
Received June 8, 2020, accepted June 18, 2020, date of publication June 22, 2020, date of current version July 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3004145

IETCR: An Information Entropy Based Test Case
Reduction Strategy for Mutation-Based
Fault Localization
HAIFENG WANG 1, BIN DU 1, JIE HE 1, YONG LIU 1, (Member, IEEE),
AND XIANG CHEN 2, (Member, IEEE)
1College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
2School of Information Science and Technology, Nantong University, Nantong 226019, China

Corresponding author: Yong Liu (lyong@mail.buct.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61902015, Grant 61872026, and Grant
61672085, and in part by the Nantong Application Research Plan under Grant JC2018134 and Grant JC2019106.

ABSTRACT Mutation-based fault localization (MBFL) is a recently proposed technique with the advantage
of high fault localization accuracy. However, such a mutation analysis based technique is difficult to be
accepted by industry due to its huge computational cost onmutation analysis. There are threeways to improve
MBFL’s efficiency, which are reducing the number of mutants, optimizing the mutants’ execution process,
and reducing the number of test cases. The former two ways have been mainly studied and shown promising
results, but for the latter way, the related studies are limited since this kind of methodwill reduce the precision
of MBFL. In this paper, we mainly focus on the latter way and propose an information entropy based test
case reduction (IETCR) strategy for MBFL. In particular, we first calculate the entropy change of test cases
and select a proportion of them according to their value. Then we use a reduced test suite to execute mutants.
To show the effectiveness of the IETCR strategy, we choose six real-world programswith 112 faulty versions.
In terms of mutation reduction rate, we find MBFL with the IETCR strategy can reduce 56.3%∼88.3% cost
while keeping almost the same fault localization accuracy when compared to the original MBFL without test
case reduction. Moreover, we use Wilcoxon signed-rank test for statistical analysis, which shows that there
is no statistically significant difference between MBFL with IETCR strategy and the original MBFL.

INDEX TERMS Software fault localization, mutation based fault localization, information entropy, test case
reduction.

I. INTRODUCTION
Software debugging, which contains fault detecting, fault
localization, and bug fixing [1], is one of the essential parts
of software development and maintenance. The fault local-
ization process refers to the problem of identifying defective
program statements when the execution of some test cases
results in failure. It has been recognized as the most com-
plicated and time-consuming activity [2]. Researchers have
invested numerous efforts into the area of automatic software
fault localization [1], [3], which helps to reduce the debug
time and manual cost on software debugging.

Among the automated fault localization techniques,
spectrum-based fault localization (SBFL) [4]–[7] is the most

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana .

studied and evaluated technique. SBFL obtains the coverage
information and execution results by executing test cases.
Such information will be used for calculating the probability
that program entities (such as statements) incur a fault and
generating a ranking list of them for developers to inspect
code elements. SBFL is simple to implement and previous
studies have shown that SBFL is promising to reduce the cost
of software debugging [8], [9]. However, when applied to
large-scale programs, SBFL still has the problem of poor fault
localization accuracy. This leads tomore program entities that
should be checked before encountering the real faults [10].

Recent studies [11], [12] have shown that mutation-based
fault localization (MBFL) techniques outperform state-of-
the-art SBFL techniques in terms of the fault localiza-
tion accuracy. MBFL is based on the hypothesis that the
mutation testing [11] performed on the faulty program can

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 124297

https://orcid.org/0000-0003-2482-375X
https://orcid.org/0000-0001-6162-8676
https://orcid.org/0000-0003-2734-9037
https://orcid.org/0000-0003-1754-3039
https://orcid.org/0000-0002-1180-3891
https://orcid.org/0000-0003-3264-185X

H. Wang et al.: IETCR Strategy for MBFL

contribute to the accuracy of fault localization. From dif-
ferent aspects, there are two popular MBFL techniques,
named as Metallaxis-FL [13] and MUSE [14]. In particular,
Metallaxis-FL applies the idea of mutation analysis [11] to
mutate statements, which improves the accuracy of fault
localization. MUSE also uses mutation analysis to calcu-
late the suspiciousness value of statements. Different from
Metallaxis-FL, MUSE works by checking whether mutants
can turn the failed test cases into passed or not. In the
empirical studies of Pearson et al. [15], they found that
Metallaxis-FL can outperform MUSE on fault localization
efficiency and accuracy.

MBFL techniques have higher fault localization accuracy,
but their efficiency is suffered from an extremely mutant
execution cost problem [12], [16], which results in the lower
efficiency of fault localization. This problem stems from that
MBFL generates a significant number of mutants from the
program under test, and each mutant should be executed on
all test cases. To reduce the execution cost and improve the
efficiency of MBFL, several optimization approaches have
been proposed [13], [16]–[21]. From different aspects, such
optimization approaches for MBFL can be divided into three
categories: (1) reducing the number of mutants [13], [19],
(2) the strategy of test case reduction [20], and (3) optimiz-
ing the execution process of the mutants [21]. In the first
category, the SELECTIVE strategy proposed by Papadakis
and Le Traon [11] attempts to select a subset of the original
mutation operators, then the number of generatedmutants can
be reduced. Besides, the SAMPLING strategy [13] randomly
samples a certain proportion of mutants from the generated
mutant set to decrease the number of mutants. The second
category is considered from the test suite aspect. In the work
of De Oliveira et al. [20], they present FTMES, which only
employs the failed test cases to localize the faults but ignores
all the passed test cases. Therefore, the execution cost of
MBFL will be reduced by executing fewer test cases. The
third category focuses on making MBFL more efficient by
optimizing the mutant execution process. A dynamic muta-
tion execution strategy (DMES) is proposed by Liu et al. [21],
which aims to optimize the execution process based on both
mutants and test cases.

Although many methods have been proposed for reducing
the execution cost of MBFL, there is still room for further
improvement. In the work of Yoo et al. [22], they found that
test cases have different information or effect during the pro-
cess of program testing. Motivated by this study, in this paper,
we utilize information entropy to measure the information of
different test cases and propose an information entropy based
test case reduction (IETCR) strategy to optimize the muta-
tion execution. IETCR is a strategy of test case reduction,
which keeps both passed and failed test cases, while FTMES
strategy [20] only employs the failed test cases but ignores all
passed test cases. In particular, we first calculate the entropy
change of each test case and select a proportion of them
according to their value. Therefore, the IETCR strategy can
speed upMBFL by decreasing the cost of mutation execution.

To our best knowledge, the contributions of our study can
be summarized as follows:
• We propose an information entropy based test case
reduction (IETCR) strategy to reduce the execution cost
of MBFL from the perspective of reducing test cases.

• To evaluate the effectiveness of our proposed IETCR
strategy, we conduct a large-scale empirical study, which
chooses 112 faulty versions from 6 real-world pro-
grams as empirical subjects and chooses FTMES and
SAMPLING strategies as state-of-the-art baselines. In
terms of efficiency, final experimental results show that
using the IETCR strategy can reduce the mutation exe-
cution cost from 56.3% to 88.3% when compared to
the original MBFL without any strategy. In terms of
accuracy, the final experimental results demonstrate that
MBFL with the IETCR strategy can achieve better fault
localization accuracy than the chosen two optimization
baselines. Moreover, statistical analysis via Wilcoxon
signed-rank test also indicates that there is no significant
difference in fault localization accuracy between MBFL
with IETCR strategy and original MBFL.

• To facilitate other researchers to replicate our study,
we share the code and detailed experimental results.
In particular, the source code1 and experimental results2

of this paper are all available in the GitHub repositories.
The rest of this paper is organized as follows. Section II

provides background and related work of our study.
Section III illustrates our proposed IETCR strategy and
presents its main components. Section IV describes the exper-
imental setup of our study, including research questions,
subject programs, and performance metrics. Section VI dis-
cusses the experimental results and analyzes potential threats
to validity. Section VII describes the related work of our
study. Finally, Section VIII summarizes our study and shows
potential future work.

