Low Carbon Contract Company (LCCC). Based on [142], “the contract 

offers generators a fixed price over (typically) a 15-year period by paying them the difference 

between the CfD’s strike price and a market reference price.” It is possible to see in two 

rounds of actions a decrement of the prices. However, it is not clear that the low prices reflect 
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a decline in the technology cost or an increase in the supply chain efficiency. In this case, 

developers expect that by the delivery year, O&M efficiencies are reached [142].  The author 

in [143] states that due to the O&M and construction challenges the offshore industry heavily 

subsidised. However, huge efforts need to be done to reduce the cost of energy since there 

is no clarity of how long the public support will be available. The study in [144] explores the 

impact of government subsidies on the economic feasibility of the offshore wind farms.  The 

levelised cost of energy (LCoE) is critical for developers to calculate a strike price for CfD.  

The values of the electricity sales price have significant differences between European 

countries, see figure 95. In the UK, the offshore wind tenders and auctions between 2010 and 

2018 have winning prices between £76/MWh and £223/MWh. For this study, the offshore 

wind farm, Neart na Gaoithe, announced in 2015 and to be commissioned in 2019, is selected 

as a reference. This project has a winning price of £188/MWh approximately [145].    

 

 

Figure 95. Electricity sales price [145] 

Table 65 shows the values for the electricity sales price, fuel cost and technicians’ salary per month to 

be used in the O&M cost model. The fuel cost and technician costs are considered fixed for the 

calculation period [138] [128].  

Table 65. Economic parameters per month 

Parameter Unit Value 

Electricity sales price £/MWh 188 

Fuel cost £/litre 0.83 

Salary (Technicians) £/hr 70 
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6.4.9 O&M cots model outputs 

Main Assumptions  

 

In order to develop the O&M cost model the following assumptions were taken: 

• No offshore operation can be carried out with wind speeds over 12m/s 

• No offshore operation can be carried out with a wave height over 1.5m 

• The wind farm operator owns the vessels.  

• Electricity sales price is predicted based on previous values. It can introduce more 

uncertainties to the model which, can be combined with weather and turbine 

reliability uncertainties.  

• Time for a technician to be available is average 6 hours. 

• Operational data – unscheduled and scheduled maintenance hours are derived from 

SCADA data.  

• Weather windows – based on the study [140] [130] using Monte Carlo technique.  

• The installation date for all the components in the wind turbine database is 

01/01/2015. 

 

Case study 

The case study with the current scheduled and unscheduled maintenance strategy is 

established in Table 58 and Table 59 respectively. The outputs are calculated for WT1 for a 

period of 1 year. Table 66 shows the downtime, loss of production, availability and revenue 

losses for the wind turbine WT1 during a period of 1 year. The downtime is the sum of logistic 

time (time for the technicians and spare part to be available), waiting time (weather windows 

as an average number of access days per month), transit and return time (travel time in the 

vessel) and, repair time. The loss of production is calculated using the average energy 

production per day in each month and the downtime. The availability is calculated based on 

the theoretical producible energy in kWh and the loss of production due to the failures. The 

revenue losses per month are calculated using the electricity sales price prediction and the 

loss of production per mont 
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Table 66. O&M outputs: downtime, loss of production and revenue losses due to 

scheduled maintenance. 

Scheduled 

Maintenance (Class 

B) 

January February March April May June July August September October November December 

Logistics time (hr) 
   

6 
        

Waiting time (hr) 
   

36 
        

Transit time (hr) 
   

0.67 
        

Repair time (hr) 
   

4 
        

Return time (hr) 
   

0.67 
        

Sub TOTAL (hr) 0 0 0 47.3 0 0 0 0 0 0 0 0  

Scheduled 

Maintenance (Class F) 

January February March April May June July August September October November December 

Logistics time (hr) 
  

6 
    

6 
    

Waiting time (hr) 
  

43.2 
    

43.2 
    

Transit time (hr) 
  

0.67 
    

0.67 
    

Repair time (hr) 
  

96 
    

96 
    

Return time (hr) 
  

0.67 
    

0.67 
    

Sub TOTAL (hr) 0 0 146.5 0 0 0 0 146.5 0 0 0 0  

Scheduled 

Maintenance (Class 

G) 

January February March April May June July August September October November December 

Logistics time (hr) 
     

6 
      

Waiting time (hr) 
     

21.6 
      

Transit time (hr) 
     

0.67 
      

Repair time (hr) 
     

48 
      

Return time (hr) 
     

0.67 
      

Sub TOTAL (hr) 0 0 0 0 0 76.9 0 0 0 0 0 0  

TOTAL Downtime due 

to scheduled 

maintenance 

(hr/month) 

0 0 96 4 0 48 0 96 0 0 0 0 

             

Theoretical 

Producible Energy 

(KWh) 

1978806 1473911 1643181 1130137 1459698 1244976 1440903 1159981 1223373 1252838 2032466 2438144 

             

Average Energy 

Production(KWh/day) 

63832 52640 53006 37671 47087 41499 46481 37419 40779 40414 67749 78650 

             

Loss of 

Production(KWh) 

0 0 212023.3505 6278.539254 0 82998.38877 0 149674.9088 0 0 0 0 

Availability (based on 

Energy) 

100% 100% 87% 99% 100% 93% 100% 87% 100% 100% 100% 100% 

             

Revenue Losses (£)  £-     £-     £39,860.39   £1,180.37   £-     £15,603.70   £-     £28,138.88   £-     £-     £-     £-    

 

Table 67 presents the costs related to the maintenance classes of the case study. The cost of 

the spare part is calculated using the average value of the components described in each 

maintenance class and based on [134] [124] [137] [127] [147] [133] and operational data. The 

labour cost is calculated with the number of hours that a technician needs to spend waiting 

for access to the turbine, travel time and repair time. The salary is considered fixed during the 

whole year at £70 per hour. The vessel cost calculation only considers fuel consumption and 

not rental cost since it is assumed the wind farm operator owns the vessels. The fuel price is 

estimated fixed for the whole period at £0.83 per litre. The total cost of repair due to 

scheduled maintenance activities is £177,075per year for the turbine WT1. Finally, the hidden 

CO2 emissions are calculated using the vessels’ fuel consumption, the travel time and 2.68 

kgCO2/lt of CO2 emissions [138] [128].  

