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Abstract: Motion tracking via Inertial Measurement Units (IMUs) on mobile and wearable devices has attracted

significant interest in recent years. High-accuracy IMU-tracking can be applied in various applications, such as indoor

navigation, gesture recognition, text input, etc. Many efforts have been devoted to improving IMU-based motion

tracking in the last two decades, from early calibration techniques on ships or airplanes, to recent arm motion models

used on wearable smart devices. In this paper, we present a comprehensive survey on IMU-tracking techniques

on mobile and wearable devices. We also reveal the key challenges in IMU-based motion tracking on mobile and

wearable devices and possible directions to address these challenges.
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1 Introduction

Inertial motion tracking, which uses Inertial
Measurement Units (IMUs) or inertial sensors for
motion tracking, has been a hot research topic for
the last two decades. Typical inertial sensors, such as
accelerometers, gyroscopes, and magnetometers, are
equipped in most mobile and wearable devices and
can provide different types of sensing information.
The goal of inertial motion tracking is to use the
sensing information provided by these sensors to
derive three-dimensional (3D) motion, which can

� Zhipeng Song and Jiliang Wang are with the School
of Software, Tsinghua University, Beijing 100084, China.
E-mail: songzp18@mails.tsinghua.edu.cn; jiliangwang@
tsinghua.edu.cn.

� Zhichao Cao is with the Department of Computer Science and
Engineering, Michigan State University, Michigan, MI 48824,
USA. E-mail: caozc@msu.edu.

� Zhenjiang Li is with the Department of Computer Science, City
University of Hong Kong, Hong Kong 999077, China. E-mail:
zhenjiang.li@cityu.edu.hk.

� Yunhao Liu is with the Department of Automation and the
Global Innovation eXchange Institute (GIX), Tsinghua University,
Beijing 100084, China. E-mail: yunhao@tsinghua.edu.cn.

�To whom correspondence should be addressed.
Manuscript received: 2021-02-07; accepted: 2021-02-26

be further used in different applications, such as
indoor navigation, gesture recognition, and text input.
For example, a health center can utilize a smart
wristband to study patients’ physical motion during their
rehabilitation[1]. Inertial tracking can also be used for
gesture recognition to control appliances in smart home
scenarios[2]. The tracking-based text-input method can
offer a more convenient way to perform text input on
many small-screen or even no-screen devices, such as
smartwatches and wristbands[3]. With the prevalence
of wearable smart devices, including but not limited
to smartphones, smartwatches, and wristbands, inertial
motion tracking will play a more critical role in wearable
and mobile applications in the future. IMU tracking
has its advantages. Unlike tracking based on wireless
signals, such as Wi-Fi[4] and UWB[5], IMU tracking
does not rely on extra infrastructure (e.g., base station
and router). Moreover, recent work on the embedded
terminals[6, 7] can both secure sensitive data transmitted
from IMU sensors and save battery energy of wearable
devices. The information provided by IMU sensors
will facilitate more applications in different scenarios,
such as healthcare, smart home, and human-computer
interaction.

In this survey, we focus on 3D IMU tracking where
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a user holds or wears smart devices with different
types of IMUs on her/his hand or wrist. We survey
works that focus on tracking fine-grained movements
performed by fingers, hands, wrists, and arms, and
conduct a comprehensive study of inertial motion
tracking approaches.

We consider inertial motion tracking with an
accelerometer, gyroscope, and magnetometer. These
sensors measure the device’s acceleration, angular rate,
and amplitude of the nearby magnetic field.

Initially, a simple Two-Dimensional (2D) motion
tracking can be achieved based on the accelerometer’s
acceleration on a device. We integrate acceleration over
its time to derive the velocity, and further integrate
velocity to derive the displacement. Consequently, the
displacement can be used to track the device’s position.

This intuitive double-integration method can only
work well under several constraints: (1) The device’s
orientation keeps unchanged, that is, the device has
no rotations. (2) Due to the error in direction, most
acceleration-based tracking methods only work well for
2D planes. (3) The tracking duration should be short[8];
otherwise, the accumulated error can be very high. If
a device rotates during the tracking period, then the
acceleration cannot directly represent the movement of
the device anymore. It then requires more information
from the gyroscope and magnetometer, which will be
further elaborated in Section 2.1. If the movement is
along Z-axis, then the corresponding acceleration can
be impacted by gravity, which can be a non-negligible
noise.

Therefore, typical IMU-tracking methods can
combine information from the gyroscope, magnetometer,
and other available sensors to address the limitations
mentioned above. The angular rate from the gyroscope
can be used to derive the rotation angle and rotation
matrix, which rotates sensor readings from the Local
Reference Frame (LRF) (see Fig. 1) to the Global
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Fig. 1 LRF of IMU sensors in a smartphone and a
smartwatch.

