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ABSTRACT Microorganisms play a great role in ecosystem, wastewater treatment, monitoring of environ-
mental changes, and decomposition of waste materials. However, some of them are harmful to humans
and animals such as tuberculosis bacteria and plasmodium. In such course, it is important to identify,
track, analyze, consider the beneficial side and get rid of the negative effects of microorganisms using fast,
accurate, and reliable methods. In recent decades, image analysis techniques have been used to address
the drawbacks of manual traditional approaches in the identification and analysis of microorganisms.
As image segmentation being an important step (technique) in the detection, tracking, monitoring, feature
extraction, modeling, and analysis of microorganisms, different methods have been deployed, from classical
approaches to current deep neural networks upon different challenges on microorganism images. This survey
comprehensively analyses the various studies focused on developing microorganism image segmentation
methods in the last 30 years (since 1989). In this survey, segmentation methods are categorized into classical
and machine learning methods. Furthermore, these methods are subcategorized into threshold-based, region-
based, and edge-based which belong to classical methods, supervised and unsupervised machine leaning-
based methods which belong to machine learning category. A growth trend of different methods and most
frequently used methods in each category are meticulously analyzed. A clear explanation of the suitability
of these methods for different segmentation challenges encountered on microscopic microorganism images
is also enlightened.

INDEX TERMS Microorganism segmentation, content-based microscopic image analysis, feature extrac-
tion, microscopic images, classical methods, machine learning.

I. INTRODUCTION
There are varieties of tiny microoganisms which play a
great role in humans and plants lives, for balancing the
ecosystem, food processing, water cleaning processes and
promoting growth of plants [1]. Some are also harmful to
human health, environments and other living organisms.
In this review, recent microorganism image segmentation
techniques are introduced. It is noted that there exist some
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approving it for publication was Habib Ullah.

review works on image segmentation techniques, for exam-
ple, [2]–[4] and [5]. However, these reviews are based on
segmentation of non-microorganism images except only in
our previous review in [5], which gives overview on microor-
ganism image analysis (partially, including segmentation).
Furthermore, no concrete conclusions are pinpointed on the
best segmentation methods for particular microorganism seg-
mentation challenges or most frequently used ones. Thus,
we attempt to fill this interesting research blank by a review
of around 85 works.
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A. MOTIVATION ON AUTOMATIC IMAGE SEGMENTATION
OF MICROORGANISMS
Microorganisms are very small living organisms which can
appear as unicellular, multicellular and acellular types [6].
Some are beneficial and some are harmful to human health
and environments. For example, Lactobacteria are beneficial
microorganisms, which decompose substances to give nutri-
ents to plants [7]. Mmicrothrix parvicella which cause bulk-
ing in activated sludge [8], plasmodium and microbacteria
tuberculosis which cause malaria and tuberculosis, respec-
tively are harmful microorganims.

Good insight into microorgnisms helps in taking advantage
of their beneficial side and reduce (eradicate) the negative
effects of harmful ones. It is so rare to find microorganisms
in isolated environments. Microorganisms are found almost
everywhere, in unclean fluids, air, soil and as parasites in
other organisms. Most of them have features (for example
color and size) which cannot be easily distinguished from
their settling environments by naked eyes. Thus manual and
(or) automatic processes are required to isolate them. Some
of the manual processes involve culturing and staining some
samples which are rich in microorganisms [9] and use of
magnification tools such as microscope for viewing. After
viewing, analysis can be done manually (traditionally) using
experts, or automatically using image segmentation and other
image processing techniques.

Automatic image segmentation plays the following roles in
image analysis:
• Feature extraction: Segmentation is usually an important
step before feature extraction, as it partitions and isolates
the foreground from other parts of the image. Then
features like shape, color and texture of the foreground
can be extracted easily. For example, [10] used adaptive
color based thresholding and edge detection method
to segment tuberculosis microbes, then extracts shape
featured (area, major axis length, minor axis length and
perimeter).

• Tracking: Image segmentation is very useful when track-
ing microorganisms in videos which are captured under
microscope. Tracking helps to get insight into the mobil-
ity, genetic and quantitative characteristics which are
needed for research works [11].

• Modeling and Analysis: Segmentation is very applica-
ble in modeling and analysis of microorganisms. The
results of modeling are used in studyingmicroorganisms
development, genetics and their corresponding neurobi-
ology. For example, [11] used Neyman Peason decision
approach to segment C. elegans for modeling and track-
ing video images of micro-worms.

• Detection: Identification of the desired microor-
ganisms on an image can be done directly after
segmentation [12].

• Monitoring: It is the process of observing the progress
of microorganism over a period of time. Image seg-
mentation is useful in monitoring characteristic changes
of the microorganism. For example, [13] used Otsu

FIGURE 1. Manual segmentation to indicate the presence of parasites on
microscopic images performed by biologists where, (a) TB bacteria
manually segmented from sputum smears [31], (b) Encircled plasmodium
(malaria) parasite from blood smears [32].

thresholding method for automatic monitoring of floc
and filaments in activated sludge water treatments
process.

Given that image segmentation is of significant importance
in various microorganisms tasks including monitoring, detec-
tion, tracking andmodeling, different approaches for segmen-
tation have been proposed. In this review these methods are
grouped into classical and machine learning based methods
as listed below:
Classical segmentation methods include [14]:
• Edge based segmentationmethods (EBS), such as Canny
edge detection [15], active contour model [16] and Marr
Hildreth edge detection [17].

• Threshold based segmentation methods (TBS), such as
Otsu thresholding [18].

• Region based segmentation (RBS), such as water-
shed [19].

Machine learning based methods, consist of the following:
• Supervised machine learning methods (SML), such as
support vector machine [20], [21] and convolution neu-
ral networks like U-net and VGG-16 [22], [23].

• Unsupervised machine learning methods (USML),
such as fuzzy c-means clustering [24], k-means
clustering [25] and generative adversarial networks
(GANs) based techniques [26]–[28].

B. TRADITIONAL MICROORGANISM SEGMENTATION
METHODS
Traditionally, manual approaches are used for segmenta-
tion (identification) of microorganisms. The most common
way is the application of morphological methods to identify
microorganisms after observation under microscopes, which
is done manually by biologists (experts), using some image
processing softwares [29], [30]. Fig. 1 illustrates manual way
of segmenting microorganism from microscopic images of
TB bacteria and Plasmodium.

Although traditional methods are advantageous, like being
real time and flexible to changes of examined samples charac-
teristics, they are subjected to the following drawbacks: Time
consuming, tedious work, biased to experts skills, inconsis-
tent, expensive and the results may be affected by experts
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FIGURE 2. Development trend on microorganim image segmentation
methods. Indicating, machine learning (ML) based methods, classical
methods and general trend (All).

daily moods. These drawbacks prompt the need for alterna-
tive, suitable and reliable methods.

C. AUTOMATIC MICROSCOPIC MICROORGANISM IMAGE
SEGMENTATION METHODS
Segmentation is a process of partitioning image into
some non-intersecting regions such that each region is
homogeneous and the union of two adjacent regions is
heterogeneous [2]. Traditional approaches for segmentation
are over-weighed by their drawbacks like time consuming
and inconsistency. To get rid of such drawbacks, the appli-
cation of automatic segmentation methods come to hand.
Automatic image segmentation means, no involvement of
human in the processes of partitioning and identification
of the desired part on an image unless in the algorithm
design process. Computer algorithms are used to partition
images into segments so that analysis can be done. Contrary
to traditional approaches, automatic image segmentation is
faster, consistent, accurate and generally cheap. For example,
in medical field, automatic image segmentation helps in fast,
reliable and consistent diagnosis of diseases, identification
and classification of pathogen, which contributes to saving
lives [33]. Due to its advantages, so many recent researches
are performed on segmentation of different microorganism
images. The development trend over recent decades is shown
in Fig. 2.

Owing to the role of microorganisms in our life circle and
many researches being focused on automatic image segmen-
tation, we attempt to write this review paper aiming at pinning
out the most frequently used methods and their technical
advantages to specific microorganism image segmentation
challenges. For a grasp on categories of image segmentation
methods as described in this review, Fig. 3 shows impor-
tant steps in automatic image segmentation pipeline, which
include data acquisition, color conversion, image enhance-
ment, denoising, image segmentation techniques and their
respective categories and subcategories.

From the flow chart in Fig. 3 we can find that:
Stage (1): Is acquisition of microorganism images
which is normally done from samples under microscope.

Microorganisms can be from agricultural field, food pro-
cessing field, medical or other fields. Most common classes
of microorganisms of interest are bacteria, archaea, protists,
animals, fungi, plants and virus [34].

Stage (2): Image conversions and enhancement take place
depending on visual and contrast characteristic of microor-
ganism against background on image. Common conversions
are RGB to gray scale, RGB to HSV, RGB to LAB, RGB
to HSI and RGB to CMYk color modes. Denoising is also
done at this stage using one of the existing filters like Gaus-
sian filter, mean, median filters and other possible denoising
techniques depending on the nature of noise on an image.

Stage (3): Is the segmentation phase, in which microor-
ganisms are isolated from background and other artifacts.
Suitable methods sorted between two categories (a) or (b),
classical or machine learning methods can be applied for
segmentation. Classical methods include subcategories ((a)i-
iii) which are threshold based, like Otsu (which segments
images on the bases of intensity values to get a binary image),
region based and edge based methods like Sobel and Canny
techniques. Threshold and edge based methods are normally
applied to gray scale images.

The most common supervised learning methods ((b)(i))
are convolution neural networks, support vector machine
and naïve Bayes classifiers. Neural networks do not need
much preprocessing like RGB to gray conversion as they
are capable of working directly on the coloured images, also
they do not need pre-defined features to enable segmentation
contrary to SVM which needs pre defined features. The most
common unsupervised methods for segmentation ((b)(ii)) are
similarity based clustering methods like fuzzy and k-means
related ones.