 

Table 67. O&M outputs: spare part, labour and vessel cost due to scheduled maintenance. 
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Cost of Spare Part January February March April May June July August September October November December 

Spare part cost (Class B) (£)       250                 

Spare part cost (Class F) (£)     10000         10000         

Spare part cost (Class G) (£)           10000             

Total Spare Part Cost 

(£/month) 

 £                        

-    

 £                         

-    

 £                  

10,000  

 £                     

250  

 £             

-    

 £                  

10,000  

 £             

-    

 £                  

10,000  

 £               -     £             

-    

 £               -     £                      

-     

Labour Cost January February March April May June July August September October November December 

Wages (£)  £                        

-    

 £                         

-    

 £            

19,676.98  

 £           

5,788.98  

 £             

-    

 £            

14,899.48  

 £             

-    

 £            

19,676.98  

 £               -     £             

-    

 £               -     £                      

-     

Cost of Vessel January February March April May June July August September October November December 

Fuel Consumption (Litres) 0 0 602.1 602.1 0.0 602.1 0.0 602.1 0 0 0 0 

Rental cost 0 0 0 0 0 0 0 0 0 0 0 0 

Fuel cost (£/month)  £                        

-    

 £                         

-    

 £                        

500  

 £                     

500  

 £             

-    

 £                        

500  

 £             

-    

 £                        

500  

 £               -     £             

-    

 £               -     £                      

-     

Total Cost / month   £-     £-     £70,037   £7,719   £-     £41,003   £-     £58,316   £-     £-     £-     £-    

 

Hidden CO2 Emissions 

(KgCO2) 

0 0 1613 1613 0 1613 0 1613 0 0 0 0 

 

 

The same calculations are performed for the unscheduled maintenance activities of the case 

study of the WT1. Table 68 shows two maintenance classes, i) class B and C for the power 

converter and ii) the pitch system, respectively. The total cost due to unscheduled 

maintenance activities during one year of operation of WT1 is £89,069.  

 

The total values of the O&M cost model outputs are summarised in Table 69. The total 

downtime for one year is 352 hours, which represents a loss of production of 754MWh and 

an average wind turbine WT1 availability of 95%. The total cost of repair, including revenue 

losses, is £266,144. Due to O&M operations during one year, around 10 tonnes of CO2 are 

emitted into the atmosphere.  
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Table 68. O&M outputs: downtime, loss of revenue and costs due to unscheduled 

maintenance. 
Corrective 

Maintenance 

(Class B) 

January February March April May June July August September October November December 

Logistics time (hr) 
     

6 
      

Waiting time (hr) 
     

21.6 
      

Transit time (hr) 
     

0.67 
      

Repair time (hr) 
     

4 
      

Return time (hr) 
     

0.67 
      

Sub TOTAL (hr) 0 0 0 0 0 32.95 0 0 0 0 0 0 

 

Corrective 

Maintenance 

(Class C) 

January February March April May June July August September October November December 

Logistics time (hr) 
           

6 

Waiting time (hr) 
           

60 

Transit time (hr) 
           

0.67 

Repair time (hr) 
           

8 

Return time (hr) 
           

0.67 

Sub TOTAL (hr) 0 0 0 0 0 0 0 0 0 0 0 75.35 

 

Downtime due to 

CM (hr) 

0 0 0 0 0 32.95 0 0 0 0 0 75.35 

Total Downtime 

(hr/yr) 

108 
           

             

Loss of 

Production(KWh) 

0 0 0 0 0 56974.75 0 0 0 0 0 246927.30 

             

Revenue Losses (£) £                        

- 

£                         

- 

£                           

- 

£                        

- 

£             - £              

6,267.22 

£             - £                

- 

£               - £             - £               - £            41,978 

 

Cost of Spare Part January February March April May June July August September October November December 

Spare part cost 

(Class B) (£) 

     
250 

      

Spare part cost 

(Class C) (£) 

           
10250 

Total Spare Part 

Cost (£) 

£                        

- 

£                         

- 

£                           

- 

£                        

- 

£             - £                  

250.00 

£             - £                           

- 

£               - £             - £               - £            10,250 

 

Labour Cost January February March April May June July August September October November December 

Wages (£) 
     

£              

4,612.98 

     
£      15,823.48 

 

Cost of Vessel January February March April May June July August September October November December 

Fuel Consumption 

(Litres) 

     
602.05 0 0 0 0 0 602.05 

Rental cost 0 0 0 0 0 0 0 0 0 0 0 0 

Fuel cost 

(£/month) 

£                        

- 

£                         

- 

£                           

- 

£                        

- 

£             - £                  

499.70 

£             - £                           

- 

£               - £             - £               - £            

499.70  

Total Cost / month  £               

- 

£                

- 

£                  

- 

£               

- 

£       - £ 11,629.91 £       - £                  - £         - £       - £         - £   68,551 

 

Hidden CO2 

Emissions (KgCO2) 