Reference Frame (GRF). The magnetometer can provide
the magnetic north in the LRF, served as an “anchor” to
calibrate orientation.

For mobile and wearable devices, IMUs on these
devices are typically made lighter, smaller, and
inexpensive, and have lower power consumption,
enabling them to be embedded into smartphones,
smartwatches, and virtual reality headsets. These low-
cost sensors may have lower precision compared to
those in airplanes or robotics. However, the acceleration
significantly varies in practice. The relatively low
sampling rate (100 Hz in most smartwatches nowadays)
is insufficient to capture instant movements, such as
sharp turns and frequent flips.

Numerous research works have been conducted to
make IMU tracking feasible on modern wearable devices.
Based on different requirements and scenarios, we
categorize them into three main groups, i.e., physical
model based methods, arm motion model based methods,
and activity model based methods.

The physical model-based methods leverage sensor
fusion techniques and sensor error modeling to calibrate
errors in sensor readings. The arm motion model
based methods use kinetic knowledge to model the
arm movements of humans, including hand or wrist
movements in a particular region. The activity model
based methods leverage different features to recognize
different activities, such as gestures, text, and other
movements, including sign language and smoking.

Based on IMU tracking, many applications have
been proposed, which can be further categorized into
body tracking and wrist tracking. The former normally
focuses on tracking the human body’s position, whereas
the latter focuses on tracking wrist movements. The two
categories have several main differences:

� Granularity: Considering the indoor localization
scenario, body tracking will allow meter-level errors,
whereas wrist tracking has finer granularity and generally
requires decimeter- or centimeter-level errors.

� Periodicity: Most body-tracking works are based
on the human’s walking or running pattern, which
tends to be periodical. This periodicity can be helpful
in refining sensor data. Conversely, wrist-tracking
movements can be more complicated.

� Model: Body tracking and wrist tracking focus on
different parts of humans and use different models. The
stride length model is used in body tracking; whereas,
the arm motion model is used in wrist tracking.

Many research works on IMU body tracking are
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summarized in Ref. [9]. Body tracking includes
pedestrian localization, heading estimation, step
counting, and activity recognition[10]. This paper will
focus on wrist tracking.

This survey is organized as follows: Section 2
introduces IMU-tracking frameworks based on the three
models mentioned above. Section 3 analyzes noises in
IMU sensor readings. Sections 4, 5, and 6 elaborate on
the three models (i.e., physical model, arm motion model,
and activity model, respectively). Section 7 summarizes
the challenges and shows possible solutions and research
directions for IMU-tracking works. Finally, Section 8
concludes our survey.

2 IMU-Tracking Framework

Figure 2 presents the general IMU-tracking framework.
First, we collect readings from three IMU sensors,
namely, acceleration, magnetic north, and angular rate.
These data are then preprocessed to obtain fine-grained
motion information, such as linear acceleration, initial
orientation, and rotation matrix. Three different models
are applied with different techniques to process motion
data and derive the tracking results. Tracking results
can be 3D locations, orientations, or certain recognized
activities (e.g., gestures and text). We will briefly
introduce each part in this section and present more
details in the next sections.

2.1 IMU sensors in motion tracking

Typical IMUs in modern mobile devices consist of
three components: accelerometer, gyroscope, and

magnetometer. The accelerometer measures the device’s
acceleration along three axes caused by all external
forces applied to it. The device’s rotation angles
around three axes are captured by the gyroscope. The
magnetometer measures the distribution of the magnetic
field.

Ideally, three axes (noted as X-, Y -, and Z-axes) of
the three sensors are considered to be perfectly aligned.
When we describe sensor readings, such as “acceleration
along the X -axis”, “angular velocity around the X -axis”,
and “magnetic amplitude along the X-axis”, all three
X-axes refer to the same direction. However, in a real
device, these sensors may have some misalignment due
to manufacturing imperfection[8]. Different approaches
have been proposed to remove this misalignment (e.g.,
in the physical and arm motion models) or compensate
for the misalignment in the tracking results (e.g., in the
activity models). Therefore, we usually assume that the
three axes are properly aligned.

For motion tracking, we need to identify the reference
frame clearly. In practice, there are many reference
frames for tracking via IMU. Typically, there are four
kinds of frames[8]: body frame, navigation frame,
inertial frame, and earth frame. The body frame is the
frame defined by the device, e.g., sensor readings. The
navigation frame is a global and absolute frame. In
this study, we are interested in tracking traces in the
navigation frame. The inertial and earth frames are
introduced considering the centrifugal acceleration and
Coriolis acceleration due to the earth’s self-rotation. In
a wearable sensing scenario, the earth’s rotation can be
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Fig. 2 General framework of IMU-tracking.
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negligible, as the device’s moving range and velocity
are limited compared with those of the earth. Hence,
the earth’s rotation should be considered for navigating
a plane or ship that travels either in high speed or
long range. For inertial motion tracking on mobile
and wearable devices, we typically consider the GRF
and LRF[11], which correspond to the navigation and
body frame mentioned above, respectively. The GRF is
defined as h North, East, Up i.

