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High-Efficiency Video Coding provides a better compression ratio compared to earlier standard, H.264/Advanced Video Coding.
In fact, HEVC saves 50% bit rate compared to H.264/AVC for the same subjective quality. )is improvement is notably obtained
through the hierarchical quadtree structured Coding Unit. However, the computational complexity significantly increases due to
the full search Rate-Distortion Optimization, which allows reaching the optimal Coding Tree Unit partition. Despite the many
speedup algorithms developed in the literature, the HEVC encoding complexity still remains a crucial problem in video coding
field. Towards this goal, we propose in this paper a deep learning model-based fast mode decision algorithm for HEVC intermode.
Firstly, we provide a deep insight overview of the proposed CNN-LSTM, which plays a kernel and pivotal role in this contribution,
thus predicting the CU splitting and reducing the HEVC encoding complexity. Secondly, a large training and inference dataset for
HEVC intercoding was investigated to train and test the proposed deep framework. Based on this framework, the temporal
correlation of the CU partition for each video frame is solved by the LSTM network. Numerical results prove that the proposed
CNN-LSTM scheme reduces the encoding complexity by 58.60% with an increase in the BD rate of 1.78% and a decrease in the
BD-PSNR of -0.053 dB. Compared to the related works, the proposed scheme has achieved a best compromise between RD
performance and complexity reduction, as proven by experimental results.

1. Introduction

Nowadays, there is the emerging technology of new gen-
eration digital media and the rapid development of multi-
media applications, such as HD and UHD surveillance
camera applications in smart city, and the speedy growth of
the smart connected devices (IoT) that stream video in a
real-time manner. )us, its popularity has drawn attention
from both industry and the academic community. However,
computational devices capacity, such as CPU and GPU, and
memory capacities have been challenged by the dramatically
increasing multimedia data. In this context, video content
growth made an urgent requirement for an efficient coding
technology that can support this technological outbreak and
avoid performance degradation while maintaining a high
quality level.

High-Efficiency Video Coding (HEVC) is the sophisti-
cated video coding standard, also known as H.265, stan-
dardized in 2013 [1]. Compared to the Advanced Video
Coding H.264/AVC standard, HEVC saves 50% bit rate for
the same subjective quality [2]. HEVC adopts a flexible
hierarchical structure, called quadtree, which includes
Coding Unit (CU), Prediction Unit (PU), and Transform
Unit (TU) [3]. In this regard, the basic coding structure is the
Coding Tree Unit (CTU). )e CTU size that ranges from
64× 64 to 8× 8 can be divided into several CUs of different
sizes from 64× 64 with a depth of 0 to 8× 8 with a depth of 3.
Figure 1 illustrates the structure of the hierarchical quadtree.

In addition, HEVC offers two partition modes: intra-
coding and intercoding units. In fact, the intercoding is the
most critical module in HEVC due to its computational
complexity when searching the optimal prediction mode. In
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order to find the best CU depth, the exhaustive search in
each CTU continues until the minimum possible CU size is
reached. )e latter is known as Rate-Distortion Optimiza-
tion (RDO). In HEVC, the RDO is computed from all
possible depth levels, in which the best CU modes are de-
termined via the RDO minimum. Due to the full RDO
search, the HEVC computational complexity has consid-
erably increased, making compression speed a crucial
problem in HEVC implementation.)erefore, it is necessary
to reduce the intercoding HEVC complexity.

To this end, recent researches have been proposed to
reduce coding complexity while reducing RD performance.
)ese researches are based on either classic or deep learning
techniques [4–9]. In [4], a fast method-based early CU
termination and search range adjustment is proposed by Tai
et al. to optimize the encoding efficiency. In the same way,
the authors in [5] have developed a fast scheme for HEVC
intermode using motion vector information, which aims to
accelerate computational complexity. On the other hand, the
past few years have seen the success of deep learning
technology in many application areas, where video coding
has achieved favorable outcome [6, 7]. For HEVC intra-
coding, Chen et al. [8] suggested a fast-learned algorithm-
based asymmetric kernel CNN. )is approach has achieved
better encoding efficiency, as demonstrated by the experi-
mental results. Regarding the intercoding, the authors in [9]
developed amachine learning tool in order to predict the CU
mode partition, which provides a good tradeoff between
encoding time and RD performance. All these approaches
did not model the temporal correlation in video frames at
intercoding.