D. STRUCTURE OF THIS REVIEW
In this article, a broad overview of microorganism image seg-
mentation is presented with interconnected pipelines. Firstly,
it surveys related researches by their segmentation methods
(category and subcategory). Secondly, it surveys these works
by their time line since 1989 to 2018. Time line helps the
reader to get a big picture on the development trend of
related segmentation techniques, in conjunction to innovation
of new and better ways of solving image segmentation chal-
lenges in microorganims. For instance, from linear classifiers
such as SVM to nonlinear classifiers such as convolution
neural networks, from convolution neural networks which
classify images into image wise labels such as VGG-16 [35],
to pixel wise classifiers such as SegNet [36], U-net [23] and
FCN [22]. Current methods can be built on top of previous
methods for improvement or innovated as new approaches.
For example, the encoder parts of SegNet and U-net are built
on top of VGG-16 which is seen as a novel method [37]. Fur-
thermore, in this review, research motivation, contribution,
methodology and segmentation results are briefly summa-
rized for each reference. For some related works with impor-
tant methods and results, demonstration figures are shown
for clarifications. Table. 3, in appendix V, gives a general
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FIGURE 3. General pipeline for automatic image segmentation of microorganisms, (1) image acquisition, (2) image enhancement and
denosing, (3) segmentation.

overview of two pipelines (applied methods in chronological
order) of the surveyed works.

This review is structured as follows, Sec. II reviews clas-
sical segmentation methods and a brief analysis is given at
the end of this section on the advantages of the most fre-
quently used methods. Sec. III gives a comprehensive review
on machine learning based methods for segmentation, and
brief analysis is also included at the end of this section.
As a subset of USML, a brief overview of GANs is given
at the end of Sec. III-B and in Sec.IV-D. Then a profound
methodology analysis on suitable segmentation techniques
for specific images segmentation challenges and most fre-
quently used methods are discussed in Sec. IV. Finally a brief
conclusion is given in Sec. V. This review can illuminate
related researchers on most applicable, suitable and recent
segmentation methods of microorganism images.

II. CLASSICAL METHODS FOR SEGMENTATION OF
MICROORGANISMS
Classical image segmentation methods include threshold,
edge and region based segmentation techniques. Threshold
techniques are the simplest methods in which segmentation
is based on the selection of threshold values to convert a
gray scale image into a binary image [38], examples are
Otsu, iterative thresholding, global thresholding, local thresh-
olding and multithresholding. Edge based techniques trans-
form image to edge binary image benefiting from abrupt
changes in gray tones in the image [39], examples are Canny,
Sobel and active contour. Region based techniques divide the

entire image into sub-regions, examples are maker watershed,
H-minima transform and concavity. Owing to the fact that
some techniques are suitable for segmentation of particular
images [2], an overview of classical methods related works
as applied to microorganism image segmentation is given in
subsections below.

A. THRESHOLD BASED SEGMENTATION (TBS)
For accurate segmentation of biofilm clusters which are
characterized by unclear marking boundaries, [40] compares
entropy and histogram based techniques, which are; Local
entropy which uses spatial correlation in the image as criteria
for selecting optimal threshold, joint entropy, relative entropy,
Renyi’s entropy, and iterative entropy (which is based on
histogram and assumes the optimal threshold by averag-
ing the mean value for both background and foreground
pixels thus, it is suitable for poor contrast images). In the
experiment, 660 × 480 pixel size, 8 bit (256 gray level)
images of biofilms are used. With reference to manually
segmented images as ground truth, the iterative selection
method outperforms other methods by regression coefficient
of 96.00%

Since segmentation is required prior to volume and inter-
face area measurement of biofilm, in 3D image analysis from
confocal laser scanning microscope (CLSM) [41], an objec-
tive threshold selection (OTS) technique, for selection of
optimal threshold value is proposed in [41]. The optimal
threshold value is found by finding the median of individual
values on perpendicular plane of the 3D biofilm (derived from
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FIGURE 4. (a, d) Original CLSM images of staphylococcus aureus. (d, e, f)
illustrate enlarged views of the regions encased by a dashed square in
(a). (b, e) the segmented images using the 3D Otsu method and (c, f) the
segmented images computed by OTS [43].

robust automatic threshold selection (RATS) method [42]).
During experiments, biofilms from two kinds of culturing
media are used (denitrifying and phenanthrene) and the
segmentation results achieved are near to manual results.
A related work is presented in [43], where, OTS approach
is compared with 3D otsu based method on segmentation of
CLSM biofilms images of P.mirabilis and S.aureus. In Otsu
based approach, images of pixel size 1024× 1024 are passed
through anisotropic diffusion filter before performing 3D otsu
segmentation. The results show that, Otsu based method in
combination with filtering, gives better results than OTS.
Fig. 4 shows the segmentation results of both methods on
same dataset as presented in [43].

In segmentation of TB bacteria which are characterized
by yellowish color in the fluorochrome auramine O stained
sputum, color based segmentation which provides a broader
discrimination between object borders is presented in [44].
The best channel for segmentation in RGB (which gives
the optimal threshold value), is found to be blue by using
Yager function for fuzziness. Then images are thresholded
based on the value obtained in histogram of blue channel.
Dilation and closing morphological operations are applied on
segmented images, before shape features being extracted for
classification. In this approach a set of 80 images from pos-
itive TB bacilli and 50 negative images are used for training
and testing the classifier. This method achieves segmentation
results with a specificity of 82.00%.

A segmentation technique for identification of Mycobac-
terium tuberculosis low contrast conventional light
microscopic images of sputum is proposed in [45], where,
subtracting green channel from red (R-G) is found to give a
distinct visual identification of TB bacteria from the back-
ground, then binarization is performed using global adaptive
thresholding for final segmentation. The algorithm is eval-
utated using 50 RGB images of size 3072 × 2304 pixels,
obtained from positive TB sputum samples. Quite satisfactory

FIGURE 5. (a) Original colored images of TB bacteria, (b) threshold
segmented images [46].

segmentation results of 75.65% sensitivity are obtained by the
proposed technique.

In [46], a color based approach for segmentation of TB
bacteria from ZN stain sputum sample images is presented,
where the RGB images are first divided into their correspond-
ing R, G, B color channels, then threshold based segmenta-
tion is applied on each channel image separately. To get the
segmented image the output of all channels are combined
using AND operation (The pixel is defined as part of the
foreground if its three RGB components all lie within the
selected range). In the experiments, five images (of different
types) are considered for initial studies and other 50 images
for testing. The segmentation results are indicated in Fig. 5.
This approach is compared with global thresholding method
on the same dataset in [47], where, global thresholding is
performed based on the C-Y color information of the image
pixels which contains TB. The technique retains the red pixels
of TB bacilli which fall in the range of hue 00 till 1200

while the other pixels which fall in the range of 1210 till
3600 are eliminated. The results show that global thresh-
olding produces better results compared to previous color
thresholding, as it is able to reduce more noise and sputum
background from the images. Fig. 6 shows the flow chart for
comparison.

In [48], an edge linking based method to detect and sep-
arate individual C. elegans worms in culture is proposed.
Gaussian smoothing with 20 × 20 pixels mask is applied,
then subtraction of blurred image from original image is
performed to keep the high frequency pixels (the edges).
Then global thresholding is performed on the high fre-
quency image. Finally, morphological skeletonization is per-
formed followed by closing operations (to isolate and remove
pixels and noisy branches). To detect individual worm in
clumps, a skeleton analysis and tree reconstruction tech-
nique is applied on the binarized image. During experiments,
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FIGURE 6. Global and color tresholding processes [47].

different combination of five population images that include
255 isolated overlapping C. elegan worms are used. Finally,
an accuracy of around 83.00% is achieved on tested
dataset.

HSV color mode offers a convenient representation of
the color image than RGB, in [33], Hue channel is used to
find optimal range occupied by bacilli by applying adaptive
thresholding on stained images, in which bacilli appear red-
dish in color. Then shape descriptors are used for classifica-
tion. In this work 300 (RGB images of 2045×1536 pixel size)
taken from sputum smears of 3 patients are used and results
are visually evaluated.

In order to automate fully the segmentation process
while using multi-level methods, Otsu, entropy and min-
error (which involve manual selection of threshold values),
the combination of multi-level segmentation methods and
method for determining the optimal threshold values are
compared in [49]–[51]. Otsu, entropy and minerror segmen-
tation methods are tested in combination with five methods
for threshold values determination (Davies-Bouldin index
(DB), Dunn’s index (DN), Calinski-Harabasz’s index (CH),
Xie-Benil index (XB) and index I (I)). The best combination
is found to be entropy and DB, since entropy is able to
segment all kind of tested images (with single and multiple
thresholds), while Otsu and minerror methods show poor
segmentation results on single threshold images. In the exper-
iments, 649 images of biofilm are used. These images are
subset of two groups, 616 from confocal microscope (reso-
lution of 512 × 512 pixels) and 33 images from an optical
microscope with resolution of 1040× 1392 pixels.
In [52], a digital segmentation and classification approach

which is capable of identifying individual spiral bacterial
cells from complex microbial community is presented, where

FIGURE 7. Output results for Otsu only in (a) and for proposed method in
(b) [53].

RGB to gray conversion is applied first, then binarization
using global thresholding follows, then geometric features
are found before classification using 3δ classifier, k-NN clas-
sifier, neural network classifier and fuzzy classifiers. In the
experiments, 300 RGB images of Vibrio bacteria, 840 of
Spirillium and 140 of Spirochete bacteria are used. Finally
3δ classifier yields an accuracy of 100%. k-NN yields 100%
for k = 5. The neural network classifier 100% and fuzzy
classifier 100% accuracy.