0 0 0 0 0 1613 0 0 0 0 0 1613 
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Table 69. O&M outputs: summary of the case study. 
Downtime Units January February March April May June July August September October November December YEAR 

Logistics 

time 

hr 0 0 6 6 0 12 0 6 0 0 0 6 36 

Waiting 

time 

hr 0 0 43.2 36 0 43.2 0 43.2 0 0 0 60 226 

Travel time hr 0.0 0.0 1.3 1.3 0.0 2.7 0.0 1.3 0.0 0.0 0.0 1.3 8 

Repair 

time 

hr 0 0 96 4 0 52 0 96 0 0 0 8 256 

TOTAL 

Downtime 

hr 0.0 0.0 96.0 4.0 0.0 80.9 0.0 96.0 0.0 0.0 0.0 75.3 352 

Loss of 

Production 

KWh 0 0 212023 6279 0 139973 0 149675 0 0 0 246927 754877 

Energy 

Production 

KWh 1978806 1473911 1431158 1123859 1459698 1105003 1440903 1010306 1223373 1252838 2032466 2191217 17723536 

Availability 

(based on 

KWh) 

% 100% 100% 85% 99% 100% 87% 100% 85% 100% 100% 100% 89% 95% 

Revenue 

Losses 

£ £             

- 

£             -  £       

39,860  

 £       

1,180   £            -    

 £        

26,315   £            -    

 £       

28,139   £                -     £            -     £               -     £     46,422  

£       

141,917 

Spare Part 

Cost 

£ £             

- 

£             - £        

10,000 

£           

250 

£             

- 

£        

10,250 

£             

- 

£        

10,000 

£                - £             

- 

£               - £     

10,250 

£         

40,750 

Labour 

Cost 

£ £             

- 

£             - £        

19,677 

£        

5,789 

£             

- 

£        

19,512 

£             

- 

£        

19,677 

£                - £             

- 

£               - £     

15,823 

£         

80,479 

Transport 

Cost 

£ £             

- 

£             - £              

500 

£           

500 

£             

- 

£              

999 

£             

- 

£              

500 

£                - £             

- 

£               - £           

500 

£            

2,998 

TOTAL cost 

of repair 

(1/turbine) 

£ £             

- 

£             - 

 £       

70,037  

 £       

7,719   £            -    

 £        

57,077   £            -    

 £       

58,316   £                -     £            -     £               -     £     72,996  

 £       

266,144  

TOTAL cost 

of repair 

(1/turbine) 

£ /KWh £             

- 

£             - 

 £       

0.0489  

 £     

0.0069   £            -    

 £        

0.0517   £            -    

 £       

0.0577   £                -     £            -     £               -     £     0.0333  

 £         

0.0150  

Hidden 

CO2 

Emissions  

TonnesCO2 0.0 0.0 1.6 1.6 0.0 3.2 0.0 1.6 0.0 0.0 0.0 1.6 9.7 

 

Finally, it is possible to see in Figure 96 that the revenue losses represent around 53% of the 

total cost of repair, followed by labour cost and spare part cost.  

 

Figure 96. Repair cost breakdown for WT1. 

Optimised case study 

The optimised case study integrates the digital sensors into the decision-making process of 

the O&M strategy.  
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Based on the digital sensor of the power converter (physics-based model), assuming 60% of 

damage accumulation with an expected failure date within 8 months (August), the 

maintenance activity to avoid a power converter failure now is part of the scheduled 

maintenance. Based on Table 58, there is a scheduled maintenance related to the annual 

service (maintenance class F). In April there are 13 hours of daylight and the annual service 

and travel time takes only 6 hours, therefore, it is possible to perform a maintenance class B 

during that scheduled activities. The described scenario represents waiting time due to 

weather and no logistics delay time. It only increases the time spent on the turbine by 

technicians.  

It is assumned that the digital sensor of the pitch system (data mining) predicted yellow status 

at the beginning of the period. The failure mode is unknown, therefore, a visit to investigate 

the pitch system condition is required before winter. A maintenance class B is included in the 

scheduled maintenance of the case study. An entirely new offshore activity is planned to 

avoid the failure of the pitch system during winter, which is classified as maintenance class C 

in Table 60.  

Table 70 shows a reduction of 28.47% of the total downtime with an improvement of 1.64% 

of turbine availability in one year applying. This represents a reduction of £86,071 in the 

revenue losses. With the use of digital sensors, the total cost of repair fell from £266,144 to 

£149,102.  

Table 70. Comparison between the case study and the optimised case study. 

Downtime Case study (year) Case study + digital sensors (year) 

Logistics time (hr) 36 30 6 reduction 

Waiting time (hr) 226 134 91 reduction 

Travel time (hr) 8 7 1 reduction 

Repair time (hr) 256 252 4 reduction 

TOTAL Downtime (hr) 352 252 28.47% reduction 

Loss of Production (kWh) 754877 463490 38.60% reduction 

Energy Production (kWh) 17723536 18014923 1.64% improvement 

Availability (based on KWh) 95.5% 96.8% 1.3% improvement 

Revenue Losses £           141,917 £               55,846 £ 86,071 reduction 

Spare Part Cost £             40,750 £               30,750 £ 10,000 reduction 

Labour Cost £             80,479 £               60,007 £ 20,471 reduction 

Transport Cost £                2,998 £                  2,499 £       500 reduction 

TOTAL cost of repair (£/turbine) £           266,144 £             149,102 117042 reduction 
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CHAPTER 7 – CONCLUSIONS AND DISCUSSIONS 

7.1 General  

This chapter summarises the research and project development. It covers the whole spectrum 

of O&M optimisation process, from data analysis and decision-making process to O&M 

optimisation outputs. Further work is also described for each part of the project.  

