
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3069105, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Hidden Markov Model and Cyber
Deception for the Prevention of
Adversarial Lateral Movement
MD ALI REZA AL AMIN1, SACHIN SHETTY2,LAURENT NJILLA3,DEEPAK K. TOSH4 AND
CHARLES KAMHOUA5,
1,2Old Dominion University, Norfolk, VA 23508 USA
3Air Force Research Lab, Rome, NY, 13441 USA
4University of Texas at El Paso, El Paso, TX, 79968 USA
5Army Research Lab, Adelphi, MD, 20783 USA

Corresponding author: Md Ali Reza Al Amin (malam002@odu.edu)

ABSTRACT Advanced persistent threats (APTs) have emerged as multi-stage attacks that have targeted
nation-states and their associated entities, including private and corporate sectors. Cyber deception has
emerged as a defense approach to secure our cyber infrastructure from APTs. Practical deployment of
cyber deception relies on defenders’ ability to place decoy nodes along the APT path optimally. This
paper presents a cyber deception approach focused on predicting the most likely sequence of attack paths
and deploying decoy nodes along the predicted path. Our proposed approach combines reactive (graph
analysis) and proactive (cyber deception technology) defense to thwart the adversaries’ lateral movement.
The proposed approach is realized through two phases. The first phase predicts the most likely attack path
based on Intrusion Detection System (IDS) alerts and network trace, and the second phase is determining
optimal deployment of decoy nodes along the predicted path. We employ transition probabilities in a Hidden
Markov Model to predict the path. In the second phase, we utilize the predicted attack path to deploy decoy
nodes. However, it is likely that the attacker will not follow that predicted path to move laterally. To address
this challenge, we employ a Partially Observable Monte-Carlo Planning (POMCP) framework. POMCP
helps the defender assess several defense actions to block the attacker when it deviates from the predicted
path. The evaluation results show that our approach can predict the most likely attack paths and thwarts the
adversarial lateral movement.

INDEX TERMS Cyber deception, cyber defense, cyber decoy, lateral movement, intrusion detection
system, Hidden Markov Model, attack path prediction.

I. INTRODUCTION
Given the growing spate of cyber attacks, it is very imperative
to design resilient cyber infrastructure. Organizations face
substantial financial losses and challenges in maintaining
core public services due to the increasing cyber attacks rate.
According to McAfee’s recent report in 2018, [1], cyber-
crime has reached nearly $600 billion. Adversaries have
lately resorted to using Advanced Persistent Threats (APT) to
conduct cybercrime. APT allows attackers to stay undetected
in the network for long periods and steal organizations’
data without being caught. In an APT attack, the attackers
use social engineering, spear-phishing email, or vulnerability
exploitation to gain the network’s initial entry. After the
network’s initial entry, they maintain a low footprint and
slowly gain their foothold by compromising one host to

another within the organization’s network. Lateral movement
is the most critical step in the APT attack to maintain the
presence in the network. Early detection of adversarial lateral
movement can deter the ongoing APT attack. From the early
detection, when a host is discovered as compromised, there
are several forensic requirements we need to answer: What
will be the end goal? What route the attacker can use to reach
the end goal? To reach the end goal, the attacker may need
to take several related attack steps (compromising hosts) and
the identification of these steps can be used as an attack paths
prediction process based on mathematical methods. Predict-
ing the most likely attack path is an important technique that
enables the defender to react before the attacker reach the end
goal by executing proactive responses.

Multi-Stage Attacks (MSAs) are cyber security threats

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3069105, IEEE Access

Reza et al.: Hidden Markov Model and Cyber Deception for the Prevention of Adversarial Lateral Movement

where the attack campaign is performed through several
attack stages. Each of the MSA stages comprises differ-
ent attack steps where each step may not be malicious if
implemented individually. APT has emerged as a complex
version of MSAs in recent years [2]. The main objective of
the APT attack is data exfiltration and intelligence appro-
priation. Adversarial lateral movement is one of the stage
of the MSAs where the attacker stays in the network and
slowly progress towards the target without raising an alert.
Usually, this type of attack is conducted by highly skilled
and motivated cyber criminals. The defender can use super-
vised/unsupervised machine learning approaches to detect
each APT attack stage. The readers are encouraged to read
different approaches, which are described in [3]. After detect-
ing the lateral movement stage from an ongoing attack, the
challenge of how the attacker will route to the end goal still
remains. This challenge has brought interest in the research
and development of new techniques to mitigate adversarial
lateral movement. Therefore, in this paper, we use Hidden
Markov Model (HMM) to identify the most likely attack path
an attacker could take to reach the goal state. The HMM is a
statistical model used for probability distributions over the
sequence of observations [2]. HMM has also been utilized in
[4], [5] to train models using observed network traffic under
normal network conditions and to detect diverting sequences
of traffic observations. Also, HMM can detect MSAs stages
if an IDS misses the detection of any stages from the MSAs
[2]. Therefore, HMM addresses the challenges of providing
complete information on an attack campaign. After getting
the most likely attack path, the defender needs to deter the
lateral movement.

Defense methods to deter lateral movement are sometimes
cost-effective in patching and resetting all suspicious enti-
ties. Moreover, patches are not available all the time, and
sometimes it takes an extended period to develop the patch.
Cyber deception techniques can help the cyber defender
mitigate lateral movement without disrupting the organiza-
tion’s core services. Cyber deception has attracted attention
from security researchers and practitioners as an approach
for designing secure cyber infrastructure. Cyber deception
can provide several advantages in mitigating cyber attacks,
including providing the opportunity to learn the attacker’s
strategies, tactics, capabilities, intent and reduce the like-
lihood of adversarial success and cyber defense costs [6].
For a successful cyber deception, the defender needs to
design the techniques appropriately. Deploying decoy nodes
in the network is one of the cyber deception techniques.
Researchers have proposed cyber deception approaches that
introduce fake networks by varying system characteristics
[7], manipulating attackers probes [8], [9], introduce virtual
network interface controllers and route mutation [10]. All of
the techniques focused on thwarting cyber reconnaissance
mission. Preventing adversarial lateral movement using the
cyber deception technique still needs a good amount of effort.

This paper proposes a method to predict the most likely
attack path for adversarial lateral movement and deter the

adversarial lateral movement using a cyber deception ap-
proach. Our proposed approach undergoes two main phases.
The first phase predicts the most likely attack path based
on Intrusion Detection System (IDS) alerts and pcap packet
capture traces. The second phase is deployed decoy nodes
along the predicted path. Our model assumes that the de-
fender can detect the lateral movement stage from the APT
life cycle. Rather than detecting the lateral movement, we
focused on predicting the most likely attack path from the
lateral movement stage. To predict the path, we use transition
probabilities, present and past observations of the HMM.
There are several works [11], [12], [13] on detecting lateral
movement stage using machine learning approach. We used a
network-based attack graph to correlate compromised hosts
in the attack graph. We employ a state-based approach for
alert correlation with the exploit activity, reducing the false
positive alert. In the second phase, we utilize the predicted
attack path to deploy decoy nodes. We employ a Partially
Observable Monte-Carlo Planning (POMCP) framework to
force the attacker towards the predicted path whenever the
attacker deviates from the predicted path. POMCP helps the
defender assess several defense actions to block the attacker
in advance. The contribution of this work is summarized as
follows:
• We present an approach to predict the most likely attack

path for the adversarial lateral movement by leveraging
HMM. This approach helps the defender understand
the attacker’s strategies and aims and plays a vital role
for the security team to take the necessary actions (de-
ploying decoy) before the attacker progresses into the
predicted path and reaches the goal state.

• Incorporating POMCP in our model shows that the se-
curity defender can force the attacker towards deployed
decoy paths whenever the attacker deviates from the
predicted path. This module also provides insights on
the optimal placement of decoy nodes.

The remainder of this paper is organized as follows. In
Section II, the most relevant related works are reviewed. Sec-
tion III provides an overview of the APT lifecycle. Section
IV describes our proposed system’s system architecture, and
Section V presents the threat model of our proposed system.
Section VI described our prediction model, and Section VII
describes the assessment of various defense actions to block
the attacker’s path. Section VIII presents the performance
evaluation of the proposed system and discusses the results.
Finally, Section IX concludes the paper.

II. RELATED WORK
State-of-art and State-of-practice intrusion detection and pre-
vention systems have been proposed to detect and prevent
several cyber threats. However, it is infeasible to design a cy-
ber defense system that can defend against all threats. In this
section, we present some recent research works on model-
based approaches for intrusion detection and prevention.

The work described in [14], [15], [16], and [17] uses
hidden states for characterizing risk. These approaches learn

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3069105, IEEE Access

Reza et al.: Hidden Markov Model and Cyber Deception for the Prevention of Adversarial Lateral Movement

a single HMM model for any attack type. In [16], authors
computed probability matrices, but they did shed details
on the probability matrices’ computation. Authors in [17]
propose a model based on HMM, but there is no indication
of model training, and the model uses random values for
the transition matrix. In contrast with our work, we define
specific algorithms to train the model and use alert sequences
in the model training. We also use the alert sequence to
compute the probability matrices for prediction.

S.Zonouz et al. [18] propose a security-oriented cyber-
physical state estimation (SCPSE), based on the attack graph,
to predict the attack paths that an attacker can traverse by
exploiting vulnerabilities. In their methods, each state tran-
sition is achieved by exploiting vulnerabilities in the hosts.
The AG is converted to an HMM, which is used to determine
the attacker’s attack path. The execution time increases as
the network grows and is not practical in the real world. In
contrast to our work, we also use the attack graph in our
model and handle the execution time by incorporating an
exploit dependency graph, which reduces the execution time.

Attack graphs were proposed as the first method for pre-
dicting cyber attacks [19]. To predict a cyber-attack using
an attack graph required traversing the graph and searching
for a successful attack path or using probability values of
edges in the graph. Probability values can give the most
probable attack path, but it does not consider the underlying
different attack steps the attacker can take. Ramaki et al.
[20] proposed a framework for multi-step attack scenarios
detection and prediction. Despite proposing an attack graph
in their work, the authors extensively use causal correlations
to predict the attack path. The attack graph alone can not
predict the most probable attack; instead, it can project all
possible attack paths. Our model uses HMM and Bayesian
Attack Graph (BAG) to reduce searching space, thereby
substantially improving computational efficiency.

In [21], the authors proposed a Hidden Colored Petri-Net
(HCPN) model to predict the attacker’s next goal. However,
their model suffers from performance issues as preconditions
and postconditions significantly grow as actions are added
to the HCPN. The action set was refereed there based on
different IDS alert set from a specific attack scenario. We
handle the performance issue using the POMCP framework.
The POMCP algorithm requires a sample region to construct
the entire state space, allowing one to avoid the state space
explosion problem.