To eliminate contour background in optical microscopic
images, a method is proposed in [53]. This approach recon-
structs the background by calculating surface function min-
imizing least square error of the sampled image, then Otsu
optimal thresholding elects pixels to be representative of the
background and bilinear interpolation finds non determinis-
tic background pixels among sample pixels, then 2D cubic
fitting method is applied to construct a contour background.
Elimination by subtracting approximated background from
the original image is applied to achieve a segmented image.
In the experiments, the dataset used are gray scale images
of Acinetobacter sp and Zygosaccharomyces rouxii of size
640 × 480 pixels. The results of the proposed method
are compared with results when applying Otsu’s method
only. Fig. 7 shows the segmentation results of the two
methods.

In [54], as quantification of protein aggregation in C.
elegans can be used for modeling protein aggregation in
human for therapeutic strategies, a system for segmentation
and quantification of protein aggregates in C. elegans 3D
images is proposed. In this system 2D slices of the images
are acquired, then anisotropic diffusion algorithm is applied
for denoising, after this follows the global thresholding
before morphological operations. Then 3D body reconstruc-
tion (using marching cubes algorithm to form cubic grids,
followed by tri-linear interpolation between random points in
the 2D image and all cubic grids) is performed. Finally quan-
tification of several features on protein aggregates is done
(such as volume and area). In the experiments, 150 images
of C. elegans are used. The obtained results are consis-
tent with quantitative observation in literature, allowing
non biased reliable and high throughput protein aggregates
quantification.
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FIGURE 8. Segmentation results after iterative thresholding and canny
edge detection. (a) Original epistylis image, (b) segmented image by
Canny method, (c) segmented image by iterative thresholding, (d) image
after fusing results in fig. (b) and fig. (c) based on wavelet [57].

[55] proposes an approach to segment hepatitis B virus
from transmission electron microscopic (TEM) images. The
method is based on binarizing the original image to identify
the capsids. Since common segmentation or filtering tech-
niques such as basic thresholding or unsharp masking are
not suitable, because of the important size of the capsids,
the poor contrast, SNR of TEM images, trous wavelets is used
for segmentation due to its intrinsic multi-resolution prop-
erties, then follows skeletonization and graphical generation
to circle the capsids. The tests is done on 9 image series,
each series being composed of approximately 40 images
of capsids (microscopic hepatitis B images). The ratio
of the number of capsids detected by algorithm to that
detected manually is used to evaluate the results. The mean
ratio (accuracy) obtained is above 80.00% for all sets of tested
data.

In order to segment TB bacilli from ZN trained tissue with
uneven distribution of stain (dye), first global threshold is
applied to remove tissue and background from blue dye [56],
then k-means clustering segments bacilli from background,
followed by mean filtering and adaptive thresholding for
fine segmentation. 25 RGB images of positive TB stained
tissues are used for testing the algorithm. And a segmentation
accuracy of 99.00% is achieved.

In [57], a scheme to segment metazoa and protozoa from
low contrast images of active sludge is proposed, where
the image passes through two branches, first branch uses
iterative thresholding which extracts the foreground from
background and the second branch uses canny edge seg-
mentation which enhances the foreground edges, then the
two branches are fused together based on Mallat pyramid
wavelet transform to get a fine segmented image. Micro-
scopic gray scale images containing protozoa/metazoa are
used during experiments. The results of each stage are shown
in Fig. 8.

In order to segment floc and filaments from bright field
microscopic images, which are characterized by images with
comparatively less illumination near the boundaries, different
algorithms based on Otsu thresholding are applied in [13].
These algorithms are named, local Otsu I, local Otsu II and
local Otsu III. The best one is Otsu III and it is imple-
mented as follows, First, Otsu global thresholding is applied,
then bounding boxes are created for all detected objects and
around the borders, then Otsu thresholding is applied again
at all bounding boxes separately. Then all segmented boxes
are rewritten to their pixel positions to get the whole seg-
mented image. Different grayscale images of activated sludge
of size 2088 × 1550 pixels are used, during experiments.
The counts of flocs in proposed method are compared with
manual counts and Otsu III achieves results near to manual
counts.

In [58], due to the importance of green microalgae for
giving signs to deterioration of ecological conditions, a seg-
mentation algorithm of green microalgae images is proposed.
In this approach, eigenvalues of the image are found first, then
computation of multivariant Gaussian distribution parameters
for algae and background is performed, before thresholding to
get a binary image. During experiments, 44 RGB (600× 800
pixel size) images of green algae taken from different species
of selenestraceae family are used. The proposed method
achieves an accuracy of 92.20%.

In [59], a thresholding program which is capable of seg-
menting irregularly illuminated images from activated sludge
is present. Iterative region based Otsu thresholding is applied
on bright field microscopic images of activated sludge (it
is called iterative region based Otsu because it uses Otsu
threshold technique recursively with a selection of fore-
ground region at each iteration until suitable foreground is
obtained). In the experiments, 40 RGB images (122 × 960
pixel size) captured from samples of activated sludge are
used. The proposed method is compared with other Otsu
based methods (iterative Otsu (IO), local adaptive Otsu (Loc-
Otsu) and Otsu). The proposed method outperforms other
methods with an accuracy of 98.50%.

To enhance diagnosis ofmalaria quickly, an accurate detec-
tion system of Schizont plasmodium falciparum from blood
smear is introduced in [60]. First median filter is applied to
remove salt and pepper noise, followed by color contrast
enhancement on RGB images. Then RGB to HIS conver-
sion is performed since a distinct threshold level between
blood, parasite and background is easily observed in HIS
mode, finally global thresholding is done. In the experi-
ments, 100 RGB microscopic images (size 1600 × 1200
pixels) containing Schizont plasmodium falciparum are used.
The segmentation results are evaluated visually as shown
in Fig. 9.

Because shape similarity makes it difficult to identify
protozoa, an identification system which uses 3D geometric
multiple color channel local features is presented in [61],
where segmentation is done by decomposing the image into
color channels (RGB, R, G, B, gray scale, HSV, H, S, V
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FIGURE 9. (a) RGB image, (b) HIS image, (c) final threshold segmented
image [60].

and mean HSV (mHSV)), then for each color channel key
points which are extracted by scale invariant feature trans-
form (SIFT) are grouped. Then bag of visual words (BoVW)
is used to calculate histogram of visual words as feature
vectors. Finally classification is done using SVM to identify
species of protozoa. 55 images containing 8 classes of proto-
zoa, are used during experiments (classes are Acantamoeba,
Balantidium, Cystoisospora belli, Cyclospora cayetanensis,
Iodamoeba butschilii, Giardia lamblia, Sarcocystis and Tox-
oplasma gondii). The proposed method achieves an accuracy
of 96.00%.

B. REGION BASED SEGMENTATION (RBS)
In [62] an automatic segmentation system of bacteria micro-
scopic images is developed, this system first segments the
bacteria clusters from background using Otsu followed by
region growing methods, secondly, seeds are selected at the
center of individual bacteria in clusters, then seed watershed
is applied to segment individual bacteria from clusters. This
differs from the original watershed algorithm in that water
is only pumped in at each seed location rather than at every
local minima. RGBmicroscopic images containingB. subtilis
bacteria are used during experiments.

In [63], segmentation and classification approach for
rotavirus-A is proposed. Segmentation is performed on gray
level images using marker controlled watershed method,
which is able to identify closely spaced particles as individ-
ual objects in tested images. Then extracted shape features
are used to train and test 3α classifier and min-max clas-
sifier. In this experiments, 50 RGB digital images contain-
ing rotavirus-A particles (non-overlapping) taken from trans-
mission electron microscopy are used. Finally, 3α classifier
method yields better results 98.00% classification rate.

A segmentation method for enhancing visualization and
analysis of 3D laser scanning microscopic images of
C. elegan cells is introduced in [64]. The approach involves
five steps which are, acquisition, registration, segmentation
using adaptive 3D watershed algorithm, reconstruction and
analysis (quantification) of individual C. elegan cells based
on their relative location patterns in the 3D standardized
space. 3D input images of C. elegan taken from fluorescent
laser scanning microscope are used for testing the algorithm.
The final results are as shown in Fig. 10.

FIGURE 10. 3D image visualization and analysis for measuring single-cell
gene expression of C. elegans, (a) tri-view display of a confocal image of
C. elegan muscle cells, (b) tri-view display of the 3D watershed
segmented nuclei of (a) [64].

A contour based seed region growing watershed technique
is used to segment TB bacteria from their background in [65].
Before segmentation, color conversion to Lab color mode and
denoising using image filling holes operations are applied.
Then Hu moment and geometric features are used to further
isolate the bacteria. During experiments, 516 RGB images
with size 2080× 1542 pixels are used for segmentation.
In [66], based on illumination conditions, different back-

ground colors, weak edge and low contrast which hinder
better results in identification of bacteria in microscopic
images of ZN stained sputum smear, an approach is pro-
posed. Firstly, the Gaussian weighted adaptive threshold seg-
mentation and local minimum points search within gradient
image are applied to obtain the required markers. Then the
marker-based watershed transform is employed for initial
segmentation. Finally, multi-thresholding is applied for fine
segmentation. In the experiment, 50 RGB images of positive
TB are used. A segmentation accuracy of 83.8% is achieved.

For segmentation and motility modeling of C. elegans
in [67], a single annotated image is used to compute a number
of image texture features within a Bayesian model to infer
which pixels belong to the nematode and which ones do
not, then the mean-field variational inference technique is
applied to compute the maximum posterior marginals of the
pixel labels. Finally, Bayesian filtering, provides coherent
estimates to where the nematode is located across the image
sequence. 35 images each from different motility environ-
ments for C. elegans are used (crawling on an agar surface,
swimming in an aqueous drop, swimming in gelatin based
solutions, navigating through mazes constructed of micro-
pillars, movement of nematode in aqueous buffer solution
containing monodisperse particles and movement of nema-
tode in aqueous buffer solution containing polydisperse par-
ticles). The proposed approach shows improved results com-
pared to previous traditional intensity based thresholding and
multi-environment model estimation (MEME) algorithms.