II. BACKGROUND
A. MUTATION ANALYSIS
Mutation analysis is a fault-based technique, which works by
making syntactic changes into the source code of the program
under test [19]. Thus, it can generate a huge number of
faulty programs, which are named as mutants [23]. The rules
that generate mutants from the original program is named as
mutation operators [24].

In the process of mutation analysis, mutants are executed
on test cases. By comparing the output of the mutants with
the output of the original program, the fault detection abil-
ity of the test suite can be assessed. A mutant is killed or
distinguished , if there exists at least a test case, which its
output on the mutant is different from the output on the
original version. Otherwise, it is not killed or alive.
Mutation analysis is different from the program spectrum-

based technique because it forces candidate test cases not

1https://github.com/HJBUCT/TestCaseReduction
2https://github.com/HJBUCT/DataOfFL

124298 VOLUME 8, 2020

H. Wang et al.: IETCR Strategy for MBFL

FIGURE 1. Framework of mutation-based fault localization.

only to perform special programs to locate but also to find
potential triggering faults at these locations based on the
output. The requirement of mutations makes it particularly
powerful in terms of testing and analysis. Mutants have been
proven to be very useful in simulating the behavior of real
faults and can find more faults than other traditional test
coverage criteria (such as statement coverage) [25].

B. MUTATION-BASED FAULT LOCALIZATION
Mutation-based fault localization (MBFL) technique is based
on mutation analysis [12], and its main foundation is that a
mutant can be considered as a similar version or a partial fix of
real faults [2]. As shown in Figure 1, MBFL has the following
four steps:

1) Obtain statements covered by failed test cases: given
a program Pwith n statements and a test suite T withm
test cases, MBFL will execute P against T and collect
the coverage information and test results (i.e., pass or
fail). Then, all test cases in T will be divided into
two groups: Tp and Tf , which contains all the passed
or failed test cases, respectively. All the statements
covered by the failed test cases Tf are denoted as Covf ,
where the real faulty statements must belong to them
according to the PIE theory [26].

2) Generate and execute mutants: MBFL employs a
number of mutation operators to artificially inject faults
into statements fromCovf and generates a large number
of mutants. It should be noted that there will be more
than one mutant generated from the same statement,
and the mutants generated from the statement s is
denoted by M (s). The test cases are executed on each
mutant, andMBFLwill record all the execution results.
Tn(m) is the set of test cases that can not kill the mutant
m and Tk (m) is the set of test cases that can kill the
mutant m.

TABLE 1. Five suspiciousness formulas for mutation based fault
localization.

3) Compute the suspiciousness: The suspiciousness of
the mutant m can be calculated by different MBFL
formulas, which are based on the following four param-
eters: anp(m) = |Tn(m)

⋂
Tp|, akp(m) = |Tk (m)

⋂
Tp|,

anf (m) = |Tn(m)
⋂
Tf |, akf (m) = |Tk (m)

⋂
Tf |,

where, anp(m) is the number of passed test cases
which cannot kill m, akp(m) is the number of passed
test cases which can kill m, anf (m) is the number
of failed test cases which cannot kill m, and at last,
akf (m) is the number of failed test cases which can
kill m. Table 1 lists five popular MBFL formulas (i.e.,
Jaccard [27], Ochiai [28], Op2 [29], Tarantula [30],
and Dstar∗ [31]). It should be noted that the parameter
∗ in Dstar∗ formula is set to 3 in our study according
to the recommendation of Wong et al. [31]. Therefore,
we use Dstar3 to indicate Dstar∗ formula in the rest of
this paper. After calculating the suspiciousness values
of all mutants, MBFL techniques will assign the sus-
piciousness value of the statement s as the maximum
suspiciousness value of the mutants generated by s:
sus(s) = max

{
sus(m1), sus(m2), · · · , sus(mq)

}
, where

m1, · · · ,mq are mutants in M (s) and the sus(s) is the
suspiciousness of the statement s.

4) Generate fault localization report: Similar to SBFL,
MBFL will also sort all statements in the descend-
ing order based on their suspiciousness value. Finally,
a ranking list is created, and it will guide the developers
to localize the faults in the program and fix them.

C. COST REDUCTION TECHNIQUES FOR MBFL
Benefited from a fine-grained analysis, MBFL can achieve
high accuracy of fault localization but suffers from a high
execution cost. To improve the efficiency of MBFL, a vari-
ety of cost reduction techniques have been proposed. These
techniques can be classified into three categories.
1) Reduce the number of generated mutants: The

techniques in this category aim to reduce the
number of mutants since fewer mutants are exe-
cuted, fewer cost of MBFL technique can have.
Papadakis and Le Traon [19] proposed a mutation
operator reduction-based strategy called selective
mutation SELECTIVE) strategy. SELECTIVE designs
the specific sufficient criterion for mutation operators,
which assign them with different contribution degree.
In the rules, some sufficient operators will be retained

VOLUME 8, 2020 124299

H. Wang et al.: IETCR Strategy for MBFL

FIGURE 2. Framework of mutation based fault localization with IETCR strategy.

for generating mutants, while other operators with
lower contribution degree will be abandoned. There-
fore, a large number of mutants will be abandoned.
From the mutant reduction aspect, a mutant sam-
pling (SAMPLING) strategy [13] was presented by
Papadakis, and it randomly extracts mutants from
the total mutant set. Liu et al. [32] proposed a
statement-oriented mutant reduction (SOME) strategy,
which samples mutants at a specific percentage on
statement level.

2) Reduce the number of executed test cases: The
techniques in this category aim to reduce the
test case’s execution on mutants. In the work of
De Oliveira et al. [20], they presented FTMES strat-
egy, which only employs the failed test cases to execute
mutants, but ignores all the passed test cases. Therefore
the execution cost of MBFL will decrease along with
the fewer execution of the test case. Since the passed
test cases can also contribute to fault localization,
ignoring all of them by FTMES will cause the loss of
MBFL’s fault localization accuracy.

3) Optimize the mutant execution process: The tech-
niques in this category aim to optimize the process of
mutation execution. Liu et al. [21] proposed a dynamic
mutation execution strategy (DMES) for MBFL with
two optimization techniques. The first optimization
technique focuses on reducing the execution of mutants
and is named as mutation execution optimization
(MEO). The second optimization technique focuses on
reducing the execution of test cases and is named as
test case execution optimization (TEO). DMES utilizes
the total set of both mutants and test cases, and such a
strategy can be combined with other methods to further
reduce the cost of MBFL.

In this paper, we propose the IETCR strategy, which aims
to reduce the execution of the test cases from the same aspect
with FTMES. While FTMES only considers the failed test
cases but discards all passed test cases, which will decrease
the fault localization accuracy. We propose IETCR to allevi-
ate this issue by keeping both passed and failed test cases. The
details of our proposed strategy can be found in Section III.

III. OUR PROPOSED MBFL METHOD
A. FRAMEWORK OF MBFL WITH IETCR STRATEGY
Figure 2 illustrates the framework of MBFL with our pro-
posed IETCR strategy. In particular, it first collects coverage
information and execution results of the test cases after exe-
cuting the program under test. Secondly, the IETCR strategy
works by filtering the passed and failed test cases, calculating
the information entropy change of each passed test case. Then
a reduced test set is generated according to the information
entropy values. Next, mutants are generated by seeding faults
in statements covered by the failed test cases. After that,
it executes the reduced test cases on all mutants to obtain
the killing information and execution results for calculating
the suspiciousness of mutants. Finally, the suspiciousness of
statements is recorded for producing a ranking list to assist
the developers in finding faults.

B. DETAILS OF IETCR STRATEGY
The key idea of the IETCR strategy is to reduce the test cases
by using information entropy theory. Information entropy is
defined by Shannon [33], and it can be used to measure the
unpredictability of the state. In this paper, we utilize infor-
mation entropy to guide the reduction of test cases. Consider
a buggy program under test, the probability of whether each
statement is faulty is uncertain. This unpredictability is called
information entropy. A lower information entropy calculated

124300 VOLUME 8, 2020

H. Wang et al.: IETCR Strategy for MBFL

by a test suite indicates that the test suite can be better to
distinguish the difference between faulty statements and other
correct statements, and the quality of this test suite is higher
than that with larger information entropy.

