
A Permission-Dependent Type System for Secure
Information Flow Analysis

Hongxu Chen
Nanyang Technological University, Singapore

hchen017@e.ntu.edu.sg

Zhiwu Xu†
CSSE, Shenzhen University, China

xuzhiwu@szu.edu.cn

Alwen Tiu
Australian National University, Australia

alwen.tiu@anu.edu.au

Yang Liu
Nanyang Technological University, Singapore

yangliu@ntu.edu.sg

Abstract—We introduce a novel type system for enforcing
secure information flow in an imperative language. Our work
is motivated by the problem of statically checking potential in-
formation leakage in Android applications. To this end, we design
a lightweight type system featuring Android permission model,
where the permissions are statically assigned to applications and
are used to enforce access control in the applications. We take
inspiration from a type system by Banerjee and Naumann to
allow security types to be dependent on the permissions of the
applications. A novel feature of our type system is a typing rule
for conditional branching induced by permission testing, which
introduces a merging operator on security types, allowing more
precise security policies to be enforced. The soundness of our type
system is proved with respect to non-interference. In addition, a
type inference algorithm is presented for the underlying security
type system, by reducing the inference problem to a constraint
solving problem in the lattice of security types.

I. BACKGROUND AND INTRODUCTION

Mobile security has become increasingly important for our

daily life due to the pervasive use of mobile applications.

Among the mobile devices that are currently in the market,

Android devices account for the majority of them so analysis

of their security has been of significant interests. There has

been a large number of analyses on Android security ([1]–

[5]) focusing on detecting potential security violations. Here

we are interested instead in the problem of constructing

secure applications, in particular, in providing guarantee of

information flow security in the constructed applications.

We follow the language-based security approach whereby

information flow is enforced through type systems [6]–[9].

In particular, we propose a design of a type system that

guarantees non-interference property [8], i.e., typable pro-

grams are non-interferent. As shown in [10], non-interference

provides a general and natural way to model information flow

security. The type-based approach to non-interference requires

assigning security labels to program variables and security

policies to functions or procedures. Such policies are typically

encoded as types, and typeability of the program implies

that the runtime behavior of the program complies with the

stated policies. Security labels form a lattice structure with an

†Corresponding author.

S t r i n g g e t C o n t a c t N o (S t r i n g name) {
S t r i n g number ;
i f (c h e c k P e r m i s s i o n (READ_CONTACT))

number = . . . ; // query the phone number
e l s e number = " " ;
re turn number ;

}

Listing 1. Sample code for getting contact info with a permission check.

underlying partial order ≤, e.g., a lattice with two elements

“high” (H) and “low” (L) where L ≤ H . Typing rules can then

be designed to prevent both explicit and implicit flow (through

conditionals, e.g., if-then-else statements) from H to L. To

prevent an explicit flow, the typing rule for an assignment

statement such as x := e would require that l(e) ≤ l(x) where

l(.) denotes the security level of an expression. To prevent an

implicit flow, e.g., if (y = 0) then x:= 0 else x := 1, most type

systems for non-interference require that the assignments in

both branches are given the same security level that is higher

or at least equal to the security level of the condition (y=0).

For example, if y is of type H and x is of type L, the statement

would not be typable.

A. Motivating Examples

In designing an information flow type system for Android,

we encounter a common pattern of conditionals that would

not be typable using conventional type systems. Consider the

pseudo-code in Listing 1. Such a code fragment could be part

of a phone dialer or a social network service app such as

Facebook, WhatsApp, where getContactNo provides a public

interface to query the phone number associated with a name.

The (implicit) security policy in this context is that contact

information (the phone number) can only be released if the

calling app has READ_CONTACT permission. The latter is

enforced using the checkPermission API in Android. Suppose

phone numbers are labelled with H , and the empty string is

labelled with L. If the interface is invoked by an app that has

the required permission, the phone number (H) is returned;

otherwise an empty string (L) is returned. In both cases, no

218

2018 IEEE 31st Computer Security Foundations Symposium

© 2018, Hongxu Chen. Under license to IEEE.
DOI 10.1109/CSF.2018.00023

data leakage happens: in the former case, the calling app is

authorized; and in the latter case, no sensitive data is ever

returned. By this informal reasoning, the function complies

with the implicit security policy and it should be safe to be

called in any context, regardless of the permissions the calling

app has. However, in the traditional (non-value dependent)

typing rule for the if-then-else construct, one would assign

the same security level to both branches, and the return value

of the function would be assigned level H . As a result, if this

function is called from an app with no permission, assigning

the return value to a variable with security level L has to

be rejected by the type system even though no sensitive

information is leaked. To cater for such a scenario, we need

to make the security type of getContactNo depend on the

permissions possessed by the caller.
Banerjee and Naumann [11] proposed a type system (which

we shall refer to as BN system) that incorporates permissions

into function types. Their type system was designed for an

access control mechanism different from ours, but the basic

principles are still applicable. In BN system, a Java class may

be assigned a set of permissions which need to be explicitly
enabled via an enable command for them to have any effect.

We say a permission is disabled for an class if it is not
assigned to the class, or it is assigned to the class but is

not explicitly enabled. Depending on the permissions of the

calling class (corresponding to an app in the above example),

a function such as getContactNo can have a collection of

types. In BN type system, the types of a function take the

form (l1, . . . , ln)
P−−→ l where l1, . . . , ln denote security

levels of the input, l denotes the security level of the output

and P denotes a set of permissions that are disabled by the

caller. The idea is that permissions are guards to sensitive

values. Thus conservatively, one would type the return value

of getContactNo as L only if one knows that the permission

READ_CONTACT is disabled. In BN system, getContactNo
admits the following types:

getContactNo : L
P−−→ L getContactNo : L

∅−−→ H

where P = {READ_CONTACT}. When typing a call to

getContactNo by an app without permissions, the first type of

getContactNo is used; otherwise the second type is used.
In BN system, the typing judgment is parameterized by a

permission set Q containing the permissions that are currently

known to be disabled. The set Q may or may not contain

all disabled permissions. Their language features a command

“test(P) c1 else c2”, which means that if the permissions in

the set P are all enabled, then the command behaves like

c1; otherwise it behaves like c2. The typing rules for the test
command (in a much simplified form) are:

(R1)
Q ∩ P = ∅ Q � c1 : τ Q � c2 : τ

Q � test(P) c1 else c2 : τ

(R2)
Q ∩ P �= ∅ Q � c2 : τ

Q � test(P) c1 else c2 : τ

where Q is a set of permissions that are disabled. When

Q ∩ P �= ∅, then at least one of the permissions in P is

disabled, thus one can determine statically that “test(P)” would

fail and only the else branch would be executed at runtime.

This case is reflected in the typing rule R2. When Q∩P = ∅,

there can be two possible runtime scenarios. One scenario is

that all permissions in P are enabled, so “test(P)” succeeds

and c1 is executed. The other is that some permissions in P
are disabled, but are not accounted for in Q. So in this case,

one cannot determine statically which branch of test will be

taken at runtime. The typing rule R1 therefore conservatively

considers typing both branches.

When adapting BN system to Android, R1 is still too

strong in some scenarios, especially when it is desired that

the absence of some permissions leads to the release of

sensitive values. Consider for example an application that

provides location tracking information related to a certain

advertising ID (Listing 2), where the latter provides a unique

ID for the purpose of anonymizing mobile users to be used

for advertising (instead of relying on hardware device IDs

such as IMEI numbers). If one can correlate an advertising

ID with a unique hardware ID, it will defeat the purpose of

the anonymizing service provided by the advertising ID. To

prevent that, getInfo returns the location information for an

advertising ID only if the caller does not have access to device

ID. To simplify discussion, let us assume that the permissions

to access IMEI and location information are denoted by p and

q, respectively.

S t r i n g g e t I n f o () {
S t r i n g r = " " ;
t e s t (p) {

t e s t (q) r = l o c ; e l s e r = " " ;
} e l s e {

t e s t (q) r = i d ++ l o c ; e l s e r = " " ;
}
re turn r ;

}

Listing 2. An example about non-monotonic policy.

Here id denotes a unique advertising ID generated and stored

by the app for the purpose of anonymizing user tracking

and loc denotes location information. The function first tests

whether the caller has access to IMEI number. If it does, and

if it has access to location, then only the location information

is returned. If the caller has no access to IMEI number,

but can access location information, then the combination of

advertising id and location id++loc is returned. In all the other

cases, an empty string is returned. Let us consider a lattice with

four elements ordered as: L ≤ l1, l2 ≤ H , where l1 and l2 are

incomparable. We specify that empty string is of type L, loc
is of type l1, id is of type l2, and the aggregate id++loc is of

type H. Consider the case where the caller has permissions p
and q and both are (explicitly) enabled. When applying BN
system, the desired type of getInfo in this case is ()

∅−−→ l1.

This means that the type of r has to be at most l1. Since no

permissions are disabled, only R1 is applicable to type this

program. This, however, will force both branches of test(p) to

have the same type. As a result, r has to be typed as H so

219

that all four assignments in the program can be typed.

The issue with the example in Listing 2 is that the stated

security policy is non-monotonic in the sense that an app with

more permissions does not necessarily have access to infor-

mation with higher level of security. The fact that BN system

cannot precisely capture non-monotonic policies appears to

be a design decision: they cited in [11] the lack of motivating

examples for non-monotonic policies, and suggested that to

accommodate such policies one might need to consider a

notion of declassification. As we have seen, however, non-

monotonic policies can arise naturally in mobile applications.

In a study on Android malwares [1], Enck et. al. iden-

tify several combinations of permissions that are potentially

‘dangerous’, in the sense that they allow potentially unsafe

information flow. An information flow policy that requires the

absence of such combinations of permissions in information

release would obviously be non-monotonic. In general, non-

monotonic policies can be required to solve the aggregation
problem studied in the information flow theory [12], where

several pieces of low security level information may be pooled

together to learn information at a higher security level.

We therefore designed a more precise type system for

information flow under an access control model inspired by

Android framework. Our type system solves the problem of

typing non-monotonic policies without resorting to downgrad-

ing or declassifying information. It is done technically via a

merging operator on security types, to keep information related

to both branches of test. Additionally, there is a significant

difference in the permission model used in traditional type

systems such as BN system, where permissions are propagated

across method invocations among apps. This is due to the fact

that permissions in Android are relevant only during inter-

process calls, while permissions are not inherited along the

call chains across apps. As we shall see in Section II-E, this

may give rise to a type of attack which we call “parameter

laundering” attack if one adopts a naive typing rule for

function calls. The soundness proof for our type system is

significantly different from that for BN type system due to the

difference in permission model and the new merging operator

on types in our type system.