In [68], a system to monitor morphological features of
floc and filaments in activated sludge which uses segmen-
tation approach is introduced. It uses H-minima transform
(region based method), followed by median filter, finally
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FIGURE 11. (a) Original gray scale image, (b) superimposed filament
segmentations, (c) floc segmentation, (d) filament segmentation [68].

conventional binary conversion and area opening operation
are applied. 30 grey scale images captured under the bright
field microscope from activated sludge samples are used
in the experiments. Fig. 11 shows the flow of image from
original to segmented one.

In order to separate overlapping bacilli amethod of concav-
ity (MOC) is used in [69], where concavities are found using
the convex hull of the segmented binary image. Fig. 12 shows
the MOC algorithm. 100 images of size 4164 × 3120 pixels
containing overlapping bacilli are used during experiments.
Finally, the individual counts of TB bacteria is obtained
after segmentation. MOC results are compared with manual
results, and other conventional methods (multi-phase active
contour and marker controlled watershed). The results of
MOC are more similar to manual (ground truth).

In [70], a detection algorithm is proposed to segment and
classify TB bacilli from microscopic images captured by
smart phone camera. In the algorithm, RGB to gray level
conversion takes place, followed by contrast enhancement,
then thresholding and morphological operations are applied,
after this, the artefacts are removed based on shape and
size (to remain with bacilli only), then watershed method
is applied for separation of overlapping (touching) bacilli,
finally counting and labelling of bacilli is done. In evaluation
of the proposedmethod, 30 RBG images of ZN stained bacilli
taken from smart phone camera enabled microscope are used.
15 images are TB positive and 15 are TB negative. The
overall segmentation result of the proposedmethod is 87.00%
specificity.

C. EDGE BASED SEGMENTATION (EBS)
In [71], a segmentation and classification framework is intro-
duced to identify individual microorganism from a group of
overlapping (touching) bacteria. Canny edge segmentation is
applied prior to Yanowitz bruckstein which are found to give
better segmentation results on such images containing non

FIGURE 12. Flow chart for method of concavity [69].

uniform illuminating backgrounds, then shape coefficient and
eigenvalue ratios are used as features for classifying between
individual microorganisms and in which particular group they
belong. In the experimental analysis, contrasts photomicro-
graphs of growing culture were used as inputs images and
two Methanogenic bacteria are used as model organisms
(Methanosprillum hungatei and Methanonosarcina mazei).
Two categories of images are used, one category is the image
set containing only one specie of microorganism. Another is
the one containing mixture of two species. Finally, the result
is given in counts of bacteria in tested images. And it shows
that the count is very near to accurate manual count. Fig. 13
shows the segmentation work flow.

In [72], evaluation of suitable segmentation (technique
which is capable of segmenting bacteria and protista biomass
so as to understand their population parameters) is presented.
The following thresholding techniques are evaluated: Visual
(VIS), middle gray level (MID), maximum first derivative
(MAXD1), minimum of histogram of high-gradient pixels
(MINASH), maximum of the histogram of high-gradient pix-
els (MAXASH), average of the histogram of high-gradient
pixels (AVGASH), minimum of the quotient of histogram and
gradient (MINSH/D1), maximum of the product of histogram
and gradient (MAXSH*D1), minimum of the second deriva-
tive (MIND2). In the experiments, 144 RGB images of micro-
spheres which are taken under fluorescent light are used.
The size of spheres in image are 0.51, 0.94, 3.1 and 6.1µ.
Also 50 to 60 images of cells from the following cultures
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FIGURE 13. Flowchart for segmentation and classification of bacteria in
mixed culture. Mm = Mathanosarcina maise and Mh =

Methanospirillium hungatei [71].

are used, cyanobacterua, cryptophyte, marine phytoplankton,
flagellate and ciliates. Comparing all the tested approaches,
the best one is minimum of the second derivative (MIND2)
which achieves the average lowest segmentation errors.

An automatic identification of tuberculosis bacteria (from
fluorescent microscopic images of stained samples with
fluorochrome auramine O) is proposed in [73]. Since bac-
teria appears brighter yellowish on tested images, Canny
edge technique is applied for edge detection, followed by a
non-maxima suppression and a hysteresis threshold opera-
tions. Because some structures can appear broken, a morpho-
logical closing operation is applied. Then compactness and
eccentricity features are extracted in one branch, and the same
segmented images are passed through k-means clustering in
the second branch, then each branch independently goes to
classification part using nearest neighbor classifier. A total
of 397 negative and 75 positive RGB images are used. The
average results obtained from two branches are, 93.30% and
100% sensitivity for the first and the second branch, respec-
tively.

To be able to segment 3D holograhic images of microor-
ganism, an approach is proposed in [74], which uses statisti-
cal region snake (active contour model) method which is per-
formed in many number of iterations to have better segmen-
tation results. 3D digitally constructed images of sphacelaria
algae and diatom algae are used for experiment. The obtained
result is shown in Fig. 14.
In [75], a system capable of identifying individual rod like

bacteria (bacilli) in population is presented, where segmen-
tation is performed using Marr Hildreth edge detector, then
detection of beaded structure which characterizes the shape
of individual bacteria is used for identification from cluster
using probabilistic models. The algorithm is evaluated using,

FIGURE 14. (a) Snake evolution on a diatom algae with four point
contour initialization, (b) final segmentation with bivariate region snake
after 1500 iterations, (c) optimization trace during experiment [74].

2D images of bacilli cells of size 1040 × 1392 pixels. The
results show a better count of segmented bacilli cells.

An approach based on active contour segmentation of
about 1500 iterations is used in identification of rotavirus-A
in [76]. After the segmentation of gray images, shape fea-
tures like area, eccentricity, perimeter, circularity, length per
width ratio and compactness are extracted and then iden-
tification is done by examining features if they are within
max-min required ranges. 50 RGB digital images (resolution
of 12-16 bits) of rotavirus-A particles (non-overlapping)
taken from transmission electron microscopy are used for
experiment. Finally this method yields an identification
rate (accuracy) of 98.00%. The same method is applied
in [77], for the analysis of spiral bacteria cell images,
however, the classification is done using fuzzy classifier
which yields an accuracy of 100%. During experiments,
1280 images containing three species of spiral bacteria are
used (vibro spiral, spirochete and sprillium).

A method for segmentation and classification of large size
images of zooplanktons is proposed in [78]. A split andmerge
active contour based method is used for segmentation. Firstly,
images are split into tiles, then Otsu’s is applied on each
tile, after a morphological closing, a hough transform for
circle detection is used to determine the starting contour
points. Then active contour algorithm is executed on the
binary image, finally, the tiles are merged before classifica-
tion. In testing the algorithm, RGB images of zooplanktons
of size 60000 × 60000 pixels are used. The segmentation
approach is compared with longest contour and region grow-
ing approaches and the results show that the proposed active
contour approach achieves the highest recall of 99.70%.

In [79], active contour based model (Chan-Vese (CV)
model) is used in segmentation of Leishmania parasite in
microscopic images, which is done after linear contrast and
morphological operations. Segmentation is done in twoways,
in the first approach termed as local method, images are split
into small patches (masks) then segmentation is done on these
patches while the other approach uses non split images and
this way is termed as global method. During experiment,
20 RGB microscopic images of resolution 3246 × 2448
pixels containing Leishman parasites taken from bone mar-
row samples are used. The proposed method is compared
with other Otsu, Sauvola and k-means segmentationmethods.
Better performance is achieved by the proposed method by an
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accuracy of 89.10% and 90.24%, for global and local
approaches, respectively.

In [80], a semi-automatic segmentation is used in content
based analysis and classification of environmental microor-
ganisms, in this approach segmentation is done using Sobel
edge detector, followed by feature extraction in which four
features are extracted (histogram descriptor, geometric fea-
ture, Fourier descriptor and internal structure histogram
(ISH), then classification of each environmental microorgan-
ism is done using SVM, finally late fusion of outcomes of
SVMs for each tested class of microorganism is done. In the
experiments, 10 classes of environmental microoganisms
(such as Dicrmiphorus, Paramecinium and verticella) are
used with each class represented by 20 microscopic images.
The proposed segmentation method achieves an accuracy of
98.70%. To increase the accuracy of the classification results,
in [81] local features (SIFT) are additionally extracted and
using the same segmentation and classification techniques,
20 images from each 15 classes of environmental microor-
ganisms are used. This approach achieves the classification
results of 97.70% accuracy. Furthermore, similar segmenta-
tion approach is applied in [82]–[85].

In [86], to tackle the hardship of segmentation on distorted
images due to motion in waste water treatment systems,
a Sobel edge detection method with multiple gradient thresh-
olds is adopted to obtain better target edges, the proposed
method is compared with conventional Sobel, Log and Canny
edge based segmentation which are all done after image
denoising. RGB microscopic images of microbacteria from
waste water samples are used for experiment. The segmen-
tation results produced by the proposed method and other
compared methods are shown in Fig. 15.

Three segmentation methods of floc and filament in acti-
vated sludge waste water treatment plants are applied and
evaluated in [87]. These methods are edge based segmenta-
tion (using Sobel), channel based segmentation using HSV
format (global threshold is applied for segmentation), and
Bradley thresholding method (in which local adaptive tech-
nique is used to generate binary image by thresholding local
mean evaluated over a specific window size). RGB images of
size 1224×960 pixels from activated sludgewaste water sam-
ples are used during experiments. The segmentation results
show that the edge based segmentation outperforms the other
methods with an accuracy of 97.16%.