First, we formulate test case reduction as an entropy reduc-
tion process and present some necessary notations. Let P =
{s1, s2, · · · , sm} be the programs under test (PUT) with m
statements; let T = {t1, t2, , tn} be the set of the test suite
with n tests and Ti = {t1, t2, · · · , ti}with i tests. Let Sus(s|Ti)
denote the suspiciousness of s calculated by SBFL with test
suite Ti. Therefore, approximated probability that statement sj
contains the fault, based on the information observed with Ti,
is calculated as the normalized suspiciousness metric for sj.

PTi(sj) =
Sus

(
sj|Ti

)∑m
j=1 Sus

(
sj|Ti

) (1)

The information entropy of the test suite Ti can be defined
as:

ETi (P) = −
m∑
j=1

PTi
(
sj
)
log2 PTi

(
sj
)

(2)

Secondly, to measure the information contained in an indi-
vidual test case, we define the entropy of the test case ti in
Ti = Ti−1 ∪ {ti} by subtracting the entropy of Ti−1 from the
entropy of the whole set Ti.

EC(ti) = ETi (P)− ETi−1(P) (3)

From Equation 3, EC(ti) measures the entropy change of
removing test case ti from test suite Ti. It should be noted
that the value of EC(ti) can be negative and non-negative.
Suppose ECSet is a set contains all the EC(ti) values of test
cases in Ti. We analyze three situations of how we perform
the entropy-based test case selection process:
• All elements in ECSet are negative: it indicates that the
entropy of Ti will be increased after removing each test
case, which leads to the quality of Ti decreases. Then,
the test case with a lower EC(ti) value will have higher
quality since removing this test case can decrease the
quality of T to a greater extent than other test cases.

• All elements in ECSet are positive: it indicates that the
entropy of Ti will be decreased after removing each test
case, which leads to the quality of Ti increases. Then, the
test case with lowerEC(ti) value will have higher quality
since removing this test case can increase the quality of
Ti to a smaller extent than other test cases.

• Elements in ECSet have both positive and negative: it
indicates that the entropy of Ti decreases or increases
after removing different test cases, which leads to the
quality of Ti increases or decreases. Then, the test case
with lower EC(ti) value will have higher quality since
test cases with negative EC(ti) values will have higher
quality than test cases with positive EC(ti) values.

In summary, no matter in which situation, the test case
with a lower EC(ti) value will have higher quality and should
be kept during test case selection. Thus, we select test cases

with lower EC(ti) values to keep the quality of test suite,
which can be better to distinguish the difference between
faulty statements and other correct statements. Furthermore,
the value range of EC(ti) is [− log2 |m|, log2 |m|], where |m|
is the number of program statements.

C. ALGORITHM OF IETCR STRATEGY

Algorithm 1 IETCR Strategy
Input:

Program under test P
Test suite T

Output:
Reduced tests set Treduced
1: Cov,R← execute(P,T)
2: Sus(s)← computeSus(Cov,R)
3: Tp,Tf ← split(T ,R)
4: failedNum← size(Tf)
5: ECSet ← ∅
6: ETi ← entropy(T)
7: for test case ti in Tp do
8: ETi−1 ← entropy(Ti−1)
9: EC(ti)← entropyChange(ti)
10: ECSet ← ECSet ∪ EC(ti)
11: end for
12: Treduced ← Tf
13: Tselected ← select(failedNum,Tp,ECSet)
14: Treduced ← Treduced ∪ Tselected
15: return Treduced

As introduced in Section III-B, the entropy values of all
passed test cases can be calculated and guide the test reduc-
tion process. We consider that there is a class imbalanced
issue [34] in the field of fault localization, which means that
the number of failed test cases are often much smaller than
the number of passed test cases in the most of test suite. And
researchers found that the fault localization accuracy can be
benefited from a class-balanced test suite [35]. Inspired by
the work of Gao et al. [34] and Gong et al. [36], we select the
same number of passed test cases as failed test cases to get a
balanced test suite for MBFL.

Algorithm 1 provides the pseudo-code of the IETCR strat-
egy. We first obtain coverage information Cov and testing
results R by executing test suite T on the program under test P
(Line 1). Then, we compute the suspiciousness of statements
in P and split the test suite into two groups (Lines 3 to 4)
using coverage information Cov and testing results R. Next,
we calculate the entropy of each test case in Tp in the loops
(Lines 7 to 11). Later, we select failedNum test cases from Tp
according to the value of entropy change from small to large
(Line 13). Finally, we return a reduced test set (Line 14).

D. AN ILLUSTRATIVE EXAMPLE
Table 2 presents an illustrative example of how the IETCR
strategy works onMBFL. This example is a program segment

VOLUME 8, 2020 124301

H. Wang et al.: IETCR Strategy for MBFL

TABLE 2. An illustrative example when performing MBFL with IETCR strategy.

124302 VOLUME 8, 2020

H. Wang et al.: IETCR Strategy for MBFL

called mid(), which takes three integers as parameters and
returns the middle value of them. Statement s3 contains a
fault, as it should be if (y < z). The test suite has six test
cases, from t1 to t6, whose coverage information are marked
with black bullets (•). There are two failed test cases (t2 and
t5), while the rest are four passed test cases.

IETCR strategy first employs the SBFL technique to cal-
culate the suspiciousness values of all statements. It should be
noted that the SBFL used in this paper is Dstar3 [31], which
was proved to be a state-of-the-art SBFL formula. Next, the
entropy of thewhole test suite can be calculated by Equation 2
as follows.

ET6 (P) = −
13∑
j=1

PT6
(
sj
)
log2 PT6

(
sj
)

When removing the passed test case t1, the entropy of the
rest five test cases can be calculated as follows.

ET5 (P) = −
13∑
j=1

PT5
(
sj
)
log2 PT5

(
sj
)

Therefore, the entropy change of t1 is calculated by Equa-
tion 3 as follows.

EC(t1) = ET6 (P)− ET5 (P) = 2.73e-11

Similarly, the entropy change values of other three passed
test cases (i.e., t3, t4 and t6) are 3.91e-10, 3.91e-10, 2.73e-11
respectively. Hence, IETCR strategy selects the two passed
test cases (t1 and t6) with lower EC values and ignored other
passed test cases, which can reduce the execution cost of
MBFL.

As shown in Table 2, for the original MBFL, it utilizes
the killing information of all test cases (from t1 to t6) to
calculate suspiciousness for mutants, which is listed under
the ‘‘Original’’ column. The maximum suspiciousness in the
group of mutants is assigned to the suspiciousness of state-
ments, which are highlighted in boldface. And for MBFL
with the IETCR strategy, MBFL ignores t3 and t4, and the
corresponding execution cost is reduced, which is highlighted
with red color.

From the results of the ‘‘Original’’ and ‘‘IETCR’’ columns,
we can find that MBFL with the IETCR strategy has the
same fault localization accuracy when compared with orig-
inal MBFL, which returns the same suspiciousness of state-
ments. For the fault localization accuracy, both MBFL with
IETCR strategy and the original MBFL can rank the exact
faulty statement s3 at the top of the ranking list. Therefore,
in this illustrative example, using the IETCR strategy can
reduce the number of execution costs under the premise of
losing fault localization accuracy.

IV. EXPERIMENTAL SETUP
A. RESEARCH QUESTIONS
To evaluate the effectiveness of our proposed IETCR strategy,
we design empirical studies from two aspects: fault local-
ization accuracy (effectiveness) and mutation execution cost

(efficiency). In our study, wemainly investigate the following
two research questions (RQs):

• RQ1: Compared with original MBFL and two state-
of-the-art optimization strategies, how does the IETCR
strategy perform in terms of mutation execution cost
reduction rate?

• RQ2: Compared with original MBFL and two state-
of-the-art optimization strategies, how does the IETCR
strategy perform in terms of fault localization accuracy?

