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ABSTRACT Fingerprint liveness detection has gradually been regarded as a primary countermeasure for
protecting the fingerprint recognition systems from spoof presentation attacks. The convolutional neural
networks (CNNs) have shown impressive performance and great potential in advancing the state-of-the-art
of fingerprint liveness detection. However, most existing CNNs-based fingerprint liveness methods have
a few shortcomings: 1) the CNN structure used on natural images does not achieve good performance
on fingerprint liveness detection, which neglects the inevitable differences between natural images and
fingerprint images; or 2) a relative shallow architecture (typically several layers) has not paid attention to
the capability of deep network for spoof fingerprint detection. Motivated by the compelling classification
accuracy and desirable convergence behaviors of the deep residual network, this paper proposes a new
CNN-based fingerprint liveness detection framework to discriminate between live fingerprints and fake
ones. The proposed framework is a lightweight yet powerful network structure, called Slim-ResCNN, which
consists of the stack of series of improved residual blocks. The improved residual blocks are specifically
designed for fingerprint liveness detection without overfitting and less processing time. The proposed
approach significantly improves the performance of fingerprint liveness detection on LivDet2013 and
LivDet2015 datasets. Additionally, the Slim-ResCNN wins the first prize in the Fingerprint Liveness
Detection Competition 2017, with an overall accuracy of 95.25%.

INDEX TERMS Fingerprint spoofing, presentation attacks, fingerprint liveness detection, center of gravity,
Slim-ResCNN.

I. INTRODUCTION
Recently, the fingerprint recognition technology is exten-
sively employed in border control applications and personal
identification verification systems, owing to its high reli-
ability, high generalization, and low cost. Meanwhile,
the fingerprint recognition technology has shown someweak-
nesses related to the problem of security as the widespread
use of personal verification systems based on fingerprint.
Especially, the growing trend of mobile devices which
use fingerprint for unlocking and payment has generated
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a challenging problem: spoofing attacks. Fingerprint-based
authentication systems are directly attacked by these spoof
attacks through artificial fingerprint replicas. Artificial
fingerprint replicas, also called spoofs, or fake fingerprints,
make possible to jeopardize the security of the fingerprint
recognition systems. In order to enhance the security of these
fingerprint recognition systems, fingerprint liveness detec-
tion is regarded as a primary countermeasure against finger-
print spoof attacks. Fingerprint liveness detection prevents
direct attacks to scanners by analyzing images which are
captured from live fingers or fake ones [1]. The fingerprint
liveness detection has extremely become urgent to thwart
spoof attacks at fingerprint authentication systems, especially
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FIGURE 1. Fingerprint samples taken from the greenbit sensor of LivDet2015 dataset [4]: Live fingerprint and the corresponding spoof fingerprints
(of the same finger) fabricated with different materials.

when artificial fingerprints are easily fabricated by commonly
available materials, such as latex, gelatin, silicone, and play-
doh [2], [3]. Figure 1 shows some samples of live and spoof
fingerprints.

The various spoof attack detection approaches have been
proposed to assess if the input fingerprint image is from
a ‘‘live’’ entity or a ‘‘spoof’’ artefact. The fingerprint live-
ness detections can be broadly divided into hardware-based
and software-based methods [5]. Hardware-based methods
exploit additional hardware devices to detect whether the
input fingerprint image is coming from alive user or artifi-
cial replicas by measuring additional life characteristics of
fingerprint, such as temperature, blood pressure, odor, pulse
oximetry and so on [6]. Although the additional hardware
devices can distinguish between live and fake fingerprints
precisely, they also make the fingerprint recognition systems
more complex and expensive. Moreover, it is difficult to
update these additional hardware devices when the attackers
improve artificial replicas with new manufacturing tech-
nology and pass the fingerprint recognition systems success-
fully. Software-based methods, on the other hand, have
gained an increasing attention, which uses image processing
technology to extract features from the captured finger-
print images so as to identify the live and fake finger-
prints without additional hardware devices. Compared with
hardware-based methods, software-based methods make the
fingerprint recognition systems less cost and more easily to
update [7].