All the three inertial sensors work in their LRFs.
The same readings of IMU sensors can be different in
GRF given different orientations or attitudes of a device.
Therefore, we need to distinguish the LRF and GRF
in tracking, as shown in Fig. 3. Sensor readings can
be transformed from the LRF into the GRF through a
rotation matrix.

The goal of IMU tracking is to derive the tracking
traces in GRF, and the output of IMUs is in the LRF. For
example, if an accelerometer has readings on the X -axis,
then this acceleration is along the device’s X-axis, not
the X -axis in the global framework. Therefore, we need
to transfer three sensors’ readings from the LRF to the
GRF to obtain correct tracking results.

The LRF of a smartphone and a smartwatch is
illustrated in Fig. 1, where the Z-axis is perpendicular to
the surface of the device and points from back to front.

2.2 Data preprocessing

After we obtain readings from the three sensors, we
can further preprocess the data. The sampling rates
of different IMUs are not necessarily the same. For
example, for the Huawei P30 smartphone, the highest
sampling rates of the accelerometer and gyroscope are
500 Hz, and the sampling rate of the magnetometer
is 100 Hz. The difference among the sampling rates
implies that samplings from different sensors may
not be synchronized. To manually synchronize the
three sensors, a usually adopted method is to apply
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Fig. 3 GRF and LRF.

interpolation to the data[8, 12] with available timestamps
of each sensor reading. To make a better measurement
of the acceleration and capture high-frequency features,
ViBand[13] developed a custom smartwatch whose
sampling rate increases to 4 kHz by modifying the kernel
of the operating system. The accelerometer’s sampling
rate is 100 Hz in current off-the-shelf smartwatches
(e.g., Samsung LG Sport and Huawei Watch 2), and
smartphones can reach as high as 500 Hz (e.g., Huawei
P30 Pro). However, these rates are much lower than
4 kHz. ViBand[13] can leverage high-fidelity bio-acoustic
features to make a wide range of applications, providing
a new direction for IMU tracking.

2.2.1 Gravity removal
Accelerometer readings are polluted by gravitational
acceleration by default, so we need to apply gravity
removal to separate gravity from raw acceleration data.
One method is to apply a low-pass filter on acceleration
data[14]. For instance, Android provides an Application
Programming Interface (API) for removing gravity[15].

2.2.2 Initial orientation estimation
The orientation here describes the device’s facing
direction concerning the GRF, which determines the
rotation matrix from the LRF to the GRF. Initial
orientation requires “global anchors” to obtain, and
a global anchor means that its measurement keeps
unchanged in the GRF, regardless of how the LRF
changes. The magnetic north direction provided by the
magnetometer and the gravity from the accelerometer
can serve as global anchors. These two directions can be
used to compute initial orientation, e.g., the methods in
Refs. [11, 16] can estimate the initial orientation.

2.2.3 Computing rotation matrix
When the device rotates, its orientation changes over
time. Thus, we need to determine the initial orientation
and orientation’s change between every two samples.
Angular rates from the gyroscope can be used to compute
the rotation matrix, and thus the orientation changes.
The works in Refs. [8, 12] present the details of the
representation of 3D rotations and how to compute the
rotation matrix.

2.3 Tracking models

After processing the data, we can apply the data to
different models for motion tracking. We summarize
three tracking models: physical model, arm motion
model, and activity model. Section 4 presents the
physical model, which computes the orientation and
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position according to the physical motion relationship.
Section 5 presents the arm tracking model, which
leverages the body constraints for tracking. Section 6
presents the activity model, which focuses on
recognizing certain activities, such as gestures and text
inputs.

3 Noises in IMU Data

Similar to other sensors, IMU sensors suffer from many
kinds of noises. The use of three different sensors further
makes noise removal more complicated. This section
will introduce typical IMU sensor noises and discuss
why IMU tracking is nontrivial.

3.1 Inherent noises

Inherent noises or hardware noises exist in all kinds of
sensors. The inherent noise on IMU sensors has been
extensively studied in the past decade[8, 12, 17]. For the
completeness of this survey, we follow definitions in
Refs. [8, 12, 17] and present a brief introduction of
different sources of inherent noises.

From the aspect of effect on IMU sensors, there
are three types of noises: bias, scale factor, and
nonorthogonality misalignment.

3.1.1 Bias
When no external input is fed to a sensor, it is expected
to output zero; otherwise, this nonzero output is called
a bias. The bias consists of deterministic and random
parts. Reference [8] found that when the sensor is static,
the expected output of the accelerometer and gyroscope
is nonzero. Furthermore, the output is not constant but
varies along with time.