In this light, this paper proposes a deep learning tool that
reduces HEVC complexity in terms of encoding time and
RD performances. )e main contribution consists of a
structural combination between the CNN and the LSTM
networks. )e former is proposed to predict CU splitting
and to reduce the performance of HEVC encoding. In
HEVC intercoding, there are long-term and short-term
dependencies of the intercoding CU splitting between
neighboring video frames. Unfortunately, the deep CNN
does not explore this temporal correlation; for these reasons,

the LSTM network must be in place. )at is how the CNN-
LSTM-based learning approach is proposed, which predicts
the intercoding CU partition, instead of the classical RDO
search.

)e remainder of this paper is structured as follows:
Section 2 introduces an overview including deep learning
algorithms in video coding and the heuristic methods. )e
proposed scheme is presented in Section 3, for reducing the
HEVC complexity at interprediction. Section 4 shows the
experimental results, while Section 5 concludes this paper.

2. Related Work Overview

To optimize the HEVC coding efficiency, fast methods have
been suggested for reducing the HEVC complexity caused by
the quadtree partition. )ese fast methods can be summa-
rized into two classes: heuristic approaches and machine-
learning-based schemes [10–21].

In heuristic approaches, some fast CU decision schemes
have been developed to simplify the RDO process towards
reducing HEVC complexity [10–15]. For example, Cho and
Kim [10] proposed a Bayesian rule-based fast CU partition
and pruning algorithm. With regard to HEVC intercoding,
Shen et al. in [11] developed a fast intercoding decision
scheme using interlevel and spatiotemporal correlations in
which the motion vector, RD cost, and prediction mode
were found to be strongly correlated. To reduce the HEVC
complexity, a fast CU partitioning and mode decision
method using a look-ahead stage is proposed in [12]. )e
authors in [13] introduced a fast algorithm to split CUs at the
HEVC intercoding based on pyramid motion divergence. To
overcome encoding complexity for intercoding HEVC,
based on temporal and spatial correlation, a fast CU size
decision scheme is proposed by Zhang et al. in [14]. In
addition, the authors introduced in [15] an adaptive motion
search range method to reduce the HEVC encoding
efficiency.

On the other hand, the search of the optimal CU pre-
diction mode can be modeled as classification problem. In
this regard, researchers adopted learning-based methods in
classifying CU mode decision in order to reduce the
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Figure 1: Hierarchical quadtree partition.
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computational complexity [16–22]. Shen and Yu [16] pro-
posed a CU early termination algorithm for each level of the
quadtree CU partition based on weighted SVM. In addition,
a fast CU decision method based on fuzzy SVM is suggested
by Zhu et al. in [17] to enhance the coding efficiency. For
complexity reduction, in [18], the authors developed a
neural networks-based fast CU mode decision to predict the
split for intramode and intermode. Similarly, in [19], Xu
et al. suggested a hierarchical CU depth decision based on
the LSTM network, predicting HEVC CU splitting for H.264
to HEVC transcoding. Reinforcement learning (RL) and
deep RL are also adopted in video coding to learn a clas-
sification task and to find the optimal CU mode decision. In
[20], a CU early termination algorithm for HEVC was
developed using an end-to-end actor-critic RL to improve
the coding complexity.

For video coding, the similarity in video content is
shown by the adjacent frames in video sequence, which
decreases along with temporal distance between two images.
In this article, we develop an LSTM network to study the CU
partition correlation at intercoding. )is is because the deep
CNN proposed in [9] does not explore the temporal in-
formation of CU partition for each HEVC frame. )en, we
combine a CNN-LSTM learning scheme to predict the
intercoding CU splitting, which reduces the computational
complexity of HEVC [9].