Due to space constraints, most proofs are omitted but they

can be found in a technical report [13].

B. Contributions

The contributions of our work are three-fold.

1) We develop a lightweight type system in which security

types are dependent on a permission-based access control

mechanism, and prove its soundness with respect to non-

interference (Section II). A novel feature of the type sys-

tem is the type merging constructor, used for typing the

conditional branch in permission checking, which allows

us to model non-monotonic information flow policies.

2) We identify a problem of explicit flow through function

calls in the setting where permissions are not propagated

during function calls. This problem arises as a byproduct

of Android’s permission model, which is significantly

different from that in JVM, and adopting a standard

typing rule for function calls such as the one proposed

for Java in [11] would lead to unsoundness. We call

this problem the parameter laundering problem and we

propose a typing rule for function calls that prevents it.

3) We show that the type inference is decidable for our type

system, by reducing it to a constraint solving problem

(Section III).

II. A SECURE INFORMATION FLOW TYPE SYSTEM

In this section, we present the proposed information flow

type system. Section II-A discusses informally a permission-

based access control model, which is an abstraction of the

permission mechanism used in Android. Section II-B and

Section II-C give the operational semantics of a simple im-

perative language that includes permission checking constructs

based on the abstract permission model. Section II-D and Sec-

tion II-E describe the type system for our language and prove

its soundness with respect to a notion of non-interference.

A. A model of permission-based access control

Instead of taking all the language features and the library

dependencies of Android apps into account, we focus on the

permission model used in inter-component communications

within and across apps. Such permissions are used to regulate

access to protected resources, such as device id, location

information, contact information, etc.

In Android, an app specifies the permissions it needs at

installation time via a manifest file. In recent versions of

Android (since Android 6.0, API level 23), some of these

permissions need to be granted by users at runtime. But at

no point a permission request is allowed if it is not already

specified in the manifest. For now, we assume a permission

enforcement mechanism that applies to Android versions prior

to version 6.0, so it does not account for permission granting

at runtime 1. Runtime permission granting [14] poses some

problems in typing non-monotonic policies; we shall come

back to this point later in Section V.

An Android app may provide services to other apps, or

other components within the app itself. Such a service provider

may impose permissions on other apps who want to access

its services. Communication between apps is implemented

through Binder IPC (inter-process communications) [15].

In our model, a program can be seen as a highly abstracted

version of an app, and the intention is to show how one

can reason about information flow in such a service provider

when access control is imposed on the calling app. In the

following we shall not model explicitly the IPC mechanism

of Android, but will instead model it as a function call. Note

that this abstraction is practical since it can be achieved by

conventional data and control flow analyses, together with

the modeling of Android IPC specific APIs. The feasibility

1To be specific, runtime permission request requires the compatible version
specified in the manifest file to be greater than or equal to API level 23, and
running OS should be at least Android 6.0.

220

has been demonstrated by frameworks like FlowDroid [3],

Amandroid [4], IccTA[5], etc. 2

One significant issue that has to be taken into account is that

Android framework does not track IPC call chains between

apps and permissions of an app are not propagated to the

callee. That is, an app A calling another app B does not grant

B the permissions assigned to A. This is different from the

traditional type systems such as BN where permissions can

potentially propagate along the call stacks. Note however that

B can potentially have more permissions than A, leading to a

potential privilege escalation, a known weakness in Android

permission system [16]. Another consequence of lacking tran-

sitivity is that in designing the type system, one must be careful

to avoid what we call a “parameter laundering" attack (see

Section II-D).

B. A Language with Permission Checks

As mentioned earlier, we do not model directly all the

language features of an Android app, but use a much simplified

language to focus on the permission mechanism part. The

language is a variant of the language considered in [8],

extended with functions and an operator for permission checks.

We model an app as a collection of functions (services),

together with a statically assigned permission set. A system,

denoted by S , consists of a set of apps. We use capital letters

A,B, . . . to denote apps. A function f defined in an app

A is denoted by A.f , and may be called independently of

other functions in the same app. The intention is that a func-

tion models an application component (i.e., Activity, Service,

BroadCastReceiver, and ContentProvider) in Android, which

may be called from within the same app or other apps.

We assume that only one function is executed at a time, so

we do not model concurrent executions of apps. We think that

in the Android setting, considering sequential behavior only

is not overly restrictive. This is because the communication

between apps are (mostly) done via IPC. Shared states between

apps, which is what contributes to the difficulty in concurrency

handling, is mostly absent, apart from the very limited sharing

of preferences. In such a setting, each invocation of a service

can be treated independently as there is usually no synchro-

nization needed between different invocations. Additionally,

we assume functions in a system are not (mutually) recursive,

so there is a finite chain of function calls from any given func-

tion. The absence of recursion is not a restriction, since our

functions are supposed to model communications in Android,

which are rarely recursive. We denote with P the finite set

containing all permissions in the system. Each app is assigned

a static set of permissions drawn from this set. The powerset

of P is written as P.

For simplicity, we consider only programs manipulating

integers, so the expressions in our language all have the integer

2We have also been implementing a permission-dependent information flow
analysis tool on top of Amandroid. The basic idea is similar to the one
mentioned in this paper, however the focus is improving the precision of
information leakage detection rather than non-interference certification.

type. Boolean values are encoded as 0 (false) and any non-zero

values (true). The grammar for expressions is given below:

e ::= n | x | e op e

where n denotes an integer literal, x denotes a variable,

and op denotes a binary operation. The commands of the

language are given in the following grammar:

c ::= x := e | if e then c else c | while e do c | c; c
| letvar x = e in c | x := call A.f(e) | test(p) c else c

The first four constructs are respectively assignment, condi-

tional, while-loop and sequential composition. The statement

“letvar x = e in c” is a local variable declaration statement.

Here x is declared and initialized to e, and its scope is the

command c. We require that x does not occur in e. The

statement “x := call A.f(e)” denotes an assignment whose

right hand side is a function call to A.f . The statement

“test(p) c1 else c2” checks whether the calling app has per-

mission p: if it does then c1 is executed, otherwise c2 is

executed. This is similar to the test construct in BN system,

except that we allow testing only one permission at a time.

This is a not real restriction since both versions of the test
can simulate one another.

A function declaration has the following syntax:

F ::= A.f(x)
{

init r = 0 in {c; return r}
}

where A.f is the name of the function, x̄ are function

parameters, c is a command and r is a local variable that

holds the return value of the function. The variables x and r
are bound variables with the command “c; return r” in their

scopes. We consider only closed functions, i.e., the variables

occurring in c are either introduced by letvar or from the set

{x, r}.

C. Operational Semantics

We assume that function definitions are stored in a table FD
indexed by function names, and the permission sets assigned

to apps are given by a table Θ indexed by app names.

An evaluation environment is a finite mapping from vari-

ables to values (i.e., integers). We denote with EEnv the set of

evaluation environments. Elements of EEnv are ranged over

by η. We use the notation [x1 �→ v1, · · · , xn �→ vn] to denote

an evaluation environment mapping variable xi to value vi;
this will sometimes be abbreviated as [x �→ v]. The domain of

η = [x1 �→ v1, · · · , xn �→ vn] (i.e., {x1, . . . , xn}) is denoted

by dom(η). Given two environments η1 and η2, we define η1η2
as an environment η such that η(x) = η2(x) if x ∈ dom(η2),
otherwise η(x) = η1(x). For example, η[x �→ v] maps x to

v, and y to η(y) for any y ∈ dom(η) such that y �= x. Given

a mapping η and a variable x, we write η−x to denote the

mapping resulting from removing x from dom(η).
The operational semantics for expressions and commands is

given in Fig. 1. The evaluation judgment for expressions has

the form η � e � v, which states that expression e evaluates

to value v when variables in e are interpreted in the evaluation

environment η. We write η � e � v, where e = e1, . . . , en and

221

E-VAL
η � v � v

E-VAR
η � x � η(x)

E-OP
η � e1 � v1 η � e2 � v2
η � e1 op e2 � v1 op v2

E-LETVAR
η � e � v η[x �→ v];A;P � c � η′

η;A;P � letvar x = e in c � η′ − x

E-SEQ
η;A;P � c1 � η′ η′;A;P � c2 � η′′

η;A;P � c1; c2 � η′′ E-ASS
η � e � v

η;A;P � x := e � η[x �→ v]

E-IF-T
η � e � v v �= 0 η;A;P � c1 � η′

η;A;P � if e then c1 else c2 � η′ E-IF-F
η � e � v v = 0 η;A;P � c2 � η′

η;A;P � if e then c1 else c2 � η′

E-WHILE-T

η � e � v v �= 0 η;A;P � c � η′

η′;A;P � while e do c � η′′

η;A;P � while e do c � η′′ E-WHILE-F
η � e � v v = 0

η;A;P � while e do c � η

E-CP-T
p ∈ P η;A;P � c1 � η′

η;A;P � test(p) c1 else c2 � η′ E-CP-F
p /∈ P η;A;P � c2 � η′

η;A;P � test(p) c1 else c2 � η′

E-CALL
FD(B.f) = B.f(y)

{
init r = 0 in {c; return r}} η � e � v [y �→ v, r �→ 0];B; Θ(A) � c � η′

η;A;P � x := call B.f(e) � η[x �→ η′(r)]

Fig. 1. Evaluation rules for expressions and commands, given a function definition table FD and a permission assignment Θ.

v = v1, . . . , vn for some n, to denote a sequence of judgments

η � e1 � v1, . . . , η � en � vn.
The evaluation judgment for commands takes the form

η;A;P � c � η′ where η is an evaluation environment before

the execution of the command c, and η′ is the evaluation

environment after the execution of c. Here A refers to the

app to which the command c belongs. The permission set P
denotes the permission context, i.e., it is the set of permissions

of the app which invokes the function of A in which the

command c resides. The caller app may be A itself (in which

case the permission context will be the same as the permission

set of A) but more often it is another app in the system.