3.1.2 Scale factor
The scale factor is defined as the ratio of changes
of the output to that of the input. Because
MicroElectroMechanical System (MEMS) sensors
usually transfer voltage into the corresponding
measurement, they need to scale the measured voltage to
derive acceleration (angular rate or magnetic amplitude),
which may introduce this kind of noise.

3.1.3 Nonorthogonality misalignment
Due to the manufacturing imperfection, the three axes
of a sensor may not perfectly align those of the device.
Therefore, a misalignment may exist between sensors’
and device’s coordinate frames.

Apart from the noises mentioned above, IMU sensors
also suffer from saturated measurements, i.e., when the
measured physical quantity is too large for the sensors,

the measured voltage may be clipped or scaled to fit
in the range of measurement, thus causing an error.
The gyroscope can be sensitive to accelerations along
the three axes as if the accelerometer and gyroscope
are coupled, which is called a g-dependent bias[18].
Moreover, the magnetometer is prone to hard- and soft-
iron effects[19].

3.2 Environmental noise

Besides inherent noises, IMU sensors can also be
affected by environmental factors, such as gravity, self-
rotation of earth, magnetic interference, and temperature.
These environmental factors also play important roles in
the noises of IMU sensors.
3.2.1 Gravity
When an accelerometer measures acceleration, it takes
all kinds of external forces applied on the device into
consideration, including gravity if the sensor is near the
earth, which is the typical case. Therefore, gravitational
acceleration is a natural noise for the accelerometer. The
amplitude of gravitational acceleration (9.81 m/s2) can
be at the same magnitude with that from the device’s
movement, e.g., while writing or performing some
gestures (normally does not exceed 15 m/s2[20]). If the
gravitational acceleration is not thoroughly removed,
then it can significantly introduce noise to tracking.
Many works have performed gravity removal by first
calculating the IMU orientation, projecting acceleration
in the LRF into the GRF, and directly subtracting
gravity in the GRF, because the amplitude and direction
of gravity in the GRF are kept constant regardless
of how the device moves. The performance of this
method heavily relies on the estimation precision of
the device’s orientation. In the GRF, gravitational
acceleration is generally 9.81 m/s2 and points to the
negative direction of the Z-axis. The state-of-the-art
research work on orientation estimation[11] has a median
error of 10ı within a 5-min measurement. Thus, part of
the gravitational acceleration is projected into the X-Y
plane due to the orientation estimation error, and this part
can be as large as 1.7 m/s2. Compared with the inherent
noise of the accelerometer, such as constant bias (in the
magnitude of 10�2 m/s2 [21]), the error from gravity is
considerably large.
3.2.2 Self-rotation of the earth
The self-rotation rate of the earth is approximately
7.29�10�5 rad/s, which can be captured by a gyroscope.
The amplitude of the earth’s rotation rate is very small,
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which typically impacts the performance of lengthy and
time-consuming tracking[22, 23].

3.2.3 Magnetic interference
In motion tracking, the magnetometer is often used
as a compass. That is, it determines the magnetic
north direction in the LRF, assuming there are
no ferromagnetic materials nearby. In many indoor
environments, such as offices, classrooms, laboratories,
and living rooms, where computers and cables
are everywhere, the magnetometer is exposed to
interferences, and its readings can be irregular and
unstable. Some research works point out that the
magnetometer has a high accuracy for outdoor areas,
but its performance degrades in the indoor environment.
The experiments show that the compass output can
cause an error of 50ı for the measurement of half a
minute[16]. Reference [11] tested its attitude-estimating
system in different environments, such as outdoor and
indoor open places, crowded engineering buildings, and
laboratories. The results show that the orientation error
can be very high, e.g., when the fluctuation (standard
deviation) of the magnetic field density reaches 13 �T
(which is common in houses with computers and cables),
the orientation error can be as high as 100ı.

3.2.4 Temperature
All the three IMU sensors are sensitive to temperatures,
and the factors of inherent noises can vary in different
temperatures[24].

3.3 Summary

In this section, we summarize some properties of IMU
sensor noises:

(1) There are many types of IMU sensor noises
On the top level, IMU sensor noises can be divided

into two categories: inherent noise and environmental
noise. Inherent noises exist in various sensors due to
hardware imperfection, including bias, scaling factors,
and nonorthogonality misalignment. Environmental noise
comes from the earth and surroundings. For example,
gravity impacts the accelerometer, the self-rotation of the
earth impacts the gyroscope, and nearby ferromagnetic
materials impact the magnetometer. Some noises can be
further categorized as constant or random according to
their statistical properties.