The project was focused on the development of tools to optimise O&M of offshore wind 

farms. A literature review and market research were performed to identify failure 

mechanisms and commercially available solutions that have been critical for the turbine 

operation. Physics-based models to estimate damage accumulation of the gearbox and power 

converter are presented. A data mining approach is proposed for the pitch system integrating 

subject matter expert knowledge. Finally, an O&M cost model is proposed to compare costs 

and turbine availability  with and without the use of intelligent approaches for failure 

diagnosis and prognosis in the maintenance strategies.  

The main contributions of the thesis are listed below: 

a) Through the application of the FMEA tool, it was identified that the gearbox, power 

converter, yaw system and pitch system are the most critical assemblies for the 

offshore wind turbine. 

b) A data control index CAAR was proposed in the FMEA to register the data and 

information used to assign the severity, occurrence and detection rating. The CAAR 

index aims to secure a consistent evaluation process and allows future iterations to 

improve the RPN based on the data source. 

c) A physics-based model of the gearbox is proposed to determine the damage 

accumulation in the bearings of the high-speed shaft.  

d) A physics-based model of the power converter is proposed to determine the thermal 

cycling and accumulated damage in the power electronic components - IGBTs and 

diodes. 

e) A data mining approach using SVM and KNN techniques is proposed as an alarm 

system. The methodology integrates turbine knowledge to identify deviations from 

normal behaviour. The main output is an alarm for the pitch system status (green, 

yellow and red indicators)  based on the risk to the turbine operation.  
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f) An O&M cost model is developed to assess maintenance strategies by analysing the 

turbine availability, loss of production, revenue losses, turbine downtime, cost of 

repair, and CO2 emissions. Maintenance strategies are set up using conventional 

approaches and compared with maintenance strategies integrating the physics-based 

models and data mining approach. Significant reduction in time and costs are 

observed using the last approach.  

6.2 Conclusions   

At present, the offshore wind energy industry target is to reduce the levelised cost of energy 

(LCoE) by 40%.  Operation and Maintenance (O&M) activities can contribute up to 30% of the 

LCoE, so automatic and intelligent systems are needed to minimise human intervention 

during the operating life.  Statistical approaches have been used to integrate the operational 

experience into failure prognosis. However, statistical methods do not consider the actual 

condition of the component; hence, the predicted date of failure, which is based on statistics, 

can even be after the actual failure occurs, leading to consequential damages. 

Offshore wind turbines tend to be larger than those used onshore in order to improve the 

MW/turbine ratio, to reduce CAPEX and to improve OPEX. However, there is a price to pay 

during turbine installation and O&M which involves hiring vessels and associated personnel, 

and in the worst case scenario where component replacement is necessary, a crane vessel is 

required for installation. 

Risk assessment of the Siemens SWT3.6 turbine has been the foundation of this work. A 

comprehensive analysis and method are proposed to study the performance of the 

components of offshore wind turbines from a reliability point of view. The FMEA has been a 

useful tool to analyse critical assemblies regarding risk to turbine operation and to identify 

their components, failure modes and causes. The definition of the taxonomy of the wind 

turbine is crucial for the development of this FMEA and project. Based on the European 

project ReliaWind, a comprehensive turbine breakdown was proposed using a hierarchical 

structure. It is the basis for the FMEA, physics-based models and failure investigation. It allows 

the determination of consequential damage and local and global effects of failures.   

The FMEA outputs have been compared with standard failure rates and reliability information 

of previous studies. The most critical assemblies identified in this study are consistent with 

the outputs of publicly available reports such as the European project ReliaWind where the 
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pitch system, power converter and gearbox are also identified as critical. However, it is 

important to compare the failures rates and modes of the same type of turbines operating 

under similar operational conditions. The publicly available reports comprise a wide range of 

turbine manufactures and rated power. Additionally, the O&M strategy has an important 

impact on the turbine reliability, even if it is the same type turbine in the same wind farm.  

On the other hand, optimisation of O&M based on the condition of components is explored. 

The literature review shows that a condition monitoring system aims to enhance the 

availability of expensive critical assets and reducing overall O&M costs. A condition based 

maintenance approach aims to reduce maintenance costs by reducing the number of planned 

maintenance actions. Specialised technicians will only perform maintenance tasks when there 

is evidence of abnormal behaviour. The process of condition monitoring can be divided into 

three phases; first, detecting an unusual operation condition that is outside of the right 

theoretical behaviour of a healthy turbine. Second, a failure diagnosis and, thirdly, the 

remaining useful life of the identified component is forecasted based on physics of failure.  

Maintenance optimisation is a continuous process since a particular maintenance strategy 

may be optimal now, but it may not be in the future. Previous studies identified the three 

main factors to select an appropriate maintenance strategy: the consequence of failure, the 

predictability of lifetime, and the feasibility of using condition monitoring systems to detect 

the failure. Maintenance optimisation comprises periodic assessment of performance due to 

the uncertainty related to factors such as spare part costs, degradation patterns, operational 

conditions and so on.  

Condition-based maintenance requires an accurate assessment of the status of the wind 

turbine. Therefore it is necessary to improve sensoring technologies, data management 

systems and real-time data analytics algorithms. This robust and reliable data management 

system (sensors, data collection and processing) is the base for making informed maintenance 

decisions. Likewise, there is no certain healthy state of the component due to variations in 

environmental and operational conditions and their influence on the monitoring system.  