3. Proposed Framework Based on
Deep Learning

In this section, we first start by awarding the intercoding
dataset needed for the model learning process. )en, we
introduce the proposed CNN-LSTM network-based scheme
to predict the intercoding CU partition for HEVC, thus
reducing the encoding complexity.

3.1. Database for the Intercoding. )e HEVC intermode CU
partition dataset has been created to learn the proposed
model. However, 114 video sequences are selected with
various resolutions (from 352× 240 to 2560×1600) [23–25]
to construct the database. )e latter is made up of three
labeled groups (sequences) including 86, 10, and 18 video
sequences for training, validation, and testing, respectively.
HEVC encoder is used to compress the database video se-
quences at four Quantization Parameters (QPs) {22, 27, 32,
37}, using the Low-Delay P (LDP) configuration [26]. To
provide more details, interested reader can refer to the
previous paper in [9].

3.2. CNN-LSTM Network. According to the correlation of
the HEVC CU splitting of adjacent frames, the proposed
scheme is introduced in this section. )e proposed LSTM
network learns the interframe temporal correlation for each
video sequence. In addition, the proposed algorithm that
combines CNN-LSTM is presented in Figure 2. )e deep
CNN is composed of three convolutional layers (Conv1,
Conv2, and Conv3), a concatenated vector, and a fully
connected layer. As presented in [9], the deep CNN

parameters are learned based on the ground truth and the
residual CTU, and then the extracted features (FC1−l)

3
l�1 of

the deep CNN are the input of the proposed LSTM network
at frame t. )ese features (FC1−l)

3
l�1 are extracted at the first

fully connected layer of the deep CNN.
We can see from Figure 2 that the architecture of the

LSTM is composed of three LSTM cells corresponding to
three levels splitting of each CU. Specifically, 􏽥F1(CU, t) at
level 1 indicates whether the 64× 64 size CU will be split into
32× 32 size sub-CUs or not. At level 2, 􏽥F2(CUi, t)􏼈 􏼉

3
i�0 and

􏽥F3(CUi,j, t)􏽮 􏽯
3
i,j�0 designate, respectively, the CPUs parti-

tioning labels from 32× 32 to 16×16 and from 16×16 to
8× 8. At each level, two fully connected layers, containing a
hidden layer and an output layer follow the LSTM cells. In
addition, the output features of the LSTM cells are denoted
by (FCl

′)3l�1 at frame t. However, the next-level LSTM cell is
activated to decide on the next four sub-CUs, if the CU of the
current level is split. Otherwise, the prediction on splitting
the current CU is terminated early. Finally, the predicted CU
partition of three levels is denoted by 􏽥F1(CU, t)

, 􏽥F2(CUi, t)􏼈 􏼉
3
i�0, and 􏽥F3(CUi,j, t)􏽮 􏽯

3
i,j�0 , as shown in Fig-

ure 2. )e ReLU and the sigmoid activation functions are
used to activate the hidden and the output layers, respec-
tively [27].

)e LSTMmodel learns the long short-term dependency
of the CTU depths when the CTU partition is predicted.
)en, the LSTM cell consists of three gates, as shown in
Figure 3: the input gate il(t), the forget gate fl (t), and the
output gate ol(t), respectively. At level l, FC1−l (t) represents
the deep CNN input features at frame t, and FC’

l(t − 1)

represents the output features of the LSTMmodel of frame t-
1. In equations (1), 2, and (3), these three gates are presented:

il(t) � σ( wi · FC1−l(t), FCl
′(t − 1)􏼂 􏼃 + bi, (1)

ol(t) � σ( wo · FC1−l(t), FCl
′(t − 1)􏼂 􏼃 + bo, (2)

fl(t) � σ( wf · FC1−l(t), FCl
′(t − 1)􏼂 􏼃 + bf, (3)

where the sigmoid function is denoted by σ (·). {wi, wo and
wf} are the weights and {bi, bo and bf} are the biases for the
three gates. At frame t, the state cl(t) of the LSTM cell can be
updated by
cl(t) � il(t) ∘ tanh( wc · FC1−l(t), FC

’
l(t − 1)􏽨 􏽩 + bc + fl(t) ∘ cl(t − 1).