(2) The same type of noise may have different
effects on tracking

Take constant bias as an example. For the
accelerometer, this acceleration bias will be integrated

twice to calculate displacement. For the gyroscope, the
angular velocity needs to be integrated once to get the
angular shift, whereas the magnetic amplitude does
not need integration. Therefore, the accelerometer’s
constant bias is considered to have more impact on
the tracking, because the double-integration process
makes the position error grow quadratically with time.
Reference [8] conducted an experiment on a smartphone
and found that even when the phone is kept stationary,
the computed position can drift several meters within
10 s due to noise. Constant bias only makes the angular
error grow linearly, and the magnetometer’s error will
not accumulate with time.

(3) Noises can be time-varying
The noises presented above can change over time.

Even the constant bias can only be considered “constant”
in a short period, and it may drift in an extended range
of time. Reference [8] collected a dataset for 55 min of
a static gyroscope and found that this sensor’s bias in
the first minute is different from that of the last minute.
Furthermore, the bias of an axis could even change
its sign. The instability or time-varying property of
these sensor noises makes offline calibration techniques
ineffective and exacerbates the complexity of modeling
these noises.

4 Physical Model Approach

The physical model investigates the physical relationship
among sensor data and computes the device’s orientation
and location. Generally, a physical model consists
of a series of physical formulas, which take IMU
sensor readings as the input and output of the device’s
orientation and location. References [8, 12] presented an
introduction of inertial navigation and classic physical
models.

However, it is impracticable to directly use raw data
and perform computations, because raw sensor data
are full of noises and need fine-grained calibrations.
Thus, all physical model approaches need calibration
methods to improve the data quality.

This section will introduce a series of calibration-
based IMU-tracking research works, which can be
classified into two categories: equipment-aided and filter-
based calibration.

4.1 Equipment-aided calibration

Equipment-aided calibration first uses special equipment
to measure the IMU sensor noise parameters and then
applies the measured noise parameters into the physical
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model to calibrate IMU tracking.
The special equipment mentioned above can be

classified into two kinds: electric slide rail and turntable.
We can manually set the moving direction and speed of
a slide rail or change the 3D orientation of a turntable.
Therefore, when we mount the device with IMU sensors
on the special equipment, we can determine the tracking
ground truth of this device. We denote the ground-truth
3D position of this device as .Yx; Yy ; Yz/. Meanwhile,
we derive IMU sensor readings from the device, and
through the physical model, we can also compute
the device’s position .Xx; Xy ; Xz/. Basically, there
is a difference between .Yx; Yy ; Yz/ and .Xx; Xy ; Xz/

because the physical model contains IMU sensor noises.
To calibrate the physical model, we introduce a typical

method to measure IMU sensor noises. This method
combines three kinds of noise parameters (e.g., bias,
scale factor, and nonorthogonality misalignment) and
describes their relationships in the following equation:264 Yx
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where Bx; By , and Bz are bias noises, Sx; Sy , and Sz

are scale factors, Mxy ; Mxz; Myx; Myz; Mzx; and Mzy

are misalignment coefficients, and �x; �y , and �z are
random noises.

Theoretically, we can place IMU sensors in many
different positions or movement states to solve unknown
noise parameters, as presented in Eq. (1). This scheme
is called the multi-position calibration technique[23]. We
feed Eq. (1) with .Yx; Yy ; Yz/ and .Xx; Xy ; Xz/, and
then the noise parameters can be estimated. During
the IMU tracking, we can use these estimated noise
parameters to calibrate our physical model.

However, equipment-aided calibration has two
drawbacks: (1) The calibration is complicated and
requires special high-precision equipment. Thus, it is
not easy to use in practice for wearable devices. (2) As
mentioned in Section 3.1, some inherent noises can be
time-varying; thus, calibrating IMU sensors for once is
not sufficient.

Therefore, equipment-aided calibration is not practical
in practice for smart devices that require plug-and-play
usage.

4.2 Filter-based calibration

Filter-based calibration is a popular method in spacecraft
attitude determination[25] and has been used in MEMS
IMU sensors on mobile devices. It uses different filters,
including the Kalman Filter (KF), Extended Kalman
Filter (EKF), Unscented Kalman Filter (UKF), and
Complimentary Filter (CF), for calibration.

Besides the classic filters mentioned above, some
research works have developed their own filters.
Reference [16] proposed an opportunistic replacement
filter, which determines whether a gyroscope,
accelerometer, or magnetometer is more reliable
when estimating the orientation and replaces unreliable
data with reliable data. The Android platform[15]

leverages gravity and magnetic north to filter out noises
of the gyroscope, and this filter is provided as an API
getRotationMatrix.

We summarize filter-based calibration works in
Table 1 and list their respective assumptions and
limitations.

As stated in Table 1, filter-based calibration has
its limitations. Many works are feasible because they
assume the random noise to be Gaussian. Further
optimizations, such as maximum likelihood, are based
on the Gaussian noise assumption. In practice, when
the device is stationary, IMU sensors’ noises can be
considered Gaussian noise[8]. However, no observation
or experiment has proven that the assumption still holds
when the device moves very fast or makes complicated
movements.