This project responds to what the offshore wind market is asking for, a more accurate and 

intelligent approach to optimise O&M activities. A maintenance policy with a proactive 

approach has been compared with a preventive and corrective approach. Digital sensors 
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inform the decision-making process of wind farm operators and maintenance activities are 

planned to avoid greater turbine downtime and consequential damages.  

Overall, during this research project, it has been identified that maintenance optimisation 

depends on a significant number of factors affecting LCoE and the turbine availability: 

• CAPEX factors: turbine design and manufacturing. Installation of new condition 

monitoring systems might affect initial investment and degrade turbine reliability. 

New design approaches of critical components may have a positive impact on critical 

components reliability and maintainability.  

• Maintenance strategies and cost of repair. Different maintenance strategies may have 

an impact on the component lifetime maximisation. 

• Operations and logistics. Vessels strategy, number and shift of technicians, spare part 

availability and cost, are factors that influence the LCoE. 

• Turbine reliability. Failure rates and component maintainability.  

• Wind farm characteristics such as distance from the port, number and power rating of 

turbines and capacity factor. 

• Accessibility and weather prediction techniques.  

Physics-based models 

Statistical approaches are used to integrate the previous experience into failure prognosis. 

However, statistical methods do not consider the actual condition of the component. 

Therefore, failure date prediction based on statistics can be at any point in time, even after 

the actual failure date, with the respective consequential economic cost. Data-driven 

approaches use operational data such as Condition Monitoring Systems (CMS), inspections or 

SCADA data to study the behaviour or patterns of several parameters. When a clear deviation 

from normal behaviour is identified, a failure can be detected. An inspection might detect a 

well-developed failure without leaving any time to respond in a cost-effective manner. 

Accumulated damage determination in the time domain using physics-based models is 

discussed as one of the methodologies with greater capability to predict failure far in advance, 

even from the installation date of the component.  

Gearbox 

Although seasonal variations will be similar from one year to the next for any particular 

turbine, there will be differences.  The procedure proposed for the gearbox model allows 
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observed load spectra to be used as inputs, enabling the estimated accumulated damage to 

be updated throughout the life of the component.  Furthermore, load spectra obtained from 

simulations may also be used as inputs. These simulated spectra represent future loading 

scenarios for the gearbox. This opens up the possibility of using the statistics of the wind 

climate, the variability of material resistance and manufacturing quality to be used to derive 

input spectra, which are representative of the specific component in operation. By matching 

these spectra with their respective probabilities of occurrence, a distribution function may be 

derived to estimate the probability of failure. Inspection, repair or replacement of the 

affected part might reasonably be scheduled when the probability of failure at a pre-

determined future date is expected to exceed a threshold value established by the wind farm 

operator. In principle, the same threshold value, specifying the failure probability, may be 

used for every failure mode in every component of the wind turbine, enabling a rational 

approach to all aspects of maintenance management. 

Based on the failure investigation and the vulnerability map of gears and bearings it is noted 

that bearing failures caused by fatigue damage occurs on several of the shafts in the gearbox 

but, predominately in the HSS shaft bearings. HSS shaft failures are responsible for 50% of the 

repair cost in the gearbox. The main factors that influence the downtime are the availability 

of spare parts, distance to site, transport system, weather conditions and service action at 

the wind turbine. It is proposed that predictions of remaining useful life may be used to 

optimise the maintenance strategies.  

Key elements of the physics-based approach to estimate damage accumulation of gears have 

been provided including a description of the diagnostic and predictive models. The load 

distribution of the three-stage gearbox is calculated using SCADA data and the model 

provided by KISSsoft AG allows rapid calculation, multiple failure modes analysis and an 

integrated approach for damage accumulation and RUL estimation. 

The proposed physics-based model of the gearbox helps to optimise O&M activities by 

feeding the RUL into the decision making process of wind farm operators taking into account 

all characteristics of the wind climate, including wind gusts and turbulence. Around 3% of 

lifetime consumption is estimated in both HSS bearings, B1 and B2.  
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Power converter 

A physics-based method to estimate damage accumulation of IGBTs and Diodes and to predict 

the RUL of power converters have been proposed. The simulations do not require a large 

computational effort, therefore it is suitable for day-to-day use. The algorithm comprises one 

glue code and four main pre-processors; generator, power losses, thermal model and the 

rainbow counting method. The main inputs of the methodology to estimate accumulated 

damage are the torque and rotational speed in the high-speed shaft. For prediction purposes, 

the proposed methodology is to calculate the torque and rotational speed using the aero-

servo-elastic-hydro simulation tool FAST. FAST uses as inputs the load cases derived from IEC 

standards representing all the operational conditions an offshore wind turbine may 

experience at a particular site. A period of two and half days is simulated which is not long 

enough to extrapolate the damage for the whole year as it does not include all the operational 

conditions.  

The power losses and junction temperatures depend on the ambient temperature. The power 

losses and thermal algorithms require information provided by the manufacturer. A method 

to extract information from look-up tables and graphs is proposed to make the models that 

are temperature dependent in every simulation step.  

Similar to the gearbox, the RUL method of the power converter could be used to inform 

maintenance decisions to optimise resource allocation considering weather conditions 

throughout the year. Unexpected failures, which represent huge production losses, as well as 

time spent finding failures could be avoided by scheduling maintenance or inspection 

activities based on the RUL estimation. 

Data mining approach 

Reliability, maintainability and availability continuously improve through wind turbine design. 