The finite states machine (FSM) model is used in [22] to
design a multi-attack response system. The model sends an
alert only after there is a state change without predicting
the whole attack path. The authors also define a weight for
each state but not for any specific multi-step attack scenario.
In contrast, we define a probabilistic model to predict the
most likely attack path from the lateral movement stage.
The work described in [23] is closely related to our work
as their prediction model is based on the IDS database,
National Vulnerabilities Database (NVD), and attack graph
data sources. The authors’ model assigns every state’s weight

manually, whereas we use the HMM model to automatically
train the parameters and assign the weight in each state. The
authors did not provide any results for their proposed model.

So far, we have presented reactive methods for predict-
ing multi-step attack paths. In the following discussion, we
present some recent works on proactive methods based on
techniques to deceive the attacker or change the attack sur-
face to make it difficult for the attacker to carry out the attack.

The authors in [24] addressed the insider threat problem
with a deception-based approach. They deploy decoy data in
the network to confuse and confound the attacker and make
it difficult to differentiate between original and decoy data.
These decoy data are automatically created and placed on
a decoy system to entice the attacker with fake credentials,
which triggers an alert when the attacker access those decoy
data. Additionally, the authors also embedded a beacon in
the decoy documents that signal a remote website when ac-
cessed. However, the authors did not mention how the decoy
systems should be deployed in the system. It is very costly
for an enterprise network to distribute the decoy system all
over the network to entice the attacker.

Game-theoretical approaches are used in cyber deception
to mix true and false information to thwart the attacker’s
cyber reconnaissance mission. In [7], the authors presented
a Cyber Deception Game (CDG) model on how the defender
can benefit the most from determining a mix of true, false,
and obscure responses to deceive the attackers. The Cyber
Deception Game (CDG) model captures the strategic interac-
tion between the defender and an adversary in network secu-
rity. The authors use a zero-sum Stackelberg game between
the defender (e.g., network administrator) and an adversary
(e.g., hacker). Game-theory can not directly apply to predict
the multi-step attack prediction as the game solution in game
theory is not explicit. The most commonly used solution con-
cept is the Nash Equilibrium. However, finding the Nash
Equilibrium of a game is often computationally intractable
[25].

Urias et al. [26] proposed an unpredictable and adapt-
able deception-based framework using virtualization and
software-defined networking. The proposed framework can
provide better insights into an adversary’s actions by corre-
lating the network’s endpoint behavior data.

III. PRELIMINARIES AND ASSUMPTIONS
This section provides an overview of APT life-cycle.

A. ADVANCED PERSISTENT THREAT AND LIFE-CYCLE
A threat actor who remains undetected for a more extended
period in the network with the aim of espionage and sensitive
data exfiltration drive by a state-sponsored or a group of
threat actors is called an APT. An APT actor requires a
high degree of knowledge and stealthiness behavior to suc-
cessfully carried out the attack. In Figure 1, we depict the
different phases of an APT attack [27].

1) Intelligence gathering: This is the first step towards
an APT attack where the attacker aims to collect

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3069105, IEEE Access

Reza et al.: Hidden Markov Model and Cyber Deception for the Prevention of Adversarial Lateral Movement

FIGURE 1: Typical stages of APT attack

intelligence information about the network as much
as possible, including the organization’s structure, IT
structure, and sensitive information. The attacker uses
public sources (Facebook, Linked In) and prepares a
customized attack. Spear phishing email is the most
commonly used technique to get to the point of entry
[27].

2) Point of entry: After assessing security solution de-
fenses and attack signatures that the victim might
possess, the attacker narrows down the point of en-
try exploitation. Social engineering and spear-phishing
email or vulnerability exploitation is the step used to
penetrate the network. Another infection method is
to plant malware into a website where organizations
employees might visit.

3) Command and control (C&C) communication: In this
stage, the communication between the infected host
and the C&C server is performed through a secure
socket layer (SSL), making it very difficult to identify
whether traffic is malicious. Attackers may also use
another technique, which is the domain flux technique
[28]. In this technique, an infected host may try to
connect to a large number of domain names to make
it difficult to shut down all of these domain names.

4) Lateral movement and persistence: Once the attacker
gains access to the target’s network, the attacker will
search for new hosts to infect and move laterally. There
are several techniques that the attacker can use in
this stage. One such attack is a brute force attack to
obtain information such as a username and password
or personal identification number (PIN). The attacker
can also use internal spearfishing emails to gain access
to other user’s credentials. Another popular technique
is the pass the hash (PTH) attack, where the attacker
steals a hashed user credential and, without cracking it,
reuses it to trick the authentication system.

5) Asset and data discovery: This stage aims to determine
valuable assets within the target’s network. Based on

the asset and data discovery, the attacker determines
the goal of future data exfiltration. Port scanning can
be used for this step [29].

6) Data exfiltration: This is the final stage of APT, where
the attacker tunneled data of interest into external
servers with commonly used compressing and encryp-
tion techniques. Other techniques used in this stage
include built-in file transfer via FTP or HTTP or the
Tor anonymity network.

The attacker does not always need to use these stages in
every APT attack. The author in [30] has discussed the
APT life cycle model consisting of 7 stages such as (1)
Initial Compromise, (2) Establish Foothold, (3) Escalate
Privileges, (4) Internal Reconnaissance, (5) Move Laterally,
(6) Maintain Presence and (7) Complete Mission. Ussath et
al. [31] have discussed a 3 stage APT attack life cycle model
focusing only on initial compromise, lateral movement, and
command & control activity. Other modified versions of the
APT attack life cycle model have been proposed in literature
[3]. However, studies showed that this is the common life
cycle followed by most of the APT attacks.

B. HIDDEN MARKOV MODEL
Hidden Markov Model is proposed to increase the usability
of the Markov chain. A Markov chain states the probability of
sequences of random variables. There is a strong assumption
in the Markov chain that we need to only rely on the current
state if we want to predict future states in the sequences. The
previous state of the current state has no impact on the future
state.

FIGURE 2: A Bayesian network representing a first-order
HMM. The hidden states are shaded in gray.

A Markov chain is applicable when we need to compute
the probability for a sequence of observable events. That
means the events we are interested in need to be directly ob-
servable. However, in many cases, we can not observe them
directly, which are called hidden states. HMM allows us to
compute the probability of both observed events and hidden
states. Figure 2 shows a Bayesian network representing the
first-order HMM, where the hidden states are shaded in gray.
In this model, an observation st at time t is produced by a
stochastic process, but the state ht of this process cannot be
directly observed, i.e., it is hidden [32].

Three fundamental problems such as training(learning),
decoding, and evaluation need to be solved when a set of ob-
servations and the HMM are given:(1) Compute the probabil-
ity of given observation sequence, (2) Compute the optimal

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3069105, IEEE Access

Reza et al.: Hidden Markov Model and Cyber Deception for the Prevention of Adversarial Lateral Movement

TABLE 1: Symbols and their description

Symbols Description
δ Maximum likelihood

ξt(i, j) Probability of being a state
γt Marginal probability
π̄i Expected frequency
A Transition probability
B Emission probability
π Initial probability distribution
ψ Array of the argument
N Node
E Edge
s Security state

E(st) Available set of exploits
Z Set of security alerts
βt Belief matrix
Φ Attacker type
π∗ Optimal policy

(hidden) state sequence, and (3) Determine the optimal state
transition probabilities and observation probabilities. The
forward-Backward algorithm can use to solve the problem
(1) [33], Viterbi algorithm solves the problem [33] (2), and
Baum-Welch algorithm solves the problem (3) [34].

The Forward-Backward Algorithm: In the HMM, the
actual state sequence is hidden, leading to considering all
path probabilities to determine the observation probability.
For N hidden states and T observations, there are NT pos-
sible hidden sequences, leading to exponentially increasing
possible paths. However, this complexity can be reduced
by using Markov property and dynamic programming to
efficiently compute values required to obtain the posterior
marginal distributions in two passes. The first pass goes
forward in time while the second goes backward in time. The
Forward Algorithm (FW) computes the observation proba-
bility by summing over the probabilities of all possible state
paths that could generate the observation sequence [34].

Viterbi Algorithm: The Viterbi algorithm is a dynamic
programming algorithm used to find the most probable state
sequence, also known as the decoding algorithm. The most
probable state sequence can be computed by calculating the
probability of the observation sequence for each possible
path based on the Forward algorithm. In this approach, the
most likely sequence is determined by tracing back the path
with the highest likelihood value starting from the most likely
state at the end of observation.

The Baum-Welch Algorithm: The BW algorithm is also
known as the Forward-Backward algorithm. It is a dynamic
programming approach and a special case of the expectation-
maximization (EW) algorithm. The EW algorithm is an it-
erative method to find the maximum likelihood estimates of
parameters in statistical models. The BW algorithm’s main
purpose is to tune the parameters of HMM, the state transition
matrix A, the emission matrix B, and the initial probability
distribution πi. There are three phases in the BW algorithm:
the initial phase, the forward phase, and the backward phase.

The list of assumptions that are made throughout the paper
is listed here. First of all, it is assumed that the attacker is

already in the network by performing social engineering and
exploiting some vulnerabilities. Secondly, we assume that
the defender can detect LM-based attacks in the network.
Rather than focusing on detection, we focused on forestalling
the attacker from reaching its goal(s) state. To capture the
defender behavior in blocking vulnerabilities, we assume that
the defender has some particular set of actions that restrict
normal network configurations. For the illustrative example
in the evaluation section, we assume that the attacker will
move first and attempt an exploit.

IV. SYSTEM ARCHITECTURE
In this work, we considered lateral movement attacks from
external threat agents and preventing the attack by deploying
decoy nodes in the enterprise system. Here, we assume that
the attacker is already in the network by performing social
engineering and exploiting some vulnerabilities. How the
attacker gains access to the system is beyond the scope of
this paper.

Optimal deployment of decoy networks is always benefi-
cial for the network administrator. It comforts the defender
effort to drive the attacker towards deployed decoy nodes.
During C2 communication in the APT life cycle, a set
of infected hosts periodically sends a beacon to attacker-
controlled servers and performed instructed operations. The
operations include infecting other hosts in the network or
gathering sensitive information about the network. Usually,
the attacker uses HTTP(s), FTP, and SSH as a communi-
cation tool to evade easy detection. Attackers use several
techniques to move laterally, including internal scanning,
credential stealing, vulnerability exploitation, and privilege
escalation. The exploitation of remote services is one of
the techniques described by the MITRE post-compromise
framework [35]. However, the attacker can use any of the
techniques described in the framework. In this paper, we only
consider the exploitation of remote services (T1210).

FIGURE 3: System model architecture.