5 Arm Motion Model Approach

Arm motion model or kinematic model based IMU
tracking has gained its popularity in recent years[11, 49–52].
It leverages the property of humans’ biological
characteristics and models the relationship among the
shoulder, arm, and wrist during their movements for
wearable sensing. This model can also be applied to
control robots to imitate human arms’ motions[53].

After building an arm motion model for a specific user,
we can track the device worn by this user with the help of
this model. Specifically, we make some assumptions on
the initial positions and orientations of the device. Then,
as the device moves, we compute the movements based
on the IMU sensor readings. Our arm motion model puts
a constraint on the possible movements, and it can rule
out incorrect assumptions to determine the correct one.
Therefore, the device can be correctly tracked.
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Table 1 Related works of filter-based calibration on IMU tracking.
Related work Filter type Assumption / limitation

[15] Gravity and magnetic north Simple algorithm to reduce computational complexity at the cost of low accuracy
[16] Opportunistic replacement Require nearby magnetic field to be stable; require frequent pause to reset the system

with gravity
[21] KF Require velocity readings as input

[26, 27] KF Rely on stable magnetic field or other sensors to get inclination angles
[28] KF, gradient descent Require stable nearby magnetic field; assume initial orientation is known
[29] KF Need redundant IMU sensors

[30, 31] KF Require stable nearby magnetic field; devices are stationary or in low acceleration
consitions

[32] KF Rotational motion of devices is slow
[33] KF Estimate heading direction rather than 3D orientation

[11, 34] KF[34], CF[11] Require stable nearby magnetic field
[35] EKF Assume gyroscope’s bias is constant; require stable nearby magnetic field

[36, 37] EKF Assume the device is stationary
[38] EKF Need stationary condition to do initialization; require stable nearby magnetic field
[39] UKF Require devices to be stationary or move slowly
[40] UKF Require GPS as reference

[41–46] EKF[41–43, 46], UKF[44],
CF[45, 46]

Require magnetic measurement to be accurate and the device to move slowly so that
the gravity can be extracted

[47, 48] CF[47], gradient descent[48] Require devices to move slowly, so that it can leverage gravity to compensate for
magnetic distortion

To leverage arm motion model constraints and rule
out incorrect assumptions, many research works have
used particle filters[11, 49–52]. Particle filter[54] has been
proposed for more than two decades, and it can be used
in many nonlinear estimation problems.

The particle filter algorithm starts from a group of
particles. Each particle represents a legal state in the
state space with a weight representing its possibility.
Using the transition equations and new input data, these
particles will be transferred to their next states. During
the process, a portion of the particles will become illegal
and will be immediately dropped, and a portion of the
particles will change their weight. Finally, the algorithm
converges to some individual particles representing the
real transition path.

We make assumptions of the device’s initial positions
and orientations by defining the state space of the
particle filter. During the transition of the particles, the
computation relies on the input of IMU sensors. As
we have mentioned above, the existence of inherent
noises will make particles move in the wrong way. The
arm motion model can be used here to detect illegal
particles and filter them out, which means that our wrong
assumptions are ruled out.

Arm motion model approaches can achieve higher
tracking precisions compared with physical model
approaches. However, the arm motion model also has

limitations: First, the arm motion model assumes the
user’s torso keeps stationary, and only the arms, wrists,
or hands move during the IMU tracking. Thus, the
application scenarios are limited. Second, to achieve
a high tracking precision, the particle filter should either
enlarge the number of its initial particles or resample
more particles after each transition. This process
will result in a higher computational complexity. For
example, MUSE[11] cannot be afforded on modern off-
the-shelf smartphones due to its heavy computation.

In summary, the particle filter can effectively address
the error accumulation of IMU sensor data and further
introduces a trade-off between high accuracy and high
computational complexity.

6 Activity Model Approach

In this section, we introduce the activity model based
IMU tracking approaches, whose main idea is to derive
the corresponding gestures instead of the accurate
trajectory.

Theoretically, if IMU tracking’s precision can be
sufficiently high, then it would not be difficult to
distinguish or recognize activities according to their
traces. Due to the difficulty in high-precision tracking,
activity model based approaches recognize related
gestures instead of accurate positions.

The main steps for activity model based approaches
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are as follows: First, segment the IMU sensor readings
to determine which segments of the readings contain
gestures. Second, extract features from the IMU sensor
readings to represent certain gestures. Third, build
a classifier to recognize gestures from our extracted
features. These steps are further elaborated below.