However, there is a balance between design cost and improvements. Sometimes, the cost of 

research and development of the turbine can be more expensive than the income generated 

by the turbine output improvement. Therefore, it makes sense to look at the O&M 

optimisation from a wind farm point of view rather than from an individual turbine. However, 

this approach may require a large amount of data collected from the wind farm. Normal 

behaviour and common patterns may be identified using cognitive computing elements such 

as data mining and machine learning.  
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The pitch system has been identified as one of the most critical assemblies in terms of turbine 

operation. However, the development of a physics-based approach to identify failures is 

limited by the variables available in the SCADA databases related to the health of the pitch 

system. Therefore, machine learning and data mining methodologies are approaches to 

understand the pitch system normal behaviour and identify SCADA data observations that 

might represent early stage pitch system failure.   

The main result is the identification of outliers that might represent an incipient failure in the 

pitch system. The normal behaviour and boundary are defined using offshore wind turbine 

parameters such as blade position, wind speed, wind turbulence, power output, and the pitch 

system hydraulic oil pressure. The alarm is a green, yellow or red flag for every new 

observation status, which indicates if there is abnormal behaviour of the pitch system, or not.  

Pitch system failure modes and causes were explored. External leakage due to wear in the 

seals between the actuator rod and the cylinder, hydraulic supply line failure, valve 

connection failure, and internal leakage due to the wear of the piston seal are the most 

common failures. The development of algorithms representing the physics of failure using the 

SCADA data available is challenging. The SVM technique is applied to determine the normal 

behaviour of a known healthy turbine. This algorithm delivered a learn boundary which was 

analysed to establish the normal behaviour. However, the uncertainty accompanying the 

outputs is not calculated.  The learnt frontier shows areas in the relationship between wind 

speed and blade position that are understandable only knowing the control philosophy of the 

turbine.  

Subject matter expert knowledge of the offshore wind turbine is required to analyse the 

learnt frontier and assign conditions status to the variables pair. A decision tree algorithm is 

proposed to analyse the data based on the learnt frontier. The data is analysed in sections of 

the wind speed and blade position and interrogated using more variables; oil pressure and 

power output. These sections (e.g. 0-5m/s of wind speed and 0-10 degrees of blade position) 

may be reduced to improve the resolution of the analysis. The training data is 1 year of SCADA 

data. Each dataset point (wind speed, blade position) is interrogated by the decision tree and 

assigned a status value green if it is normal, yellow if it is abnormal and red if it is a failure.  

The accuracy of this approach may be calculated by validating the model using historical 

SCADA data and maintenance logs with pitch system failures.  
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The final step of the proposed methodology is to interrogate new observations in real time 

using the KNN techniques. The KNN algorithm will use the training data with the status vector 

to assign a status to the new observation (wind speed and blade position). The main 

advantages of this approach are that it needs only two variables to detect abnormal 

behaviour. Therefore it requires less computational effort and it is straightforward to 

implement. The accuracy of the KNN also needs to be validated using historical SCADA data. 

O&M cost model 

As described before, it is difficult to predict the failure before they occur to maximise the 

component usage and reduce the cost of maintenance. Specific damage accumulation 

information is required to achieve optimal maintenance strategy. Today, this information can 

be gathered using regular inspections and condition monitoring systems. However, the cost 

of gathering this information for all the turbines in a wind farm is high. Therefore, in this 

scenario, there is a trade-off between the cost of the monitoring system implementation, 

inspections, preventive maintenance and the reduction of the cost of unplanned corrective 

maintenance. The O&M cost model aims to understand the impact of digital sensors instead of the 

condition monitoring system, on the O&M optimisation process. Digital sensors such as the proposed 

physics-based and data mining models represent a cost-effective input for the decision-making 

process.  

The thesis presented factors of the O&M strategy that can be optimised:  

• Failure prognosis horizon by the use of digital sensors.  

• Number of vessels available. There are two options, vessels can be part of the wind 

farm operation strategy, or they can be rented to a subcontractor. Both have 

economic advantages and disadvantages.  

• Number of technicians available. For the case study, technicians have on average a 

single shift of 10 hours throughout the year during the daylight. A total number of staff 

(onshore and offshore) of 0.37 to 0.75 persons per turbine is estimated. 60% of the 

total number of staff are technicians. Therefore, a wind farm of 24 turbines should 

have an average of 12 staff in total and 7 turbine technicians. More technicians will 

have a positive impact on the delay time due to their increased availability.  

• Preventive maintenance intervals or margins. Wind speed limit can be reduced from 

12 m/s to a lower wind speed and the timescale to perform preventive maintenance 
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can be extended from 6 months to 12 months so the loss of production can also be 

reduced.  

• Reduction of unscheduled maintenance activities using a more accurate failure 

prediction and including new repair actions in the planned maintenance.  

• To use more reliable components. The work presented in the FMEA section shows that 

not only were critical assemblies identified, but also critical failure modes per 

component, undetectable failures and commercially available prevention methods. 

This information is useful to iterate in new design and maintenance solutions.  

• To change the type of vessel to improve accessibility. This will change the safety 

threshold for the weather window estimation. The use of new vessels for wind farms 

further offshore, new maintenance strategies including an offshore base may be 

established.  

The work presented also identified potential benefits for wind farm operators or owners: 

• O&M strategy after the warranty period. The complete understanding of the factor 

affecting turbines reliability and availability. Additionally, this project delivers a holistic 

view to optimise O&M by improving availability and reducing maintenance cost.  

• To determine O&M budget for future periods. O&M cost model is a tool that can be 

used to estimate the necessary resources required in the future. The accuracy of the 

prediction of weather windows, economic parameters, and failure events will be 

determined by a combined probability of the models.  