The operational semantics of most commands are straight-

forward. We explain the semantics of the test primitive and

the function call. Rules (E-CP-T) and (E-CP-F) capture the

semantics of the test primitive. These are where the permission

context P in the evaluation judgement is used. The semantics

of function calls is given by (E-CALL). Notice that c inside the

body of callee is executed under the permission context Θ(A),
which is the permission set of A. The permission context P
in the conclusion of that rule, which denotes the permission

of the app that calls A, is not used in the premise. That is, the

permission context of A is not inherited by the callee function

B.f . This reflects the way permission contexts in Android are

passed on during IPCs [15], [17], and is also a major difference

between our permission model and that in BN type system,

where permission contexts are inherited by successive function

calls.

D. Security Types

In information flow type systems such as [8], it is common

to adopt a lattice structure to encode security levels. Security

types in this setting are just security levels. In our case, we

generalize the security types to account for the dependency of

security levels on permissions. So we shall distinguish security

levels, given by a lattice structure which encodes sensitivity

levels of information, and security types, which are mappings

from permissions to security levels. We assume the security

levels are given by a lattice L , with a partial order ≤L .

Security types are defined in the following.

Definition II.1 A base security type (or base type) t is a
mapping fromP to L . We denote with T the set of base types.
Given two base types s and t, we say s = t iff s(P) = t(P)
for all P ∈ P. We define an ordering ≤T on base types as
follows: s ≤T t iff ∀ P ∈P, s(P) ≤L t(P).

As we shall see, if a variable is typed by a base type, the

sensitivity of its content may depend on the permissions of

the app which writes to the variable. In contrast, in traditional

information flow type systems, a variable annotated with a

security level has a fixed sensitivity level regardless of the

permissions of the app that writes to the variable.
The set of base types with the order ≤T forms a lattice.

The join and meet of the lattice are defined as follows:

Definition II.2 For s, t ∈ T , s � t and s � t are defined as

(s � t)(P) = s(P) � t(P), ∀P ∈P

(s � t)(P) = s(P) � t(P), ∀P ∈P

From now on, we shall drop the subscripts in ≤L and ≤T
when no ambiguity arises.

Definition II.3 Given a security level l, we define l̂ as follows:
for all P ∈P, we have l̂(P) = l.

Accordingly, a security level l can be lifted to the base type

l̂ that maps all permission sets to level l itself.

Definition II.4 A function type has the form t → t, where
t = (t1, . . . , tm), m ≥ 0 and t, ti are base types. The types
t are the types for the arguments of the function and t is the
return type of the function.

222

In our type system, security types of expressions (com-

mands, functions, resp.) may be altered depending on the

execution context. That is, when an expression is used in a

context where a permission check has been performed (either

successfully or unsuccessfully), its type may be adjusted to

take into account the presence or absence of the checked

permission. Such an adjustment is called a promotion or a

demotion.

Definition II.5 Given a permission p, the promotion and
demotion of a base type t with respect to p are:

(t ↑p)(P) = t(P ∪ {p}), ∀P ∈P (promotion)

(t ↓p)(P) = t(P \ {p}), ∀P ∈P (demotion)

The promotion and demotion of a function type t → t, where
t = (t1, . . . , tm), are respectively:

(t → t) ↑p= t ↑p→ t ↑p, where t ↑p= (t1 ↑p, . . . , tm ↑p),
(t → t) ↓p= t ↓p→ t ↓p, where t ↓p= (t1 ↓p, . . . , tm ↓p).

E. Security Type System

We first define a couple of operations on security types and

permissions that will be used later.

Definition II.6 Given t ∈ T and P ∈P, the projection of t
on a permission set P is a security type πP (t) defined as:

πP (t)(Q) = t(P), ∀Q ∈P.

Type projection of a list of types on P is then written as

πP ((t1, . . . , tn)) = (πP (t1), . . . , πP (tn)).

Definition II.7 Given a permission p and two types t1 and
t2, the merging of t1 and t2 along p, denoted as t1 �p t2, is:

(t1 �p t2)(P) =

{
t1(P) p ∈ P

t2(P) p �∈ P
∀P ∈P

A typing environment is a finite mapping from variables

to base types. We use the notation [x1 : t1, . . . , xn : tn] to

enumerate a typing environment with domain {x1, . . . , xn}.
Typing environments are ranged over by Γ. Given Γ1 and Γ2

such that dom(Γ1)∩dom(Γ2) = ∅, we write Γ1Γ2 to denote a

typing environment that is the (disjoint) union of the mappings

in Γ1 and Γ2.

Definition II.8 Given a typing environment Γ, its promotion

and demotion along p are typing environments Γ↑p and Γ↓p,
such that (Γ ↑p)(x) = Γ(x) ↑p and (Γ ↓p)(x) = Γ(x) ↓p
for every x ∈ dom(Γ). The projection of Γ on P ∈ P is a
typing environment πP (Γ) such that (πP (Γ))(x) = πP (Γ(x))
for each x ∈ dom(Γ).

There are three typing judgments in our type system as

explained below. All these judgments are implicitly parame-

terized by a function type table, FT , which maps all function

names to function types, and a mapping Θ assigning permis-

sion sets to apps.

• Expression typing: Γ � e : t. This says that under Γ, the

expression e has a base type at most t.

• Command typing: Γ;A � c : t. This means that the

command c writes to variables with type at least t, when

executed by app A, under the typing environment Γ.
• Function typing: The typing judgment takes the form:

� B.f(x)
{

init r = 0 in {c; return r}
}
: t −→ t′

where x = (x1, . . . , xn) and t = (t1, . . . , tn) for some

n ≥ 0. Functions are polymorphic in the permissions of

the caller. Intuitively, this means that each caller of the

function above with permission set P “sees” the function

as having type πP (t) → πP (t
′). That is, if the function

is called from another app with permission P , then it

expects input of type up to πP (t) and a return value of

type at most πP (t
′).

The typing rules are given in Fig. 2. Most of them are common

to information flow type systems [8], [9], [11] except for T-CP

and T-CALL. Note that in the subtyping rule for commands

(T-SUBc), the security type of the effect of the command can

be safely downgraded, since typing for commands keeps track

of a lower bound of the write effects of the command. This

typing rule for command is standard, see, e.g., [8] for a more

detailed discussion.

In T-CP, to type statement test(p) c1 else c2, we type c1 in

a promoted typing environment for a successful permission

check on p, and c2 in a demoted typing environment for

a failed permission check on p. The challenge is how to

combine the types of the two premises to obtain the type

for the conclusion. One possibility is to force the type of the

two premises and the conclusion to be identical (i.e., treat

permission check the same as other if-then-else statements

and apply T-IF). This, as we have seen in Section I, leads

to a loss in precision of the type for test construct. Instead,

we consider a more refined merged type t1 �p t2 for the

conclusion, where t1 (t2 resp.) is the type of the left (right

resp.) premise. To understand the merged type, consider a

scenario where the statement is executed in a context where

permission p is present. Then the permission check succeeds

and the statement test(p) c1 else c2 is equivalent to c1. In this

case, one would expect that the behavior of test(p) c1 else c2
would be equivalent to that of c1. This is in fact captured by

the equation (t1 �p t2)(P) = t1(P) for all P such that p ∈ P ,

which holds by definition. A dual scenario arises when p is

not in the permissions of the execution context.

In T-CALL, the callee function B.f is assumed to be type

checked beforehand and its type is given in the FT table. Here

the function B.f is called by A so the type of B.f as seen

by A should be a projection of the type given in FT (B.f) on

the permissions of A (given by Θ(A)): πΘ(A)(t) → πΘ(A)(t
′).

Therefore the arguments for the function call should be typed

as Γ � e : πΘ(A)(t) and the return type (as viewed by A)

should be dominated by the type of x, i.e., πΘ(A)(t
′) ≤ Γ(x).

Parameter laundering It is essential that in Rule T-CALL,

the arguments e and the return value of the function call are

typed according to the projection of t and t′ on Θ(A). If they

are instead typed with t, then there is a potential implicit flow

223

T-VAR
Γ � x : Γ(x)

T-OP
Γ � e1 : t Γ;A � e2 : t

Γ � e1 op e2 : t
T-SUBe

Γ � e : s s ≤ t

Γ � e : t
T-SUBc

Γ;A � c : s t ≤ s

Γ;A � c : t

T-ASS
Γ � e : Γ(x)

Γ;A � x := e : Γ(x)
T-LETVAR

Γ � e : s Γ[x : s];A � c : t

Γ;A � letvar x = e in c : t
T-IF

Γ � e : t Γ;A � c1 : t Γ;A � c2 : t

Γ;A � if e then c1 else c2 : t

T-CP
Γ ↑p;A � c1 : t1 Γ ↓p;A � c2 : t2

Γ;A � test(p) c1 else c2 : t1 �p t2
T-WHILE

Γ � e : t Γ;A � c : t

Γ;A � while e do c : t
T-SEQ

Γ;A � c1 : t Γ;A � c2 : t

Γ;A � c1; c2 : t

T-CALL
FT (B.f) = t → t′ Γ � e : πΘ(A)(t) πΘ(A)(t

′) ≤ Γ(x)

Γ;A � x := call B.f(e) : Γ(x)
T-FUN

[x : t, r : t′];B � c : s

� B.f(x)
{

init r = 0 in {c; return r}} : t → t′

Fig. 2. Typing rules for expressions, commands and functions.

A. f (x) { // A does not have permission p
i n i t r = 0 in { r := c a l l B . g (x) ; re turn r }

}

B . g (x) { // B does not have permission p
i n i t r = 0 in {

t e s t (p) r := 0 e l s e r := x ;
re turn r

}
}

C . g e t s e c r e t () { // C has permission p
i n i t r = 0 in {

t e s t (p) r := P_INFO e l s e r := 0 ;
re turn r

}
}

M. main () { // M has permission p
i n i t r = 0 in {
l e t v a r xH = 0 in
{xH := C . g e t s e c r e t () ; r := c a l l A. f (xH) } ;

re turn r
}

}

Listing 3. An example illustrating the parameter laundering issue.

via a “parameter laundering” attack. To see why, consider the

following alternative to T-CALL:

T-CALL’
FT (B.f) = t → t′ Γ � e : t t′ ≤ Γ(x)

Γ;A � x := call B.f(e) : Γ(x)

Notice that the type of the argument e must match the type of

the formal parameter of the function B.f . This is essentially

what is adopted in BN system for method calls [11].