In [88], nine methods for segmentation of floc from phase
contrast microscopic images of activated sludge (duringmon-
itoring of waste water treatment) are assessed. These methods
are saturation color channel based approach, edge detec-
tion approach (Sobel based), k-means clustering algorithm,
adaptive thresholding, texture based segmentation (Bradley
adaptive thresholding), watershed algorithm, Kittler thresh-
olding, split-merge approach and top-bottom-hat filtering
based method. These methods are evaluated using, 61 RGB
(phase contrast microscopic) images of size 1224×960 pixels
captured from activated sludge. The evaluation results of the
best four methods are considered. Among them edge based

FIGURE 15. Contour extraction results with different edge detection
algorithms. (a) original images, (b) Sobel, (c) Log, (d) Canny,
(e) segmented images after multiple gradient thresholds method and
edge connection [86].

method outperforms, with the highest accuracy of 99.70%,
followed by watershed method with an accuracy of 99.67%.

To be able to segment filamentous algae in low contrast and
noisy images in [89], segmentation results of two pipelines
which focus on edge and region respectively, are combined
using iterative erosion technique ( region based ouput image
is eroded several times to fit into edge based output segmenta-
tion results). The edge based approach involves, first, extrac-
tion of only blue channel (which shows distinct edges) from
RGB, followed by adaptive thresholding on blue channel,
then small unwanted objects are removed by morphological
opening operation. The second approach which is proposed
in [90], involves, Sobel edge detection, followed by canny
which uses large smoothing parameter for roughly estimating
the boundary of the elgae in image, then fine segmentation
is achieved by applying Gaussian low pass filter of size
20 × 20 pixels and sigma of 0.5 in order to suppress the
background and remain with foreground. In the experiments,
300 RGB images containing one among five species of fil-
amentous algae (Anabaena, Oscillatoria, Spirogyra, Spir-
ulina, Anabaenopsis) are used. The final segmentation results
obtained are near to manual results.

D. SUMMARY OF CLASSICAL SEGMENTATION METHODS
A summary of the classical segmentation methodologies
reviewed is given in Table. 1 in which, specific methods as
applied to particular datasets from each work are indicated.
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TABLE 1. Summary of reviewed works on classical based methods as applied to segmentation of microorganisms (threshold based segmentation
methods (TBS), region based segmentation (RBS), edge based segmentation (EBS), used dataset type, dataset application field and quantity which include
class (C), Total (T), training (Tr), validation (V), test (Te), positive (P), negative (N)).
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In detail, types (name), species (classes), amount of datasets
used and their related application fields such as medical,
environmental and water treatment are indicated. To evaluate
the strength of the applied techniques on tested dataset, seg-
mentation results are given in accuracy (or other performance
metrics if accuracy is not applicable in a reviewed work).
As it can be observed from the table; most of the applied
techniques have achieved an accuracy value higher than 82%.
Thus they set a light to related researchers on most suitable,
applicable and recent classical segmentation techniques for
microorganisms. Moreover, it can be seen that, the most
frequently used techniques are threshold based methods, this
is because this major (threshold based) is comprised of many
different alternatives such as global thresholding, Otsu, adap-
tive thresholding andmultilevel thresholding. This gives a big
room for segmenting and being suitable for many different
segmentation challenges present on microorganim images.
Furthermore, they are easy and direct to apply compared to
other methods thus many researchers opt them for segmen-
tation. A detailed analysis is given in Sec. IV-A on the most
frequently used techniques and their advantages to segmen-
tation of microorganisms.

III. MACHINE LEARNING METHODS FOR SEGMENTATION
OF MICROORGANISMS
Machine learning is the scientific study of algorithms and
statistical models that computer system uses to effectively
perform a specific task without explicit instructions relying
on patterns and inference. In this review machine learning
based segmentation techniques are categorized as supervised
machine learning (SML) and unsupervised machine learning
(USML). Supervised learning algorithms build mathematical
models from set of labeled data (images) which are used for
training, and examples of SML algorithms are convolution
neural networks, support vector machines and naïve Bayes
models. USML algorithms build their mathematical models
from set of data which contain only inputs and no desired
output labels. The algorithms discover the data pattern and
categorize them into groups. Typical examples of USML
algorithms are k-mean and fuzzy c-means. An overview of
some applicationmethodologies, which are based onmachine
learning methods for microorganism image segmentation are
given in subsections below.

A. SUPERVISED MACHINE LEARNING (SML)
In [11], a fully automated segmentation system for model-
ing and quantification of shape and motion of nematode C.
elegans is introduced, where by assuming that the statistical
properties of the background and foreground pixels remain
unchanged during a time-lapse experiment, Neyman-peason
model, which computes a likelihood ratio to classify the fore-
ground pixels is applied to segment worms from background,
then features for determining shape and motion are extracted.
In the experiments, 16 image sequences representing four
mutant stains of worms are used, with each sequence con-
sisting of 150 frames at resolution of 1380×1032 pixels.

Images consisting of overlapping worms are tested separately
with non overlapping worms images. Finally, the segmenta-
tion accuracy for non overlapping and overlapping images
obtained are 98.77% and 94.61%, respectively.

A supervised neural network is proposed in [91] to seg-
ment tuberculosis bacilli from ZN stained tissue. Since HSI
color model has better representation capability, RGB to
HIS conversion is done first, then these images are used
for training and testing the network. Segmentation is done
using hybrid multilayered perception (HMLP) neural net-
work, which has been trained using modified recursive pre-
diction error (MRPE) algorithm and uses sigmoid as activa-
tion function. 6802 images cropped at different sizes (42 ×
54, 38×43, 50×56 and 800×600 pixels) are used for training
and testing the network. This approach achieves impressive
segmentation results with an accuracy above 97.75%, for all
the tested groups.

In [92], a detection system to reduce false positive results
in automatic detection of tuberculosis is proposed. In this
system, the results of detection performed by support vector
machine(referred to computer aided detection (CAD)) net-
work are passed to stepwise binary decision classifier (SWC)
for reduction of false positive (FP). In the experiments,
1803 TB positive and 6092 non TB positive images are used,
and the results show the decrease in different types of false
positive (FP) from CAD to SWC stages while optimizing true
positive (TP).

A neural network is used for segmentation of urine sed-
iments (bacteria, yeast and blood cells) from low contrast
images [93], where a feed forward back propagation neural
network is trained and tested using 24 bits RGB images of
size 2048×1536 pixels containing urine sediments (bacteria,
yeast, blood cells and other casts). The network is derived
from the general least mean square (LMS) algorithm with
only three layers. Experimental results show that, sediment
counts obtained are almost similar to manual counts.

In [94], a segmentation algorithm for tuberculosis bacteria
is applied so as to meet the WHO standard of fault diagnosis
of less than 5.00%, where image contrast enhancement is
done first, then RGB image intensities are found for all
images, then training and evaluation of Naïve Bayes classifier
is done using the intensities of RGB images as features.
During performance evaluation of the proposed algorithm,
2063 RGB images taken from Ziehl-Neelsen sputum samples
are used for training the classifier, then an accuracy value of
96.90% is obtained from the resultant confusion matrix.

In [95], an automatic segmentation and classification
approach is applied to segment and classify human intestinal
protozoa in feces. Due to the fact that most parasites are ellip-
tical, the image segmentation step aims to locate candidate
objects by ellipse matching and to define their spatial extent
using image foresting transform technique (IFT), before IFT,
image are enhanced by a Sobel gradient operator for an
IFT- based object delineation. Then features are extracted
and used to train and evaluate the optical path forest (OPF)
classifier. In the experiments, 793 2D images containing
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112 intestinal parasites and about 5142 impurities are used.
Finally the segmentation accuracy of 98.22% is achieved.

An approach for segmentation and classification of bacte-
ria is presented in [96].Where, image patches containing only
bacteria (foreground) of different species and others contain-
ing background with respective labels are used for training
and testing a convolutional deep belief network (CDBN).
CDBN is trained to obtain features for the preprocessed
patches. Then a patch-level SVM model is trained to predict
background or foreground, for the patches represented by
the features resulted from training the CDBN. CDBN uses
max pooling of size 2x2 which is small to make the model
less sensitive to small shifts. Finally, patches detected as
foreground are used to train and test the convolutional neural
network (CNN) for classification. 862 images of size 128 ×
128 pixels are used. The results of CNN are compared with
k-NN and SVM (k-NN and SVM use SIFT features). The
CNN outperforms the two other classification approaches
with an accuracy of 62.10%.

In [97], two approaches for segmentation of TB bacteria
from ZN stained samples are introduced. Feature vectors
depicting 18 attributes for each pixel of the TB bacilli in the
images, are applied to least mean square (LMS) and reduced
rank with eigen decomposition algorithms separately, for
segmentation. In the experiments, 80 RGBZN stained images
used. One image of size 684× 912 pixels is used for training
and 79 images of size 2736 × 3648 pixels are used for
testing. The results of LMS and reduced rank algorithms are
compared with segmentation results of classical methods and
the proposed methods outperform with recall of 93.54% and
93.56% for LMS and reduced rank, respectively.