• To improve O&M strategy based on operational experience. Operational experience 

of the turbines, wind farm and onshore activities are crucial to improve predictions 

and approaches to the decision-making process. SCADA data, maintenance logs, spare 

part management strategy are some of the main inputs with potential automation in 

further work.  

• Profitability assessment of the wind farm. Potential investors will take decisions based 

on the future profitability of the wind farm. Variables such as loss of production, cost 

of repair and availability are outputs of the O&M cost model.  

• Spare part stock optimisation. It is seen in this project that spare part management 

takes a considerable percentage of the O&M total cost. There is room for 
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improvements, and the O&M cost model can identify the delay time due to poor spare 

part availability. 

• Buying v/s renting vessel decision. The cost of running vessels is calculated using fuel 

cost, travel time and vessel capabilities. However, the O&M cost model does not 

compare the cost of owning or renting a vessel.  

• “Hidden” CO2 emissions. Today, the trend is to deploy wind farms with a large number 

of turbines. Maintenance actions will require a considerable amount of fuel for 

technicians transfer to the turbines. The CO2 emissions become relevant to comply 

with regulations and standards.  

6.3 Further work 

FMEA 

The FMEA tool developed in this project can be easily developed further by incorporating new 

approaches and techniques. The consequential damage examination of failure modes looks 

at the correlation of one failure mode in a specific component causing a new failure mode in 

another component. This analysis may be performed using the functional block diagram.  

Additionally, failure modes correlations between two or more failures can be identified using 

the consequential damage analysis. Two failure modes can lead to catastrophic failure. 

Therefore, it is important to identify them in order to take the necessary actions to prevent 

them occurring at the same time. 

This thesis investigated a particular offshore wind turbine technology. A FMEA for different 

turbine configurations, e.g. turbines using direct drive generator and jacket support structure, 

would expand the turbine knowledge of this project.  

The risk priority number comprises severity, occurrence and detection rating with the same 

level of importance. An interesting area that can be further developed is to apply some 

weightings to the ratings. The relative importance of the risk priority number elements may 

be considered in the evaluation to represent the true risk priorities in the results. 

This study explores the risk to operation integrating three factors to the risk priority number. 

Usually, risk analysis is performed in two dimensions taking into account severity and failure 

frequency only. A 3D risk matrix is proposed to be used as an indicator of criticality allowing 

the analysis of failure detectability amongst the components.  
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Finally, the FMEA proved to be a good source of turbine information. The inputs and outputs 

such as functional block diagram, failure modes per component and local effects are 

important for knowledge creation for the turbine technology and operational conditions. An 

interesting area to explore would be the development of a tool that is able to harness the 

created knowledge of turbines with different configurations based on the FMEAs. A Digital 

Subject Matter Expert using machine learning techniques and a database of FMEAs may be 

able to create new FMEAs for different technologies and answer intelligent questions about 

the turbines. 

Physics-based models 

The prediction model described in Chapter 3 needs to be implemented. FAST simulations 

were carried out only for the load case 1.2. Monte Carlo Markov Chain model aims to be 

implemented using all the FASTv8 simulations representing the fatigue damage in the turbine. 

A future scenario in the time domain may be created using historical data of weather 

conditions of the site under investigation. This future scenario will better represent the 

dynamic behaviour of the turbine and the potential failure mode events. Further information 

about the installation date, the current condition of the represented critical components, and 

long-term wind climate data are necessary to more accurately predict potential dates and the 

associated probability of failures. 

Both, the gearbox and power converter model require validation with actual data. Even 

though the SCADA systems are standard services in the wind industry, the number and type 

of variables available differ from one wind turbine technology to another. Likewise, the 

models developed in this project are only representing the operational behaviour of the 

Siemens SWT3.6 turbine.  

Data mining  

To explore the yellow and red status assigned with the KNN approach, it is possible to create 

look up tables to incorporate the relationship between variables and methodologies used in 

control system strategies. For example; the relationship between power output and wind 

speed and, the relationship between power coefficient, tip speed ratio and blade position. 

The correlation between more than 3 variables will allow the diagnosis of the failure.  

The combination of the SVM, decision tree algorithm and KNN techniques comprises a high 

level of uncertainty. The uncertainty for each section needs to be quantified in order to deliver 
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a complete solution. Further works will comprise uncertainty quantification and model 

validation.  

O&M cost model  

As is described in chapter 5, Due to time constraints and the uncertainty involved in the 

parameters and calculations, some model blocks assume values from previous publications 

to calculate the final outputs and test the proposed approach integrating the accumulated 

damage and data mining models 

The final accumulated damage of the physics-based models only quantified the damage for 

the period of simulation. The total accumulated damage since the assembly or component 

was installed is not available. Therefore, the outputs of the physics-based model do not 

represent the final consumed life of the item. The digital sensors outputs are the input of the 

predictive maintenance strategy in the O&M cost model. These inputs take into account an 

assumption of the total accumulated damage for the gearbox and power converter at the 

beginning of the period. Thus, a failure date prediction is made within a year. The criteria is 

set up to perform a predictive maintenance is based on the predicted failure date, which may 

occur during winter. Winter season comprises a higher mean waiting time to access the 

turbine, resulting in a higher downtime and loss of production. Previously planned 

maintenance activities might be used as “opportunistic maintenance”, which means recycling 

resources already compromised to repair or maintain the gearbox or power converter before 

the predicted failure date. The budget for that planned maintenance is only increased by the 

cost of the spare part for the new maintenance activity, but it does not comprise downtime 

and loss of production. It is also important to mention that the daylight, the maintenance 

actions duration and the technicians’ shift are also considered to make sure the technicians 

can perform two maintenance activities on the same day.  