6.1 Data segmentation

We need to perform data segmentation on the IMU
sensor readings to distinguish the segments for different
gestures, which are usually of two types: A segment
containing gestures is denoted as active segment, and a
segment without gestures is denoted as passive segment.
Data segmentation needs to achieve two goals: (1)
Distinguish active segments from passive segments. (2)
If an active segment consists of many gestures, then we
need to segment it, such that after segmentation, each
part contains only one gesture.

Furthermore, it is important to achieve an accurate
data segment, as this is the basis for gesture recognition.

Intuitively, threshold-based methods are proposed
for data segmentation. Some works[20, 55–57] proposed
acceleration- or energy-based segmentation. For
example, Ref. [55] used the energy threshold based
method for data segmentation. Here energy is defined as
the summation of the square of a three-axis acceleration.
Reference [55] set a window over data and determined
whether the value of energy exceeds a predefined
threshold.

Threshold-based methods may not work well
sometimes, because it is not necessary that the user
should stay static during passive segments. For example,
when the user is performing gestures for a text input,
there is also connecting movements between two letters.
This kind of movement does not contain any direct
information to recognize the letters and thus should be
regarded as passive segments. However, the connecting
movement can cause the energy to exceed the threshold,
thus leading to an incorrect segment.

Different approaches have also been proposed to
address the problem of movements between two gestures.
SignSpeaker[58] requires users to move their hands
back on their knees between two signs. By defining
this special movement, SignSpeaker can recognize
continuous gestures and make correct segmentation.
RisQ[59] found that hand-to-mouth gesture is typical for
a smoking person. The special information in between
gestures can help data segmentation.

Furthermore, some research works have leveraged

machine learning algorithms and combined gesture
recognition and segmentation into one solution, such
as Support Vector Machines (SVM)[60].

6.2 Feature extraction

We need to extract meaningful features from IMU
sensor readings. The better these features can represent
a gesture’s trace, the better the recognition accuracy
that the activity model will achieve. The categories of
features can vary depending on the activities.

Raw sensor readings can be used as features[61].
Moreover, statistical values, such as mean, variance,
correlation, or frequency-domain entropy of sensor
readings, can be used as features[56, 60, 62, 63].

The use of activity models can bypass the difficulties
met in actual 3D IMU tracking. By extracting useful
features, activity recognition can be achieved without
knowing the real traces of devices.

6.3 Gesture recognition

To recognize gestures from the features we extract, we
need to build a classifier, which is usually achieved
through machine learning approaches.

Machine learning based approaches are popular in
gesture recognition, and different methods have been
proposed, such as random forest[20, 64, 65], SVM[66], k-
Nearest Neighbor (kNN)[55], and Hidden Markov Model
(HMM)[60, 61]. Recent deep learning methods have also
been leveraged, such as the Convolutional Neural
Network (CNN)[20] and Long Short-Term Memory
network (LSTM)[58].

6.4 Summary

Based on application scenarios, activity model based
approaches can be classified into three groups: daily
activities (e.g., smoking, bicycling, and sign language),
text input (e.g., writing alphabet letters and Arabic
numbers or typing on keyboards), and customized
gestures. We summarize the related works into three
tables: Table 2 for daily activities, Table 3 for text input,
and Table 4 for customized gestures, where A, G, and
M denote accelerometer, gyroscope, and magnetometer,
respectively.

7 Challenges and Future Work

7.1 Measurement of the initial orientation

The initial orientation is very important for IMU tracking.
When estimating the initial orientation, a popular method
is to find anchors, including the gravity and magnetic
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Table 2 Recent works on gesture-recognition applications via IMU tracking (daily activity).
Related work Activity type Sensor type Recognition technique Performance

[58]

American sign language,
including 1900 word signs,
26 alphabet signs, and 9
digit signs

A+G
LSTM, Connectionist Temporal
Classification (CTC)

99:2% detection ratio, 99:5% reliability of
sign recognition, and 1:04% word error
rate in continuous sentences

[59]
Smoking gestures in the
wild

A+G+M
Random forest, conditional
random field

95:7% accuracy of smoking gestures,
smoking duration time detection error less
than 1 minute

[63]
Daily activites including
walking, running, bicycling,
etc.

A SVM
94:8% F-score of 7 activities on condition
that pocket position is known

[67]
Table-tennis-related hand
movements

A+G+M HMM
90:5% precision and 95:3% recall of
6 strokes, median accuracy of 6.2 cm

Table 3 Recent works on gesture-recognition applications via IMU tracking (text input).
Related work Activity type Sensor type Recognition technique Performance

[20]
26 lowercase alphabet
letters

A+G+M
Principle Component
Analysis (PCA), CNN

91:6% online accuracy and 94:3% offline
accuracy of 26 letters

[55]
Movement on Point-Of-
Scale (POS) terminal and
QWERTY keyboard

A,
microphone

kNN, HMM

65% Personal Identification Numbers
(PINs) accuracy in top 3 candidates,
54:8% English words accuracy in top 5
candidates