In [98], in order to overcome the problem of low number of
dataset and noisy images of environmental microorganisms
(EM), a weakly supervised learning system is proposed for
segmentation and classification. Sparse coding method is
applied for segmentation and feature extraction. It first learns
a set of bases from random image patches, where each base
represents a characteristic patch pattern. An image is then
represented by a sparse linear combination of these bases,
which captures high-level features of the image, and converts
raw pixel values into an effective region-based representa-
tion (This resolves the shortage of less training images).
Then the classification is accomplished using region based
support vector machine (RBSVM) and finally late fusion is
done to optimize classification results. In the experiments,
20 images which are taken from each of 15 classes of envi-
ronmental microorganisms are used (example of classes are
Actinophrys, Arcella, Codosiga, Colpoda, Paramecium and
Vorticella). The proposed method for feature extraction and
classification (NNSC and RBSVM) is compared with, bag
of visual word features (BoVW) and linear SVM, the result
of the proposed combination is more robust. Under the same
context in [30], the DeepLab-VGG16 model is trained with
EM images to generate pixel level features and global fea-
tures, then these features are used to train the random for-
est (RF) classifier, then trained RF classifiers (for each image

class) are used as the unary potentials by the conditional
random field (CRF) model. Finally together with the pair-
wise potentials, the CRF model is applied to localize and
label the objects of interest in the test environmental micro-
scopic images. In the experiments, images from 20 EMs are
used and 20 images are captured for each class. In order to
evaluate the segmentation results, the proposed method for
segmentation (local-global CRF) is compared with dense-
CRF, denseCRForg (which uses DeepLab-VGG16 for seg-
mentation) and full convolutional network (FCN). Finally the
proposed method outperforms with an average accuracy of
94.20%.

In [99], a segmentation system is designed to monitor
the algae in water bodies so as to get rid of harmful algal
bloom, where image enhancement (sharpening) is applied
first using multi-scale retinex filter, then SVM is trained
on three prominent spacial features for segmentation. These
features are mean and the standard deviation of all pixels on
a small blocks and frequency of different areas in the image,
which is calculated using wavelet transform technique. In the
experiments, 200 images are used for training the classifier
in which 100 images have algae only and other 100 have
background only. The images include three species of algae,
Anabaena, Aphanizomenon and Microcystic. The obtained
results present an average detection rate (accuracy) of over
95.00%.

To overcome the scarcity of dataset in segmentation of
bioimages, a CNN network is introduced in [100]. It is
based on FCN however, it has five convolutional layers using
PReLU, with onemax pooling layer attached to the first layer,
attached to the last layer is a deconvolutional layer, which
upsamples the feature maps before it is given to a convsoft-
max layer. The use of trainable deconvolutional layer enables
segmentation accuracy of 97.30% on few tested dataset of
C.elegans. To evaluate the performance of the proposed net-
work, 76 notarized RGB images of size 501×501 pixels, with
their corresponding binary ground truth are used for training,
19 for validation and 2 images for testing.

In [101], an automatic segmentation system is introduced
to segment Chaetoceros marine phytoplankton, where pixel
wise features are extracted using gray scale surface direction
angle model (GSDAM), then segmentation is done using
these features on a SVM. In the experiments, RGB images
containing different species of Chaetoceros are used and the
results are visually evaluated as in Fig. 16.

To enable classification of different stages of plasmod-
ium vivax infected blood cells in [102], an object detection
framework faster region-based convolutional neural network
(Faster R-CNN) is used to detect objects red blood cell (RBC)
vs non-RBC, by forming the bounding boxes. Then non-RBC
objects are fed into AlexNet to classify them into seven
categories (RBC, leukocyte, gametocyte, ring, trophozoite,
and schizont). During experiments, 1300 RGB images of size
448× 448 pixels are used for training, validation and testing.
Comparing with human annotators, the proposed method
achieves an accuracy of 98.00%.
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FIGURE 16. (a)–(d) Original Chaetoceros images. (e)–(h) segmented
images after support vector machines and (i)–(l) the final segmentation
results [101].

For successful segmentation of yeast cells in poor contrast
and low illumination images captured from live cells in [103],
a SegNet based neural network is deployed. In contrast to the
original SegNet [36], the architecture input shape size used
is 64 × 64 × 1. To improve segmentation results training
images are captured at different fluorescent modalities (DIC
only, DIC 488 and DIC 561nm). In the experiments, 6000 2D
image patches each containing single yeast cell are used for
training while 1200, 1200 image patches are used for testing
and validation. The result of 71.72%mean Intersection Union
is obtained.

A fully convolutional network (FCN) is applied on iden-
tification of feline calicivirus in [104]. By varying the filter
size of the first layer in 3×3, 5×5, 7×7, 9×9, and 11×11
size, the optimal size for better performance is found to be
7 × 7. The performance of FCN is improved monotonically
with the increased filter size. However, larger filter sizes
make the analyzed region narrower due to the characteristic
of convolutional computation. The network is evaluated using
18 images of pixel size 128 × 128 for training and 17 for
validation. The proposed FCN achieves results of 99.70%
recall.

U-net based model is deployed in [105] to segment leish-
mania parasite. High-class imbalance in dataset is tackled by
using generalized dice loss as loss function and adoption of
two stage non uniform sampling scheme to select training
patches. The network is first trained during some epochs
(40 epochs) using patches that contain at least 40.00% of
pixels from any of the three parasite classes (promastigote,
amastigote, or adhered), then uniform sampling of all patches
is used for the following epochs. From 45 dataset of size

224 × 224 pixels, 37 images are used for training. Results
of 82.30% recall is achieved.

In [106], different segmentation methods are applied on
extraction of objects from low contrast urine microscopic
images, appliedmethods are unsupervisedmethod (Sauvola’s
method as a key component), U-net method, unsupervised
with edge thresholding, U-net with edge thresholding. In the
experiments, 329 urine sample images are used. These images
contain different types of urine objects such are bacteria,
crystal, cast, epithelial cell, red blood cells, white blood cells
and yeast. For training theU-net model, 4150masks (patches)
of size 64 × 64 pixels are manually generated from these
329 images.

In [107], a pyramid scene parsing (PSP) network (built on
ResNet model) is applied in bacterial colony segmentation.
To enlarge the receptive field of the network a set of dilated
convolutions replaces standard convolutions in the ResNet
part of the network. Then, a pyramid pooling module is used
to gather context information, followed by both an upsam-
pling and a concatenation layer, to form the final feature
representation. During performance evaluation, 324 images
of microbial Haemolysis are used, in which 221 images are
used for training and 103 for testing the network. Finally,
the segmentation accuracy above 98.00% is achieved.

A segmentation system for monitoring floc and filaments
of activated sludge from phase contrast images is introduced
in [108], where RGB to gray scale conversion is applied first,
followed Gaussian low filter and finally segmentation is done
using phase stretch transform (PST). With PST, image is
converted to frequency (phase) domain by performing 2D
fast Fourier transform (FFT), then to extract edges, phase
image is binarized using one-level thresholding, the output
is obtained by 2D IFFT. During experiments, 61 RGB phase
contrast microscopic images of size 1224× 960 pixels, taken
from samples of water treatment plants are used. The pro-
posed algorithm exhibits segmentation performance with an
accuracy of 99.74%.

In [109], a convolution neural network based segmenta-
tion system is used to tackle the problem of insufficient
dataset, where, augmentation is performed at angles 0, 90,
180, 270 degree to increase the datasets for training a U-net
model. In order to train the model with the minimal annotated
data, it is modified to use Dice coefficient as the loss function.
In the experiments, 95 training images of rift valley virus
are augmented by rotations and mirroring which resulted
in 760 images. The images are of size 508×508 pixels.
Finally the proposed CNN achieves the results of 90.00%
dice score. Fig. 17 shows the proposed U-Net based CNN
architecture.

In order to be able to segment protozoa image automati-
cally, a region based convolutional model is proposed in [29].
In this approach segmentation is done using ResNet50 model
and feature pyramid network (FPN) to produce segmentation
masks then RetinaNet is used to identify species of protozoa.
In the experiments, 38 images are used for training and
31 for testing (resolution of images vary from 824 × 941 to
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FIGURE 17. The U-Net-based CNN architecture [109].

FIGURE 18. The architecture of FPN segmentation network with
ResNet50 as the backbone [29].

4086 × 1725 pixels) and augmentation is used to increase
the dataset by rotating images at intervals of 10 degree about
the center of bounding boxes of protozoa images. Example of
protozoa classes which are used for testing are Giardia lam-
blia, Iodamoeba and Butschilii. Evaluation of the proposed
segmentation method is done using mAP which is the combi-
nation of precision and recall and maximum of 89.00% mAP
is achieved. Fig. 18 shows the segmentation network.

B. UNSUPERVISED MACHINE LEARNING (USML)
In [110] a semi-automatic segmentation scheme for bacteria
which takes into account each color separately is presented,
where first RGB color separation is performed, then each
color channel is converted to gray image and finally each
color channel is segmented separately using adaptive neigh-
borhood similarity comparison (spatial distance between
each image pixel and its nearest point). In the experiments,

FIGURE 19. SOTM segmentation results, (a) original slice,
(b) segmentation results when bxy = 0.01, (c) segmentation results when
bxy = 0.02, (d) segmentation results when bxy = 0.1 [111].

16 RGB images containing different kind of bacteria are
used. Average accuracy of 96.70% is achieved in finding the
foreground objects of interest from all channels separately.

A self organizing tree map (SOTM) network is used to
segment biofilms images so as to get insight of the internal
parameters of the microbial in [111]. A set of features of 2D
sample images are defined. These features are gray level (GL)
of individual pixels, average gray level of a disk shaped
region (GLdsk), phase congruency (PC) and position (XY)
coordinates. The experiment is done in three different phases
by changing criteria, first the network is allowed to grow to its
maximumnumber of neurons up to 64, and by adding features
one by one. Secondly, only XY features are varied where
others are kept constant. Lastly dynamic features changes are
allowed. The results show that few neurons are detected to
represent the background and generally the results suggest
that the SOTM can adaptively warp its topology into forms
that reflect the type of segmentations typical to the human
visual system. Fig. 19 shows the segmentation results by
varying XY features.