In RQ1, we attempt to quantitatively analyze the perfor-
mance of the IETCR strategy in terms of efficiency. In RQ2,
we want to examine the performance of the IETCR strategy
in terms of effectiveness.

In our experiments, we first choose the original MBFL
without any strategy as the first baseline. Then we choose
MBFL with two optimization strategies (i.e., FTMES [20]
strategy and SAMP(30%) strategy) as the second baseline
and the third baseline. In particular, FTMES is the latest
test case reduction strategy of MBFL, and SAMP(30%) is
SAMPLING strategy [13], which randomly selects 30% test
cases from the test suite. Previously studies [13], [32] showed
that randomly choosing 30% mutants can keep the loss of
MBFL’s fault localization accuracy at a low level; therefore
we also use the same SAMPLING ratio in our study. Besides,
we use Dstar3 as the SBFL formula when calculating the
entropy of test cases in our proposed IETCR strategy, because
it has been proved as a state-of-the-art SBFL formula [31].

All experiments were performed on Linux system (version
3.10.0-957.el7.x86-64) with 18 cores CPU (Intel(R) Xeon(R)
Gold 6240 CPU@2.60GHz).

B. SUBJECT PROGRAMS
We evaluate the effectiveness of the IETCR strategy on six
subject programs from dataset SIR [37], which has been
widely adopted by recent studies on fault localization and
program repair [21], [32], [38]. The first four programs are
relatively small-scale programs with hundreds of lines of
code from Siemens Suite, while the last two programs (sed
and grep) are large-scale real-world programs. All of these
are real-world C programs with faulty versions and test suites
provided by SIR. Table 3 presents the information of all
subject programs. There are 112 faulty versions from six
programs; The reasons of excluding some versions are sum-
marized as follows: (1) the related test suite of some versions
cannot defect failures on the faulty versions; (2) the failures of
some versions lead to segment faults or other runtime errors,
and it is hard to collect full coverage information for these
faulty versions.

Therefore, a total of 112 faulty versions are used in our
experiments. In our study, we use the GNU gcov tool [39]
to collect coverage information and Proteum tool [40] to
generate mutants, both of these tools are popular and have
been widely adopted by many researchers [12], [21], [32].
Besides, we employ mutation operators suggested by the

VOLUME 8, 2020 124303

H. Wang et al.: IETCR Strategy for MBFL

TABLE 3. The characteristics of subject programs.

work of Agrawal et al. [41]. The suspiciousness formulas
used in our study are listed in Table 1.

C. PERFORMANCE METRICS
In our study, we use a Mutant-Test-Pair metric to evaluate
the efficiency of MBFL and use the EXAM score metric to
evaluate the accuracy of MBFL, which will be introduced as
follows.

1) MUTANT-TEST-PAIR METRIC
AMutant-Test-Pair (MTP) counts the number of mutant exe-
cutions on the test cases.MTPmeasures the mutant execution
cost of MBFL and has been used in previous studies [32],
[42], [43]. The idea of MTP is that the number of mutation
execution is linked to the computational cost required to
obtain the rank of statements [32]. Compared with the actual
run-time cost, MTP metric has the advantage of avoiding
the influence of the run-time environment. A lower MTP
value means the corresponding MBFL technique has better
efficiency. Assume that a mutant set with n mutants and they
are executed by a test suite with m test cases, MTP can be
calculated by the following formula:

MTP = m× n (4)

2) EXAM SCORE METRIC
EXAM score [44] (EXAM) is the percentage of program
elements that have to be inspected until finding the exact
faulty element. It is a commonly used metric for fault local-
ization techniques, and a lower EXAM indicates a better fault
localization technique [45], [46]. The EXAM measures the
relative position of the faulty element in the ranking list, and
the formula of EXAM can be defined as follows.

EXAM =
rank

Number of executable statements
(5)

The numerator in Equation 5 represents the rank of the
faulty statement in the ranking list. And the denominator is
the total number of statements that need to be checked. More
specifically, rank can be calculated by:

rank =
(i+ 1)+ (i+ j)

2
(6)

In Equation 6, i is the number of non-faulty statements
whose suspiciousness value is higher than the faulty state-
ment, and j is the number of statements that share the same
suspiciousness value with the faulty statement. To break the
tie, we take the average of the first (i+1) and last (i+ j) ranks
to determine the rank of the faulty statement.

TABLE 4. Average reduction rates of IETCR, FTMES, and SAMP(30%)
strategies when compared to the original MBFL without using any
strategy in terms of MTP metric.

V. RESULTS ANALYSIS
A. ANSWER FOR RQ1
To answer RQ1, we measure the mutation execution cost of
MBFL in terms of theMTPmetric. We calculate the executed
mutant number (i.e., MTP) of three optimization strategies
(i.e., our proposed IETCR strategy, FTMES strategy, and
SAMP(30%) strategy) and the original MBFL without using
any strategy. Notice, to reduce the bias caused by the ran-
dom process in SAMP(30%) strategy, we repeat the exper-
iments 50 times with different random seeds and use the
averageMTP value.
The results are shown in Figure 3. In this figure, we choose

the program version as the independent variable and the
MTP percentage of original MBFL as the dependent variable,
which shows the percentage of the MTP calculated by each
method to the original MBFL. A lower MTP percentage
of original MBFL demonstrates a better mutation execution
cost reduction. Each sub-figure has three broken lines, which
represent three optimization strategies IETCR, FTMES, and
SAMP(30%), respectively. The results show that IETCR can
significantly reduce the MTP execution cost, but in most
cases, FTMES has a lowerMTP percentage of originalMBFL
than IETCR. The reason is that IETCR selects all failed
test cases and the same number of passed test cases, while
FTMES only keeps the failed test cases, which leads to the
double cost of IETCR.

Table 4 further investigates the exact reduction rate of dif-
ferent optimization strategies when compared to the original
MBFLwithout any strategy. The average reduction rate of the
IETCR strategy (71.0%) is larger than that of SAMP(30%)
strategy (70.0%) and smaller than that of the FTMES strategy
(83.5%). As shown in this table, FTMES has the highest
reduction rate. The reason is that at the same number of
mutants, the FTMES strategy can only execute the failed test
cases and ignores all the passed test cases, while the IETCR
strategy and SAMP(30%) strategy also execute some passed
test cases.

To measure the cost of IETCR more precisely, we have
gathered the time of test case entropy change calculation
on each program version. Figure 4 shows the calculation
time in seconds with box plots. In Figure 4, the range of
calculation time is from 21 seconds to 832 seconds, and
program printtokens and grep require more time for entropy
change calculation while totinfo and tcas require less time for
entropy change calculation. Therefore, the calculation time of

124304 VOLUME 8, 2020

H. Wang et al.: IETCR Strategy for MBFL

FIGURE 3. Cost reduction performance of using different strategies.

FIGURE 4. Calculation time of test case entropy change on different
programs.

test case entropy change is worth considering the significant
savings in test case reduction.

Summary for RQ1: IETCR strategy has a more tremen-
dous mutation execution reduction rate than SAMP(30%)
strategy, but smaller than FTMES strategy on average, since
IETCR strategy can execute some passed test cases than
FTMES strategy. Additionally, the calculation time of IETCR
is worth considering the significant savings in test case
reduction.

B. ANSWER FOR RQ2
In RQ2, we focus on the fault localization accuracy and
compare our proposed IETCR strategy with two optimiza-
tion strategies and the original MBFL without any strat-
egy. To answer RQ2, we use the EXAM score metric to

show the fault localization accuracy. The comparison results
of using five different suspiciousness formulas of our pro-
posed strategy and three baselines via the violin plots are
shown in Figure 5. In these violin plots, the x-axis repre-
sents different MBFL methods, while the y-axis indicates
the fault localization accuracy. Each block in the violin plot
suggests the distribution of the EXAM score metric when
considering the corresponding suspiciousness formula. The
breadth of the block represents the data density of the cor-
responding value of the y-axis for all subject program ver-
sions. Therefore, the wider in the bottom of the block and
the thinner in the up of the block indicate that the corre-
sponding MBFL technique has a better fault localization
accuracy.