Let us consider the example in Listing 3. Let P = {p} and t
be the base type t = {∅ �→ L, {p} �→ H}, where L and H are

bottom and top levels respectively. Here we assume P_INFO is

a sensitive value of security level H that needs to be protected,

so function C.getsecret is required to have type () → t. That

is, only apps that have the required permission p may obtain

the secret value. Suppose the permissions assigned to the apps

are given by: Θ(A) = Θ(B) = ∅,Θ(C) = Θ(M) = {p}.

If we were to adopt the modified T-CALL’ instead of

T-CALL, then we can assign the following types to the above

functions:

FT :=

⎧⎪⎪⎨
⎪⎪⎩

A.f �→ t → L̂

B.g �→ t → L̂
C.getsecret �→ () → t

M.main �→ () → L̂

Notice that the return type of M.main is L̂ despite having a

return value that contains sensitive value P_INFO. If we were

to use T-CALL’ in place of T-CALL, the above functions can

be typed as shown in Fig. 3. Finally, still assuming T-CALL’,

a partial typing derivation for M.main is given in Fig. 4.

As shown in Fig. 3, B.g can be given type t → L̂. Intuitively,

it checks that the caller has permission p. If it does, then B.g
returns 0 (non-sensitive), otherwise it returns the argument of

the function (i.e., x). This is as expected and is sound, under

the assumption that the security level of the content of x is

dependent on the permissions of the caller. If the caller of B.g
is the original creator of the content of x, then the assumption

is trivially satisfied. The situation gets a bit tricky when the

caller simply passes on the content it receives from another

app to x. In our example, app A makes a call to B.g, and

passes on the value of x it receives. In the run where A.f
is called from M.main, the value of x is actually sensitive
since it requires the permission p to acquire. However, when

it goes through A.f to B.g, the value of x is perceived as

non-sensitive by B, since the caller in this case (A) has no

permissions. The use of the intermediary A in this case in

effect launders the permissions associated with x. Therefore,

if the rule T-CALL’ is used in place of T-CALL, the call

chain from M.main to A.f and finally to B.g can all be typed.

This is correct in a setting where permissions are propagated
along with calling context (e.g., [11]) however it is incorrect

in the Android permission model II-A. To avoid the parameter

laundering problem, our approach is to make sure that an app

may only pass an argument to another function if the app itself

is authorized to access the content of the argument in the first

place, as formalized in the rule T-CALL.

With the correct typing rule for function calls, the function

A.f cannot be assigned type t → L̂, since that would require

224

FT (B.g) = t → L̂ x : t, r : L̂ � x : t L̂ ≤ t
T-CALL’

x : t, r : L̂;A � r := call B.g(x) : L̂
T-FUN

� A.f(x)
{

init r = 0 in {r := call B.g(x); return r}} : t → L̂

x : t ↑p, r : L̂ ↑p� r := 0 : L̂ x : t ↓p, r : L̂ ↓p� r := x : L̂
T-CP

x : t, r : L̂ � test(p) r := 0 else r := x : L̂ �p L̂
T-FUN

� B.g(x)
{

init r = 0 in {test(p) r := 0 else r := x; return r}} : t → L̂

Note that t ↑p= Ĥ , t ↓p= L̂ = L̂ ↓= L̂ ↑ and L̂ �p L̂ = L̂.

r : t ↑p� r := SECRET : Ĥ r : t ↓p� r := 0 : L̂
T-CP

r : t � test(p) r := SECRET else r := 0 : Ĥ �p L̂
T-FUN � C.getsecret()

{
init r = 0 in {test(p) r := SECRET else r := 0; return r}} : () → t

Note that Ĥ �p L̂ = t.

Fig. 3. Typing derivations for functions A.f, B.g and C.getsecret

r : L̂ � 0 : t

Γ;M � xH := call C.getsecret() : L̂ Γ;M � r := call A.f(xH) : L̂
T-SEQ

r : L̂, xH : t;M � xH := call C.getsecret(); r := call A.f(xH) : L̂
T-LETVAR

r : L̂ ;M � letvar xH = 0 in xH := call C.getsecret(); r := call A.f(xH) : L̂
T-FUN � M.main() {init r = 0 in

letvar xH = 0 in {
xH := call C.getsecret();
r := call A.f(xH)

}
return r }

: () → L̂

where Γ = {r : L̂, xH : t} and the second and the third leaves are derived, respectively, as follows:

FT (C.getsecret) = () → t Γ � () : () t ≤ Γ(xH) = t
T-CALL’

Γ;M � xH := call C.getsecret() : t
T-SUBc

Γ;M � xH := call C.getsecret() : L̂

FT (A.f) = t → L̂ Γ � xH : t L̂ ≤ Γ(xH) = t
T-CALL’

Γ;M � r := call A.f(xH) : L̂

Fig. 4. A typing derivation for function M.main

the instance of T-CALL (i.e., when making the call to B.g)

in this case to satisfy the constraint:

x : t, r : L̂ � x : πΘ(A)(t)

where πΘ(A)(t) = L̂, which is impossible since t �≤ L̂. What

this means is essentially that in our type system, information

received by an app A from the parameters cannot be propa-

gated by A to another app B, unless A is already authorized

to access the information contained in the parameter. Note that

this only restricts the propagation of such parameters to other

apps; the app A can process the information internally without

necessarily violating the typing constraints.

Finally, the reader may check that if we fix the type of B.g
to t → L̂ then A.f can only be assigned type L̂ → L̂. In

no circumstances can M.main be typed, since the statement

xH := C.getsecret() forces xH to have type Ĥ , and thus

cannot be passed to A.f as an argument.

F. Noninterference and Soundness
We first define an indistinguishability relation between

evaluation environments. Such a definition typically assumes

an observer who may observe values of variables at a certain

security level. In the non-dependent setting, the security level

of the observer is fixed, say at lO, and valuations of variables

at level lO or below are required to be identical. In our

setting, the security level of a variable in a function can vary

depending on the permissions of the caller app (which may

be the observer itself), so it may seem more natural to define

indistinguishability in terms of the permission set assigned

to the observer. However, we argue that such a definition is

subsumed by the more traditional definition that is based on

the security level of the observer. Assuming that the observer

225

app is assigned a permission set P , then given two variables

x : t and y : t′, the level of information that the observer can

access through x and y is at most t(P)� t′(P). In general the

least upper bound of the security level that an observer with

permission P has access to can be computed from the least

upper bound of projections (along P) of the types of variables

and the return types of functions in the system. In the following

definition of indistinguishability, we simply assume that such

an upper bound has been computed, and we will not refer

explicitly to the permission set of the observer from which

this upper bound is derived.

Definition II.9 Given two evaluation environments η, η′, a
typing environment Γ, a security level lO ∈ L of the observer,
the indistinguishability relation =lO

Γ is defined as:

η =lO
Γ η′ iff∀x ∈ dom(Γ).

(
Γ(x) ≤ l̂O ⇒ η(x) = η′(x)

)
where η(x) = η′(x) holds iff both sides of the equation are
defined and equal, or both sides are undefined.

Note that in Definition II.9, η and η′ may not have the

same domain, but they must agree on their valuations for the

variables in the domain of Γ. Note also that since base types

are functions from permissions to security level, the security

level lO needs to be lifted to a base type in the comparison

Γ(x) ≤ l̂O. The latter implies that Γ(x)(P) ≤ lO (in the

latice L) for every permission set P. If the base type of each

variable assigns the same security level to every permission set

(i.e., the security level is independent of the permissions), then

our notion of indistinguishability coincides with the standard

definition for the non-dependent setting.

We hereby give the definitions for well-typed property

(Definition II.10) and non-interference for the type system

(Defintion II.11 and Definition II.12), together with the final

soundness conclusion (Theorem II.1). The detailed proofs are

available in [13].

Definition II.10 Let S be a system, and let FD , FT and
Θ be its function declaration table, function type table, and
permission assignments. We say S is well-typed iff for every
function A.f , � FD(A.f) : FT (A.f) is derivable.
Definition II.11 A command c executed in app A is said to
be non-interferent iff for all η1, η′1,Γ, P, lO, if η1 =lO

πP (Γ) η
′
1,

η1;A;P � c � η2 and η′1;A;P � c � η′2 then η2 =lO
πP (Γ) η

′
2.

Definition II.12 Let S be a system. A function

A.f(x)
{

init r = 0 in {c; return r}
}

in S with FT (A.f) = t → t′ is non-interferent if for all
η1, η

′
1, P, v, lO, if the following hold:

• t′(P) ≤ lO,
• η1 =lO

πP (Γ) η
′
1, where Γ = [x : t, r : t′],

• η1;A;P � c � η2, and η′1;A;P � c � η′2,

then η2(r) = η′2(r). The system S is non-interferent iff all
functions in S are non-interferent.
Theorem II.1 Well-typed systems are non-interferent.

III. TYPE INFERENCE

This section describes a decidable inference algorithm for

the language in Section II-B. Section III-A firstly rewrites the

typing rules (Fig. 2) in the form of permission trace rules

(Fig. 5), then reduces the type inference into a constraint

solving problem; Section III-B provides procedures to solve

the generated constraints. Detailed definitions and proofs can

be found in [13].

A. Constraint Generation

1) Permission Tracing: In an IPC between different apps

(components), there may be multiple permission checks in

a calling context. Therefore, to infer a security type for an

expression, a command or a function, we need to track the

applications of promotions Γ ↑p and demotions Γ ↓q in their

typing derivations. To this end, we keep the applications

symbolic and collect the promotions and demotions into a

sequence. In other words, we treat them as a sequence of pro-

motions ↑p and demotions ↓p applied on a typing environment

Γ. For example, (Γ ↑p) ↓q can be viewed as an application
of the sequence ↑p↓q on Γ. The sequence of promotions and

demotions is called a permission trace and denoted by Λ. The

grammar of Λ is:

Λ ::= ⊕p :: Λ | � p :: Λ | ε p ∈ P

and its length, denoted by len(Λ), is defined as:

len(Λ) =

{
0 if Λ = ε

1 + len(Λ′) if Λ = �p :: Λ′,� ∈ {⊕,�}
Definition III.1 Given a base type t and a permission trace
Λ, the application of Λ to t, denoted by t · Λ, is defined as:

t · Λ =

⎧⎪⎨
⎪⎩
t if Λ = ε

(t ↑p) · Λ′ if ∃p,Λ′, s.t. Λ = ⊕p :: Λ′

(t ↓p) · Λ′ if ∃p,Λ′, s.t. Λ = �p :: Λ′

We also extend the application of a permission trace Λ to

a typing environment Γ (denoted by Γ ·Λ), such that ∀x. (Γ ·
Λ)(x) = Γ(x) · Λ. Based on permission traces, we give the

definition of partial subtyping relation.