Software-based methods exploit dynamic behaviors
(e.g., ridge distortion, perspiration) or static characteris-
tics (e.g., textural characteristics, ridge frequencies, elastic
properties of the skin) [8] which are extracted from the
fingerprint images. The dynamic behaviors are obtained
from a sequence of images, which is very time-consuming
because the users need to collect fingerprint many times
during the fingerprint registration phase. Compared with
the dynamic behaviors, the static characteristics are more
applicable because only one or a few images are used for
fingerprint liveness detection instead of a sequence of images.
In summary, the static characteristics-based approaches not
only prevent spoofs from attacking fingerprint authentication

systems but also don’t complex the fingerprint authen-
tication system in practical applications. Texture-based
features extraction approaches are the most common in
static characteristics-based approaches. Texture charac-
teristics are different in continuity, clarity and ductility
between live fingerprints and fake ones, therefore the texture
features can be used to compute the liveness of finger-
prints. Local binary pattern (LBP) histograms based on
gradient, which extracts texture details by binary coding,
are firstly used to capture textural details for fingerprint
liveness detection [9]. Some modifications inspired by LBP,
such as multi-scale local binary pattern [10] and uniform
local binary pattern [11], achieve high classification accu-
racy on some standard databases. The local phase quan-
tization (LPQ) descriptor [12] is acquired by short time
Fourier transform (STFT) to discriminate the differences
between live samples from fake ones due to the loss of
information which may occur during the replica fabrication
process. In literature [13], the weber local descriptor (WLD)
is utilized to prevent spoof attacks on fingerprint sensors,
where the input fingerprint images are represented by
extracting two-dimensional histogram features from differ-
ential excitation and square bipartite. Gragnaniello et al.
further [14] propose a new local contrast phase descriptor
(LCPD), which combines gradient with local phase informa-
tion together, achieving a commendable liveness detection
accuracy. Inspired by weber local descriptor, Xia et al. [15]
propose a new local descriptor named Weber local binary
descriptor, which consists of the local binary differential
excitation component that extracts intensity-variance features
and the local binary gradient orientation component that
extracts orientation features. The potential of feature fusion
approaches is evaluated in the area of fingerprint live-
ness detection by analyzing different features and different
methods for their aggregation, which shows that the feature
fusion methods improve the accuracy of those methods based
on individual feature [16].

Notably, most of software-based approaches using texture
feature usually rely on expert knowledge to engineer hand-
craft features. However, it is very difficult to find out effec-
tive handcraft features to distinguish live fingerprints from
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fake ones. Moreover, the handcraft features are not easy
to generalize due to the poor robustness of new mate-
rials and types of sensors [17]. In other words, the finger-
print liveness detection with handcraft features need to be
redesigned provided that the attackers improve the tech-
nology of fabricating fake fingerprints or the fingerprint
sensors change [18].

In terms of software-based methods, many deep learning
based techniques have been employed to detect the live-
ness of an input fingerprint image recently. In contrast to
approaches using handcraft features, there are a growing
number of researches using deep learning to design robust
and interpretable fingerprint liveness detection methods.
Convolutional Neural Networks (CNNs), which have been
widely used in computer vision, make outstanding perfor-
mance in image classification [19], object detection [20] and
many other tasks [21], attributing to the impressive ability
of extracting local features. In literature [22], CNN is firstly
introduced to determine whether an input fingerprint image
is live or fake. However, it is difficult to optimize the feature
extraction and classification simultaneously since they are
designed into two separate parts.

CNNs have played a significant role in advancing the
development of fingerprint liveness detection, which can get
rid of or reduce the dependence on domain knowledge. Many
CNNs-based approaches have been proposed for fingerprint
liveness detection, such asMobileNet-v1 [17], VGG-19 [23],
CaffeNet and GoogLeNet [24]. However, most the existing
approaches using CNNs are transferring pre-trained CNN
models instead of redesigning a new network structure
oriented to fingerprint liveness detection. These approaches
use fingerprint images to fine tune the CNN models
pre-trained on natural images. The inevitable differences
between fingerprint images and natural images make the
parameters of pre-trained models on natural images not
achieve good performance on the fingerprint liveness detec-
tion. Moreover, the fingerprint images are cut up randomly to
fit the network’s input size, causing partial fingerprint infor-
mation loss. Most of the existing approaches pour attention
into increasing classification performance without consid-
ering the speedup of training CNN-based models. Some
researches select multiple patches of single fingerprint image
for fingerprint liveness detection, which improves the perfor-
mance at the cost of testing time. Chugh et al. [24] propose a
CNN-based method, which adopts a voting strategy based on
minutiae-centered multiple local patches, showing state-of-
the-art average classification accuracy. Obviously, as minu-
tiae’s increase, so does running time. It is not a wise choice
in practical application, leading to poor user experience.