[60] 8000 English words A+G
HMM, SVM, language
model

11% word error rate in user-independent
case

[61] 10 Arabic numbers A
HMM, Dynamic Time
Warping (DTW)

90:8% accuracy in writer-independent
case

[64]
Handwriting lowercase
letters

A+G
Random forest, dictionary
filter

42:8% word recognition accuracy in top 5
items

[65]
Press and movement on
QWERTY keyboard

A+G Random forest
73:85% accuracy with an error bound of
˙2 neighboring keys

[68]
Press and movement on
QWERTY keyboards

A+G
Could fitting, Bayesian
inference

With one hand wearing smartwatch, it is
possible to shortlist a median of 24 words
which contains the words that user has
typed

[69]
6 basic strokes and 26
English letters

A
Correlation, spelling
correction

91:9% accuracy if users conform to a few
constraints

[70]
Movement over Swype
and Cirrin keyboard

A+G+M Directly tracking trajectory
Residual error rate of 1:6%, 10 words per
minute

[71] 26 capital alphabet letters
A+G,

microphone
DTW

Recognition rate of 94% in the first guess,
99% using 3 guesses

[72] Hand-writing strokes A+G Directly tracking trajectory
Character error rate of 18%, 15�20 words
per minute

Table 4 Recent works on gesture-recognition applications via IMU tracking (customized gesture).
Related work Activity type Sensor type Recognition technique Performance

[56]
Customized gestures of
arm, hand, and finger

A+G
Naive Bayes, logistic
regression, decision tree

98% accuracy of 37 gestures

[62]
4 direction gestures, 3
shape gestures, and 5
alphabet letters

A
Frame-based descriptor and
multi-class SVM

89:29% accuracy of 12 gestures in user-
independent case

[66]
Tapping and sliding
gestures on smartwatch

A+G SVM
88:7 % � 99:4 % accuracy of 3 gestures
among different users
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north direction[11, 16]. In the GRF, the gravity’s direction
and magnetic north direction are always orthogonal to
each other. Thus, in the LRF, they are also orthogonal.
Through a cross product of the two directions, we can
obtain the third axis. The three axes altogether form a
rotation matrix, which determines the orientation.

Gravity can be measured via an accelerometer when
there is only gravity applied on this sensor and there
are no other external forces, e.g., when the device is
stationary. Thus, we assume that the device is static
before the tracking begins. However, during tracking, it
is challenging to determine whether the accelerometer
only contains gravitational acceleration. Reference [16]
pointed out that in the long run of orientation estimation
(within 10 min), the opportunity that the device keeps
static is rare in practice.

Moreover, a magnetometer is often used to determine
the magnetic north direction in motion tracking.
However, when there is only a geomagnetic field
applied to this sensor, the magnetic north is measured
rather than the north direction in the GRF. The
magnetic north may vary in different locations on
the earth. Particularly, it points to the sky in the
southern hemisphere and points to the ground in the
northern hemisphere. Thus, the magnetometer readings
are usually combined with gravity readings from the
accelerometer to calculate the north direction in the
GRF. Due to magnetic interference, the magnetometer’s
performance is impacted by different factors, such as
ferromagnetic materials.

7.2 Unbounded measurement

In Section 2, we showed that the error of tracking could
be unbounded. We lack anchors for calibration during
the tracking period, and the accumulated error can be
very large.

All the three models presented in Fig. 2 encounter
this challenge. In the physical model, the location error
accumulates with time after integrating acceleration
twice, and it can be very large after a time period. The
arm motion model places constraints on the wrist’s
movement and can bound tracking locations in a
particular area. However, it cannot tackle the problem
of accumulated orientation error. Although the activity
models do not track a device movement’s real trace,
the features extracted from IMU sensor readings can be
severely affected by these unbounded errors. If these
features cannot represent the gesture’s trace well, then
the gesture recognition part may suffer from degradation.

7.3 Data segmentation

For gesture recognition, there exists a challenge that
the user’s movement is unpredictable during passive
segments (defined in Section 6.1). For example, when
a user is writing in the air, the user’s hands need to
move from the ending point of a letter to the beginning
point of the next one, leading to passive segments in
data segmentation. The passive segments significantly
degrade the recognition performance.

Some machine learning based methods can take the
whole data sequences as input without segmentation.
However, without knowing how many segments (e.g.,
letters) are in the data, the training process can be very
wardriving for these methods.

8 Conclusion

Motion tracking via IMUs on mobile and wearable
devices has attracted significant interest in recent years
from both industry and academia. It can be used in
different applications. In this work, we study IMU-
tracking techniques on mobile and wearable devices.
We show the main categories for the existing IMU-
tracking techniques, and introduce representative works
in each category. Finally, we reveal the main challenges
and future directions for IMU-tracking on mobile and
wearable devices.
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