Definition III.2 The partial subtyping relation ≤Λ, which is
the subtyping relation applied on the permission trace, is
defined as s ≤Λ t iff. s · Λ ≤ t · Λ.

The application of permission traces to types preserves the

subtyping relation.

Lemma III.1 ∀s, t ∈ T , s ≤ t =⇒ s ≤Λ t for all Λ.
The following four lemmas discuss the impact of permission

checking order on the same or different permissions.

Lemma III.2 ∀t ∈ T , p, q ∈ P s.t. p �= q , t · (�p � q) =
t · (�q � p), where �,�,∈ {⊕,�}.
Lemma III.3 ∀t ∈ T ,(t · �p) · Λ = (t · Λ) · �p, where � ∈
{⊕,�} and p /∈ Λ.
Lemma III.4 ∀t ∈ T , p ∈ P,(t ·�p) ·�p = t · (�p), where
�,� ∈ {⊕,�}.

226

Lemma III.5 ∀t ∈ T , (t · Λ) · Λ = t · Λ.

Lemmas III.2 and III.3 state that the order of applications

of promotions and demotions on different permissions does

not affect the result. Lemmas III.4 and III.5 indicate that

only the first application takes effect if there exist several

(consecutive) applications of promotions and demotions on

the same permission p. Therefore, we can safely keep only

the first application, by removing the other applications on

the same permission.

Let occur(p,Λ) be the number of occurrences of p in Λ.

We say Λ is consistent iff. occur(p,Λ) ∈ {0, 1} for all p ∈
P. In the remaining, we assume that all permission traces

are consistent. Moreover, to ensure that the traces collected

from the derivations of commands are consistent, we assume

that in nested permission checks of a function definition, each

permission is checked at most once.

2) Permission Trace Rules: We split the applications of

the promotions and demotions into two parts (i.e., typing

environments and permission traces), and move the subsump-

tion rules (guarded by permission traces) for expressions and

commands to where they are needed. This yields the syntax-

directed typing rules, which we call the permission trace rules
and are given in Fig. 5. The judgments of the trace rules are

similar to those of typing rules, except that each trace rule is

guarded by the permission trace Λ collected from the context,

which keeps track of the adjustments of variables depending

on the permission checks, and that the subtyping relation in

the trace rules is the partial subtyping one ≤Λ.

The next two lemmas show the trace rules are sound and

complete with respect to the typing rules, i.e., an expression

(command, function, resp.) is typable under the trace rules, if

and only if it is typable under the typing rules.

Lemma III.6 (a) If Γ;Λ �t e : t, then Γ · Λ � e : (t · Λ).

(b) If Γ;Λ;A �t c : t, then (Γ · Λ);A � c : (t · Λ).

(c) If �t B.f(x)
{

init r = 0 in {c; return r}
}
: t −→ t′, then

� B.f(x)
{

init r = 0 in {c; return r}
}
: t −→ t′.

Lemma III.7 (a) If Γ ·Λ � e : t ·Λ, then there exists s such
that Γ;Λ �t e : s and s ≤Λ t.

(b) If (Γ · Λ);A � c : t · Λ, then there exists s such that
Γ;Λ;A �t c : s and t ≤Λ s.

(c) If � B.f(x)
{

init r = 0 in {c; return r}
}
: t −→ s, then

�t B.f(x)
{

init r = 0 in {c; return r}
}
: t −→ s.

3) Constraint Generation Rules: To infer types for func-

tions in System S , we assign a function type α→β for each

function A.f whose type is unknown and a type variable γ for

each variable x with unknown type respectively, where α, β, γ
are fresh type variables. Then according to permission trace

rules, we try to build a derivation for each function in S , in

which we collect the side conditions (i.e., the partial subtyping

relation ≤Λ) needed by the rules. If the side conditions hold

under a context, then FD(A.f) is typed by FT (A.f) under

the same context for each function A.f in S .

To describe the side conditions (i.e., ≤Λ), we define the

permission guarded constraints as follows:

c ::= (Λ, tl ≤ tr)
tl ::= α | tg | tl � tl | πP (tl)
tr ::= α | tg | tr � tr | tr �p tr | πP (tr)

where Λ is a permission trace, α is a fresh type variable and

tg is a ground type.

A type substitution is a finite mapping from type variables

to security types: θ ::= ε | α �→ t, θ

Definition III.3 Given a constraint set C and a substitution
θ, we say θ is a solution to C, denoted by θ � C, iff. for each
(Λ, tl ≤ tr) ∈ C, tlθ ≤Λ trθ holds.

The constraint generation rules are presented in Fig. 6,

where FTC is the extended function type table such that

FTC maps all function names to function types and their

corresponding constraint sets. The judgments of the constraint

rules are similar to those of trace rules, except that each

rule generates a constraint set C, which consists of the side

conditions needed by the typing derivation of S . In addition,

as the function call chains starting from a command are finite,

the constraint generation will terminate.

The next two lemmas show the constraint rules are sound
and complete with respect to permission trace rules, i.e., the

constraint set generated by the derivation of an expression

(command, function, resp.) under the constraint rules is solv-

able, if and only if an expression (command, function, resp.)

is typable under trace rules.

Lemma III.8 The following statements hold:

(a) If Γ;Λ �g e : t � C and θ � C, then Γθ; Λ �t e : tθ.
(b) If Γ;Λ;A �g c : t � C and θ � C, then Γθ; Λ;A �t c :

tθ.

(c) If �g B.f(x)
{

init r = 0 in {c; return r}
}
: α → β �

C and θ � C, then

�t B.f(x)
{

init r = 0 in {c; return r}
}
: θ(α) −→ θ(β).

Lemma III.9 The following statements hold:

(a) If Γ;Λ �t e : t, then there exist Γ′, t′, C, θ s.t. Γ′; Λ �g

e : t′ � C, θ � C, Γ′θ = Γ and t′θ = t.
(b) If Γ;Λ;A �t c : t, then there exist Γ′, t′, C, θ s.t.

Γ′; Λ;A �g c : t′ � C, θ � C, Γ′θ = Γ and t′θ = t.
(c) If �t B.f(x)

{
init r = 0 in {c; return r}

}
: tp −→ tr,

then there exist α, β, C, θ s.t.

�g B.f(x)
{

init r = 0 in {c; return r}
}
: α −→ β � C,

θ � C, and (α −→ β)θ = tp −→ tr, where α, β are fresh
type variables.

Recall the function getInfo in Listing 2 and assume that

getInfo is defined in app A (thus A.getInfo) and called by

app B through the function fun (thus B.fun). The rephrased

program is shown in Listing 4, where l1, l2 are the types for

loc and id respectively, Θ(B) = {q}, and l1 � l2 = H . Let us

227

TT-VAR
Γ;Λ �t x : Γ(x)

TT-OP
Γ;Λ �t e1 : t1 Γ;Λ �t e2 : t2

Γ;Λ �t e1 op e2 : t1
 t2
TT-ASS

Γ;Λ �t e : t t ≤Λ Γ(x)

Γ; Λ �t x := e : Γ(x)

TT-IF
Γ;Λ �t e : t Γ;Λ;A �t c1 : t1 Γ;Λ;A �t c2 : t2 t ≤Λ t1 � t2

Γ;Λ;A �t if e then c1 else c2 : t1 � t2
TT-SEQ

Γ;Λ;A �t c1 : t1 Γ;Λ;A �t c2 : t2
Γ;Λ;A �t c1; c2 : t1 � t2

TT-LETVAR
Γ;Λ �t e : s Γ[x : s′]; Λ;A �t c : t s ≤Λ s′

Γ;Λ;A �t letvar x = e in c : t
TT-WHILE

Γ;Λ �t e : s Γ;Λ;A �t c : t s ≤Λ t

Γ;Λ;A �t while c do e : t

TT-CALL
FT (B.f) = t −→ t′ Γ;Λ �t e : s s ≤Λ πΘ(A)(t) πΘ(A)(t

′) ≤Λ Γ(x)

Γ; Λ;A �t x := call B.f(e) : Γ(x)

TT-CP
Γ;Λ :: ⊕p;A �t c1 : t1 Γ;Λ ::
p;A �t c2 : t2

Γ;Λ;A �t test(p) c1 else c2 : t1 �p t2
TT-FUN

[x : t, r : t′]; ε;B �t c : s

�t B.f(x)
{

init r = 0 in {c; return r}} : t −→ t′

Fig. 5. Permission trace rules for expressions, commands and functions

TG-OP
Γ;Λ �g e1 : t1 � C1 Γ;Λ �g e2 : t2 � C2

Γ;Λ �g e1 op e2 : t1
 t2 � C1 ∪ C2
TG-ASS

Γ;Λ �g e : t � C

Γ;Λ;A �g x := e : Γ(x) � C ∪ {(Λ, t ≤ Γ(x))}

TG-VAR
Γ;Λ �g x : Γ(x) � ∅ TG-LETVAR

Γ;Λ �g e : s � C1

Γ[x : α]; Λ;A �g c : t � C2

C = C1 ∪ C2 ∪ {(Λ, s ≤ α)}
Γ;Λ;A �g letvar x = e in c : t � C

TG-WHILE

Γ;Λ �g e : s � C
Γ;Λ;A �g c : t � C′

Γ;Λ;A �g while e do c : t � C ∪ C′ ∪ {(Λ, s ≤ t)} TG-SEQ

Γ;Λ;A �g c1 : t1 � C1

Γ;Λ;A �g c2 : t2 � C2

Γ;Λ;A �g c1; c2 : t1 � t2 � C1 ∪ C2

TG-IF

Γ;Λ;A �g c1 : t1 � C1

Γ;Λ;A �g c2 : t2 � C2

Γ;Λ �g e : t � Ce

C = Ce ∪ C1 ∪ C2 ∪ {(Λ, t ≤ t1 � t2)}
Γ;Λ;A �g if e then c1 else c2 : t1 � t2 � C

TG-CALL

FTC(B.f) = (t −→ t′, Cf)

Γ; Λ �g e : s �
⋃

Ce

Ca = {(Λ, s ≤ πΘ(A)(t)), (Λ, πΘ(A)(t
′) ≤ Γ(x))}

Γ;Λ;A �g x := call B.f(e) : Γ(x) � Cf ∪⋃
Ce ∪ Ca

TG-CP

Γ;Λ :: ⊕p;A �g c1 : t1 � C1

Γ;Λ ::
p;A �g c2 : t2 � C2

Γ;Λ;A �g test(p) c1 else c2 : t1 �p t2 � C1 ∪ C2

TG-FUN
[x : α, r : β]; ε;B �g c : s � C

�g B.f(x)
{

init r = 0 in {c; return r}} : α −→ β � C

Fig. 6. Constraint generation rules for expressions, commands and functions, given function type table FTC .

apply the constraint generation rules in Fig. 6 on each function,

yielding the constraint sets CA and CB

CA = {(⊕p⊕ q, l1 ≤ α), (⊕p� q, L ≤ α),
(�p⊕ q,H ≤ α), (�p� q, L ≤ α)}

CB = {(ε, L ≤ γ), (⊕p, L ≤ β), (�p, πΘ(B)(α) ≤ γ),
(ε, L ≤ β), (ε, γ ≤ β)}

and the types tA = () → α and tB = () → β for the functions

getInfo and fun3 respectively. Thus, the constraint set Ceg for

the whole program is CA ∪ CB .