In Figure 3, we illustrate our basic system model archi-
tectural diagram. The first module in our architecture is
Lateral Movement Attack, where the defender’s job is to

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3069105, IEEE Access

Reza et al.: Hidden Markov Model and Cyber Deception for the Prevention of Adversarial Lateral Movement

detect that attack using IDS alerts analysis and pcap (packet
capture) traces. The alert dataset is needed to train the HMM
parameters.

In the Offline training module, HMM parameters are
trained based on observations of LM attacks. This module
is explained in detail in the following section.

HMM Configuration File contains the algorithm to train
HMM parameters and predicting the most likely attack path.
This file also contains the procedure to obtain Local Condi-
tional Probability Distribution (LCPD) for each node in the
attack graph.

The Alert Correlation Module receives alerts from IDS
and uses the re-factorization and de-duplication technique to
correlate alerts. This module also reduces the false positive
alerts based on the state-based model, described in detail in
the following sections.

The HMM Prediction Module uses two HMM algorithms,
described in the following sections, to train the HMM pa-
rameters and predicting the most probable attack path. It also
calculates the attack probability from the Bayesian Attack
Graph.

The defender deploys decoy nodes along the predicted
attack path to mislead the attacker. The defender can use the
Defense Policy Assessment module to assess various defense
actions in advance to force the attacker towards the decoy
attack path whenever the attacker deviates from the predicted
path.

The Security Database stores all the CVE information,
including CVE name and CVSS scores, from the National
Vulnerability Database (NVD).

V. THREAT MODEL
If we consider the threat modeling from the attacker’s
perspective, we must evaluate the attacker’s goal (intent),
capability, methods (ways), and resources (means). Threat
landscape helps us to define defense requirements. The threat
landscape has been evolving, with approximately 80% of
threats categorized as a commodity carried out by attackers
using widely known tools. The next 10% are directed attacks
carried out using standard tools by organized crime to make
money. Finally, the last 10% are the most destructive attacks,
including advanced persistent threats (APTs) whose attacks
are crafted for a single target [36]. Operationalizing decep-
tion begins with the organization’s objective to learn the ad-
versary’s tactics & capabilities. Once the organization defines
the objective, the deception must be implemented within
the organization. It is also required to determine the type
of adversary’s deception; small threats require small sticks,
but the APT-based threat requires sophisticated measures that
lead to knowledge of adversary tactics and intent. Deception
is not a passive exercise and requires adversary engagement.
When or where to engage with the adversary is also a decisive
factor to consider. In our approach, we consider these aspects
to ensure adversary engagement with the help of deception
technology while the attacker moves laterally.

Deploying decoy networks in the real networks to slow
down and thwart the ongoing attack is a deception technique.
Once the defender identifies compromised hosts from the lat-
eral movement stage and correlates hosts in the attack graph,
the defender understands when to deploy the network’s decoy
targets. However, the question remains where to deploy the
decoy targets. It is evident that for a small-scale network,
there will be more than one attack path. Let us assume that
there are 100 attack paths to reach the target node, and it
is infeasible and not a cost-effective way to deploy decoy
targets across all the attack paths.

Usually, the attacker moves forwards within the APT
life cycle, which means the attacker does not go back to
a previous stage. However, if the current attack fails, the
attacker can go back to the previous stage and finds another
way to complete the attack campaign. In that case, the de-
fender needs to evaluate the effectiveness of various defense
decisions from the current belief state. We use the Partially
Observable Monte-Carlo Planning Framework (POMCP) to
help the defender making the effective defense decision to
block the attacker from moving forward. In the following
sub-section, we describe our HMM-based model to predict
the most probable attack path.

We have selected HMM to predict the most likely attack
path due to its inherent benefits over other AI-based algo-
rithms. We can not directly observe the underlying attack
steps the attacker will take to reach the target node. We can
only probabilistically identify the likely attack path. HMM
is a generative, probabilistic model to model the distribution
over observations’ sequences.

VI. PREDICTION VALUES
Our HMM-based state estimation model is inspired by the
work presented in [2], where authors presented an approach
to predict the next APT stage based on HMM. In our ap-
proach, we use HMM to predict the most probable attack path
where more than one attack path resides. These findings will
ease the defender’s effort to deploy the decoy networks along
with the real network.

HMM consists of two stochastic processes: a hidden pro-
cess that is not observable but can be observed through
another set of stochastic processes by producing the sequence
of observations. In our model, the different attack steps
towards a target are the hidden stochastic process where the
observations are the alerts generated by the attacker.

Definition 1: An HMM is specified by the following com-
ponents: for a given set of N states, S = (s1, s2, s3, ..., sN)
and discrete observation symbols, ŌM = ō1, ō2, ..., ōm,
the state transition matrix, A = {ai,j}, the observation
emission matrix, B = {bi(ōk)}, and initial matrix, πi, where
i, jε[1, ..., N] and kε[1, ...,M] [2]. The probability of moving
from state i to j is represented by {ai,j}, bi(ōk) is the
probability of an observation, ōk, emitted at state i, and πi
is the initial probability of HMM to start in state i. So, an
HMM can be fully described by λ = (A,B, π).

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3069105, IEEE Access

Reza et al.: Hidden Markov Model and Cyber Deception for the Prevention of Adversarial Lateral Movement

For a given sequence of observations, Ot, and a sequence
of states, Qt, a first-order HMM makes two assumptions,
First, the probability of a particular state depends only on the
previous state:

P (qt|q1...qt−1 = P (qt|qt−1)

Second, the probability of an output observation oi depends
only on the state that produced the observation qi and not on
any other states or any other observations:

P (ot|q1...qi, qT , o1, ..., ot, ..., oT) = P (ot|qt)

Our goal here is to calculate the probability of attack given
an HMM. To do so, first, we need to know the system state
after the last observation. There is one way we can achieve
this by calculating the probability of being a state near the end
of the Markov chain. We can use the Baum-Welch algorithm
to compute the conditional probability of each observation’s
most likely state. However, if the state transitions have zero
probability, the state sequence could not be correct. We use
the Viterbi algorithm to get the single best state sequence for
the given observation sequence to solve this issue.

A. HMM TRAINING ALGORITHM
The most challenging problem in HMM is determining a
method to adjust the model parameter (A,B, π) to maximize
the observation sequence probability [34]. There is no known
way to optimize the parameters even in the finite obser-
vation sequence as training data. However, we can choose
the parameter to be locally maximized using an iterative
procedure such as the Baum-Welch (BW) method. Baum-
Welch algorithm is a learning algorithm used to optimize the
HMM transition and emission probabilities.

The BW algorithm first uses the Forward-Backward (FW)
algorithm parameters α and β. Then using Bayes theorem
and expectation-maximization [34] to introduce the two pa-
rameters. We start with the parameter ξt(i, j), which defines
the probability of being in state i at time t, transitioning
to state j at time t + 1, given the model and observation
sequence.

To train the HMM parameters, we use the historical record
of alert observations and the Baum-Welch algorithm shown
in Algorithm 1.

In Algorithm 1, HMM parameters (A,B, π) are initialized
randomly. At lines 2 & 3, the parameter from FW and BW
algorithm is computed. At line 5, we calculate the probability
of being state i at time t and transitioning to state j at time
t + 1 given the model and observation sequence. Then the
marginal probability over state j is calculated in line 6. Using
line 5 & 6, we can reestimate the parameters of HMM. A set
of reasonable reestimation formulas for the HMM parameters
(A,B, π) are with π̄i being the expected frequency spent
in state si at time 1 is presented at line 8. Next, āi,j is
the expected number of transitions from state i to state j
over the overall number of transitions from state i at line 9.
The parameter b̄i(ōk) is defined by the number of expected
transition from state i, when observation is ot = ōk, over

Algorithm 1 HMM Parameters Training
Input: Correlated alert OT sequence
Output: Optimized A,B, π
Initialization: Random(A,B, π)

1: To compute αt+1(i)(FW) and βt(i)(BW):
2: αt+1(j) = [

∑N
i=1 αt(i)ai,j]bj(ot+1)

3: βT (i) =
∑N
j=1 ai,jbj(ot+1)βt+1(j)

4: for state i→ j do
5: ξt(i, j) =

αt(i)ai,jbj(ot+1βt+1(j)∑N
i=1

∑N
j=1 αt(i)ai,jbj(ot+1)βt+1(j)

6: γt(i) = αt(i)βt(i)∑N
i=1 αt(i)βt(i)

7: while iterate until convergence do
8: π̄i = γ1(i)

9: āi,j =
∑T−1

t=1 ξt(i,j)∑T−1
t=1 γt(i)

10: b̄i(ōk) =
∑T−1

t=1 γt(i),when ot=ōk,else 0∑T−1
t=1 γt(i)

the number of expected transitions is presented at line 10.
Finally, from lines 8 to 10, optimized HMM parameters are
computed.

B. STATE SEQUENCE AND PROBABILITY
Let us assume that we have a sequence of observations, Ot,
and we want to compute the most probable sequence of
states, Qt. One approach is to find the sequence of states is
to calculate the probability of the observation sequence for
each possible path based on the Forward algorithm. In this
approach, the most likely sequence is determined by tracing
back to the path with the highest likelihood value starting
from the most likely state at the end of observation. The
Viterbi algorithm uses the δ parameter, where it considers
only the maximum likelihood value. It also uses another
parameter ψ to keep track of the argument, which maximized
δ for each t and j. The complete procedure for finding the
best state sequence is stated as follows [34]:
• The initialization step (t = 1):

δ1(i) = πibi(o1)

ψ1(i) = 0

• The recursion step:

δt(j) = max
1≤i≤N

[δt−1(i)ai,j]bj(ot) , 1 ≤ j ≤ N (1)

ψt(j) = arg max
1≤i≤N

[δt−1(i)ai,j] , 1 ≤ j ≤ N (2)

• The termination step (t = T):

P (T) = max
1≤i≤N

δT (i) (3)

qT = arg max
1≤i≤N

δT (i) (4)

qt = ψt+1(qt+1) (5)

The term P (T), qT , and qt in the (3), (4), and (5) defines as
maximum probability, best last state, and previous best state,
respectively.