(4)
)e element-wise product is designated by ∘. )e biases

and the weights for the state of the LSTM cell are wc and bc.
In the following, the LSTM cell output FCl

′(t) can be defined
in the following equation:

FCl
′(t) � ol(t) ∘ tanh cl(t)( 􏼁. (5)

3.3. Loss Function. In the training process, the training set of
the intercoding dataset is used to train the LSTM network,
where the trained model minimizes the loss function be-
tween the CTU partition prediction and the ground truth.
Figure 4 shows the learning process.)e Stochastic Gradient
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Descent (SGD) algorithm is considered to be the powerful
optimization algorithm to learn the network structure
through their feedforward and backward subprocess, where
the cross entropy is selected to be the cost function of the

gradient error calculator designated by Y (·, ·) in (6). At
frame t, the loss function Ln (t) for the n-th sample CU is
written as follows:

Ln(t) � Y F
n
1(CU, t), 􏽥F

n

1(CU, t)􏼐 􏼑 + 􏽘
i,j∈ 0,1,2,3{ }

Y F
n
2 CUi, t( 􏼁, 􏽥F

n

2 CUi, t( 􏼁􏼐 􏼑 + 􏽘
i,j∈ 0,1,2,3{ }

Y F
n
3 CUi,j, t􏼐 􏼑, 􏽥F

n

3 CUi,j, t􏼐 􏼑􏼐 􏼑.
(6)
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Figure 2: Proposed scheme framework.
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However, over N training samples alongside the
T-frames, the LSTM network can be learned by optimizing
the cost function.

L �
1

NT
􏽘

N

n�0
􏽐
T

t�0
Ln(t). (7)

4. Experimental Results

4.1. Experimental Setting. In this section, we present the ob-
tained results to validate the coding efficiency of the proposed
deep learning framework. Our experiments were performed in
the HM16.5 reference test model [26], which were tested on 18
JCT-VC videos from class A to class E with four QPs {22, 27, 32,
37}, using the LDP configuration. )e number of frames used
for each video sequence is 100. All implementations were ex-
ecuted on Windows 10 OS platform with Intel ®core TM i7-
3770 @ 3.4GHz CPU and 16GB RAM, in which the com-
pression efficiency of the proposed scheme is evaluated. To
accelerate the speed of the network model-training phase, we
also used the NVIDIA GeForce GTX 480 GPU, but it was not
used in theHEVCcomplexity reduction test. In the experiments,
the TensorFlow-GPU deep learning framework was used. )e
simulation parameters were defined as follows: batch size,
learning rate, and LSTM length (T) were set to 64, 0.001, and
T� 20, respectively. Finally, the trained model was saved to be
used after (in the framework), which aims to predict the
intercoding CU partition.

For the test, the LSTM model operates in stages; that is,
when the prediction of the CU partition at frame t-1 has been
completed, the state and the output of the frame t are computed.
To further enhance the RD performance and reduce the
intercoding computational complexity, the bithreshold decision
scheme was adopted at three levels. Note that the upper and the
lower thresholds at level l are represented by cl􏼈 􏼉

3
l�1 and cl􏼈 􏼉

3
l�1.

At three levels, the LSTM network provides the predicted CU
partition probability (Pl (CU)). Consequently, the CU decides
to be split only when Pl(CU)> cl. In this way, the HEVC
complexity is reduced considerably by skipping the most re-
dundant verification of the RD cost.

4.2. Evaluation Criteria. )e RD performance analysis is
performed based on the Bjøntegaard Delta rate (BD rate)
and the Bjøntegaard Delta Peak Signal-to-Noise Ratio (BD-

PSNR) [28]. )e BD rate represents the average bit rate
savings calculated between two RD curves for the same video
quality, where negative BD-rate values indicate actual bit
rate savings and positive values indicate how much the bit
rate is increased. BD-PSNR is the overall PSNR difference of
RD curves with the same bit rate in decibel, not forgetting
that the encoding time is modeled as the critical metric for
the validation performance of the HEVC at intermode, as
shown in the following equation:

ΔT �
TP − To

To

× 100(%), (8)

where Tp and To are the execution times of the proposed
approach and the original HEVC, respectively.