From Figure 5, we can find that no matter which suspi-
ciousness formula is used to calculate the suspiciousness of
mutants, our proposed IETCR strategy can achieve the sim-
ilar performance of the original MBFL without any strategy.
Moreover, we also find the distribution of the EXAM score
metric when using the IETCR strategy is almost around 0,
which is more concentrated than two optimization strate-
gies (i.e., FTMES and SAMP(30%)). This indicates the fault
localization accuracy of the IETCR strategy is higher than
two baseline optimization strategies.

More detailed comparison results can be found in Table 5.
In this table, we consider the various thresholds of the EXAM
score, which is shown in the first column. Then the other
columns are the percentage of 112 faulty versions whose
EXAM score is smaller than the corresponding threshold. In
Table 5, the results highlighted with bold are the best perfor-
mance when given the suspiciousness formula and EXAM
score threshold. Notice, JA denotes Jaccard , OC denotes

VOLUME 8, 2020 124305

H. Wang et al.: IETCR Strategy for MBFL

TABLE 5. Comparison of fault localization accuracy of different MBFL techniques when considering different EXAM thresholds.

FIGURE 5. Comparison of fault localization accuracy of different MBFL
approaches with different formulas.

Ochiai, OP denotes Op2, TA denotes Tarantula, and DS
denotes Dstar3.
For example, when we use the original MBFL with the

suspiciousness formula Jaccard , there are 31% faulty ver-
sions whose EXAM score is lower than 1%, which performs
best when compared withMBFLwith IETCR strategy (0.28),
FTMES strategy (0.03), and SAMP(30%) strategy (0.22).
For the different formulas with the same MBFL approach,
both Ochiai and Dstar3 have the best performance in origi-
nal MBFL, and Dstar3 has the best performance in IETCR

strategy and FTMES strategy. Besides, for the same suspi-
ciousness formulas, IETCR strategy can achieve better fault
localization accuracy than FTMES strategy and SAMP(30%)
strategy in all the formulas.

In addition, we also compare the fault localization accuracy
of different MBFL techniques when considering different
programs, and the results are shown in Table 6. Due to the
horizontal space limitation for the table, we only show two
digits after the decimal point. In Table 6, we can find that in
most cases, the EXAM Scores of IETCR are close to original
MBFL and lower than FTMES and SAMP(30%). Only in
a few highlighted cases, the corresponding EXAM Scores
of IETCR are higher than or equal to that of FTMES or
SAMP(30%).

To analyze the statistical significance between our pro-
posed IETCR strategy and other baselines, we employ the
Wilcoxon signed-rank test [47] at a confidence level of 95%,
since Wilcoxon signed-rank test does not have any distri-
bution requirement for the underlying data. Table 7 sum-
marizes average value and statistical analysis results on the
fault localization accuracy of IETCR with three baselines
(Original MBFL, FTMES, and SAMP(30%)). These results
are presented in five different suspicious formulas. In Table 7,
the values in brackets are the p-Values, and the p-value (in
bold) greater than 0.05 represent that there is no statistically
significant difference between MBFL with IETCR strategy
and the corresponding MBFL baseline technique. In Table 7,
we first find that MBFL with IETCR has a better fault local-
ization accuracy than FTMES and SAMP(30%) on average in
terms of EXAM score when using different formulas, while
almost the same to the original MBFL (such as Jaccard and
Dstar3). Second, according to the p-Values in brackets, there
is no statistically significant difference between MBFL with
IETCR strategy and the original MBFL on the fault localiza-
tion accuracy when using Jaccard , Ochiai, Op2, Tarantula
and Dstar3. But the fault localization accuracy of MBFL
with FTMES and SAMP(30%) strategies have significant
differences with the IETCR strategy.

Summary for RQ2: MBFL with the IETCR strategy has
better fault localization accuracy than MBFL with the other
two optimization strategies. Further statistical testing results

124306 VOLUME 8, 2020

H. Wang et al.: IETCR Strategy for MBFL

TABLE 6. Comparison of fault localization accuracy of different MBFL techniques when considering different programs.

show that there is no significant difference between original
MBFL and MBFL with the IETCR strategy.

VI. THREATS TO VALIDITY
A. THREATS TO INTERNAL VALIDITY
The main threat is the mutation tools used in our exper-
iments. We choose Proteum for mutation analysis, which
is a popular mutation analysis tool and is widely used in
previous studies [12], [13], [21], [32]. Since using differ-
ent mutation tools may affect our empirical results, we will
use other mutation tools in our future work (such as
Major [48]).

B. THREATS TO EXTERNAL VALIDITY
The first threat is the choice of baselines. We choose FTMES
and SAMP (30%) as our baselines since FTMES is the latest
test case reduction strategy for MBFL, and SAMP(30%) is
SAMPLING strategy [13], which randomly selects 30% test
cases from the test suite. Previously studies [13], [32] showed
that randomly choosing 30% mutants can keep the loss of
MBFL’s fault localization at a low level; therefore, we use
the same SAMPLING ratio in our study. The second threat is
the implementation correctness of baselines, we implemented
these baseline methods strictly based on the description of the
corresponding papers, and the actual performance of these
baselines is very close to the results in the corresponding
papers.

C. THREATS TO CONSTRUCT VALIDITY
In our study, we use MTP as the mutation reduction per-
formance metric and EXAM score as the fault localization
accuracy metric. The former metric is popularly used in
evaluating the cost of MBFL [12], [21], [32], and the latter
one is also a commonly used fault localization metric in pre-
vious studies [45], [46]. Therefore, the performance metrics
used in our study can reflect the real situation in evaluat-
ing MFL methods. In the future, we also want to evaluate
our method in terms of other performance metrics (such as
acc@n [31], [45]).

D. THREATS TO CONCLUSION VALIDITY
To show whether there exists a statistical difference between
our proposed IETCR strategy with baselines in terms of the
EXAM score metric, we use the Wilcoxon signed-rank test.
Since this kind of statistical test method has been widely used
in previous studies [21], [49]–[52].

TABLE 7. Average EXAM Score and p-value of different MBFL techniques.

VII. RELATED WORK
A. FAULT LOCALIZATION TECHNIQUES
Spectrum-Based Fault Localization (SBFL) is one of the
most studied techniques among the fault localization tech-
niques, such as slice-based techniques [53], mutation-based
techniques [13], [19] and machine learning-based tech-
niques [54]. In addition to the studies in suspicious formu-
las [29]–[31], researchers have reported the approaches with
various covered information such as call sequences [55], du-
pairs [56], statement frequency [57], and so on. Moreover,
considering that test suite influences on the effectiveness of
fault localization, Dandan et al. [58] and Vidács et al. [59]
presented strategies for prioritizing and reducing test suite.

In Mutation-Based Fault Localization (MBFL) context,
MUSE (MUtation-baSEd FL) [14] and Metallaxis-FL [13]
are twoMBFL pioneer techniques. Both these two techniques
are based on mutation analysis [19], which relies on the
assumption that most of the mutations from ‘‘realistic’’ faults,
even if artificially seeded [13]. In particular, MUSE aims at
producing diverse program behaviors by mutation operators,
and some metrics that reflect these behaviors according to the
test result are used to measure the probabilities of statements
containing faults. Previous works indicate that Metallaxis-FL
outperforms MUSE on efficiency and accuracy [15].

B. COST REDUCTION ON MUTATION ANALYSIS
The mutation-based fault localization (MBFL) technique is
based on mutation analysis, which is a high computational
cost technique. There are three categories in cost reduction:
1) reduce the number of generated mutants; 2) reduce the
number of executed test cases; 3)Optimize the mutant exe-
cution process.