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3069105, IEEE Access

Reza et al.: Hidden Markov Model and Cyber Deception for the Prevention of Adversarial Lateral Movement

State probability can be expressed in terms of forward-
backward variables [37]:

γt(i) =
αt(i)βt(i)∑N
i=1 αt(i)βt(i)

(6)

The steps in FW algorithm are given below:
Consider the forward variable αt(i) which defined as,

αt(i) = P (o1, o2, ..., oT , qt = si|λ)

To solve for αt(i) inductively as follows:
• Step-1: The initialization step (t=1),

α1(i) = πibi(o1)

• Step-2: The induction step for (1 < t ≤ T),

αt+1(j) = [
N∑
i=1

αt(i)ai,j] bj(ot+1)

• Step-3: The termination step,

P (OT |λ) =
N∑
i−1

αT (i)

The Backward Algorithm (BW) computes the β parameter,
as follows [34]:

βT (i) = P (ot+1, ot+2, ..., oT |qt = si, λ) (7)

Steps to solve for βT (i) inductively, as follows:
• Step-1: The initialization step for (1 ≤ j ≤ N),

βT (i) = 1

• Step-2: The induction step,

βT (i) =
N∑
j=1

ai,jbj(ot+1)βt+1(j), t = T−1, T−2, ..., 1

C. ATTACK PATHS PREDICTION
1) Alert Correlation Framework
The alert processing unit first aggregates all the alerts and
then performs de-duplication processing to construct the
prediction module’s alerts log. In the alert log file, there are
necessary 10 fields to do the analysis represented as 10-tuple
(StartT ime, EndTime, Type, SrcIP , DstIP , SrcPort,
DstPort, Times, Protocol, Content).

In the alert log file, StartT ime represents the time when
the alert is started, EndTime represents the alert event
finished time, Type represents the type of the alert, SrcIP
represents the origin IP for that alert, DstIP represents
the destination address, SrcPort represents the origin port
number, DstPort represents the destination port number,
Times represents the alert repetitions number, Protocol
represents the protocol used in the alert, Content represents
the contents in the alert.

De-duplication is applied to the aggregated alerts to reduce
the number of alerts while keeping the source data. The de-
duplication rule states that if the previous alerts IP, port, and

FIGURE 4: Attack path prediction framework.

type match the next alert, the latter alert will be discarded,
and EndTime will be recorded with the previous alert. This
alert correlation technique is used to predict the attacker’s
next state, whereas the state-based alert correlation technique
is used to correlate the exploit activity for capturing the
attacker’s progression in the network. The state-based alert
correlation model will discuss more in the following section.

After de-duplication, we get the set of alert logs where
redundant alerts are removed based on the time information
retention. For example, a single-step attack in a multi-step
attack IDS may generate redundant alerts that may not belong
to the same attack. In this way, de-duplication reduces the
number of alerts and retains most of the source information.
In the alert correlation unit, the attack chain is constructed
using an alert graph based on the alert logs. We use the ag-
gregation technique to remove redundant information. Here
redundant information represents a redundant attack chain
that does not belong to an ongoing attack. Lastly, the attack
chains are obtained based on the depth-first-search (DFS)
traversal algorithm. The attack graph generation module is
responsible for presenting the association between attack
chains intuitively. Attack graph generation module, first,
converts the attack chains into a directed graph; second, it
generates a dynamic Bayesian attack graph (BAG) from the
attack graph.

2) HMM Prediction Unit

To predict the next state of the attacker, we use Bayesian
Attack Graph (BAG) [38], and Common Vulnerability Scor-
ing System [39]. A Bayesian Attack Graph is a four tuple
BAG = (S, τ, ε, P) where S = Ninternal ∪ Nexternal ∪
Nterminal represents the set of attributes related to internal,
external, and terminal node. The internal, Nexternal, rep-
resents the set of attributes, Si, for postcondition of an
attack. Similarly, Ninternal, represents the set of attributes,
Sj , between precondition and postcondition of an attack and
Nterminal is the set of attributes, Sk, for precondition of
an attack. A set of ordered pairs, τ , represents the directed
edges in the graph. Further, for Si ∈ S, the set Pa[Si] =
{Sj ∈ S|(Sj , Si) ∈ τ} is called the parent set of Si. The
relations of incoming connections {AND, OR} of a node
represents by ε. All the preconditions must be satisfied for
AND, whereas if one or more preconditions are enough to

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3069105, IEEE Access

Reza et al.: Hidden Markov Model and Cyber Deception for the Prevention of Adversarial Lateral Movement

exploit work, the relationship is defined as OR. To capture the
success probability of an exploit, we use Local Conditional
Probability Distribution (LCPD). Let, Sj , a local conditional
probability distribution function when the preconditions are
defined as AND [38]:

Pr(Sj |Pa[Sj]) =

{
0,∃Si ∈ Pa[Sj]|Si = 0,
Pr (∩Si=1ei) , otherwise

}
(8)

For OR,

Pr(Sj |Pa[Sj]) =

{
0,∀Si ∈ Pa[Sj]|Si = 0,
Pr (∪Si=1ei) , otherwise

}
(9)

When multiple exploits are present, for AND, each exploit
has individual success probability. So, we use the product
rule as follows:

Pr(∩Si=1ei) =
∏
Si=1

Pr(ei) (10)

For OR decomposition,

Pr(∪Si=1ei) = 1−
∏
Si=1

[1− Pr(ei)] (11)

To compute the LCPD, network administrator needs to es-
timate the success probability of a known exploit given in
(21). The procedure of incorporating LCPD in our prediction
algorithm is described in Algorithm 2.

Algorithm 2 Next State of the Attacker
Input: Optimized HMM parameters (āi,j , b̄i(ōk), π̄i), corre-
lated alerts OT , and LCPD from BAG
Output: The next state

1: for each of the next state j = 1, 2, ..., N do
2: for AND decomposition do
3: Pr(∩Si=1ei) =

∏
Si=1 Pr(ei)

4: for OR decomposition do
5: Pr(∪Si=1ei) = 1−

∏
Si=1[1− Pr(ei)]

6: for each intermediate state i = 1, 2, ..., N do
7: αt(i) = [

∑N
r=1 αt−1(i)a(r, i)]bi(ot) . r=index

of all possible prior states
8: Pqt+1=sj =

∑N
i=1 αt(i)Prai,j

This algorithm’s inputs are as follows: optimized HMM
parameters from Algorithm 1, correlated alerts OT , and
LCPD from BAG. For decomposition, the rule algorithm
assigns edge probability to each node, which is presented at
lines 1 to 5. Then, the FW α parameters of every intermediate
stage, i, are calculated at line 7, and then the α parameters
are multiplied by the transition probability and LCPD for the
next state j. The state, which has the highest probability, is
predicted as the attacker’s next state.

VII. DEFENSE POLICY ASSESSMENT
Knowing how an attacker can progress in the network offers a
useful starting point for defining appropriate defense actions.
Attack graph can be leveraged to get the attacker’s progres-
sion map in the network. However, it is still challenging
to prescribe effective defense decisions as the defender has
uncertainty over the network’s security status at a given time,
the attacker’s true strategy, and attacker types. The defender
only has information about the history of security alerts
and previously deployed defense actions. The defender must
make the defense decisions based on the belief matrix he
possesses over the attacker’s capabilities. The belief matrix is
the joint probability distribution over the security states and
attacker capabilities. Forcing the adversary towards deployed
fake networks by taking actions (e.g., blocking vulnerabil-
ities, applying security control) is a Partially Observable
Markov Decision Process (POMDP) problem. There are two
main primary objectives in our defense policy assessment
model:1) quantify the security state, and 2) taking the op-
timum defense actions based on the attacker’s capabilities.
To quantify the security state, we define the security state as
the set of currently enabled security conditions. In this sense,
the security state at any given time represents the current
capabilities of the attacker. One of our paper’s objective is
to quantify the level of security of the system as attacker
progress. To capture the security level, we define the security
state as a current level of the network’s attacker progression.

A. CAPTURING ATTACKER’S PROGRESSION
Researchers and cyber security professionals are always in-
terested in projecting different attack steps an attacker can
take to compromise a system. The attack graphs were de-
veloped and allowed to study all possible combinations of
exploits an adversary can use to reach its goal(s). An attack
graph consists of system states (nodes) and transition
relations (edges). System states are related to each other
via exploits. Attack graphs must enumerate all possible
steps, which allow the graph to grow in dimension quickly.
According to the monotonicity assumption [40], we can
greatly simplify the attack graph and reduce the amount of
information required to describe an attack. The monotonicity
assumption states that one exploit’s success does not interfere
with the attacker’s ability to carry out a future exploit. In
a simpler term, we do not need to enumerate all system
states in an attack graph, rather we can construct an exploit
dependency graph which describes how an exploit is related
to security conditions [40]. In [40], the authors construct
such a graph where nodes represent security conditions,
and edges represent exploits. Exploits are used to relate the
security conditions via preconditions and postconditions.
As discussed in [40], the edges in an exploit dependency
graph relate the security conditions in a complex way, which
means a given exploit can have both multiple preconditions
and multiple postconditions. We formalize this behavior by
acknowledging that such edges are directed hyperedges.
Here, in this paper, the meaning of hyperedge is that an edge

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3069105, IEEE Access

Reza et al.: Hidden Markov Model and Cyber Deception for the Prevention of Adversarial Lateral Movement

connects two sets of nodes rather than a pair of nodes.
To capture the attacker progression, we use an exploit

dependency graph [41], a directed acyclic hypergraph, H =
(N,E), where, N = {c1, c2, ..., cn} is the set of security
conditions andE = {e1, e2, ..., en} is the set of exploits. The
security conditions in the graph can be either true or false.
When the security condition is in a true state, the attacker
has a particular set of capabilities. In contrast, the false value
represents the attacker does not possess any condition from
hypergraph H . For example, a true security condition could
mean an attacker may maliciously build the trust relationship
between two hosts or the attacker reached the goal state.
The distinct condition would represent the same host with
different privilege levels. To specify the goal state, we define
a parameter representing the goal node Ng

r ⊆ N , Ng
f ⊆ N

where Ng
r and Ng

f are real and fake network goal node,
respectively. The defender’s main objective is to protect the
Ng
r and drive the attacker towards Ng

f .

FIGURE 5: A sample Exploit Dependency Graph with a real
network (left) and a fake network (right). The above depen-
dency graph for real & fake network H = (N,E) consists of
ncr = 10 security conditions, ner = 11 exploits (in the form
of hyperedges), ncf = 13 security conditions and nef = 11
exploits respectively. Triple-encircled nodes are representing
as goal conditions Ng

r = {c10} and Ng
f = {c12, c13}.

Each exploits from hyperedges has two conditions, termed
as N−i (pre) and N+

i (post). To attempt an exploit ei, an at-
tacker needs to set true all of the preconditions of that exploit
termed as j ∈ N−i [41]. There are some exploits without
having any preconditions, N−i = ∅, termed as initial exploits
and denoted by E0. To attempt initial exploits attacker does
not need any prior capabilities (maliciously enabled). When
an exploit is successful, all of its postconditions become
enabled and let the attacker penetrate more into the network.