4.3. Simulations and Results Analysis. Table 1 demonstrates
the achieved results of the fast proposed scheme compared
to the original HEVC under LDP configuration in terms of
BD-PSNR, BD rate, and time saving, respectively. It can be
observed from this table that the results concerning com-
putational-complexity reduction are significant and reach
up to 75% for some sequences. As shown above, the pro-
posed scheme reduces the execution time on average by
58.60% with a maximum of 74.64% for class E, since the
activities displayed in these sequences are with low motion,
which leads to larger partitions. A minimum of 52.48% is
obtained in class C, since the video sequences in this class
have high motion and rich textures. )is clearly proves that
the proposed method can adapt well to video content with
low motion and gives higher speedup when compared with
original HEVC. Concerning the RD performance of our
approach, the BD rate is averagely 1.78% with negligible
decrease in BD-PSNR, around −0.053 dB, compared with
original HEVC. In summary, the proposed CNN-LSTM
model is better in terms of RD performance and HEVC
computational-complexity reduction.

Figure 5 gives the RD curves of the suggested approach
and the original HEVC for different video sequences with
ultra-high-definition sequence and the high-definition se-
quence, respectively. In this figure, the difference of RD
performance between the original HEVC and the proposed
algorithm is very small for all QPs. )is justifies that the
learning technique can well adapt to the different bit-rate
points for ultra-high-definition and high-definition videos.

Furthermore, Figure 6 reports the time saving of
“Traffic” (2560×1600) and “BasketballDrive” (1920×1080)
while varying QP. It can be noted that the encoding time
increases proportionally, while the QP value increases.
However, the proposed CNN-LSTMmodel outperforms the
original HEVC in terms of complexity reduction.

For further performance evaluation of the proposed
scheme, Table 2 shows the coding performance between the
proposed CNN-LSTM framework and the deep CNN [9].
)e proposed scheme CNN-LSTM is better than the deep
CNN in terms of computational complexity and BD-PSNR
performance. Specifically, the execution time of our method
is 58.60% on average, which exceeds 53.99% when using
CNN only [9]. On the other hand, the proposed approach

Inputs

Weight
optimizer

(SGD)

Error (loss
function)

LSTM

Ground
truth labels

Prediction
outputs

Figure 4: Learning process.
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can reduce the BD-PSNR performance by −0.053 dB, which
is better than −0.057 dB achieved by [9]. Furthermore, our
proposed approach has an average BD-rate performance of
1.78%, better than that of [9], 1.80%. In our experiments, we
note that the proposed deep learning achieves high HEVC

complexity reduction at intercoding, because it is able to
predict all the CU splitting of an entire CTU at the same
time. )e proposed algorithm also performs well in terms of
BD-PSNR performance, due to the high accuracy of the
predicted CU partition. Consequently, the learning scheme

Table 1: Simulation results of the proposed scheme versus original HEVC.

Class Sequence
CNN-LSTM versus Original HM

BD rate (%) BD-PSNR (dB) ΔT (%)

A (2560×1600) PeopleOnStreet 1.70 −0.017 −48.88
Traffic 1.53 −0.059 −66.38

Average class A 1.61 −0.038 −57.63

B (1920×1080)

Kimono 1.65 −0.052 −47.77
ParkScene 2.79 −0.081 −70.82
Cactus 1.73 −0.033 −53.85

BQTerrace 1.75 −0.030 −65.62
BasketballDrive 2.02 −0.045 −52.77

Average class B 1.98 −0.048 −58.16

C (832× 480)

BasketballDrill 1.67 −0.061 −48.23
BQMalls 1.38 −0.090 −48.07
PartyScene 0.96 −0.038 −59.30
RaceHorses 1.47 −0.055 −54.32