In order to deal with the problems mentioned above,
we propose a new approach for fingerprint liveness detection.
Firstly, the foreground region of fingerprint image has been
extracted to eliminate the interference of blank areas by the
statistical histograms of rows and columns. The proposed
approach utilizes the center of gravity [25] to select local
patches from the foreground region because of the continuity

of pixel distribution of fingerprint ridges and valleys, which
further effectively avoids a blank area with no fingerprint
information before feeding into the network. Furthermore,
the extracted local patches are flipped horizontally and verti-
cally, and rotated at four different angles for data augmen-
tation. Inspired by residual networks (ResNets) [26], [27]
showing compelling accuracy and desirable convergence
behaviors, slim residual convolutional neural network, called
Slim-ResCNN, is specially designed for fingerprint live-
ness detection. The proposed Slim-ResCNN framework is
different from the original residual network in that only nine
improved residual blocks are stacked into Slim-CNN and
less convolutional kernels are employed, making less training
time and improving classification performance for fingerprint
spoof detection. The main contributions of this paper are
enumerated as follows:
• Different from most existing random selection local
block methods, the statistical histogram and center of
gravity CoG) are used to remove the blank area and
select local patches from the fingerprint image before
into the network, which makes full use of image infor-
mation. The local patches instead of the entire finger-
print sample are sent to the network, which can decrease
execution time and adapt to different scale of fingerprint
samples.

• We propose a new residual network architecture,
called Slim-ResCNN, which is a relative simple and
lightweight CNN structure specialized for fingerprint
liveness detection. The new architecture consists of
several improved residual blocks in which the dropout
layer is added to each pair of convolutional kernels of
original residual block to prevent overfitting. When the
dimensions increase, the padding channel layer replaces
the convolutional layer of original residual block by
extra zero entries padded, without bringing in extra
parameters.

• Experiments demonstrate that the proposed approach
provides high classification accuracy for fingerprint
liveness detection on LivDet2013 [28], LivDet2015 [4]
and LivDet2017 [29] datasets. The excellent perfor-
mance of Slim-ResCNN model is further confirmed in
that the model wins the first place on the Fingerprint
Liveness Detection Competition 2017, with an overall
accuracy of 95.25%.

The paper is structured as follows. The proposed method
is discussed in Section 2. Section 3 presents the experimental
results and discussions. Finally, Section 4 concludes the paper
and gives some prospective research directions.

II. PROPOSED METHOD
Motivated by the favorable performance of deep residual
network, a relative simple and lightweight residual convo-
lutional neural network structure, called Slim-ResCNN,
is designed especially for fingerprint liveness detection.
In this section, the foreground region is firstly extracted from
entire fingerprint image by the statistical histograms of rows
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FIGURE 2. The flow chart of fingerprint spoof detection using the
Slim-ResCNN structure.

and columns. Next, the local patches are segmented from the
foreground region by center of gravity (CoG). During the
training stage, the amount of local patches are augmented by
flipping and rotating before feeding into Slim-ResCNN and
training model. During the testing stage, the score of the local
block of fingerprint obtained by the trained model can assess
the liveness of the input fingerprint image to detect whether
it’s an ‘‘alive’’ entity or a ‘‘spoof’’ artefact. The flow chart
of the proposed approach for fingerprint liveness detection is
shown in Figure 2.

A. PATCH EXTRACTION
In order to build fingerprint liveness detection system,
the local patches with fixed size need to feed into the network
instead of using entire fingerprint images in that the local
patches are crucial for CNN-based fingerprint liveness detec-
tion to reduce the time of training and decrease the param-
eter of model. A large quantity of local patches, which is
extracted from the fingerprint images, not only works out the
drawback of significant loss of discriminatory information
which is caused by downsizing or resizing fingerprint images
randomly, but also is adequate to train CNNs model from
scratch without overfitting. Moreover, the suitable size of
local patches can be adapted to both conventional sensors on
the market and sensors on mobile devices.