In Figure 5, we present an exploit dependency graph
generated using Topological Vulnerability Analysis (TVA)
[42] tool to explain the model and the results. Whenever a

condition is enabled, it means an attacker has a particular set
of capabilities where the current security state, st, describes
the attacker’s set of capabilities. A security state, s ⊆ N , is
called a feasible security state if for every condition cj ∈ S
there exists at least one exploit ei = (N−i , N

+
i) ∈ E such

that cj ∈ N+
i and N−i , N

+
i ⊆ s and set S = {s1, ..., sn}

represents the state space for this model. So, for a feasible se-
curity state, every enabled condition must have been enabled
through an exploit, and all preconditions and postconditions
associated with that exploit must also be enabled. Here, we
made an implicit assumption for security state feasibility that
our model is not missing any exploits that could allow the at-
tacker to enable security conditions. This assumption makes
sense because some nodes can be added in s, which are not
associated with any hyperedge E. These nodes can become
enabled via an unknown influence. We did not consider these
nodes in our work because the state space greatly increases.

The security state evolves probabilistically as a function
of the defender’s and attacker’s action [10]. The defender is
assumed to select actions that have the impact of restricting
normal network configuration. This action includes changing
network configuration or shut down a port or any active
services. However, in reality, the defender cannot block
any individual vulnerability; instead, the defender’s action
induces a set of blocked vulnerabilities [41]. Blocking a
set of vulnerabilities also helps us to capture some of the
zero-day attacks. However, design a system to capture all
unknown attacks is infeasible. To capture the defender’s
behavior in terms of blocking vulnerabilities, we assume
that the defender has some particular set of actions that
have the effect of restricting normal network configurations.
The action will block the vulnerabilities and influence of an
attacker to choose a different attack path.

The space of the defender’s available action set is rep-
resented by U = {u0, u1, ..., un}. Here, u0 represents the
defender’s null action, which means the defender will not
block any exploit. The remaining actions from the set of
U signify the network changes, which will induce a set
of blocked exploits. Each action associated with the set of
blocked exploits influences the attacker to seek the available
paths. Defender’s action will have an impact on the availabil-
ity of the system to the trusted users. So, it is a defender’s
goal to make the trade-off between network availability and
network security. To capture this behavior, we assign a cost
to each of the defender’s action sets. Based on the cost, the
defender can choose an action that will limit the attacker’s
progression throughout the network and minimize the system
availability’s negative impact.

Based on the single attacker who is trying to infiltrate the
system, it can only increase its capability by exploiting more
vulnerabilities. On the other hand, it also increases the chance
of being detected. The defender’s goal is to prevent vulnera-
bility exploitation in the real network and let the exploitation
in the fake network. From the monotonicity assumption, we
know that once an attacker enables a condition, it remains
enabled all the time. For a given security state, st, the attacker

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3069105, IEEE Access

Reza et al.: Hidden Markov Model and Cyber Deception for the Prevention of Adversarial Lateral Movement

will have some set of available exploits described by E(st).
From the available set of exploits, the attacker will attempt
exploits based on capabilities. The available set of exploits is
defined by [41],

E(st = s) = {ei = (N−i , N
+
i) ∈ |N−i ⊂ s,N

+
i 6⊆ s}

(12)
Two important requirements that must be satisfied for an

exploit ei = (N−i , N
+
i) to be available :(1) N−i ⊂ s, i.e. all

of the exploit’s preconditions must be satisfied :(2) N+
i 6⊆ s,

i.e. the exploit’s postconditions must not all be satisfied [41].
The second requirement depends on the assumption that the
attacker will not perform any redundant exploits. This is
a reasonable assumption since the attacker is not gaining
new capabilities by performing redundant exploits. It only
increases the chance of being detected.

FIGURE 6: Sample evolution of the security state.

Figure 6 represents the sample evolution of the security
state for a given state-action (st, ut): (a) Consider the secu-
rity state st = {c1, c2, c3, c4, c5} (green circle) and defense
action ut = u where B(u) = {e5, e6} (here blocked exploits
are shown with red shaped hyperedge). So, the available set
of exploits using (12) is E(st) = {e5, e6, e7, e8} and (b)
attacker attempt each exploit which does not lie within a set
of blocked exploits, with a probability of attack and success.
In this example, only exploits {e7, e8} are succeeded and
the updated security state is st = {c7, c8} (green circle).
Doubled circle shaded shape represents the security state.

As soon as the exploit attempts are successful, it enables
all the postconditions, which eventually form the updated
security state, as shown in Figure 6. Defender’s lack of infor-
mation regarding the current security state and the attacker’s
true strategy can be learned from noisy security alerts. The
next section describes how the defender uses that information
to construct the belief by getting security alerts from the
Intrusion Detection System (IDS).

B. DEFENDER’S AVAILABLE INFORMATION

Intrusion Detection System (IDS) is a major component in
this model because the defender’s certainty over the secu-
rity state depends on security alerts. IDS generates security
alerts in a sequential form when an attacker attempts to
exploit and progress through the network. Those security
alerts are not free from noisy alerts termed as false positives
and false negatives. Sometimes, there will be no alert for
the exploit activity, which solely depends on the attacker’s
capability (stealthiness), termed as a false negative. Similarly,
it generates an alert for legitimate user activity termed as
false positive. It is critically important for the defender to
know which exploit activity is going on. Based on the alerts,
the defender will choose his defensive action to drive the
attacker towards deployed fake networks. Filtering out the
noisy alerts from true alerts is essential in improving the
defender’s efficiency when it turns in real-time. In this work,
we are considering only known vulnerabilities.

Let Z = {z1, z2, ..., zn} represents the set of secu-
rity alerts generated by the IDS, which is the defender’s
observation set. Each exploit ei ∈ E, when attempting
can generate a set of alerts, given by the set Z(ei) =
{zAi(1), zAi(2), ..., zAi(ai)} ∈ P (Z) where P (Z) is the
power set of Z [41]. There is a possibility that two or more
exploits can generate the same alert, that is, Z(ei)∩Z(ej) =
∅ for ei 6= ej . Some exploits ei ∈ E may not generate any
alerts, that is, Z(ei) = ∅.

To capture the uncertainty over the security state and
attacker type, we construct a belief matrix denoted by κt.
It combines all the defender’s available information into the
matrix, which includes initial security state, attacker type,
history of all defense action from time 0 to t − 1 and all
observations (security alert) from time 0 to t denoted by
ht = (κ0, u0, y0, ..., ut−1, yt). The belief matrix represents
the joint probability distribution over security states, and the
attacker types [41], is given below as a matrix form,

κt =

κ1,1
t κ1,2

t . . . κ1,na

t

κ2,1
t κ2,2

t . . . κ2,na

t
...

...
...

...
κns,1
t κns,2

t . . . κns,na

t

 ∈ ∆(S × Φ)

The space ∆(S×Φ) represents the probability distribution
over state-type (S × Φ). In the matrix, κt presented in the
double-stochastic matrix for each t. Each row in the matrix
represents the probability mass function over the type and
space for a given state and each column represents a probabil-
ity mass function over the space of security states for a given
type. For any defense action ut = u and observation yt+1 =
yk, the belief update is defined as κt+1 = [Tj(κt, yk, u)]sj∈S
where j is the update function, Tj(κt, yk, u) = P (St+1 =
sj | Ut = u, Yt+1 = yk,Kt = κt) is given by [41],

κjt+1 = Tj(κt, yk, u) =
puj (κt)r

u
jk(κt)

ρ(κt, yk, u)
(13)

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3069105, IEEE Access

Reza et al.: Hidden Markov Model and Cyber Deception for the Prevention of Adversarial Lateral Movement

The above terms are defined below,

puj (κt) = P (St+1 = sj | Ut,Kt) =
∑
si∈S

κit p
u
ij

(14)

rujk(κt) = P (Yt+1 | St+1 = st, Ut,Kt) =
∑
si∈S

κit r
u
ijk

(15)

ρ(κt, yk, u) = P (Yt+1 | Ut, Bt) =
∑
sj∈S

rujk(κt) p
u
j (κt)

(16)

where puij is the transition probability from state si to sj
under defense action u, and rujk(κt) = P (Yt+1 | St+1 =
st, Ut = u,Kt = κt) is the probability that IDS will generate
observation vector yk when transitioning from the state si
to sj under a defense action u. The trajectory of beliefs
based on security alerts termed as observations and series of
actions defined in (14). Under a defense action u, transition
probability si to sj is controlled by a set of exploit events.
For the available set of exploits from (12), each event in the
set of exploit is in binary form (successful and unsuccessful).

C. BALANCING SECURITY AND AVAILABILITY COST
In cyber deception, it is possible to leverage the availability
cost over the security cost. There are two benefits when the
attacker is in the fake network: 1) defender can collect as
much intelligence information on the adversary, which helps
to derive the attacker’s capability, intentions, and targets, 2)
defender can maximize the network availability to the trusted
user during a cyber attack. An availability cost, ca, for each
action defender takes to drive the adversary towards the fake
network. There will be no impact on the system’s availability
for some defense action, and sometimes there will be a more
significant impact. To formalize this notion, we represent the
availability cost ca : U → R for each defense action taken
by the defender. Similarly, the security cost cs : S × U → R
represents the cost while the system is in various security
states under defense action u. Here, we consider a node’s
availability regarding end-to-end packet delay (considering
the IT system).

D. END-TO-END PACKET DELAY
A packet starts the journey from a host (source), passes
through a series of routers, and ends its journey in another
host (destination). It is assumed that dE and N represent
the total delay and number of devices between a source and
destination. The end-to-end delay defined in [43] as

dE = N(dproc + dtrans + dprop + dqueue) + dproco (17)

The terms are in (17) defined as following dproc = processing
delay, dtrans = transmission delay, dprop = propagation de-
lay, dqueue = queuing delay and dproco = processing overhead
because of authentication, integrity and confidentiality. For
an uncongested enterprise network, dqueue ' 0 and the
distance between the source and the destination node is very

small so that dprop ' 0. The processing delay, dproc, is
often negligible; however, it strongly influences a router’s
maximum throughput, which is the maximum rate at which a
router can forward packets [43]. So that, (17) can be reduced
to

dE = N × dtrans (18)

where dtrans = L/R, L = packet size and R = transmission
rate. For every defense action, the defender will measure
the total end-to-end packet delay. So, the availability cost in
terms of delay is defined as following cu = dE . We assign
more cost to the goal conditions (attacker’s target node) as
the defender’s goal is to keep the attacker from achieving the
goal. The total cost in terms of a security state and defense
action is defined as

c(st, ut, ϕt) = (1− f)cs(st, ϕt) + f ∗ dE(ut) (19)

Here, f is a weighted factor, determines which cost focused
more (f = 0 represents defender is concerned only with
security cost, f = 1 means defender is only concerned with
availability cost).