For reducing created mutants, mutant sampling is a sim-
ple way to randomly select a subset of mutants from the
set of all generated mutants. Papadakis and Le Traon [13]
proposed a mutant sampling strategy that extracts mutants
from the whole mutant set. Liu et al. [32] presented a
statement-oriented mutant reduction strategy, which samples
mutants at a specific percentage on statement level. Another

VOLUME 8, 2020 124307

H. Wang et al.: IETCR Strategy for MBFL

alternative way is selective mutation. The underlying idea is
that certain types of mutants may be more important than
others. Namin et al. [60] used a statistical analysis proce-
dure to identify a small set of mutation operators, which is
still sufficient for measuring test effectiveness. Their results
showed that it is possible to reduce the number of mutants
by approximately 93%. Papadakis and Traon proposed
SELECTIVE [19] to identify the specific sufficient mutant
operators for generating mutants. Besides, higher-order
mutants are used for reducing the number of mutants. In this
case, mutants are generated by inserting two or more faults
at the same time. Polo et al. [61] presented three strategies
to combine first-order mutants and generate second-order
mutants. They found that mutant combination can achieve
significant cost reductions without any effectiveness loss.
Later, higher-order combination strategies have been shown
that they can achieve a relatively good trade-off between
cost and effectiveness [62]–[64]. In particular, Papadakis and
Malevris [63] found that second-order strategies can accom-
plish reductions of 80% to 90% of the equivalent mutants
and roughly 30% of the test cases, with approximately 10%
or less of fault localization effectiveness loss. Furthermore,
Parsai et al. [65] built a prediction model that estimates the
first-order mutation coverage based on higher-order mutation
coverage and the model can describe the real behavior of the
vast majority of higher-order mutants.

For reducing executed test cases, De Oliveira et al. [20]
presented FTMES strategy that only employs the failed test
cases to execute mutants, but ignores all the passed test cases.
Therefore the execution cost of MBFL will decrease along
with the fewer execution of the test case. Since the passed
test cases can also contribute to fault localization, ignoring
all of them by FTMES will cause the loss of MBFL’s fault
localization accuracy.

The idea of employing test case prioritization is first pro-
posed by Just et al. [66] to optimize the mutant execution
process, and Zhang et al. [42] optimized the mutation testing
process by using the former execution information to guide
the latter executions. Kapoor and Bowen [67] presented a
method to improve mutation testing by identifying the fault
and mutant hierarchies, where a strategy is given to suggest
the ordering of the mutants such that if a mutant is stronger
than another, then test case killing the stronger will auto-
matically kill the weaker. Besides, Liu et al. [21] proposed
a dynamic mutation execution strategy (DMES) for MBFL
with mutation execution optimization and test case execution
optimization. DMES utilizes the total set of both mutants and
test cases, and such a strategy can be combined with other
methods to further MBFL cost reduction.

VIII. CONCLUSIONS AND FUTURE WORK
In this paper, we present a novel information entropy based
test case reduction (IETCR) strategy for mutation-based fault
localization. IETCR adopts information theory to calculate
the entropy change of the test cases, then generates a rank list
of test cases by sorting them by the entropy in the ascending

order. IETCR is a strategy of considering both passed and
failed test cases, and it keeps all failed test cases and selects
some of the passed test cases according to the entropy. We
evaluate the effectiveness of IETCR on 112 faulty versions
from six real-world programs, and the results show that using
the IETCR strategy can effectively reduce the execution cost
and maintain almost the same fault localization accuracy with
original MBFL. For fault localization accuracy, our evalua-
tion results also indicate that the IETCR strategy outperforms
the two state-of-the-art baseline strategies on MBFL (i.e.,
FTMES and SAMP(30%)).

In the future, we first want to improve the IETCR strategy
by combining other techniques [21], [32] for further reducing
the execution cost of MBFL. We second want to verify the
effectiveness of our proposed IETCR strategy on MBFL by
considering more larger-scale real-word programs (such as
programs from Defects4J [68]).

REFERENCES
[1] W. E. Howden, ‘‘Theoretical and empirical studies of program testing,’’

IEEE Trans. Softw. Eng., vol. SE-4, no. 4, pp. 293–298, Jul. 1978.
[2] D. Shin and D.-H. Bae, ‘‘A theoretical framework for understanding

mutation-based testing methods,’’ in Proc. IEEE Int. Conf. Softw. Test.,
Verification Validation (ICST), Apr. 2016, pp. 299–308.

[3] P. Li, M. Jiang, and Z. Ding, ‘‘Fault localization with weighted test model
in model transformations,’’ IEEE Access, vol. 8, pp. 14054–14064, 2020.

[4] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, ‘‘A survey on
software fault localization,’’ IEEE Trans. Softw. Eng., vol. 42, no. 8,
pp. 707–740, Aug. 2016.

[5] Y.Wang, Z. Huang, B. Fang, and Y. Li, ‘‘Spectrum-based fault localization
via enlarging non-fault region to improve fault absolute ranking,’’ IEEE
Access, vol. 6, pp. 8925–8933, 2018.

[6] Y. Xiaobo, B. Liu, and W. Shihai, ‘‘An analysis on the negative effect of
multiple-faults for spectrum-based fault localization,’’ IEEE Access, vol. 7,
pp. 2327–2347, 2019.

[7] H. He, J. Ren, G. Zhao, and H. He, ‘‘Enhancing spectrum-based fault
localization using fault influence propagation,’’ IEEE Access, vol. 8,
pp. 18497–18513, 2020.

[8] F. Keller, L. Grunske, S. Heiden, A. Filieri, A. van Hoorn, and D. Lo,
‘‘A critical evaluation of spectrum-based fault localization techniques on a
large-scale software system,’’ in Proc. IEEE Int. Conf. Softw. Qual., Rel.
Secur. (QRS), Jul. 2017, pp. 114–125.

[9] A. Arrieta, S. Segura, U. Markiegi, G. Sagardui, and L. Etxeberria,
‘‘Spectrum-based fault localization in software product lines,’’ Inf. Softw.
Technol., vol. 100, pp. 18–31, Aug. 2018.

[10] S. Moon, Y. Kim, M. Kim, and S. Yoo, ‘‘Hybrid-MUSE: Mutating faulty
programs for precise fault localization,’’ KAIST, Daejeon, South Korea,
Tech. Rep., 2014.

[11] M. Papadakis and Y. Le Traon, ‘‘Using mutants to locate ‘unknown’
faults,’’ in Proc. IEEE 5th Int. Conf. Softw. Test., Verification Validation,
Apr. 2012, pp. 691–700.

[12] M. Kooli, F. Kaddachi, G. D. Natale, A. Bosio, P. Benoit, and L. Torres,
‘‘Computing reliability: On the differences between software testing and
software fault injection techniques,’’ Microprocessors Microsyst., vol. 50,
pp. 102–112, May 2017.

[13] M. Papadakis and Y. Le Traon, ‘‘Metallaxis-FL: Mutation-based fault
localization,’’ Softw. Test., Verification Rel., vol. 25, nos. 5–7, pp. 605–628,
Aug. 2015.

[14] S. Moon, Y. Kim, M. Kim, and S. Yoo, ‘‘Ask the mutants: Mutating faulty
programs for fault localization,’’ in Proc. IEEE 7th Int. Conf. Softw. Test.,
Verification Validation, Mar. 2014, pp. 153–162.

[15] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst, D. Pang,
and B. Keller, ‘‘Evaluating and improving fault localization,’’ in Proc.
IEEE/ACM 39th Int. Conf. Softw. Eng. (ICSE), May 2017, pp. 609–620.

[16] X.-Y. Zhang, Z. Zheng, and K.-Y. Cai, ‘‘Exploring the usefulness of
unlabelled test cases in software fault localization,’’ J. Syst. Softw., vol. 136,
pp. 278–290, Feb. 2018.

124308 VOLUME 8, 2020

H. Wang et al.: IETCR Strategy for MBFL

[17] J. Tu, X. Xie, and B. Xu, ‘‘Code coverage-based failure proximity
without test oracles,’’ in Proc. IEEE 40th Annu. Comput. Softw. Appl.
Conf. (COMPSAC), Jun. 2016, pp. 133–142.

[18] T. B. Noor and H. Hemmati, ‘‘Studying test case failure prediction for test
case prioritization,’’ in Proc. 13th Int. Conf. Predictive Models Data Anal.
Softw. Eng. (PROMISE), 2017, pp. 2–11.