The pretreatment of fingerprint images involves the
foreground extraction and the patch segmentation. Firstly,
the foreground region is extracted by the statistical
histograms of rows and columns, which removes blank area
without any information from the entire fingerprint image.
Secondly, the patch segmentation utilizes CoG to select local
patches from the foreground area, which reduces the network
execution time and model parameters by reducing the size of
input effectively.

1) FOREGROUND EXTRACTION
Considering the influence of effective fingerprint region on
the performance of fingerprint liveness detection, the fore-
ground extraction is first carried out. The blank area without

any fingerprint information can be removed from the whole
fingerprint image so that the size of fingerprint image will
be decreased. Due to the continuity of the pixel distribution
of fingerprint, the effective region is extracted by obtaining
the rows and columns of foreground from the rows and
columns statistical histograms of fingerprint image. The rows
and columns statistical histograms on a sample, which is
captured from CrossMatch sensor in LivDet2015, are shown
in Figure 4. The image area that does not satisfy the condition
is removed according to the threshold of the row and the
column, then the foreground area of fingerprint image is
obtained. The foreground region extracted fromwhole finger-
print image is shown in Figure 3.

FIGURE 3. The foreground region (181× 291) extracted from whole
fingerprint image (800× 800) captured from CrossMatch sensor in
LivDet2015.

2) PATCH SEGMENTATION
The local patches are segmented based on CoG after the
foreground extraction. To uniform the size of input and reduce
the network execution time, the w × w (w = 160) patch is
segmented from the foreground area of fingerprint. The local
patches not only contain abundant fingerprint information
but also ensure the effective implementation of the network
training process.

Data enhancement is employed to augment the number of
samples in that it requires a large amount of data to train
the Slim-ResCNN model from scratch, aiming at preventing
overfitting on the small-scale fingerprint databases. In the
testing stage, one w× w (w = 160) local patch is segmented
based on the point of CoG from the foreground region,
as shown in Figure 5 (a). Nevertheless, apart from the point
of CoG in the training stage, another four points are selected
separately at the top, bottom, right, and left of CoG according
to a step size of 50 pixels. Next, some w × w patches are
cut centered each of these points from the foreground region,
which makes full use of the fingerprint image information,
as shown in Figure 5 (b). Furthermore, some of these selected
patches have little fingerprint information, which is not
conducive to train network, hence they must be excluded
from the training set. Color reversal and normalization are
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FIGURE 4. The statistical histograms of fingerprint image by the columns (left) and rows (right).

FIGURE 5. Single local patch and multiple local patches extracted from the foreground of fingerprint image (the samples from
LivDet2015 dataset acquired by Green Bit sensor).

performed on each w × w local patch. Next, the maximum
closure of the binary patch is obtained. When the maximum
closure area of local patch is more than 60% of the local
patch area, it will be selected as one sample, and otherwise it
will be excluded. Furthermore, the extracted local patches are
flipped horizontally and vertically, and rotate at four different
angles which are respectively 0◦, 90◦, 180◦ and 270◦, to deal
with the problem of insufficient fingerprint samples. The
large amount available data, obtained by the pretreatment and
data enhancement, is sufficient to train the Slim-ResCNN
model from scratch to prevent over-fitting. The extracted
local patches are randomly cropped into 112× 112
in the training and testing stages for building model
stability.

B. THE SLIM-RESCNN STRUCTURE
Inspired by the success of residual networks applied to some
challenging object detection, localization and segmentation
tasks, a relative simple and lightweight residual network,
called Slim-ResCNN, is especially designed for fingerprint
liveness detection in this paper. The Slim-ResCNN frame-
work based on data-driven avoids tediously designing hand-
craft features.

1) THE IMPROVED RESIDUAL BLOCKS
Based on the original residual block_a (Figure 6 (a)) in
original residual network [26], the improved residual block_b
(Figure 6 (b)) firstly removes the activation function (ReLU)
of the second convolutional kernel, which helps to maintain
the representation power in the narrow layers [30]. As we
want to study the effect of residual blocks, the bottleneck
blocks, which is initially used to make blocks less computa-
tionally expensive to increase the number of layers, are not
adopted. Secondly, the improved residual block_b is more
effective where the convolutional kernels are broadened by
twice and the dropout layer is inserted into each pair of convo-
lutional layers [29]. In the forward propagation, the dropout
layer makes the activation value of a certain neuron stop
working with a certain probability p (p = 0.5), which makes
the model more generalized for it does not rely too much on
some local features.