E. THE DEFENSE ALGORITHM
An optimization of defense algorithm is a heuristic search
algorithm for determining defense actions in real-time as
the attacker progresses through the network and the secu-
rity alerts are generated. The scalability is achieved via a
sample-based online defense algorithm that takes advantage
of the security model structure to enable computation in
large-scale domains. For a large-scale network, computing
optimal action while deceptively interacting with the attacker
is a challenge. Offline POMDP solver aims to compute the
optimal action for each belief state before runtime. Although
such solvers have improved their efficiency [44], capturing
the optimal action can be intractable for large networks. To
resolve this issue, Silver and Veness [45] developed an online
algorithm termed Partially Observable Monte-Carlo Planning
(POMCP) to handle large-scale networks while computing
optimal action. Online methods interleave the computation
and execution (runtime) phases of policy, yielding a much
more scalable approach than offline methods. POMCP algo-
rithm is based on POMDP [24]. There are two types of nodes
in POMCP: belief nodes representing a belief state and action
nodes, which are their children nodes that can be reached
by performing an action. In this work, the action selection
procedure is the same as the POMCP algorithm described
in [45], and the belief update procedure is modified to solve
the large observation space problem as the belief update
procedure in POMCP does not scale as the observation space
grows.

Our defense policy assessment algorithm’s action selec-
tion stage starts by performing Monte-Carlo simulations
from the current belief state to estimate the various de-
fense actions’ quality. Each simulation starts by calling a
generative model shown in Figure 8. A generative model
makes predictions of all future events [46]. The predictions

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3069105, IEEE Access

Reza et al.: Hidden Markov Model and Cyber Deception for the Prevention of Adversarial Lateral Movement

FIGURE 7: An illustration of the search tree. The root node
represents the current history. Each child node from the root
node represents the possible future history. How the history is
updated to h

′
after a real-world action (u1)is taken and real-

world observation (yj) is received represented by the blue
path [41].

include what the model is meant to make. For example, a
generative model will predict whether flipping over card 1 in
10 time-steps will reveal the ace or whether cards 1 and 2
will be swapped in the next time-slot. An agent begins the
simulation by calling the generative model that provides a
sample successor state, observation, and cost given a state
and action, (s

′
, ϕ
′
, y, c) ∼ G(s, ϕ, u). Calling the generative

model and successive sampling from the current belief cre-
ates search tree histories, as shown in Figure 7.

FIGURE 8: The generative model.

As the process is partially observable, the search tree
in Figure 7 consists of nodes representing histories, and
branches from the original tree represent possible future
histories. The multi-armed bandit rule, termed as UCB1 [47],
is used to sample the selection of a defense action that begins
from the branch of the search-tree. It also optimally balance
the exploitation (to decrease the estimation error in terms of
promising selection actions) and exploration (finding better
alternatives by checking other actions). Here, the estimation
error decreases as the number of simulations increases. The

online algorithm performs the simulation until a stopping
condition is met (the max number of simulation nsim). After
the simulation, defense action, which has the lowest value of
the estimated cost, is taken. Then, a real-world action ur and
a real-world observation yr is recorded. A new root node is
specified as the current history node, and relevant branches
of the search tree are identified, and lastly, the remaining tree
is pruned.

As soon as the updated history h
′

is obtained, the de-
fender’s belief must be updated. However, the computation
of the defender’s belief analytically is complex, as shown in
(13). This is why the defender maintains a belief approx-
imation, Bt, a state-type pair called particles. This belief
approximation updating procedure involves calling the gen-
erative model several times to obtain samples (s

′
, y) until

it matches the real-world observation vector yr and s
′

is
accepted into the updated belief set Bt+1. This procedure
continues until nk particles have been added. However, with
the large observation spaces, the sampled observation rarely
matches the real-world observation, causes the belief update
procedure to take a longer time [41]. To address this, we
use a modified belief update procedure. In the modified
belief update procedure, instead of checking if the sample
observation matches the real-world observation for every
alert zi ∈ Z, the update checks if the alerts match over
a security state zi ∈ Z(s) = ∪e∈EZ(e). After that, the
particle probabilistically accepts if the condition is met. Here,
the set Z(s) contains the alerts that can be generated by an
exploit attempts and the alerts not in Z(s), i.e. any alert in
Z̄(s) = Z \ Z(s), can not be generated by the attempt of
any exploit available in state s, as by (12). The reason for this
behavior is that these are the only alerts that are informative
for a change in the underlying state. So, the remaining alerts
in Z̄(s) must have been triggered by false alerts under the
current state s. The pseudocode of the defender’s belief
update procedure is given in Algorithm 3.

Algorithm 3 Defenders Belief Update
Initialize: nk, Bt+1 = Ua, numAdded = 0

1: procedure BELIEFUPDATE(Bt, ur, yr)
2: while numAdded < nk do
3: (s, ϕ) ∼ Bt

4: (s
′
, ϕ
′
, y,−) ∼ G(s, ϕ, ur)

5: if yZ(s) = y
Z(s)
r then [If alerts Z(s) match]

6: Bt+1 ← Bt+1 ∪ {s
′
, ϕ
′}

7: numAdded← numAdded+ 1

In Algorithm 3, we use a node utility array function
as a defender’s initial domain knowledge, which improves
during more simulation runs. Attacker builds an array of
node utility functions based on the base score metrics to ex-
ploit vulnerabilities [48]. For every exploit, attackers use the
metrics to quantify the attack success probability and serves
as the attacker’s initial knowledge about the network and
vulnerability. The attacker’s node utility function is defined

VOLUME 4, 2016 13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3069105, IEEE Access

Reza et al.: Hidden Markov Model and Cyber Deception for the Prevention of Adversarial Lateral Movement

as follows [6]:

I = 10.41× (1− (1− CI)× (1− II)× (1−AI)) (20)

Vi = 20×AC ×AI ×AV (21)

The above terms are defined as CI = ConfImpact, II= Inte-
gImpact, AI = AvailImpact, I = Impact, Vi = Exploitability,
AC = AccessComplexity, AI = Authentication and AV =
AccessVector. The utility array function is defined below

Ua = I × Vi (22)

For any belief the defender may possess, he needs to
determine an optimal action to deploy. This decision rule,
which is determining the action, is called a defense policy.
The optimum action for the defender while interacting with
the attacker turns into a POMDP. Casting optimum action is
defined as below [6],

V π(κ0) =
∞∑
t=0

γtc(κt, ut, ϕt)

=

∞∑
t=0

γtE
[
c(st, ut, ϕt)| κ0, π

] (23)

where 0 < γ < 1 is the discount factor, and c(κt, ut)
represents the cost for each belief state bt when an action
ut is selected from the space of action where c(κt, ut) =∑
si∈S κ

i
tc(st, ut, ϕt). The optimal policy π∗ is obtained by

optimizing the long-term cost.

π∗ = arg min
π
V π(κ0) (24)

The optimal policy defined in (24) specifies each belief
state’s optimal action where the expected minimum cost is
calculated over the infinite time horizon.

F. ATTACKER’S CAPABILITY ASSESSMENT
The concept of estimating adversary’s Capability, Opportu-
nity, and Intent (COI), which has been widely used in the
military and intelligence community for threat assessment,
can also be applied where network configurations and vul-
nerabilities are used for threat projection [49]. However, this
approach does not project the attack well enough for attacks
that continuously change the strategy and ignore the exposed
system [50]. In this paper, we use a probabilistic approach to
estimate the attacker’s capability.

To assess the attacker’s capability using domain knowl-
edge, CVSS score, and the intrinsic parameter of a network,
we categorized the attacker’s capability into three vectors:
knowledge, aggression, and stealthiness. Although it is as-
sumed that a persistent attacker like APT is a highly skilled
attacker, the attacker’s capability assessment can help a net-
work administrator to estimate the attacker’s capability when
deploying decoy nodes/networks. As our goal is to prevent
lateral movement by deploying fake networks, the defender
must understand the attacker’s capability beforehand. In the
following paragraph, we present how a defender can assess

each skill level we defined earlier by using the defender’s
domain knowledge and the attacker’s opportunities:

Knowledge As we defined earlier in this section, that
knowledge level is defined as how the adversary changes its
strategy based on the security measure imposes on the host.
After the initial compromise of a system, the attackers need to
move forward towards the attack goal/objective. In the lateral
movement stage, the attacker tries to remain undetected in
the system until they reach their goal. To remain undetected
in the system, the adversary needs to understand the network
well enough. Using a host-based network attack graph, the
defender can correlate compromised hosts with the attacker’s
location in the system. As we know the available set of
exploits from (12), the defender can use individual security
states’ likelihood in its belief matrix to assess new security
information. For example, let us there is a single exploit
available in state si and the set is E(st) = e. Now, if the
exploit e is attempted, it generates the unique security alert
z. No other exploit can generate the alert z here. In that case,
the defender belief update allows the alert to be generated
by an attempt to exploit e. The defender can then use the
logical attack tree representation to see how the adversary
has reached that stage. There could be multiple attack paths
the attacker used, but using a log analysis defender can also
identify the actual attack paths. We use attack path criticality
metrics to score each attack path.

To calculate the attack path criticality score for a given
network, we have considered attacker’s opportunity metrics
Aom, security control Sc, and pre-conditions Pre for that
node. The path criticality score of a path p from host i to
i
′

formulates as:

Acp
i,i
′

=

j∑
1

Aom × Sc × Pre (25)

where the following parameters characterize the opportunity
cost: available exploits, ae, count of attack paths, cap, from
host i to i

′
, techniques used to compromise, tc, from MITRE

ATT&CK [35].

Aom =

j∑
1

ae + cap
−1 + tc

−1 (26)

Aggression The aggression level is described by the condi-
tional probabilities of attack and success, dictating the rate of
movement through the network. The strategy attacker follows
on few parameters: attacker knowledge level ak, available
opportunities in the state of action Aom, defenders’ action
da defined by conditional attack probability CAP,

Pek(st, ut, ϕt) =

∑
P (da, Aom|ak) = P ek

when ek ∈ E(st)\B(ut)∑
P (da, Aom|ak) = P ek

when ek ∈ E(st) ∩B(ut)
0, when ek /∈ E(st)

 (27)

Dividing the set of available exploits into two categories
helps us understand how an attacker changes the attacking

14 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3069105, IEEE Access

Reza et al.: Hidden Markov Model and Cyber Deception for the Prevention of Adversarial Lateral Movement

strategy. In (27), P ek represents the probability of attack
when there is no action, and P ek defines the attack proba-
bility when the defender’s action block exploits.

Each of the attacker’s attempts will succeed with a con-
ditional probability of success. The probability of success
models that attacks do not succeed with certainty (potentially
due to the inherent difficulty in carrying out the attack or the
existence of network defenses already in place). So, for any
given security state st, the conditional probability of success
is defined by,

αek(st, ut, ϕt) =

{
αek when ek /∈ B(ut)
0 when ek ∈ B(ut)

}
(28)

FIGURE 9: Experimental network topology.