In [112], a segmentation system to identify individual C.
elgans from clusters of worms is presented, where segmen-
tation of clusters from image is done first, by local adaptive
thresholding and morphological opening followed by water-
shed segmentation and extensive merging. Then probabilistic
model which is based on single worm to cluster area ratio
and predefined path model, is applied to identify worms
from clusters. In the experiments, 56 images each containing
approximately 15 worms are used. The segmentation results
are shown in Fig. 20.
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FIGURE 20. Cluster and single worms segmentation results of four
sample images [112].

In [113], segmentation approach is proposed to segment
TB bacilli from stained tissue images, where C-Y colormodel
is used because of better mapping for luminance. Thus, Green
and Ry channels of RGB and C-Y models respectively, are
applied to moving k-mean clustering for initial segmentation
(since bacilli are most highlighted and can clearly be seen
in the green component of RGB and Ry component of C-Y
color model), later a mean filter followed by region growing
method are applied for fine segmentation. In the experiments,
30 to 50 RGB images from 25 tissue slides of TB positive
samples are used and all images are further, categorized as
normal, under-stained and over-stained images depending
on the staining. The results of moving k-mean clustering
above are used in [114] where, after segmentation median
filter is used for denoising before Zemike moments features
to be extracted, then classification takes place using hybrid
multilayered perception network for detection of the bacilli.
Finally the detection accuracy, sensitivity and specificity of
97.58%, 100% and 95.24% are obtained, respectively.
Plasmodium vivax segmentation system is proposed

in [115], where the RGB to CMYk color conversion is per-
formed and from this only C channel is selected as it is
found that CMYk can give better presentation of the par-
asite in blood smear, then filtering is performed which is
followed by segmentation using modified fuzzy divergence
method which is based on Cauchy membership function, and
capable of thresholding images with no distinct histogram
valleys between background and foreground. Finally RGB
color reconstruction is done to get the segmented RGB image.
In the experiments, 150 RGB image frames of size 2048 ×
1536 pixels captured from stained blood smears containing

FIGURE 21. Fuzzy divergence based segmentation ( [115]).

FIGURE 22. Top part of the figure shows the original images and down
part of the figure shows segmented malaria parasites from rest of the
background using fuzzy divergence method [115].

Plasmodium vivax are used. The flow chart for segmentation
algorithm is shown in Fig. 21 and segmentation results are
shown in Fig. 22.
In [116], evaluation of clustering and threshold segmen-

tation techniques on tissue images containing TB bacilli is
presented, where the performance of three clustering algo-
rithms namely k-mean clustering, moving k-mean clustering
and fuzzy c-mean clustering, and two adaptive thresholding
algorithms, Otsu and iterative thresholding, are evaluated.
100 RGB images of TB positive sample tissues are used.
These images are taken from variety of stained conditions
termed as good, understained and overstained, then they are
converted to C-Y color mode, and the saturation component
is utilized as input to these algorithms, because it provides
good separation between the TB bacilli and the background.
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The achieved results show that k-mean clustering (k = 3)
outperforms other methods with an accuracy of 99.49%.

In order to increase segmentation performance of microbe
from bright field microscopic images, two approaches are
evaluated on the use of condition random fields (CRF) tech-
nique before pixel wise classification (tree based Gaussian
process classifier) stage in segmentation pipeline in [117].
First approach uses mean shift as unsupervised method, fol-
lowed by pixel wise classifier decision (tree based Gaussian
process classifier). Second approach uses extracted features
and applies them on probabilistic Parzen classifier, followed
by tree based Gaussian process classifier. In the experiments,
RGB images of microbes are used, in which each image
contains 40-470 microbes among the following Bacillus sub-
tilis, Escberichia coli, Micrococcus luteus, Staphylococcus
epidermidis and yeast. The obtained results show that both
approaches increase performance with the use of CRF with
an average accuracy of 80.00%.

In [118], a segmentation system of pulmonary tuberculosis
bacteria is introduced. First, the image is resized to n × n
square matrix, then it is divided into small square patches
finally each patch is independently segmented using k-mean
clustering and the results are stored in dictionary, then recon-
struction of the segmented image is done from segmented
patches. Images patches are used to avoid local minima prob-
lem which mostly face k-mean clustering. To evaluate the
performance of the proposed method, 400 RGB images of
size 640 × 360 pixels are used. Finally the segmentation
accuracy of 97.68% is achieved.

In [119], segmentation and classification algorithm is
applied so as to automate the TB diagnosis process. Segmen-
tation is performed using fuzzy local information c-means
(FLICM) clustering. FLICM is derived from fuzzy c-means
clustering and it is an efficient algorithm, which is more
robust to noise parameters (corrupted pixels) within an image,
using its objective function, thus no any preprocessing is
needed. After segmentation, features are extracted using Hu
moments and SIFT algorithm and finally classification is
done using least square support vector machines (LSSVM).
In the experiments, 299 images (512 × 512 pixels) captured
from ZN stained sputum under digital microscope are used.
The results of 95.10% accuracy, is achieve for segmentation.

A segmentation system capable of segmenting 3D images
containing bacteria biofilms is introduced in [120], where in
order to identify and segment the individual bacteria in 3D,
each layer of 3D image is segmented differently using Bact-
3D algorithm and finally reconstruct the segmented 3D vol-
ume as shown in Fig. 23. The performance of the proposed
algorithm, is tested using 3D biofilm images and an accuracy
of 99.81% is obtained.

In [121], an automatic segmentation method is used to
detect malaria parasites from stained blood smears containing
four types of Plasmodium (falciparum, malariae, ovale and
vivax). The algorithm uses green channel which is dominant
channel for plasmodium in RGB image, then Gamma corre-
lation is applied for image enhancement, followed by noise

FIGURE 23. Flow chart of Bact-3D algorithm [120].

removal by Gaussian filter, then edge enhancement and fuzzy
c-means clustering are applied for segmentation. The final
segmentation results achieve an accuracy of 98.26%.

In order to effectively segment TB bacteria from micro-
scopic images of sputum samples, a clustering based method
is presented in [122]. Where an improved fuzzy local infor-
mation c-means (IFLICM) clustering, is used for segmenta-
tion. IFICM is capable to combine both local spatial and local
gray level information in a fuzzy way to preserve robustness
and noise insensitiveness. It manages the effect of neigh-
borhood pixels depending on their distance from the central
pixel. It is derived and improved from fast generalized fuzzy
c-means and fuzzy c-means algorithms. During experiments,
99 RGB images of ZN stained bacilli are used in which, 29 of
them are resized into 512×512 pixels and used for training the
system and 70 images are used for testing. The performance
accuracy of 96.05% is achieved.

Although, to the best of our knowledge, generative adver-
sarial networks (GANs) have never been applied directly to
segmentation of microorganisms, they show great potential
in enhancing segmentation of microscopic images, which
share similar characteristics and segmentation challenges as
microorganisms. Such as segmentation of prostate cancer
cells from low contrast images and synthesis of more dataset
to tackle the challenge of scarcity in dataset, especially
in deep learning related segmentation methods [28], [123].
Thus, a brief overview on GANs with related works is given
in Sec. IV-D.

C. SUMMARY OF MACHINE LEARNING METHODS
A summary of machine learning based methods investigated
in this review is given in Table 2. It indicates, specific seg-
mentation techniques and datasets (types, species, amount
and their related application fields) from each investigated
work. To evaluate the significance of the applied technique
on the datasets, experimental results are also indicated (in
accuracy or other metrics, if accuracy in not applicable).
General assessment shows that, most of the applied methods
have achieved accuracy higher than 80%. Thus, they set a
light to related researchers on the most suitable, recent and
applicable techniques for segmentation of microorganisms.
Furthermore, it can be observed that, the most frequent used
methods are supervised learning methods especially neural
network based models. This is because with neural network
models significant hierarchical relationships within data can
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be discovered algorithmically without laborious hand craft
features. A detail analysis is given in Sec. IV-B on the most
frequently used techniques and their advantages to specific
segmentation challenges on microorganism images.

IV. METHODOLOGY ANALYSIS
Many techniques have been applied in segmentation of
microoganisms, however, some have emerged to be more
prominent than others in both classical and machine learning
based methods as discussed in subsections below.

A. ANALYSIS ON CLASSICAL METHODS
In classical methods, as observed in Table. 1, threshold based
segmentation (TBS) methods are the most frequently used
techniques, this is because threshold based segmentation has
many alternatives such as global, multithreshold, Otsu and
adaptive thresholding. This accounts for it being suitable for
many different segmentation challenges present in microor-
ganism images. For example, most of microscopic images
have uneven illumination on the backgrounds due to the
nature of environments where microorganisms are found,
under this case adaptive and multithreshold techniques are
suitable (adaptive thresholding uses different threshold values
for different local areas on image) [38].

Low (poor) contrast ratio between background and fore-
ground, is also a big challenge faced in microorgan-
ism images [55], in which histogram of images have no
clear defined valley point for thresholding. This challenge
mostly appears to images from conventional light micro-
scopes which are commonly used in many third world
countries [40], [45], however, this can be resolved using iter-
ative thresholding [124], wavelet transform [55] and color
based thresholding. A clear example can be seen in [45]
where color and global adaptive thresholding are used to
threshold low contrast image from conventional microscope.
In most cases when staining is applied to the tested sample
then capturing images, the foreground and background are
sufficiently distinct, in this case global, histogram based and
Otsu thresholds are suitable for segmentation. For exam-
ple in [43] Otsu thresholding is applied on stained sample
images, in [56] and [48] global thresholding is applied on
stained sample images.

Moreover, threshold based techniques are the easiest meth-
ods to implement. This is why they are mostly used [125].
Furthermore, they don’t require many datasets, thus suitable
for segmentation of medical related microorganisms where
confidentiality leads to scarcity of dataset [45], [46], [55].
On top of that, threshold based methods have simple algo-
rithms which can be run by low speed computers and are
incorporated in software libraries which can be utilized by
almost all common programming languages and platforms,
such as python and Matlab, contrary to many machine
learning models which need high speeds, high number of
dataset and can run well only in some special IDEs. For
example in [43], [52], [59] Matlab is used during experi-
ments. Additionally, threshold segmentation techniques are

generally inexpensive and computationally faster [126]. All
these make threshold based methods being suitable for most
of segmentation challenges in microorganism images.