When the dimensions increase, the improved residual
block_d (Figure 6 (d)), where the 1 × 1 convolutional
layer replace with the padding zero channel (called the
padding channel layer), is employed instead of the orig-
inal residual block_c (Figure 6 (c)). Neither are additional
parameters introduced nor is the efficiency of reverse gradient
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FIGURE 6. The original residual blocks and the improved residual blocks.

flow reduced. In this paper, a detailed experimental study
is conducted on the architecture of residual blocks to verify
the effectiveness of the improvement. On the basis of the
improved residual blocks, we propose a novel architecture
which consist of nine improved residual blocks, called Silm-
ResCNN, which is superior for fingerprint liveness detection.

2) THE OVERALL STRUCTURE OF SLIM-RESCNN
Following the principles of neural network structure design,
a binary classification network structure is constructed for
spoofs presentation attacks detection. The Slim-ResCNN
consists of Conv1, Conv2, Conv3 (Conv3_1, Conv3_2), and
Conv4 (Conv4_1, Conv4_2), followed by a global average
pooling (Avg_Pool) and a final classification layer.

In order to adapt the neural network structure on
small-scale datasets, the number of convolutional kernels is
only broadened by twice, and the depth of the network is
greatly compressed compared with original residual network.
The number of network occupancy parameters is greatly
reduced, therefore the network is called as Slim-ResCNN.
The structure of Slim-ResCNN is illustrated in Table 1. The
overall network structure is explained as follows:

TABLE 1. The overall structure of Slim-ResCNN consisting of improved
residual blocks. Final classification layer is omitted for clearance. The
network uses a ResNet block of type B(3,3).

(1) The Conv1 is responsible for connecting the input local
patches and extract the initial features which are delivered to
the followed residual block.

(2) The Conv1 is followed Conv2, Conv3 (Conv3_1,
Conv3_2) and Conv4 (Conv4_1, Conv4_2). If the size of
feature map is reduced by half, the convolutional kernel is
doubled to preserve the time complexity per layer, as can be
seen from Conv3_1 and Conv4_1.

(3) To reduce network model parameters, the global
average pooling layer is used instead of the fully connected
layer. The reduction of network parameters prevents overfit-
ting and reduce the network computation cost.

(4) The Slim-ResCNN structure is trained on local patches
using the cross-entropy loss function.

III. EXPERIMENTS
A. DATASETS
The efficiency of the proposed network is evaluated on three
public datasets included LivDet2013 [28], LivDet2015 [4],
and LivDet2017 [29]. LivDet is specially conducted for
fingerprint presentation attack detection, which is held every
two years from 2009. There are two methods to fabricate arti-
ficial fingerprints: the cooperative and the non-cooperative
methods. LivDet2013 is composed of four datasets captured
by four different fingerprint readers. Gelatine, latex, Ecoflex,
modasil and wood glue are used to fabricate fake fingerprints
with the non-cooperative method. In addition to Biometrika
and ItalData, LivDet2013 involves two other datasets which
are Swipe and CrossMatch. However, the Swipe sensor
obtains the fingerprint images by swiping fingerprint from
top to bottom in which the images are vastly different
from existing data, hence these fingerprint images are
excluded from the data for experimental analysis, and the
LivDet2013 CrossMatch dataset is also eliminated because
the original selection of subjects is an anomaly. The same
spoof fingerprint materials are used in the training and testing
sets of LivDet2013. LivDet2015 also contains four datasets,
which are respectively Biometrika, Digital Persona, Green
Bit and CrossMatch. It should be noted that the testing sets
on LivDet2015 include fake fingerprints fabricated using
new materials which includes liquid Ecoflex and RTV for
Biometrika, Digital Persona, and Green Bit readers, and
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TABLE 2. Summary of the liveness detection (LivDet) datasets utilized in this study (the training sets are a similar size but did not include the unknown
materials which are bold).