Prediction of weather windows is described in this study but was not implemented. Further 

improvement will be to run simulations of Monte Carlo Markov Chain to estimate the mean 

waiting time per month for a particular wind farm location. The mean waiting time in days 

per month used in this work is based on previous research projects for wave energy 

converters. Additionally, the safety threshold selected for the mentioned study may vary 

using specific O&M information regarding vessel type and navigation technology.  
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The O&M model proposed a methodology to quantify the combined probability of the inputs 

and integrate it with the main output of the model; availability per turbine, loss of production, 

cost of repair and turbine downtime. Each section of this work comprises the probability of 

occurrence, even the deterministic approaches. The physics-based models were designed to 

quantify the accumulated damage and remaining useful life. The main source of uncertainty 

of the physics-based models is included through the prediction model using FASTv8. The 

prediction approach comprises two main probability inputs: first, the pre-processor to 

recreate a turbulent wind profile requires site wind probability distribution. Second, the 

MCMC approach to create a future scenario in the time domain requires the probability of 

occurrence of each load case and wind speed from SCADA data. On the other hand, the data 

mining approach comprises uncertainties in the three phases, the SVM, the decision tree and 

the KNN. They contribute to the probability of occurrence of each component status. Finally, 

the FMEA in the O&M model represents the basis of the wind turbine database. This database 

contains the failure rate per failure mode, which is derived from the occurrence rating of the 

RPN.  

As described before, the FMEA represents the basis to generate a wind turbine database with 

complete information of each component including maintenance class, installation date, 

failure rate, manufacturer, failure modes and causes, prevention and prediction methods, 

and so on. This database needs to be continuously updated with operational data, so better 

decisions are taken. SCADA data can inform the failure rate per component, new condition 

monitoring systems are deployed to improve local and global effects and, installation of new 

spare parts play a key role in the accuracy of the failure prediction. Additional future work for 

the dataset is the decoupling of the cost of spare parts from maintenance class. The cost of 

spare parts should be individually identified in the wind turbine database. Thus, the O&M cost 

model outputs would predict a more accurate cost of repair.  

The decision-making process of the maintenance strategy itself is based on the failure rates, 

critical assembly identification, and available resources. However, there is no standard 

methodology to set up activities combining planned, corrective and proactive maintenance 

activities. Future work in this matter can comprise a decision tree algorithm recognising the 

inputs from either digital sensors or probability estimations automatically, and the effect that 

planned maintenance activities had on the reliability of the components.  
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Finally, this O&M cost model analyses the impact of the use of digital sensors on O&M 

optimisation for one turbine. Future work needs to be done to analyse each of the turbines 

and the wind farm as a whole, so resources and inputs are realistically distributed.  

Automation of the O&M cost model is proposed using a python code able to read each 

function block in the model, inputs and process the outputs. The final step is to work on the 

visualisation and interpretation of the outputs, so the decision makers are adequately 

informed. 
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ANNEX  

Annex 1: FMEA Failure analysis 
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Annex 2: FASTv8 pre-processors 

FAST Pre-processor AeroDyn 

AeroDyn is a time-domain wind turbine aerodynamics module that has been coupled into the 

FAST version 8 multi-physics engineering tool to enable aero-elastic simulation of horizontal 

axis wind turbines. Aerodynamic calculations within AeroDyn are based on the principles of 

actuator lines, where the three-dimensional (3D) flow around a body is approximated by local 

two-dimensional (2D) flow at cross sections, and the distributed pressure and shear stresses 

are approximated by lift forces, drag forces, and pitching moments lumped at a node in a 2D 

cross section. 

Wind and structural calculations take place outside of the AeroDyn module and are passed as 

inputs to AeroDyn by the driver code. AeroDyn consists of four sub models: (1) rotor 

wake/induction, (2) blade airfoil aerodynamics, (3) tower influence on the wind local to the 

blade nodes, and (4) tower drag.  

The primary AeroDyn input file defines modeling options, environmental conditions (except 

freestream wind), airfoils, tower nodal discretization and properties, as well as output file 

specifications.  

Airfoil data properties are read from dedicated inputs files (one for each airfoil) and include 

coefficients of lift force, drag force, and pitching moment versus angle of attack (AoA), as well 

as unsteady airfoil aerodynamic (UA) model parameters. Blade nodal discretization, 

geometry, twist, chord, and airfoil identifier are likewise read from separate input files (one 

for each blade). AeroDyn uses the SI system (kg, m, s, N). Angles are assumed to be in radians 

unless otherwise specified. 

FAST Pre-processor ElastoDyn 

ElastoDyn is the Structural-Dynamics Module.  
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FAST Pre-processor HydroDyn 

HydroDyn is a time-domain hydrodynamics module of FAST. HydroDyn allows for multiple 

approaches for calculating the hydrodynamic loads on a structure: a potential-flow theory 

solution, a strip-theory solution, or a hybrid combination of the two. Waves generated 

internally within HydroDyn can be regular (periodic) or irregular (stochastic) and long-crested 

(unidirectional) or short-crested (with wave energy spread across a range of directions). 

 

FAST Pre-processor ServoDyn 
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FAST Pre-processor TurboSim 

TurbSim is a stochastic, full-field, turbulent-wind simulator. It uses a statistical model (as 

opposed to a physics-based model) to numerically simulate time series of three-component 

wind-speed vectors at points in a two-dimensional vertical rectangular grid that is fixed in 

space. TurbSim output is used as input into AeroDyn. AeroDyn’s InflowWind module uses 

Taylor’s frozen turbulence hypothesis to obtain local wind speeds, interpolating the TurbSim-

generated fields in both time and space.  
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