Stealthiness Stealthiness is described by the probabilities
of detection and false alarm. We have generated the probabil-
ity of detection table for the assumed attacker types presented
in the evaluation section. We will discuss more on this in the
evaluation section.

VIII. EXPERIMENTAL EVALUATION
We effectively computed defense policies for large instances
to scale our defense policy assessment algorithm using the
defender’s belief update procedure and the cost assignment.
We did two large-scale network simulations to compute the
most likely attack path and defense policies. Defense policies
were computed for a problem on a graph consisting of 150
conditions (nodes), 160 exploits (hyperedges), 70 defense
actions, and 43 security alerts (observation vectors over 109).
The resulting number of security states exceeded 100 million.
Our second instance on a graph consisting of 200 conditions
(nodes), 250 exploits (hyperedges), 70 defense actions, and
60 security alerts (observation vectors over 1010). The result-
ing number of security states exceeded 110 million.

1) An Illustrative Example
Figure 9 illustrates a small-scale experiment network used
for an illustrative example. We synthesized a dataset of

TABLE 2: Hosts configuration and vulnerabilities informa-
tion

Host Service CVE ID Severity Weight Impact
H1 apache CVE 2014-0098 Mid 0.1 4.9
H2 postgresql CVE 2014-0063 Mid 0.2 6.4
H3 Linux CVE 2014-0038 High 0.1 10.0
H3 ms-office CVE 2013-1324 Low 0.1 10.0
H4 bmc CVE 2013-4782 Low 0.2 10.0
H5 radius CVE 2014-1878 Low 0.3 2.9

intrusion alerts due to the lack of publicly available datasets.
The dataset is generated based on the ’LLDDoS1.0 DARPA’
dataset. The network shown in Figure 9 consists of the
firewall, intrusion detection system, and five hosts machine.
The whole network is divided into two subnets based on
the firewall policies. One host H1 and IDS are deployed in
the DMZ, and the rest of the hosts are placed in the trusted
zone. We assume that the attacker is already in the network
by doing some social engineering and compromised the host
H1 in the DMZ. The detailed vulnerability information was
obtained from NVD public sites. There are six vulnerabilities
found on our small-scale network, as presented in Table 2.
A=

0.0092 0.9321 0.0092 0.0092 0.0092 0.0092
0.0093 0.0093 0.1727 0.4327 0.0093 0.3839
0.0094 0.0094 0.0094 0.4405 0.2870 0.2649
0.0093 0.0093 0.1435 0.0093 0.0134 0.4113
0.0092 0.0092 0.2401 0.0092 0.0092 0.7103
0.0096 0.0096 0.0096 0.0096 0.0096 0.0096
0.0095 0.0095 0.0095 0.0095 0.0095 0.0095

0.0093
0.0095
0.0094
0.4317
0.0092
0.9503
0.0095

B=

0.6531 0.3102 0.0267 0.0093 0.0093 0.0093
0.0093 0.0093 0.0093 0.4932 0.4762 0.2761
0.0091 0.0091 0.0091 0.0091 0.0091 0.0091
0.0092 0.0092 0.0092 0.0092 0.0092 0.0092
0.0092 0.0092 0.0092 0.0092 0.0092 0.0092
0.0092 0.0092 0.0092 0.0092 0.0092 0.0092
0.0091 0.0091 0.0091 0.0091 0.0091 0.0091

0.0091 0.0091 0.0091 0.0091 0.0091 0.0091
0.0093 0.0093 0.4357 0.0093 0.3286 0.1502
0.6288 0.2886 0.0092 0.0092 0.0092 0.0091
0.0091 0.0091 0.0091 0.0091 0.0091 0.0091
0.0091 0.0091 0.0091 0.0091 0.0091 0.0091
0.0092 0.0092 0.0092 0.0092 0.0092 0.0092
0.0091 0.0091 0.0091 0.0091 0.0091 0.0091

VOLUME 4, 2016 15

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3069105, IEEE Access

Reza et al.: Hidden Markov Model and Cyber Deception for the Prevention of Adversarial Lateral Movement

0.0091 0.0091
0.0090 0.0091
0.0091 0.0091
0.0091 0.0091
0.0092 0.0091
0.0092 0.0092
0.0091 0.0091

A. MOST LIKELY ATTACK PATH
We leverage [51] to generate the experimental network’s
corresponding attack graph, shown in Figure 10. We use
an automated alert analysis tool ArcSight [52], to analyze
the alerts information and extract the attack sequence. We
assume that the attacker is trying to obtain the root privilege
of the Host H5. The training algorithm (Algorithm 1) and
the prediction algorithm (Algorithm 2) are implemented as
follows to predict the subsequent attack behaviors. Both
algorithms, the training and prediction algorithm, are written
in Python 3.

Step 1 (HMM parameters training): We use our alert
correlation framework to generate the correlated alert dataset.
For each new alert, the ACF checks all historical alerts which
have been triggered over the last time window. Two alerts
are correlated if they have the same srcip or dstip. We use
the alert correlation dataset as the historical record of alerts
observation to learn and optimize the HMM parameters using
the Baum-Welch algorithm as presented in Algorithm 1. We
consider seven states for HMM, as shown in Table 4.

First, we initialized the HMM parameters (A,B, π) ran-
domly. Then, the two parameters α and β from FW and BW
are computed. To compute the Baum-Welch algorithm’s two
parameters ξ and γ, we start from state s1 and considers all
training observations sequences to update the HMM parame-
ters. Considering 7 different attack states and 14 observations
for the HMM in the attack graph presented in Figure 10,
the above transition, A, and emission, B, probabilities were
obtained. The values in the matrixA represent the probability
that the attacker will move from one state to another. If
the destination state is unreachable, the value is zero. It is
important to note that both the A & B matrix should not
contain any zero value element. Zero-value will produce the
NaN error. To avoid the NaN error, the algorithms replace
the zero value with minimal value.

Step 2 (Vulnerability exploitability probability): Using
(21), we calculate the vulnerability exploitation probabilities
presented in Table 3.

Step 3 (Attack path prediction): To predict the
most likely attack paths, the optimized HMM parameters
((āi,j , b̄i(ōk), π̄i)) from step 1, correlated alerts, OT , from
the ACF, and LCPD from BAG are used. LCPD are calcu-
lated from the attack graph presented in Figure 10. There are
7 different attack states, and one stage is probable to another
stage is called the transition probability. Table 4 presents the
attack states’ denotation, and all attack behaviors information
is presented in Table 5.

FIGURE 10: Attack graph of the experimental network.

TABLE 3: Assessments of vulnerability exploitability proba-
bility

CVE ID Exploitability Probability
CVE 2014-0098 0.7230
CVE 2014-0063 0.5163
CVE 2014-0038 0.3097
CVE 2013-1324 0.7222
CVE 2013-4782 0.7215
CVE 2014-1878 0.7229

TABLE 4: Attack states description

State Description
S1 Initial State
S2 (H1,root)
S3 (H2,root)
S4 (H3,user)
S5 (H3,root)
S6 (H4,user)
S7 (H5,root)

TABLE 5: Description of attack behaviors

State transition CVE ID
S1 →S2 CVE 2014-0098
S2 →S3 CVE 2014-0063
S2 →S4 CVE 2013-1324
S2 →S6 CVE 2013-4782
S3 →S4 CVE 2013-1324
S3 →S5 CVE 2014-0038
S3 →S6 CVE 2013-4782
S4 →S3 CVE 2014-0063
S4 →S5 CVE 2014-0038
S4 →S6 CVE 2013-4782
S4 →S7 CVE 2014-1878
S5 →S3 CVE 2014-0063
S5 →S6 CVE 2013-4782
S6 →S7 CVE 2014-1878

As it is evident from Table 5 that there are 14 different
state transitions for the target network. Based on the alert data
from our dataset and extracted attack sequence, we introduce
the state transition success probability vector T , where T =
{0, 0.9321, 0.1727, 0, 0, 0, 0}. The total state transition prob-

16 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3069105, IEEE Access

Reza et al.: Hidden Markov Model and Cyber Deception for the Prevention of Adversarial Lateral Movement

TABLE 6: Possible attack paths

Path Number Attack Path
1 S1 →S2 →S6 →S7

2 S1 →S2 →S3 →S4 →S7

3 S1 →S2 →S3 →S6 →S7

4 S1 →S2 →S3 →S4 →S5 →S6 →S7

5 S1 →S2 →S3 →S5 →S6 →S7

6 S1 →S2 →S4 →S6 →S7

7 S1 →S2 →S4 →S3 →S6 →S7

8 S1 →S2 →S4 →S5 →S3 →S6 →S7

9 S1 →S2 →S4 →S5 →S6 →S7

ability matrix is presented in A, and the emission probability
matrix is presented in B. After initializing parameters A&B,
we use Algorithm 2 to simulate the process. The results here
show that the algorithm runs five times. As it is evident from
T 5 that the attack goal is S7, and the corresponding success
probability is 0.84. In Table 6, we depicted all possible attack
paths.
T 5 = {1, 0.78, 0.62, 0.59, 0.76, 0.67, 0.84}
Here, we are looking for the most probable attack path with

a length of 5. From Table 6, we can infer that only paths 5,7,
and 9 have a length of 5. By matching the alert sequence in
the dataset, we get S1 →S2 →S3 as the prior path. So that
we can conclude that the future attack path will be S5 →S6

→S7. For the experimental network, we get the most likely
attack path for lateral movement is S1 →S2 →S3 →S5 →S6

→S7. In the following evaluation section, we will deploy
decoy nodes along this path and show how a defender can
force the attacker toward decoy nodes if the attacker does not
choose the most likely attack path.

B. DEFENSE POLICY ASSESSMENT
From the previous section, we acquired the most likely
attack path sequence towards a target. The defender should
deploy decoy nodes along that path to keep the attacker
away from the real target node. In Section C, we defined
the way to estimate the attacker’s capability, which is the
defender’s initial belief. Based on initial belief and domain
knowledge, the defender will estimate attack probability and
success probability for each exploit present in the system. We
generated the exploit dependency graph for the experimen-
tal network using Topological Vulnerability Analysis (TVA)
[42]. In Figure 11, we presented the corresponding exploit
dependency graph. We use an existing POMCP solver [6]
in our simulation, which is implemented in Python. In this
simulation, we presented two use case scenarios to depict the
attacker and the defender effort exchange to compromise the
target node and prevent the target from being compromised.
We assume that the defender can deploy the decoy nodes at
the time of intrusion alert in the network. To alleviate the
time complexity in deploying decoy nodes, the defender can
design and initiate the decoy nodes without connecting with
the network. The design of the decoy nodes is beyond the
scope of this paper.

For each of the exploits present in the network, we will
now define the attack and its success probability based on the

FIGURE 11: Exploit dependency graph of the experimental
network.