OOMMOO and gelatin for Crossmatch reader. However,
only three datasets on LivDet2017, the fingerprint images
captured from Digital Persona, Orcanthus, and GreenBit
sensors. Furthermore, the materials used in the training sets
(Wood Glue, Ecoflex, Body Double) are completely different
with ones (Gelatine, Latex, Liquid Ecoflex) in the testing sets.
Notably, LivDet2017 employs a new peculiarity where fake
samples in the training sets are built by an operator and fake
samples in the testing sets are built by two other persons for
simulating a real scenario. The fingerprint images on every
dataset are equally divided into the training set and the testing
set. The training sets are often used to train the models,
and then the detection ability of models is evaluated on the
testing sets. In LivDet datasets, all live fingerprint images
come from multiple acquisitions of all fingers of different
subjects, while spoof fingerprint images are collected using
cooperative method or non-cooperative method. The sizes
of fingerprint images vary on different fingerprint scanners,
ranging from 252 × 324 to 1000 × 1000 pixels, hence the
fingerprint images need to be unified to the same size before
feeding into the network. The LivDet datasets used in this
experiment is outlined in Table 2.

B. EXPERIMENTAL ENVIRONMENT AND PERFORMANCE
EVALUATION METRICS
We train our models using stochastic gradient descent with
a batch size of 15 samples. The learning rate is initialized at
0.01 and reduced 20% per 200,000 iterations in the training
stage. We train the network for roughly 600,000 iterations
when the loss function became convergent. Our implemen-
tation is derived from the publicly available C++ Caffe
toolbox. The GPU used in experiments is NVIDIA GeForce
GTX 1080.

In all experiments of this paper, we follow the performance
measurement stated by [4] and [23] to ensure consistency
during experimental results comparison. The Average Clas-
sification Error (ACE) is the average of the error detection
rate of live fingerprints (Ferrlive) and the error detection rate
of fake fingerprints (Ferrfake). The ACE parameters adopted
for the performance evaluation is defined as:

ACE =
Ferrlive + Ferrfake

2
(1)

In addition to using generic ACE to evaluate the perfor-
mance of fingerprint liveness detection, the rate of samples
(live fingerprints and fake ones) correctly classified, called
accuracy, is also a fundamental parameter of classifica-
tion. The threshold for determining liveness of fingerprint
is set to 0.5. The fingerprint image with liveness score over
0.5 is considered as ‘‘alive’’ entity, otherwise it is consid-
ered as ‘‘spoof’’ artefact. The following experimental results
are calculated based on the threshold, except for special
explanations.

C. EXPERIMENTAL RESULTS AND ANALYSIS
In this paper, several different types of experiments have been
implemented to prevent presentation attacks bypassing the
fingerprint authentication systems. The training samples of
live and fake fingerprints need to be shuffled before feeding
into the network. In all experiments, the model parameters
initialization is performed the Gaussian distributions where
the weights are randomly drawn with fixed mean and fixed
standard deviation. It should be emphasized that the labels
corresponding to fingerprints are necessary, where the label
of live fingerprint is ‘‘1’’ and fake fingerprint is ‘‘0’’. The
model is a two-category, which is either a live fingerprint
or a spoof fingerprint. When a fingerprint sample enters
network, the final output of model, called the predicted
probability, is changed into the predicted label according to
the threshold. If the predicted value is the same as the real
label, then the prediction is correct, otherwise the predic-
tion is wrong. In LivDet2013, LivDet2015 and LivDet2017
datasets, Slim-ResCNN models are trained for every training
set respectively where the fingerprint images are captured
from the same fingerprint scanner.

Firstly, this paper evaluates and compares the performance
of three different kinds of Slim-ResCNNswhich are modified
version of Residual Network (ResNet), special for finger-
print liveness detection on LivDet2015 dataset. The three
Slim-ResCNNs have the same depth, as described in Table 1,
yet subtle difference on network structure. The impact of
stride size of convolutional kernel in the first convolutional
layer is evaluated by comparing the performance of two
different CNN models trained on the same experimental
conditions. Compared to one model with a stride of 2,
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TABLE 3. The performance comparison on ACEs of different types of Slim-ResCNN structures in LivDet2015 dataset (%).