[19] M. Papadakis and Y. Le Traon, ‘‘Effective fault localization via mutation
analysis: A selective mutation approach,’’ in Proc. 29th Annu. ACM Symp.
Appl. Comput. (SAC), 2014, pp. 1293–1300.

[20] A. A. L. de Oliveira, C. G. Camilo-Junior, E. N. de Andrade Freitas, and
A. M. R. Vincenzi, ‘‘FTMES: A failed-test-oriented mutant execution
strategy for mutation-based fault localization,’’ in Proc. IEEE 29th Int.
Symp. Softw. Rel. Eng. (ISSRE), Oct. 2018, pp. 155–165.

[21] Y. Liu, Z. Li, R. Zhao, and P. Gong, ‘‘An optimal mutation execution
strategy for cost reduction of mutation-based fault localization,’’ Inf. Sci.,
vol. 422, pp. 572–596, Jan. 2018.

[22] S. Yoo, M. Harman, and D. Clark, ‘‘Fault localization prioritization:
Comparing information-theoretic and coverage-based approaches,’’ ACM
Trans. Softw. Eng. Methodol., vol. 22, no. 3, pp. 1–29, Jul. 2013.

[23] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, ‘‘Hints on test data
selection: Help for the practicing programmer,’’ Computer, vol. 11, no. 4,
pp. 34–41, Apr. 1978.

[24] A. J. Offutt and R. H. Untch, ‘‘Mutation 2000: Uniting the orthogonal,’’ in
Mutation Testing for the New Century. Cham, Switzerland: Springer, 2001,
pp. 34–44.

[25] V. Debroy and W. E. Wong, ‘‘Combining mutation and fault localization
for automated program debugging,’’ J. Syst. Softw., vol. 90, pp. 45–60,
Apr. 2014.

[26] J. M. Voas, ‘‘PIE: A dynamic failure-based technique,’’ IEEE Trans. Softw.
Eng., vol. 18, no. 8, pp. 717–727, Aug. 1992.

[27] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, ‘‘Pinpoint:
Problem determination in large, dynamic Internet services,’’ in Proc. Int.
Conf. Dependable Syst. Netw., 2002, pp. 595–604.

[28] R. Abreu, P. Zoeteweij, and A. Van Gemund, ‘‘An evaluation of similarity
coefficients for software fault localization,’’ in Proc. 12th Pacific Rim Int.
Symp. Dependable Comput. (PRDC), 2006, pp. 39–46.

[29] X. Xie, T. Y. Chen, F.-C. Kuo, and B. Xu, ‘‘A model for spectra-based
software diagnosis,’’ ACM Trans. Softw. Eng. Methodol., vol. 20, no. 3,
pp. 11:1–11:32, Aug. 2011.

[30] J. A. Jones, M. J. Harrold, and J. Stasko, ‘‘Visualization of test information
to assist fault localization,’’ in Proc. 24th Int. Conf. Softw. Eng. (ICSE),
2002, pp. 467–477.

[31] W. E.Wong, V. Debroy, R. Gao, and Y. Li, ‘‘The DStar method for effective
software fault localization,’’ IEEE Trans. Rel., vol. 63, no. 1, pp. 290–308,
Mar. 2014.

[32] Y. Liu, Z. Li, L. Wang, Z. Hu, and R. Zhao, ‘‘Statement-oriented mutant
reduction strategy for mutation based fault localization,’’ in Proc. IEEE Int.
Conf. Softw. Qual., Rel. Secur. (QRS), Jul. 2017, pp. 126–137.

[33] C. E. Shannon, ‘‘A mathematical theory of communication,’’ Bell Syst.
Tech. J., vol. 27, no. 3, pp. 379–423, 1948.

[34] Y. Gao, Z. Zhang, L. Zhang, C. Gong, and Z. Zheng, ‘‘A theoretical
study: The impact of cloning failed test cases on the effectiveness of fault
localization,’’ in Proc. 13th Int. Conf. Qual. Softw., Jul. 2013, pp. 288–291.

[35] L. Zhang, L. Yan, Z. Zhang, J. Zhang, W. K. Chan, and Z. Zheng,
‘‘A theoretical analysis on cloning the failed test cases to improve
spectrum-based fault localization,’’ J. Syst. Softw., vol. 129, pp. 35–57,
Jul. 2017.

[36] C. Gong, Z. Zheng, W. Li, and P. Hao, ‘‘Effects of class imbalance in
test suites: An empirical study of spectrum-based fault localization,’’ in
Proc. IEEE 36th Annu. Comput. Softw. Appl. Conf. Workshops, Jul. 2012,
pp. 470–475.

[37] H. Do, S. Elbaum, and G. Rothermel, ‘‘Supporting controlled experimen-
tation with testing techniques: An infrastructure and its potential impact,’’
Empirical Softw. Eng., vol. 10, no. 4, pp. 405–435, Oct. 2005.

[38] Z. Li, Y. Wu, and Y. Liu, ‘‘An empirical study of bug isolation on the
effectiveness of multiple fault localization,’’ in Proc. IEEE 19th Int. Conf.
Softw. Qual., Rel. Secur. (QRS), Jul. 2019, pp. 18–25.

[39] Q. Yang, J. J. Li, and D. M. Weiss, ‘‘A survey of coverage-based testing
tools,’’ Comput. J., vol. 52, no. 5, pp. 589–597, Aug. 2009.

[40] M. E. Delamaro, J. C. Maldonado, and A. M. R. Vincenzi, ‘‘Pro-
teum/im 2.0: An integrated mutation testing environment,’’ in Muta-
tion Testing for the New Century. Cham, Switzerland: Springer, 2001,
pp. 91–101.

[41] H. Agrawal, R. DeMillo, R. Hathaway, W. Hsu, W. Hsu, E. W. Krauser,
R. J. Martin, A. P. Mathur, and E. Spafford, ‘‘Design of mutant operators
for the C programming language,’’ Softw. Eng. Res. Center, Purdue Univ.,
West Lafayette, IN, USA, Tech. Rep. SERC-TR-41-P, 1989.

[42] L. Zhang, D. Marinov, and S. Khurshid, ‘‘Faster mutation testing inspired
by test prioritization and reduction,’’ in Proc. Int. Symp. Softw. Test.
Anal. (ISSTA), 2013, pp. 235–245.

[43] R. Just, M. D. Ernst, and G. Fraser, ‘‘Efficient mutation analysis by
propagating and partitioning infected execution states,’’ in Proc. Int. Symp.
Softw. Test. Anal. (ISSTA), 2014, pp. 315–326.

[44] M. Renieres and S. P. Reiss, ‘‘Fault localization with nearest neighbor
queries,’’ in Proc. 18th IEEE Int. Conf. Automated Softw. Eng., Oct. 2003,
pp. 30–39.

[45] D. Zou, J. Liang, Y. Xiong,M. D. Ernst, and L. Zhang, ‘‘An empirical study
of fault localization families and their combinations,’’ IEEE Trans. Softw.
Eng., early access, Jan. 10, 2019, doi: 10.1109/TSE.2019.2892102.

[46] Y. Liu, M. Li, Y. Wu, and Z. Li, ‘‘A weighted fuzzy classification approach
to identify and manipulate coincidental correct test cases for fault localiza-
tion,’’ J. Syst. Softw., vol. 151, pp. 20–37, May 2019.

[47] F. Wilcoxon, ‘‘Individual comparisons by ranking methods,’’ in Break-
throughs in Statistics. Biometrics Bulletin: JSTOR, 1945, pp. 80–83.

[48] R. Just, ‘‘The major mutation framework: Efficient and scalable mutation
analysis for Java,’’ in Proc. Int. Symp. Softw. Test. Anal. (ISSTA), 2014,
pp. 433–436.

[49] X. Chen, Y. Zhao, Q.Wang, and Z. Yuan, ‘‘MULTI: Multi-objective effort-
aware just-in-time software defect prediction,’’ Inf. Softw. Technol., vol. 93,
pp. 1–13, Jan. 2018.