B. Constraint Solving

We now present an algorithm for solving the constraints

generated by the rules in Fig. 6. For these constraints, both

types appearing on the two sides of subtyping are guarded

3Indeed, the constraint set for fun is CA ∪ CB , but here we focus on the
constraints generated by the function itself.

by the same permission trace. But during the process of

solving these constraints, new constraints, whose two sides of

subtyping are guarded by different traces, may be generated.

Take the constraint (Λ, πP (tl) ≤ πQ(α)) for example, tl is

indeed guarded by P while α is guarded by Q, where P
and Q are different permission sets. So for constraint solving,

we use a generalized version of the permission guarded

constraints, allowing types on the two sides to be guarded

by different permission traces: ((Λl, tl) ≤ (Λr, tr)) where

tl �= tr. Likewise, a solution to a generalized constraint set

C is a substitution θ, denoted by θ � C, such that for each

((Λl, tl) ≤ (Λr, tr)) ∈ C, (tlθ · Λl) ≤ (trθ · Λr) holds.

It is easy to transform a permission guarded constraint set
C into a generalized constraint set C ′: by rewriting each
(Λ, tl ≤ tr) as ((Λ, tl) ≤ (Λ, tr)). Moreover, it is trivial
that θ � C ⇐⇒ θ � C ′. Therefore, we focus on solving
generalized constraints in the following. For example, the

228

A. g e t I n f o () {
i n i t r in { // Γ(r) = α

t e s t (p) {
t e s t (q) r = l o c ; // (⊕p⊕ q, l1 ≤ α)
e l s e r = " " ; // (⊕p
 q, L ≤ α)

} e l s e {
t e s t (q) r = i d ++ l o c ; // (
p⊕ q,H ≤ α)
e l s e r = " " ; // (
p
 q, L ≤ α)

}
re turn r ;

}
}
B . fun () { // B has permission q

i n i t r in { // Γ(r) = β
l e t v a r x = " " in { // Γ(x) = γ, (ε, L ≤ γ)

t e s t (p) r = 0 ; // (⊕p, L ≤ β)
e l s e x = c a l l A. g e t I n f o () ;
//FTC(A.getInfo) = () → α, (
p, πΘ(B)(α) ≤ γ)
i f x == " " t h e n r = 0 ; // (ε, L ≤ β)
e l s e r = 1 ; // (ε, L ≤ β), (ε, γ ≤ β)

}
re turn r ;

}
}

Listing 4. The example in Listing 2 in a calling context.

constraint set Ceg can be rewritten as

Ceg = {((ε, L) ≤ (ε, γ)), ((
p, πΘ(B)(α)) ≤ (
p, γ)),

((⊕p, L) ≤ (⊕p, β)), ((ε, L) ≤ (ε, β)), ((ε, γ) ≤ (ε, β)),

((⊕p⊕ q, l1) ≤ (⊕p⊕ q, α)), ((⊕p
 q, L) ≤ (⊕p
 q, α)),

((
p⊕ q,H) ≤ (
p⊕ q, α)), ((
p
 q, L) ≤ (
p
 q, α))}

Given a permission set P and a permission trace Λ, we say

P entails Λ, denoted by P � Λ, iff. ∀ ⊕ p ∈ Λ. p ∈ P and

∀�p ∈ Λ. p /∈ P . A permission trace Λ is satisfiable, denoted

by Δ(Λ), iff. there exists a permission set P such that P � Λ.

We write ΛP for the permission trace that only P can entail.

A permission trace Λ can be considered as a boolean logic

formula on permissions, where ⊕ and � denote positive and

negative respectively, and ε denotes True. In the remaining we

shall use the logic connectives on permission traces freely. We

also adopt the disjunctive normal form, i.e., a disjunction of

conjunctive permissions, and denote it as dnf(·). For example,

dnf((⊕p) ∧ ¬(⊕q ∧ �r)) = (⊕p ∧ �q) ∨ (⊕p ∧ ⊕r).
The constraint solving consists of three steps: 1) decompose

types in constraints into ground types and type variables; 2)

saturate the constraint set by the transitivity of the subtyping

relation; 3) solve the final constraint set by merging the lower

and upper bounds of same variables and unifying them to emit

a solution.

1) Decomposition: The first step is to decompose the types

into the simpler ones, i.e., type variables and ground types,

according to their structures. This decomposition is defined

via the function dec that takes a constraint ((Λl, tl,Λr, tr) for

short) as input and generates a constraint set or ⊥ (denoting

unsastifiable):

dec((Λl, tl,Λr, tr)) =

if tl ∼= t1l � t2l , then return dec((Λl, t
1
l ,Λr, tr)) ∪

dec((Λl, t
2
l ,Λr, tr))

if tl ∼= πP (t), then return dec((ΛP , t,Λr, tr))
if tr ∼= t1r � t2r , then return dec((Λl, tl,Λr, t

1
r)) ∪

dec((Λl, tl,Λr, t
2
r))

if tr ∼= πP (t), then return dec((Λl, tl,ΛP , t))
if tr ∼= t1r �p t

2
r , return dec((Λl :: ⊕p, tl,Λr :: ⊕p, t1r))

∪ dec((Λl :: �p, tl,Λr :: �p, t2r))
if both tl and tr are ground, return ∅ if tl ·Λl ≤ tr ·Λr

or ⊥ otherwise

return {(Λl, tl,Λr, tr)}
After decomposition, constraints have one of the forms:

((Λl, α) ≤ (Λr, tg)), ((Λl, tg) ≤ (Λr, β)), ((Λl, α) ≤ (Λr, β))

Considering the constraint set Ceg , only the constraint

((�p, πΘ(B)(α)) ≤ (�p, γ))

needs to be decomposed, yielding ((�p⊕ q, α) ≤ (�p, γ)).
2) Saturation: Considering a variable α, to ensure any

lower bound (e.g., ((Λl, tl) ≤ (Λ1, α))) is “smaller” than

any of its upper bound (e.g., ((Λ2, α) ≤ (Λr, tr)), we need

to saturate the constraint set by adding these conditions.

However, since our constraints are guarded by permission

traces, we need to consider lower-upper bound relations only

when the traces of the variable α can be entailed by the

same permission set, i.e., their intersection is satisfiable. In

that case, we extend the traces of both the lower and upper

bound constraints such that the traces of α are the same (i.e.,
Λ1 ∧Λ2), by adding the missing traces (i.e., Λ1 ∧Λ2−Λ1 for

lower bound constraint while Λ1∧Λ2−Λ2 for the upper one,

where − denotes set difference). This is done by the function

sat defined as follows:

sat((Λl, tl,Λ1, α), (Λ2, α,Λr, tr)) =
if Λ1∧Λ2 is satisfiable, then let Λ′

l = Λl∧(Λ1∧Λ2−Λ1)
and Λ′

r = Λr ∧ (Λ1 ∧ Λ2 − Λ2) in dec((Λ′
l, tl,Λ

′
r, tr)))

return ∅
Assume that there is an order < on type variables and the

smaller variable has a higher priority. If two variables α, β with

O(α) < O(β) (the orderings) are in the same constraint β ≤
α, we consider the larger variable β is a bound for the smaller

one α, but not vice-versa. There is a special case where both

variables on two sides are the same, e.g., ((Λ, α) ≤ (Λ′, α)).
In that case, we regroup all the trace of the variable α as the

trace set {Λi | i ∈ I} such that the set is full (i.e.,
∨

i∈I Λi = ε)
and disjoint (i.e., ∀i, j ∈ I.i �= j ⇒ ¬Δ(Λi∧Λj)), and rewrite

the constraints of α w.r.t. the set {Λi | i ∈ I}. Then we treat

each (Λi, α) as different fresh variables αi. Therefore, there

are no loops like: (Λ, α) ≤ . . . ≤ (Λ′, α), with the ordering.