TABLE 4. The performance comparison on ACEs of three Slim-ResCNN models with different numbers of improved residual block_bs in
LivDet2015 dataset (%).

the other model with a stride of 1 performs better on the
four datasets of LivDet2015, as shown in Table 3. The
comparison of experimental results indicates that the resolu-
tion of fingerprint image input sent into the network should
not be decreased too early, which may throw away some
inherent feature information permanently at the beginning
of training. When changing the input or output channels,
a linear projection by shortcut connections is performed to
match dimensions. The linear projection can be 1×1 convolu-
tional layer (Figure 6 (c)) or proposed padding channel layer
(Figure 6 (d)). We evaluate the two types of linear projections
by compared the performance of two CNN models with
different linear projections, one CNN model using the 1× 1
convolutional layer and the other one using the proposed
padding channel layer. The model with the padding channel
layer has brought about a consistence improvement in ACE,
except on GreenBit sensor, which argues that the padding
channel layer improves the performance of model effectively
when the dimensions increase. The 1× 1 convolutional layer
brings in extra parameters, resulting in a certain degree of
network overfitting. The experimental results on kinds of
Slim-ResCNNs with different structures demonstrate that the
Slim-ResCNN with padding channel and a stride with 1,
is more effective than other two network structures. The
comparison results of different improvements are outlined
in Table 3.
Secondly, the impact of network depth on the classifi-

cation performance of real and fake fingerprints is evalu-
ated on LivDet2015 dataset through three different depths
Slim-ResCNN structures which are comprised of different
numbers of improved residual blocks. The network structure,
which employs the stride = 1 of the convolutional kernel on
the first convolutional layer and uses the padding channel
layer as a linear projection when the dimension increase,
is chosen according to the first experimental results. Every
Slim-ResCNN structure contains two improved residual
block_ds (Figure 6 (d)) and k improved residual block_bs
(Figure 6 (b)), where k = 4, 7 and 10. The comparison

experimental results at different depths show that the
Slim-ResCNN model with 4 improved block_bs performs
worst among the three Slim-ResCNNs for all fingerprint
sensors. The Slim-ResCNNmodel with 7 improved block_bs
and one with 10 improved block_bs have some differences in
the performance of ACE, as shown in Table 4. It indicates
that the increase in network depth has a certain improvement
in fingerprint liveness detection, however when the network
depth reaches a certain level, the deeper network structure
does not necessarily achieve the best classification perfor-
mance on this experiments. Furthermore, when the network
is deepened, it results in longer training time, more execution
time, and larger model memory.

Thirdly, the effectiveness of the proposed method has been
verified based on the first two sets of comparative exper-
iments. The ACEs of proposed method are compared to
the existing works on LivDet2013 and LivDet2015 datasets.
Table 5 presents the comparisons between Silm-ResCNN
and the most recent algorithms, including fPADnet [31],
VGG-19 [23], Gram-128 model [32] and residual network
(ResNet). Furthermore, the optimal threshold is selected
when the best rate of samples correctly classified is obtained
in the training set, which is applied to the testing set.
The performance of optimal threshold differs according to
sensors, but the performance is typically better on average
ACE compared to the fixed threshold of 0.5. The experi-
mental results show in the ‘‘Slim-ResCNN(thres)’’ column
in Table 5, which is compared with the fixed threshold
mentioned earlier. The overall comparison results is shown
in Table 5. The ROC (Receiver Operating Characteristic)
curves of the Slim-ResCNN model on LivDet2013 and
LivDet2015 are shown in Figure 7. The false positive rate of
ROC is zoomed between 0 and 20% so that the changing trend
can be seen more clearly.

Experiments on LivDet2013 dataset use fake finger-
prints fabricated with the same material for training and
testing. However, the testing sets on LivDet2015 dataset
consist of fake fingerprints made of unknown materials.
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TABLE 5. The ACE comparisons of different methods on LivDet2013 and LivDet2015 datasets (%).

FIGURE 7. The ROC curves of the proposed method on LivDet2013 and LivDet2015 datasets.

TABLE 6. The detailed Performance comparison between the proposed approach (bottom) and state-of-the-art (top) reported on LivDet2015 dataset.