Average class C 1.37 −0.061 −52.48

D (416× 240)

BasketballPass 1.26 −0.056 −56.67
BQSquare 1.27 −0.046 −60.79

BlowingBubbles 0.97 −0.034 −50.14
RaceHorses 1.60 −0.018 −50.33

Average class D 1.27 −0.038 −54.48

E (1280× 720)
FourPeople 2.71 −0.071 −72.42
Johnny 2.46 −0.083 −73.59

KristenAndSara 2.93 −0.094 −74.91
Average class E 2.7 −0.082 −74.64
Average 1.78 −0.053 −58.60

Traffic_2560 × 1600

HEVC
Proposed algorithm
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Figure 5: RD curves of the proposed approach and the original HEVC.
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based on CNN-LSTM achieves a good compromise between
RD performance and coding complexity in order to predict
intermode CU partition of HEVC. )is is mainly due to the
LSTM ability to resolve the temporal correlation through
adjacent frames.

For more evaluation, the reducing complexity of CNN-
LSTM versus deep CNN under “Traffic” (2560×1600) and
“BasketballDrive” (1920×1080) video sequences at LDP
configuration is proved in Figure 7. As shown in this figure,
the proposed approach allows higher encoding time when
the QP value increases from 22 to 37. Overall, the proposed
deep learning approach outperforms the deep CNN in terms
of time saving. Consequently, the proposed scheme is better
for reducing the HEVC complexity of intercoding and for
finding an optimal CU partition, compared to traditional
RDO research.

4.4. Comparative Performance. To evaluate the encoding
performance of the proposed learning approach, our ex-
perimental results are compared to the other state-of-the-art
methods, such as reinforcement-learning-based scheme
[20], random-forests-based scheme [28], and deep-learning-
approach-based HEVC complexity reduction [29]. Table 3
summarizes the proposed scheme’s performance compared
to the works based on learning technique cited in [20, 28]
and [29].

In this table, the proposed scheme outperforms other
schemes in terms of complexity-RD performance. In [20], Li
et al. proposed a CU early termination based on rein-
forcement learning to reduce the computational complexity
for HEVC. In [29], Tahir et al. developed a fast method for
reducing HEVC encoding time based on random forest
classifier. Xu et al. [30] proposed a fast CU partition

22 27 32 37
QPs

Traffic_2560 × 1600

0
10
20
30
40
50
60
70
80
90

ΔT
 (%

)

(a)

22 27 32 37
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ΔT
 (%
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Figure 6: Complexity reduction of original HM and proposed approach under QPs {22, 27, 32, 37} for “Traffic” and “BasketballDrive.”

Table 2: Performances evaluation [CNN-LSTM versus deep CNN].

Class Sequence
Deep CNN [9] Proposed CNN-LSTM

BD rate (%) BD-PSNR (dB) ΔT (%) BD rate (%) BD-PSNR (dB) ΔT (%)

A (2560×1600) PeopleOnStreet 1.20 −0.051 −50.67 1.70 −0.017 −48.88
Traffic 1.49 −0.041 −57.90 1.53 −0.059 −66.38

B (1920×1080)

Kimono 1.38 −0.044 −43.26 1.65 −0.052 −47.77
ParkScene 1.43 −0.041 −64.14 2.79 −0.081 −70.82
Cactus 2.44 −0.047 −52.57 1.73 −0.033 −53.85

BQTerrace 2.22 −0.034 −58.43 1.75 −0.030 −65.62
BasketballDrive 2.28 −0.051 −51.30 2.02 −0.045 −52.77

C (832× 480)

BasketballDrill 1.43 −0.052 −53.54 1.67 −0.061 −48.23
BQMall 2.24 −0.085 −52.25 1.38 −0.090 −48.07

PartyScene 1.48 −0.057 −51.54 0.96 −0.038 −59.30
RaceHorses 1.41 −0.053 −42.22 1.47 −0.055 −54.32

D (416× 240)