[50] X. Chen, D. Zhang, Y. Zhao, Z. Cui, and C. Ni, ‘‘Software defect number
prediction: Unsupervised vs supervised methods,’’ Inf. Softw. Technol.,
vol. 106, pp. 161–181, Feb. 2019.

[51] X. Chen, Y. Zhao, Z. Cui, G. Meng, Y. Liu, and Z. Wang, ‘‘Large-
scale empirical studies on effort-aware security vulnerability prediction
methods,’’ IEEE Trans. Rel., vol. 69, no. 1, pp. 70–87, Mar. 2020.

[52] X. Chen, Y. Mu, Y. Qu, C. Ni, M. Liu, T. He, and S. Liu, ‘‘Do different
cross-project defect prediction methods identify the same defective mod-
ules?’’ J. Softw., Evol. Process, vol. 32, no. 5, pp. 70–87, May 2020.

[53] X. Zhang, H. He, N. Gupta, and R. Gupta, ‘‘Experimental evaluation of
using dynamic slices for fault location,’’ in Proc. 6th Int. Symp. Automated
Anal.-Driven Debugging (AADEBUG), 2005, pp. 33–42.

[54] W. E. Wong, Y. Shi, Y. Qi, and R. Golden, ‘‘Using an RBF neural network
to locate program bugs,’’ in Proc. 19th Int. Symp. Softw. Rel. Eng. (ISSRE),
Nov. 2008, pp. 27–36.

[55] V. Dallmeier, C. Lindig, and A. Zeller, ‘‘Lightweight bug localization
with AMPLE,’’ in Proc. 6th Int. Symp. Automated Anal.-Driven Debug-
ging (AADEBUG), 2005, pp. 99–104.

[56] W. Masri, ‘‘Fault localization based on information flow coverage,’’ Softw.
Test., Verification Rel., vol. 20, no. 2, pp. 121–147, May 2009.

[57] T. Shu, T. Ye, Z. Ding, and J. Xia, ‘‘Fault localization based on statement
frequency,’’ Inf. Sci., vol. 360, pp. 43–56, Sep. 2016.

[58] G. Dandan, W. Tiantian, S. Xiaohong, and M. Peijun, ‘‘A test-suite
reduction approach to improving fault-localization effectiveness,’’ Com-
put. Lang., Syst. Struct., vol. 39, no. 3, pp. 95–108, Oct. 2013.

[59] L. Vidacs, A. Beszedes, D. Tengeri, I. Siket, and T. Gyimothy, ‘‘Test suite
reduction for fault detection and localization: A combined approach,’’ in
Proc. Softw. Evol. Week IEEE Conf. Softw. Maintenance, Reengineering,
Reverse Eng. (CSMR-WCRE), Feb. 2014, pp. 204–213.

[60] A. Siami Namin, J. H. Andrews, and D. J. Murdoch, ‘‘Sufficient mutation
operators for measuring test effectiveness,’’ in Proc. 13th Int. Conf. Softw.
Eng. (ICSE), 2008, pp. 351–360.

[61] M. Polo, M. Piattini, and I. García-Rodríguez, ‘‘Decreasing the cost of
mutation testingwith second-ordermutants,’’ Softw. Test., Verification Rel.,
vol. 19, no. 2, pp. 111–131, Jun. 2009.

[62] M. Kintis, M. Papadakis, and N. Malevris, ‘‘Evaluating mutation testing
alternatives: A collateral experiment,’’ in Proc. Asia Pacific Softw. Eng.
Conf., Nov. 2010, pp. 300–309.

[63] M. Papadakis and N. Malevris, ‘‘An empirical evaluation of the first and
second order mutation testing strategies,’’ in Proc. 3rd Int. Conf. Softw.
Test., Verification, Validation Workshops, Apr. 2010, pp. 90–99.

[64] M. Papadakis, N. Malevris, and M. Kintis, ‘‘Mutation testing strategies-a
collateral approach,’’ in Proc. ICSOFT, 2010, pp. 325–328.

[65] A. Parsai, A. Murgia, and S. Demeyer, ‘‘A model to estimate first-order
mutation coverage from higher-order mutation coverage,’’ in Proc. IEEE
Int. Conf. Softw. Qual., Rel. Secur. (QRS), Aug. 2016, pp. 365–373.

VOLUME 8, 2020 124309

http://dx.doi.org/10.1109/TSE.2019.2892102

H. Wang et al.: IETCR Strategy for MBFL

[66] R. Just, G. M. Kapfhammer, and F. Schweiggert, ‘‘Using non-redundant
mutation operators and test suite prioritization to achieve efficient and
scalablemutation analysis,’’ inProc. IEEE 23rd Int. Symp. Softw. Rel. Eng.,
Nov. 2012, pp. 11–20.

[67] K. Kapoor and J. P. Bowen, ‘‘Ordering mutants to minimise test effort in
mutation testing,’’ in Proc. Int. Workshop Formal Approaches Softw. Test.
Cham, Switzerland: Springer, 2004, pp. 195–209.

[68] R. Just, D. Jalali, andM. D. Ernst, ‘‘Defects4J: A database of existing faults
to enable controlled testing studies for Java programs,’’ in Proc. Int. Symp.
Softw. Test. Anal. (ISSTA), 2014, pp. 437–440.

HAIFENG WANG received the B.S. degree in
mathematics from the Beijing University of Chem-
ical Technology, China, in 2017, where he is cur-
rently pursuing the Ph.D. degree in control theory
and control engineering. His research interests are
software testing, fault localization, and software
defect prediction.

BIN DU received the B.S. degree in automatic
instrument from the Hebei Institute of Technology,
and the M.S. and Ph.D. degrees in control science
and engineering from the Beijing University of
Chemical Technology, in 2000 and 2011, respec-
tively. She is currently an Associate Professor with
the College of Information Science and Technol-
ogy, Beijing University of Chemical Technology.
Her research interests include software analysis,
fault localization, and program repair.

JIE HE received the B.S. degree from the Bei-
jing University of Chemical Technology, Beijing,
China, in 2017, where he is currently pursuing
the master’s degree in computer science and tech-
nology. His research interests are fault localization
and software testing.

YONG LIU (Member, IEEE) received the B.Sc.
and M.Sc. degrees in computer science and tech-
nology, and the Ph.D. degree in control science
and engineering from the Beijing University of
Chemical Technology, China, in 2008, 2011, and
2015, respectively. He is currently an Assistant
Professor with the College of Information Science
and Technology, Beijing University of Chemical
Technology. In his research areas, he has published
about ten papers in referred journals or confer-

ences such as the Journal of Systems and Software, Information Sciences,
QRS, SATE, and COMPSAC. His research interest is mainly in software
engineering. Particularly, he is interested in software debugging and software
testing such as source code analysis, mutation testing, and fault localization.
He is a member of the CCF, China, and ACM.

XIANG CHEN (Member, IEEE) received the B.Sc.
degree from the School of Management, Xi’an
Jiaotong University, China, in 2002, and the M.Sc.
and Ph.D. degrees in computer software and the-
ory from Nanjing University, China, in 2008 and
2011, respectively. He is an Associate Profes-
sor with the Department of Information Science
and Technology, Nantong University. His research
interests are mainly in software engineering. Par-
ticularly, he is interested in software maintenance

and software testing such as software defect prediction, combinatorial test-
ing, regression testing, and fault localization. In his research areas, he has
published over 60 papers in refereed journals or conferences such as the
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, IEEE ACCESS, Information
and Software Technology, the Journal of Systems and Software, the IEEE
TRANSACTIONS ON RELIABILITY, the Journal of Software: Evolution and Pro-
cess, Software Quality Journal, the Journal of Computer Science and Tech-
nology, ASE, ICSME, SANER, and COMPSAC. He is a Senior Member of
the CCF, China, and a member of the ACM. He is currently serving as an
Associate Editor for IEEE ACCESS.

124310 VOLUME 8, 2020