B. ANALYSIS ON MACHINE LEARNING BASED METHODS
In machine learning based methods as illustrated in Table. 2,
supervised machine learning (SML) methods are the most
frequently used ones, especially in recent years they have
emerged to be very prominent. Among machine learning
methods, neural network related methods are the most fre-
quently used, this is because, with neural network, sig-
nificant hierarchical relationships within the data can be
discovered algorithmically without laborious hand crafted
features [127], thus it is easier to apply them for segmentation
than other machine learning methods like SVM, which need
prior hand crafted features. Moreover, because of the recent
innovation of high speed computers which can handle bulk
dataset and complex neural network algorithms (as seen from
table 2, that most of the deep learning based techniques have
been applied in recent years 2015–2018).

Neural network based models are non linear models which
are able to capture non-linear and complex underlying char-
acteristics of images with high degree of accuracy, this
gives them capability to handle most of segmentation chal-
lenges in microorganism images such as, uneven illumina-
tion, poor contrast and non uniform undesired small features
on microorganim images [81], [103], [106].

Another challenge on microorganim images is scarcity
of dataset. However, with augmentation technique enough
dataset can be generated from few present dataset and applied
to neural network models for better segmentation results,
for example in [109] and [29] augmentation is applied to
increase the dataset for training. Moreover, the application
of transfer learning has boosted the use of neural network
models in the segmentation of microorganisms, for example
the application of transfer learning can be seen in [30] where
VGG-16 model is used, in [29] where ResNet50 model is
used and in [106], [109], where U-net model is used for seg-
mentation. Therefore, many of the recent works are focusing
on application of neural networks.

C. POTENTIAL RELATED FIELDS FOR APPLICATIONS OF
SIMILAR SEGMENTATION METHODS
Segmentation techniques discussed in this paper are not
only suitable for microorganism images, but find appli-
cation in other related fields such as, in sperm cell seg-
mentation and detection. Sperm cell microscopic images
share many similar segmentation challenges with microor-
ganism images including, poor contrast and small size of
the foreground related to background. Therefore, same seg-
mentation techniques can be applied in both tasks. Partic-
ular examples are, identification of acrosome and nucleus
in sperm cells [128], identification of bovine sperm head
for morphometry analysis in quantitative phase contrast
holographic [129], low contrast sperm tracking [130] and rat
sperm image segmentation and counting [131]. Moreover,
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TABLE 2. Summary of reviewed works on machine learning based methods (supervised machine learning (SML), unsupervised machine learning (USML),
used dataset type, dataset application field and quantity which include class (C), Total (T), training (Tr), validation (V), test (Te), postive (P), negative (N)).

the discussed segmentation techniques find potential appli-
cation in cytopathology and histopathology images when
image segmentation is done under cellular level. As these
images share some similar characteristics and segmenta-
tion challenges with microorganisms such as, overlapping of
cells, poor contrast for non stained sample images, super-
position of different colors due to unideal distribution of

stains on the reaction regions and variation of illumina-
tion over the background. Specific examples are, cluster
detection in cytology images [132], automatic screening of
cytological specimens [133], breast cancer detection and
diagnosis [134], [135], segmentation of epithelial cervical
cells in images [136], image segmentation of overlapping
cervical cells [137], image guided fine needle aspiration
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of retroperitoneal masses [138], segmentation of cervical
and breast clustered cells from histopathology images [139],
detection of mitosis and karyorrhexis cells in digitized histo-
logical images in prognosis of neuroblastoma [140], segmen-
tation of immunohistochemical tissue images [141], nucleus
discrimination in microscopy images of diffuse glioma [142]
and segmentation of clustered nuclei from bone marrow
and peripheral blood specimens images to perform a non-
isotopic in situ hybridization of their DNA content [143].

D. OTHER POTENTIAL METHODS FOR SEGMENTATION OF
MICROORGANIMS
Generative adversarial networks (GANs) based segmenta-
tion methods have shown a great potential in segmentation
of microscopic images, which share similar segmentation
characteristics as microorganisms. GAN is a machine learn-
ing network having two models which work in adversarial
manner [144]. It is composed of a generative model that
captures the data distribution and a discriminative model
that estimates the probability that a sample came from train-
ing data rather than generator [144]. The generative network
training objective is to increase the error rate of the dis-
criminative network [145]. The architectural constraints of
GANs have demonstrated that they are strong candidates for
unsupervised learning. In the context of unsupervised learn-
ing, generative adversarial network (GAN) can be trained
on unlimited amount of unlabelled images to learn their
intermediate representations [146]. Incorporating them into
image segmentation tasks for microscopic images, has shown
great improvement in segmentation results. Some successful
applications of GANs to microscopic images segmentation
tasks are briefly introduced below:

Motivated by the fact that, image translation shown by
GAN loss can improve the blurred quality of image to image
translation generated by U-net [27], a dual contour adversar-
ial network (DCANet) is used for segmentation of nucleii
from pathological images of cancer tissue in [147]. In this
network, a generator deploys two decoding lineswhich gener-
ate two image masks with different boundary transformation,
then both images are post-processed using maker watershed
before combining them to form a segmented image. Compar-
ing with linkNet, FnsNet and Pix2Pix on segmentation of the
same dataset, the proposedmethod outperformswith F1 score
of 70.00%.

A deep adversarial network for biomedical image segmen-
tation (utilizing unannotated images) is applied on stained
colon tissue images [148], for glands segmentation. An eval-
uation convolution network (VGG-16 model) is encouraged
to distinguish between segmentation results of unannotated
images and annotated ones (by giving them different scores).
While a segmentation network is encouraged to produce
segmentation results of unannotated images such that eval-
uation network cannot distinguish them from the annotated
ones.

In [28], a GAN is used in synthesizing data for aggres-
sive prostate cancer detection, to tackle the scarcity of

data set for training the fully convolutional network (FCN).
The generator of GAN consists of theU-net-type architecture.
It uses InsanceNorm layers instead of BatchNorm layers,
conjecturing that it avoids harmful stochasticity introduced
by small batch-sizes. The discriminator is similar to encoder
of the generator. A sensitivity of 98.00% is achieved in seg-
mentation.

A convolutional network which works in the principle of
GAN is applied to segment proteomics of individual can-
cer cells in [149]. Unlike the original GAN, this network
doesn’t generate images from random noise vectors, rather
estimates the underlying variables of an image. The estimator
learns to output some segmentation of the image while the
discriminator learns to distinguish between expert manual
segmentations and estimated segmentations given the asso-
ciated image. (The estimator net is a five layer fully CNN,
each layer is constructed of a convolution followed by batch
normalization and leaky-ReLU activation. The discriminator
is designed as three consecutive ‘‘Rib Cage’’ blocks followed
by two fully-connected (FC) layers with leaky-ReLU acti-
vations and a final FC layer with one output and a sigmoid
activation for classification). With this network the loss func-
tion is automatically defined as it is learned along side the
estimator, making this a simple to use algorithm with no
tuning necessity and it is robust to low number of training
samples. The final segmentation result of 89.90% precision
is achieved.

Generally, similar approaches based on GANs can be
applied in segmentation of microorganisms. Since they share
some similar segmentation challenges with cancer cells, such
as uneven illumination of backgrounds which are the results
of poor staining of samples [26], [147], poor contrast [123]
and scarcity of dataset [28].

V. CONCLUSION AND FUTURE WORK
In this review, an overview on microorganism image seg-
mentation approaches is given, where they are grouped into
classical and machine learning based methods. Furthermore,
they are subcategoried into threshold, region and edge based
methods which belong to classical methods, supervised and
unsupervised methods which belong to machine learning
based methods. In each of the subcategories, related works
are reviewed in an ascending time line. From classical review
works in Sec. II and subsequent analysis in Sec. IV-A, it is
found that threshold based methods are the most frequently
used among all classical methods due to their suitability
to many segmentation challenges in microorganim images
as highlighted in Sec. IV. Among machine learning based
methods whose related works and corresponding analysis are
discussed in Sec. III and IV-A, supervised learning methods
particularly neural network based methods, are the most fre-
quently applied ones and have shown abrupt increase of their
applications since 2015. This is due to, their suitability to
many microorganism segmentation challenges and ability to
capture significant relationship within images without labo-
rious hand crafted features.
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TABLE 3. Related reviewed works, categories, subcategories and publication year. Categories are classical and machine learning (ML). Subcategories are
threshold based segmentation (TBS), region based segmentation (RBS), edge based segmentation (EBS), supervised machine learning (SML),
unsupervised machine learning (USML).
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TABLE 3. (Continued.) Related reviewed works, categories, subcategories and publication year. Categories are classical and machine learning (ML).
Subcategories are threshold based segmentation (TBS), region based segmentation (RBS), edge based segmentation (EBS), supervised machine learning
(SML), unsupervised machine learning (USML).

Thus, from the technical capability analysis and develop-
ment trend of image segmentation techniques on microor-
ganisms, we suppose the on going application of the dis-
cussed segmentation methods especially the most frequently
used ones (particularly neural network based models, self
built and by transfer learning) not only to microorganism
images but also in other related fields such as cervical cancer
cells segmentation, sperm cell segmentation, cytopathology
and histopathology image segmentation which share similar
image characteristics.

APPENDIX
GENERAL OVERVIEW OF APPLIED METHODS FOR
SEGMENTATION OF MICROORGANISMS, LISTED
CHRONOLOGICALLY
See Table. 3.
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