Let us consider the constraint set Ceg and assume that the

order on variables is O(α) < O(γ) < O(β). There are four

lower bounds and one upper bounds for α. But only the lower

bound ((�p⊕q,H) ≤ (�p⊕q, α)) shares the same satisfiable

trace with the upper bound. So we saturate the set with the

constraint ((�p ⊕ q,H) ≤ (�p, γ)). Likewise, there are two

229

lower bounds (one of which is newly generated) and one

upper bound for γ. Each lower bound has a satisfiable inter-

sected trace with the upper bound, which yields the following

constraints ((ε, L) ≤ (ε, β)) and ((�p ⊕ q,H) ≤ (�p, β))
(extended by �p). While there are no upper bounds for β, so

no constraints are generated. After saturation, the example set

Ceg is

{((⊕p⊕ q, l1) ≤ (⊕p⊕ q, α)), ((⊕p
 q, L) ≤ (⊕p
 q, α)),
((
p⊕ q,H) ≤ (
p⊕ q, α)), ((
p
 q, L) ≤ (
p
 q, α)),
((
p⊕ q, α) ≤ (
p, γ)), ((ε, L) ≤ (ε, γ)),
((
p⊕ q,H) ≤ (
p, γ)), ((ε, γ) ≤ (ε, β)),
((⊕p, L) ≤ (⊕p, β)), ((ε, L) ≤ (ε, β)), ((
p⊕ q,H) ≤ (
p, β))}

3) Unification: Since our constraints are guarded by per-

mission traces, we need to consider the satisfiability of (any

subset of) the permission traces of a variable α under any

permission set when constructing a type for it. Let us consider

a variable α and assume that the constraints on it to be

solved are {((Λl
i, t

l
i) ≤ (Λi, α))}i∈I (i.e., the lower bounds)

and {((Λj , α) ≤ (Λr
j , t

r
j))}j∈J (i.e., the upper bounds). This

indicates that under a permission set P , α can take such a

type t that is bigger than tli · Λl
i if P � Λi and is smaller

than trj · Λr
j if P � Λj . Consequently, t should be bigger

than the union
⊔

i∈I′ tli · Λl
i and smaller than the intersection�

j∈J′ trj ·Λr
j if all the traces Λi ∈ I ′ and Λj ∈ J ′ are entailed

by P . In other words, α can take any type ranging from⊔
i∈I′ tli·(Λl

i∧Λ′
i) to

�
j∈J′ trj ·(Λr

j∧Λ′
j) if only the intersection

trace
∧

i∈I′ Λi∧
∧

j∈J ′ Λj is satisfiable, which indicates that α

is equivalent to (
⊔

i∈I′ tli ·(Λl
i∧Λ′

i)�α′)��
j∈J ′ trj ·(Λr

j∧Λ′
j),

where Λ′
i and Λ′

j are the missing traces to extend Λi and

Λj to the intersection trace respectively, and α′ is a fresh

variable. The type above is exactly what we want. We

define the construction of the type above via the function

merge:

merge({(Λl
i, t

l
i,Λi, α)}i∈I , {(Λj , α,Λ

r
j , t

r
j)}j∈J) =

let φ(I ′, J ′) = {Λ ∈ dnf(
∧

i∈I′ Λi ∧ ∧
j∈J′ Λj ∧∧

i∈I\I′ ¬Λi ∧
∧

j∈J\J ′ ¬Λj) | Δ(Λ)} in
let t�I′,Λ =

⊔
i∈I′ tli · (Λl

i ∧ (Λ− Λi)) in
let t�J ′,Λ =

�
j∈J ′ trj · (Λr

j ∧ (Λ− Λj)) in
{Λ �→ (t�I′,Λ � αΛ) � t�J ′,Λ}I′⊆I,J′⊆J,Λ∈φ(I′,J ′)

(with the convention t�∅,Λ = L and t�∅,Λ = H .)

Moreover, due to the absence of loops in constraints

and that the variables are in order, we can solve the

constraints in reverse order on variables by unification.

The unification algorithm unify is presented as fol-

lows.

unify(C) =

let subst θ ((Λl, tl,Λr, tr)) = ((Λl, tlθ,Λr, trθ)) in
select {(Λl

i, t
l
i,Λi, α)}i∈I and {(Λj , α,Λ

r
j , t

r
j)}j∈J for

the maximum variable α if exists, merge them as tα
let C ′ be the remaining constraints in
let C ′′ = List.map (subst [α �→ tα]) C

′ in
let θ′ = unify(C ′′) in θ′[α �→ tα]

else return []

Let us consider the constraint set Ceg again and take
the constraints on the maximum variable β, which are the
following set without any upper bounds

{((⊕p, L) ≤ (⊕p, β)), ((ε, L) ≤ (ε, β)), ((
p⊕ q,H) ≤ (
p, β))}
By applying the function merge, we construct for β the type

tβ = {⊕p �→ (L�β′)�H,�p �→ H}, where only the common

traces (i.e., ⊕p and �p) for the subsets {ε,⊕p} and {ε,�p}
are satisfiable, and β′ is a fresh variable. For simplicity, we

pick the least upper bound as possible when constructing

types. So we take {⊕p �→ L,�p �→ H} as tβ instead. Next,

we substitute tβ for all the occurrences of β in the remaining

constraints and continue with the constraints on γ and α.

Finally, the types constructed for γ and α are tγ = tβ and

tα = {⊕p⊕q �→ l1,⊕p�q �→ L,�p⊕q �→ H,�p�q �→ L},

respectively. Therefore, the types we infer for A.getInfo and

B.fun are () → tα and () → tβ , respectively.

Let sol be the function for the constraint solving algorithm,

that is, sol(C) = unify(sat(dec(C))). It is provable that the

constraint solving algorithm is sound and complete.

To conclude, an expression (command, function, resp.) is

typable, iff it is derivable under the constraint rules with

a solvable constraint set by our algorithm. Therefore, our

type inference system is sound and complete. Moreover, as

the function call chains are finite, the constraint generation

terminates with a finite constraint set, which can be solved by

our algorithm in finite steps. Thus, our type inference system

terminates.

Theorem III.1 The type inference system is sound, complete
and decidable.

IV. RELATED WORK

There is a large body of work on language-based informa-

tion flow security. We shall discuss only closely related work.

We have discussed extensively the work by Banerjee and

Naumann [11] and highlights the major differences between

our work and theirs in Section I.

Flow-sensitive and value-dependent information flow type

systems provide a general treatment of security types that may

depend on other program variables or execution contexts [18]–

[36]. Hunt and Sands [36] proposed a flow-sensitive type

system where order of execution is taken into account in the

analysis, and demonstrated that the system is precise but can

be simply described. Mantel et. al. [30] introduced a rely-

guarantee style reasoning for information flow security in

which the same variable can be assigned different security

levels depending on whether some assumption is guaranteed,

which is similar to our notion of permission-dependent secu-

rity types. Li and Zhang [35] proposed both flow-sensitive

and path-sensitive information flow analysis with program

transformation techniques and dependent types. Information

flow type systems that may depend on execution contexts

have been considered in work on program synthesis [19] and

dynamic information flow control [29]. Our permission context

can be seen as a special instance of execution context, however,

our intended applications and settings are different from [19],

230

[29], and issues such as parameter laundering does not occur

in their setting. Lourenço and Caires [26] provided a precise

dependent type system where security labels can be indexed by

data structures, which can be used to encode the dependency

of security labels on other values in the system. It may be

possible to encode our notion of security types as a dependent

type in their setting, by treating permission sets explicitly as an

additional parameter to a function or a service, and to specify

security levels of the output of the function as a type dependent

on that parameter. Currently it is not yet clear to us how one

could give a general construction of the index types in their

type system that would correspond to our security types, and

how the merge operator would translate to their dependent

type constructors, among other things. We leave the exact

correspondence to the future work.

Recent research on information flow has also been con-

ducted to deal with Android security issues ([2], [16], [37]–

[41]). SCandroid [2], [41] is a tool automating security certifi-

cation of Android apps that focuses on typing communication

between applications. Unlike our work, they do not consider

implicit flows, and do not take into account access control

in their type system. Ernst et al [37] proposed a verification

model, SPARTA, for use in app stores to guarantee that

apps are free of malicious information flows. Their approach

requires the collaboration between software vendor and app

store auditor and the additional modification of Android per-

mission model to fit for their Information Flow Type-checker;

soundness proof is also absent. Our work is done in the context

of providing information flow security certificates for Android

applications, following the Proof-Carrying-Code architecture

by Necula and Lee [42] and does not require extra changes

on existing Android application supply chain systems.

V. CONCLUSION AND FUTURE WORK

We have provided a lightweight yet precise type system

featuring Android permission model for enforcing secure

information flow in an imperative language and proved its

soundness with respect to non-interference. Compared to ex-

isting work, our type system can specify a broader range of

security policies, including non-monotonic ones. We have also

proposed a decidable type inference algorithm by reducing it

to a constraint solving problem.

We next discuss briefly several directions for future work.

The immediate one is to extend our system to richer

programming languages. We have been working on adding

another security typing for global variables. The addition of

global variables presents a potential side channel, i.e., when

they are written and read by apps with different permission

contexts, so they need to be treated differently than local

variables. Other extensions include object-oriented feature

(like [43]), exceptions (like [44]), etc.

We also plan to apply our type system to real Android

applications to enforce permission-dependent information flow

policies. A main challenge is to facilitate type inference so that

a programmer does not need to type every variable and instead

focuses only on policy specifications of a service. To enable

this, we need to be able to extract all permissions relevant to

an app and to identify all commands relevant to permission

checking in an app. The former is straightforward since the

permissions that can be granted to an app is statically specified

in the app’s manifest file. For the latter, the permission

checking code segments (typically library function calls) can

be located with pre-processed static analyses (e.g., [3], [4]).
Another interesting direction is in modeling runtime permis-

sion request. From Android 6.0 and above, several permissions

are classified as dangerous permissions and granting of these

permissions is subject to users’ approval at runtime. This

makes enforcing non-monotonic policies impossible in some

cases, e.g., when a policy specifies the absence of a dangerous

permission in releasing sensitive information. However, an app

can only request for a permission it has explicitly declared in

the manifest file, so to this extent, we can statically determine

whether a permission request is definitely not going to be

granted (as it is absent from the manifest), and whether it

can potentially be granted. And fortunately (but unfortunately

from a security perspective) the typical scenarios are that

users grant all the requested permissions during runtime when

requested (in order to gain a better user experience with

the app). Therefore one can assume optimistically that all

permissions in the manifest are finally granted. In the future,

we plan to resolve this issue with weaker assumptions. One

feasible approach is to model dangerous permissions in a

typing environment separately and allow policies to be non-

monotonic on non-dangerous permissions only.
Lastly, our eventual goal is to translate source code typing

into Dalvik bytecode typing, following a similar approach

done by Gilles Barthe et al [44]–[46] from Java source to

JVM bytecode. The key idea that we describe in the paper,

i.e., precise characterizations of security of IPC channels that

depends on permission checks, can still be applied to richer

type systems such as those used in the Cassandra project [39]

or Gunadi’s type system [40]. We envision our implementation

can piggyback on, say, Cassandra system to improve the

coverage of typable applications.

ACKNOWLEDGEMENTS

Zhiwu Xu was partially supported by National Natural Sci-

ence Foundation of China (No. 61502308 and No. 61772347),

Science and Technology Foundation of Shenzhen City (No.

JCYJ20170302153712968).