BasketballPass 1.85 −0.083 −52.42 1.26 −0.056 −56.67
BQSquare 2.09 −0.073 −52.79 1.27 −0.046 −60.79

BlowingBubbles 1.71 −0.061 −46.55 0.97 −0.034 −50.14
RaceHorses 1.32 −0.058 −38.01 1.60 −0.018 −50.33

E (1280× 720)
FourPeople 1.06 −0.029 −67.54 2.71 −0.071 −72.42
Johnny 3.99 −0.083 −69.66 2.46 −0.083 −73.59

KristenAndSara 1.31 −0.082 −67.20 2.93 −0.094 −74.91
Average 1.80 −0.057 −53.99 1.78 −0.053 −58.60
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algorithm for HEVC, including interprediction and intra-
prediction, based on deep learning approach for reducing
HEVC complexity. Specifically, the proposed approach
achieves a maximum execution time of 75% and 58.60% on
average and gives an increase in BD rate of 1.78% with a little
reduction in BD-PSNR of −0.053 dB.

In fact, the proposed approach achieves a higher com-
putational-complexity reduction for video sequences with
low-motion activities and homogeneous regions, where the
blocks CU partition is larger and the percentage of splitting
cases is lower, such as “KristenAndSara” video sequence.
Similarly, the existing methods prove a high encoding time
for class E video sequences. For example, [20] achieves 64%

encoding complexity and 1.58% BD-rate increase for se-
quence “KristenAndSara,” as shown in Table 3. For the same
sequence, [29] gives 77% time saving with an increase in the
BD rate of 3.30% on average of four QPs. In addition, the
work proposed in [30] achieves 67.23% encoding time with
1.55% BD rate on average.

With regard to the ultra-high-definition sequences like
“PeopleOnStreet,” the computational-complexity reduction
of our proposed approach is slightly lower, since these se-
quences have high motion and camera movement, which are
encoded in a small CU partition. Hence, the proposed
scheme performs better in terms of both RD performance
and complexity reduction of HEVC as compared to the
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Figure 7: Encoding time of the proposed CNN-LSTM and deep CNN.

Table 3: Comparative performance between the proposed approach and the state-of-the-art works.

Sequence
[30] [20] [29] Proposed approach

BD rate
(%)

BD-PSNR
(dB)

ΔT
(%)

BD rate
(%)

BD-PSNR
(dB)

ΔT
(%)

BD rate
(%)

BD-PSNR
(dB)

ΔT
(%)

BD rate
(%)

BD-PSNR
(dB) ΔT (%)

PeopleOnStreet 1.05 −0.045 −47.50 5.45 −0.250 29.84 1.85 −0.085 27.22 1.70 −0.017 −48.88
Traffic 1.99 −0.052 −60.60 — — — 3.20 −0.102 59.66 1.53 −0.059 −66.38
Kimono 1.49 −0.048 −56.03 0.35 −0.010 34.74 2.43 −0.079 50.49 1.65 −0.052 −47.77
ParkScene 1.47 −0.042 −58.72 2.84 −0.090 46.42 — — — 2.79 −0.081 −70.82
Cactus 2.07 −0.043 −56.87 2.79 −0.065 43.22 2.46 −0.060 53.06 1.73 −0.033 −53.85
BQTerrace 1.09 −0.017 −60.01 2.15 −0.038 38.70 1.74 −0.032 51.89 1.75 −0.030 −65.62
BasketballDrive 2.268 −0.052 −55.84 2.06 −0.046 39.45 1.93 −0.046 49.16 2.02 −0.045 −52.77
BasketballDrill 1.953 −0.072 −55.19 3.90 −0.148 32.12 2.24 −0.089 46.55 1.67 −0.061 −48.23
BQMall 1.914 −0.071 −50.74 5.56 −0.227 37.11 1.86 −0.071 43.32 1.38 −0.090 −48.07
PartyScene 1.011 −0.039 −46.83 4.74 −0.210 31.58 2.58 −0.108 30.33 0.96 −0.038 −59.30
RaceHorses 0.872 −0.032 −46.22 2.10 −0.180 26.03 1.25 −0.048 27.08 1.47 −0.055 −54.32
BasketballPass 1.45 −0.066 −49.04 — — — 3.12 −0.147 38.24 1.26 −0.056 −56.67
BQSquare 0.77 −0.028 −46.91 3.38 −0.145 35.72 3.02 −0.117 34.30 1.27 −0.046 −60.79
BlowingBubbles 1.29 −0.044 −45.62 3.41 −0.136 24.73 3.99 −0.154 39.87 0.97 −0.034 −50.14
RaceHorses 1.11 −0.047 −41.86 — — — — — — 1.60 −0.018 −50.33
FourPeople 1.83 −0.052 −64.37 1.66 −0.058 65.28 1.83 −0.063 78.98 2.71 −0.071 −72.42
Johnny 1.69 −0.038 −66.49 0.90 −0.020 64.05 5.45 −0.139 79.31 2.46 −0.083 −73.59
KristenAndSara 1.55 −0.045 −67.23 1.58 −0.050 64.67 3.30 −0.108 77.58 2.93 −0.094 −74.91
Average 1.49 −0.046 −54.2 2.56 −0.099 43.33 2.97 −0.107 54.57 1.78 −0.053 −58.60
FoM 2.74 5.90 5.44 3.03
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previous works. Overall, all approaches are better adapted to
low-motion video content.