Table 6 presents the more detailed performance compar-
isons on LivDet2015 dataset between the proposed approach
and the state-of-the-art results reported at the Fingerprint
Liveness Detection Competition 2015 [4]. Fcorrlive counts
the percentage of correctly classified live fingerprints and
Fcorrfake counts the percentage of fakes classified as such for
all fake fingerprint images (known and unknown). Fcorrfake
known and Fcorrfake unknown are the percentage correctly
classified spoof image from known materials and unknown
materials respectively. A comparison between Fcorrfake
known and Fcorrfake unknown shows that the proposed
method has a small decrease in classification accuracy when

fake fingerprints are fabricated with unknown materials to
test the model. The proposed approach achieves 96.82%
overall accuracy over four datasets compared with 95.40%
achieving by the champion of the LivDet2015 competi-
tion. The accuracy has been improved for most datasets of
LivDet2015, except CrossMatch dataset.

Lastly, we have no opportunity to do experiments on the
testing sets of LivDet2017 dataset which have not been
opened so far. The fingerprint images of the training sets
come from all fingers of 20 different subjects. In order to
evaluate the performance of the trained models, every official
training set is divided into the training set and the verification
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TABLE 7. The accuracy of the LivDet2017 verification sets (%).

TABLE 8. Accuracy of the algorithms on the testing sets of the LivDet2017
dataset [%]. 1 = GreenBit, 2 = Digital persona, 3 = Orcanthus.

set according to the number of people. The training set
accounts for four copies and the verification set occupies
one copy, which means the fingerprint images of 16 people
are used for training the model and 4 people’s fingerprint
images are used to evaluate the classification performance
of Slim-ResCNN model. The experimental results of the
verification sets show that the proposed approach perform
well, where the average accuracy of three testing sets achieve
98.99% on the verification sets, as shown in Table 7. Since
there are not many results of LivDet2017’s state-of-the-art
performance in literature thus far, the results of the Finger-
print Liveness Detection Competition 2017 are used in this
paper. Inspired by score fusion [33], the fusion of multiple
local patches extracted from the fingerprint image is effective
for fingerprint liveness detection. The multiple local patches
and single local patch are utilized to detect the liveness of
fingerprint image. The overall accuracy of single local patch
achieves 94.23%. In contrast, multiple local patches aver-
aging the score-level fusion of multiple patches achieve an
overall classification accuracy of 95.25%, which improves
1% approximately compared to single local patch. It reveals
that the multiple local patches are more efficient than single
local patch. The outstanding performance of the proposed
method using multiple local patches has been awarded
the first place in the Fingerprint Liveness Detection2017
Competition. Table 8 summarizes the correct classification
rates of each algorithm on every testing set of LivDet2017
dataset, in addition to the overall average accuracy. The
complete results of the LivDet2017 competition have been
reported at [29].

Since the fake fingerprints in the testing sets are fabricated
using new materials that have not seen in the training sets,
the accuracy of fingerprint liveness detection has a slight
discrepancy between the testing sets and the verification
sets. Based on the experiment results on three testing sets of
LivDet2017 dataset, the good performance is observed for the
proposed method even regarding the unknown material fake
fingerprint in the testing sets.

D. EXPERIMENT PROCESSING TIME
The time performance of the proposedmethod is evaluated on
PC with GeForce GTX 1080. It takes one second to process
50 local patches on average, thus the proposed algorithm can
satisfy the real-time processing requirement in a real scenario.

IV. CONCLUSION
Spoof attacks with artificial replicas threat the safety of
fingerprint recognition systems severely to a large extent,
therefore, it is urgent to require effective countermeasures
against spoof attacks. On the basic of analyzing the deficiency
of the existing methods, we propose a new method based on
statistical histogram and CoG to extract local patches, which
prevents the blank area feeding into the network. Moreover,
we design a new residual network structure specially for
the fingerprint liveness detection, which compensates for
the drawback of the pre-trained CNN models on natural
images that neglect the inevitable differences between finger-
print images and natural images. In this paper, a rela-
tive simple and lightweight residual convolutional neural
network, called Slim-ResCNN, consists of several improved
residual blocks, which is designed to distinguish between live
fingerprint and fake ones. The advantages of Slim-ResCNN
is showed through the comparative experiments. Compared
with other methods, the Slim-ResCNN structure is suitable
for fingerprint liveness detection which wins the first place of
LivDet2017 competition with an overall accuracy of 95.25%.
In some extend, the Slim-ResCNN is robust to fake finger-
prints with new materials. In the future, we will focus on
researching the fingerprint liveness detection algorithm that
is robust to new materials and different types of fingerprint
sensors.
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