REFERENCES

[1] W. Enck, M. Ongtang, and P. McDaniel, “Understanding android secu-
rity,” IEEE Security and Privacy, vol. 7, no. 1, pp. 50–57, Jan. 2009.

[2] A. P. Fuchs, A. Chaudhuri, and J. Foster, “SCanDroid : Automated
Security Certification of Android Applications,” University of Maryland,
Tech. Rep. CS-TR-4991, November 2009.

[3] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” SIGPLAN Not., vol. 49, no. 6, pp. 259–269, Jun. 2014.

[4] F. Wei, S. Roy, X. Ou, and Robby, “Amandroid: A precise and general
inter-component data flow analysis framework for security vetting of
android apps,” in Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’14. New York,
NY, USA: ACM, 2014, pp. 1329–1341.

231

[5] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “Iccta: Detecting
inter-component privacy leaks in android apps,” in Proceedings of the
37th International Conference on Software Engineering - Volume 1, ser.
ICSE ’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 280–291.

[6] D. E. Denning, “A lattice model of secure information flow,” Commu-
nications of the ACM, vol. 19, no. 5, pp. 236–243, May 1976.

[7] D. E. Denning and P. J. Denning, “Certification of programs for secure
information flow,” Communications of the ACM, vol. 20, no. 7, pp. 504–
513, Jul. 1977.

[8] D. Volpano, C. Irvine, and G. Smith, “A sound type system for secure
flow analysis,” Journal of Computer Security, vol. 4, no. 2-3, pp. 167–
187, Jan. 1996.

[9] A. Sabelfeld and A. C. Myers, “Language-based information-flow se-
curity,” IEEE Journal on Selected Areas in Communications, vol. 21,
no. 1, pp. 5–19, Sep. 2003.

[10] J. A. Goguen and J. Meseguer, “Security Policies and Security Models,”
in SOSP, 1982, pp. 11–20.

[11] A. Banerjee and D. A. Naumann, “Stack-based access control and secure
information flow,” Journal of Functional Programming, vol. 15, no. 2,
pp. 131–177, Mar. 2005.

[12] J. Landauer and T. Redmond, “A lattice of information,” in 6th IEEE
Computer Security Foundations Workshop - CSFW’93, Franconia, New
Hampshire, USA, June 15-17, 1993, Proceedings. IEEE Computer
Society, 1993, pp. 65–70.

[13] H. Chen, A. Tiu, Z. Xu, and Y. Liu, “A permission-dependent
type system for secure information flow analysis,” CoRR, vol.
abs/1709.09623, 2017. [Online]. Available: http://arxiv.org/abs/1709.
09623

[14] Android, “Requesting permissions at run time.” [Online]. Available:
https://developer.android.com/training/permissions/requesting.html

[15] A. Developers, “Binder,” https://developer.android.com/reference/
android/os/Binder.html, 2017, online, accessed on 07-July-2017.

[16] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-
application communication in android,” in Proceedings of the 9th
International Conference on Mobile Systems, Applications, and Services,
ser. MobiSys ’11, New York, NY, USA, 2011, pp. 239–252.

[17] A. Developers, “Permissionchecker | android developers,”
https://developer.android.com/reference/android/support/v4/content/
PermissionChecker.html, 2017, online, accessed on 07-July-2017.

[18] T. M. , R. Sison, E. Pierzchalski, and C. Rizkallah, “Compositional veri-
fication and refinement of concurrent value-dependent noninterference,”
in 2016 IEEE 29th Computer Security Foundations Symposium (CSF),
June 2016, pp. 417–431.

[19] N. Polikarpova, J. Yang, S. Itzhaky, and A. Solar-Lezama, “Type-driven
repair for information flow security,” CoRR, vol. abs/1607.03445, 2016.
[Online]. Available: http://arxiv.org/abs/1607.03445

[20] T. Murray, R. Sison, E. Pierzchalski, and C. Rizkallah, “A dependent
security type system for concurrent imperative programs,” Archive of
Formal Proofs, Jun. 2016, http://isa-afp.org/entries/Dependent_SIFUM_
Type_Systems.shtml, Formal proof development.

[21] T. Murray, R. Sison, E. Pierzchalski, and C. Rizkallah, “Composi-
tional security-preserving refinement for concurrent imperative pro-
grams,” Archive of Formal Proofs, Jun. 2016, http://isa-afp.org/entries/
Dependent_SIFUM_Refinement.shtml, Formal proof development.

[22] T. Murray, “Short Paper: On High-Assurance Information-Flow-Secure
Programming Languages,” in Proceedings of the 10th ACM Workshop
on Programming Languages and Analysis for Security, 2015.

[23] X. Li, F. Nielson, and H. Riis Nielson, “Future-dependent Flow Policies
with Prophetic Variables,” in the 2016 ACM Workshop. New York, NY,
USA: ACM Press, 2016, pp. 29–42.

[24] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A Hardware
Design Language for Timing-Sensitive Information-Flow Security,” in
the Twentieth International Conference. New York, New York, USA:
ACM Press, 2015, pp. 503–516.

[25] X. Li, F. Nielson, H. R. Nielson, and X. Feng, “Disjunctive Information
Flow for Communicating Processes.” TGC, 2015.

[26] L. Lourenço and L. Caires, “Dependent information flow types,” in
Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ser. POPL ’15, New York,
NY, USA, 2015, pp. 317–328.

[27] L. Lourenço and L. Caires, “Information flow analysis for valued-
indexed data security compartments,” in Trustworthy Global Computing
- 8th International Symposium, TGC 2013, Buenos Aires, Argentina,

August 30-31, 2013, Revised Selected Papers, ser. Lecture Notes in
Computer Science, vol. 8358. Springer, 2014, pp. 180–198.

[28] N. Swamy, J. Chen, C. Fournet, P. Strub, K. Bhargavan, and J. Yang,
“Secure distributed programming with value-dependent types,” Journal
of Functional Programming, vol. 23, no. 4, pp. 402–451, 2013.

[29] J. Yang, K. Yessenov, and A. Solar-Lezama, “A language for
automatically enforcing privacy policies,” in Proceedings of the 39th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2012. ACM, 2012, pp. 85–96. [Online]. Available:
http://doi.acm.org/10.1145/2103656.2103669

[30] H. Mantel, D. Sands, and H. Sudbrock, “Assumptions and guarantees
for compositional noninterference,” in Proceedings of the 24th IEEE
Computer Security Foundations Symposium, CSF 2011, Cernay-la-Ville,
France, 27-29 June, 2011. IEEE Computer Society, 2011, pp. 218–232.
[Online]. Available: https://doi.org/10.1109/CSF.2011.22

[31] A. Nanevski, A. Banerjee, and D. Garg, “Verification of information
flow and access control policies with dependent types,” in 32nd IEEE
Symposium on Security and Privacy, S&P 2011, 22-25 May 2011,
Berkeley, California, USA. IEEE Computer Society, 2011, pp. 165–179.

[32] N. Swamy, J. Chen, and R. Chugh, “Enforcing stateful authorization
and information flow policies in fine,” in Programming Languages
and Systems, 19th European Symposium on Programming (ESOP), ser.
Lecture Notes in Computer Science, vol. 6012. Springer, 2010, pp.
529–549.

[33] L. Zheng and A. C. Myers, “Dynamic security labels and static informa-
tion flow control.” International Journal of Information Security, vol. 6,
no. 2-3, pp. 67–84, 2007.

[34] S. Tse and S. Zdancewic, “Run-time principals in information-flow type
systems,” ACM Trans. Program. Lang. Syst., vol. 30, no. 1, 2007.

[35] P. Li and D. Zhang, “Towards a flow- and path-sensitive information flow
analysis,” in 2017 IEEE 30th Computer Security Foundations Symposium
(CSF), Aug 2017, pp. 53–67.

[36] S. Hunt and D. Sands, “On flow-sensitive security types,” in Conference
Record of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, ser. POPL ’06. New York, NY, USA:
ACM, 2006, pp. 79–90.

[37] M. D. Ernst, R. Just, S. Millstein, W. Dietl, S. Pernsteiner, F. Roesner,
K. Koscher, P. B. Barros, R. Bhoraskar, S. Han, P. Vines, and E. X.
Wu, “Collaborative verification of information flow for a high-assurance
app store,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’14. New York,
NY, USA: ACM, 2014, pp. 1092–1104.

[38] A. Nadkarni, B. Andow, W. Enck, and S. Jha, “Practical DIFC Enforce-
ment on Android,” USENIX Security Symposium, 2016.

[39] S. Lortz, H. Mantel, A. Starostin, T. Bahr, D. Schneider, and A. Weber,
“Cassandra: Towards a certifying app store for android,” in Proceedings
of the 4th ACM Workshop on Security and Privacy in Smartphones and
Mobile Devices, ser. SPSM ’14, New York, NY, USA, 2014, pp. 93–104.

[40] H. Gunadi, “Formal certification of non-interferent android bytecode
(dex bytecode),” in Proceedings of the 2015 20th International Con-
ference on Engineering of Complex Computer Systems (ICECCS), ser.
ICECCS ’15, Washington, DC, USA, 2015, pp. 202–205.

[41] A. Chaudhuri, “Language-based security on android,” in Proceedings of
the ACM SIGPLAN Fourth Workshop on Programming Languages and
Analysis for Security, ser. PLAS ’09, New York, NY, USA, 2009, pp.
1–7.

[42] G. C. Necula and P. Lee, “Proof-carrying code,” School of Computer
Science, Carnegie Mellon University, Tech. Rep., 1996, cMU-CS-96-
165.

[43] Q. Sun, A. Banerjee, and D. A. Naumann, “Modular and constraint-
based information flow inference for an object-oriented language,” in
Static Analysis, R. Giacobazzi, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 84–99.

[44] G. Barthe, T. Rezk, and D. A. Naumann, “Deriving an Information
Flow Checker and Certifying Compiler for Java.” IEEE Symposium on
Security and Privacy, pp. 230–242, 2006.

[45] G. Barthe and T. Rezk, “Non-interference for a JVM-like language.”
TLDI, pp. 103–112, 2005.

[46] G. Barthe, D. Pichardie, and T. Rezk, “A certified lightweight non-
interference java bytecode verifier,” in Proceedings of the 16th European
Symposium on Programming, ser. ESOP’07, Berlin, Heidelberg, 2007,
pp. 125–140.

232