On the other hand, in average, 43% time saving is re-
duced by [20] with an increase in BD rate of 2.56% and a
decrease in BD−PSNR of −0.099 dB. )e proposed method
presented in [29] allows 54.57% encoding time, while the BD
rate increases by 2.97% and the BD-PSNR degradation
reaches −0.107 dB. Regarding the work invented in [30], the
proposed method surpasses our proposed approach in terms
of BD rate and BD-PSNR, while our proposed approach
saves significant coding time of 58.60% compared to this
work. When comparing our work to the state-of-the-art
schemes in [20, 29] and [30], we can conclude that the
proposed CNN-LSTM-based learning method proves the
best coding efficiency of HEVC at intermode in order to
predict the CU partition.

In summary, several existing works can achieve signif-
icant computational-complexity reduction with low BD rate
and vice versa. Each method presents different values for
computational-complexity reduction and BD rate. )ere-
fore, an algorithm can achieve a tradeoff between complexity
reduction and RD efficiency; we have used two Figures of
Merit (FoM), BD rate and ΔT, a common procedure of
computing proposed in [31, 32]:

FoM �
BD rate

ΔT

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
× 100. (9)

FoM represents the ratio between the increase in the
BD rate and the encoding time reduction, allowing direct
comparison of competing algorithms. )erefore, FoM
makes the best compromise between low-penalty and
high-complexity reductions. Table 3 presents the FoM of
the proposed approach compared to the existing
methods. )e lower value of FoM is desirable because it is
interpreted as a best tradeoff between RD efficiency and
computational-complexity reduction. Compared with
related works, it can be observed that our proposed
approach achieves a FoM ratio of around 3.03 and it is
demonstrated that our proposed framework based on
CNN-LSTM presents a good balance between low-pen-
alty and high-complexity reductions.

5. Conclusion

)is paper proposed a CNN-LSTM learning scheme to predict
the optimal intercoding CU partition, thus maximizing the
reduction in HEVC coding complexity. According to the
temporal correlation of neighboring frames, we developed a
new LSTM architecture to learn the long-term and short-term
correlations of the intercoding CU partition. )is model learns
to find the best CUpredictionmodes instead of traditional RDO
search. )e achieved results demonstrate that the proposed
approach based on deep learning reduces the computational
complexity by 58.60% with an increase in BD rate by ap-
proximately 1.78% and the BD-PSNR decreases by -0.027dB
under LDP configuration. Consequently, the HEVC encoding
complexity can be considerably reduced, when we replace the
classical RDO search with the CNN-LSTM network to decide
the CU splitting at intermode. In summary, the proposed

scheme saves a significant encoding complexity, compared to
other previous approaches based on machine learning tools.
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