TABLE 7: Probability of detection for estimated attacker’s
capability

Alert e1 e2 e3 e4 e5 e6
Z1 0.3 0.4 0 0 0 0
Z2 0 0.2 0.3 0 0 0
Z3 0 0 0.4 0.3 0 0
Z4 0 0 0 0.4 0.4 0
Z5 0 0 0 0.2 0.5 0
Z6 0 0 0 0 0.5 0.2
Z6 0 0 0 0 0 0.6

attacker’s knowledge, aggression, and stealthiness defined
in (25-28). Here, we estimate the attacker’s knowledge, ag-
gression, and stealthiness level are high, moderate, and high,
respectively. Probabilities of attack for each exploit are as
follows:

(P ek , P ek) = (0.5, 0.5) for ek ∈ E0

(P ek , P ek) = (0.7, 0.3) for ek ∈ {e4, e5, e6}
(P ek , P ek) = (0.6, 0.4) for ek ∈ {e2, e6}
(P ek , P ek) = (0.9, 0.8) for ek ∈ {e3, e5, e6}

similarly , probabilities of success are as follows:

αek =

{
0.7 when ek ∈ E0

0.5 when ek ∈ E\E0

}
In Table 7, we presented the probability of detection for each
of the exploit.

Use Case A: In this use case scenario, we deploy decoy
nodes along in the predicted attack path sequence, and the
attacker chooses the decoy nodes path to move laterally in the
network. Figure 12 represents the exploit dependency graph
with the decoy nodes where yellow color nodes represent
decoy nodes. In this simulation, we consider three actions
which induce a set of blocked exploits and the actions set is

VOLUME 4, 2016 17

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3069105, IEEE Access

Reza et al.: Hidden Markov Model and Cyber Deception for the Prevention of Adversarial Lateral Movement

FIGURE 12: Exploit dependency graph of the experimental
network with decoy nodes.

as follows: B(u1) = {e2, e4}, B(u2) = {e5, e6}, B(u3) =
{e3}. The discount factor for this simulation is γ = 0.95.
There are total ns = 182 security states and nz = 7 security
alerts leading to 28 = 256 distinct observation vector. All
simulations use particles nk = 1500 to approximate the
belief. The evolution of computed deception policy when
Nsim = 5000 and attacker’s lateral movement throughout
the real and decoy nodes are presented in Figure 13.

Here, it is assumed that the attacker moves first, and the
security state starts from the empty state s0 = φ. As we
already stated that attackers already penetrate the network by
using social engineering. The attacker’s starting position in
the network is the host H1, represented by an orange color
(C1) in the top left corner of Figure 13. To make the service
available to the legitimate users, the defender does not block
any exploits in advance; rather, the defender’s belief matrix
gradually improves on the security state. As in this use case
scenario, it is assumed that the attacker would take the decoy
nodes path towards the fake goal state. It is evident from
Figure 13 that at time t = 1 attacker is in C1 then gradually
moves laterally by exploiting more vulnerability (t = 2 to
t = 6). The fake goal state is marked by red color at the most
right bottom of Figure 13.

Use Case B: In this use case, we will demonstrate how a
defender can push the attacker towards deployed decoy nodes
when the attacker does not take the decoy nodes path. In this
case, the defender will block exploits to prevent the attacker
from compromising the real goal state. Figure 14 demon-
strates the graphical representation of the defender’s actions
observing the attacker’s lateral movement. We use the same
simulation parameters used in Use Case A. The evolution of
computed deception policy is presented in Figure 14 when

FIGURE 13: Sample evolution of deception policy and at-
tacker’s lateral movement.

Nsim = 5000.
Initially, the defender does not take any actions (from

t=1 to t=2) rather gradually updates the belief based on
the received security alerts. Then defender begins to deploy
defense actions (t=3) when the defender belief reflects that
the attacker is not taking the predicted path. It is evident
from Figure 14 when t=3 that the attacker exploited vul-
nerability e3 and reached c3, which is not in the predicted
paths. Defender takes an action that induces a set of blocked
exploits, in this case, e2, e4 marked as a red hexagon in
Figure 14. Because of the blocked exploits, the attacker can
not move laterally to exploit vulnerabilities e5, e6. These are
the ultimate two vulnerabilities that need to be exploited to

18 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3069105, IEEE Access

Reza et al.: Hidden Markov Model and Cyber Deception for the Prevention of Adversarial Lateral Movement

reach the real network goal state c5. In this situation, the
attacker tries to find another way to move forward. At t=4,
the attacker reached c2 (orange circle) by exploiting exploits
e2. At t=5, it is evident that the defender’s belief reflects
that attacker is in the predicted real network attack path and
towards the real goal state. In this case, the defender’s action
block vulnerabilities e5, e6, and the attacker is forced to take
the decoy nodes path to move forward. The red circle in
Figure 14 represents the fake goal state.

IX. CONCLUSION
This paper proposes an adversarial lateral movement pre-
vention technique by incorporating reactive (graph analysis)
and proactive (cyber deception technology) methods. In our
proposed system, the approach undergoes two main phases.
The first phase predicts the most likely attack path based on
Intrusion Detection System (IDS) alerts and pcap packet cap-
ture traces. The second phase is deploying decoy nodes along
the predicted path. To predict the path, we use transition
probabilities and present and past observations of the HMM.
In the second phase, we utilize the predicted attack path to
deploy decoy nodes. The Hidden Markov based model has
been developed to predict the most likely attack path from
the lateral movement stage. Forecasting the next sequence
of attack paths helps the defender deploy decoy nodes and
save time and cost in a resource-constrained environment.
It also allows us to prevent the attack from reaching the
final stage of data exfiltration. This prediction module uses
the Viterbi and forward-backward algorithm to determine the
most likely attack path sequences by correlating the sequence
of alert and packet trace analysis. For future work, we plan to
incorporate MITRE ATT&CK post-compromise framework
and additional context from the target system in our model.

ACKNOWLEDGMENT
This work is supported by the Office of the Assistant Secre-
tary of Defense for Research and Engineering (OASD (R &
E)) agreement FA8750-15-2-0120.

REFERENCES
[1] “Mcaafee-report. (2018). the economic impact of cybercrime no

slow- ing down.” Available at https://www.mcafee.com/enterprise/en-
us/assets/executive-summaries/es-economic-impact-cybercrime.pdf.

[2] I. Ghafir, K. G. Kyriakopoulos, S. Lambotharan, F. J. Aparicio-Navarro,
B. AsSadhan, H. BinSalleeh, and D. M. Diab, “Hidden markov models
and alert correlations for the prediction of advanced persistent threats,”
IEEE Access, vol. 7, pp. 99 508–99 520, 2019.

[3] A. Alshamrani, S. Myneni, A. Chowdhary, and D. Huang, “A survey on ad-
vanced persistent threats: Techniques, solutions, challenges, and research
opportunities,” IEEE Communications Surveys & Tutorials, vol. 21, no. 2,
pp. 1851–1877, 2019.

[4] Z. Anming and J. Chunfu, “Study on the applications of hidden markov
models to computer intrusion detection,” in Fifth World Congress on
Intelligent Control and Automation (IEEE Cat. No. 04EX788), vol. 5.
IEEE, 2004, pp. 4352–4356.

[5] S. Shin, S. Lee, H. Kim, and S. Kim, “Advanced probabilistic approach
for network intrusion forecasting and detection,” Expert systems with
applications, vol. 40, no. 1, pp. 315–322, 2013.

[6] M. A. R. A. Amin, S. Shetty, L. Njilla, D. K. Tosh, and C. Kamouha,
“Attacker capability based dynamic deception model for large-scale net-

FIGURE 14: Sample evolution of deception policy and at-
tacker’s lateral movement.

VOLUME 4, 2016 19

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3069105, IEEE Access

Reza et al.: Hidden Markov Model and Cyber Deception for the Prevention of Adversarial Lateral Movement

works,” EAI Endorsed Transactions on Security and Safety, vol. 6, no. 21,
8 2019.

[7] A. Schlenker, O. Thakoor, H. Xu, M. Tambe, P. Vayanos, F. Fang, L. Tran-
Thanh, and Y. Vorobeychik, “Deceiving cyber adversaries: A game theo-
retic approach,” in International Conference on Autonomous Agents and
Multiagent Systems, 2018.

[8] M. Albanese, E. Battista, S. Jajodia, and V. Casola, “Manipulating the
attacker’s view of a system’s attack surface,” in 2014 IEEE Conference
on Communications and Network Security. IEEE, 2014, pp. 472–480.

[9] S. T. Trassare, R. Beverly, and D. Alderson, “A technique for network
topology deception,” in MILCOM 2013-2013 IEEE Military Communica-
tions Conference. IEEE, 2013, pp. 1795–1800.

[10] Q. Duan, E. Al-Shaer, and H. Jafarian, “Efficient random route mutation
considering flow and network constraints,” in 2013 IEEE Conference on
Communications and Network Security (CNS). IEEE, 2013, pp. 260–
268.

[11] G. Zhao, K. Xu, L. Xu, and B. Wu, “Detecting apt malware infections
based on malicious dns and traffic analysis,” IEEE access, vol. 3, pp. 1132–
1142, 2015.

[12] B. C. Cappers and J. J. van Wijk, “Snaps: Semantic network traffic
analysis through projection and selection,” in 2015 IEEE Symposium on
Visualization for Cyber Security (VizSec). IEEE, 2015, pp. 1–8.

[13] M. Marchetti, F. Pierazzi, A. Guido, and M. Colajanni, “Countering
advanced persistent threats through security intelligence and big data ana-
lytics,” in 2016 8th International Conference on Cyber Conflict (CyCon).
IEEE, 2016, pp. 243–261.

[14] K. Haslum, A. Abraham, and S. Knapskog, “Dips: A framework for dis-
tributed intrusion prediction and prevention using hidden markov models
and online fuzzy risk assessment,” in Third International Symposium on
Information Assurance and Security. IEEE, 2007, pp. 183–190.

[15] K. Haslum, M. E. Moe, and S. J. Knapskog, “Real-time intrusion preven-
tion and security analysis of networks using hmms,” in 2008 33rd IEEE
Conference on Local Computer Networks (LCN). IEEE, 2008, pp. 927–
934.

[16] A. S. Sendi, M. Dagenais, M. Jabbarifar, and M. Couture, “Real time
intrusion prediction based on optimized alerts with hidden markov model,”
Journal of networks, vol. 7, no. 2, p. 311, 2012.

[17] H. A. Kholidy, A. Erradi, S. Abdelwahed, and A. Azab, “A finite state
hidden markov model for predicting multistage attacks in cloud systems,”
in 2014 IEEE 12th International Conference on Dependable, Autonomic
and Secure Computing. IEEE, 2014, pp. 14–19.

[18] S. Zonouz, K. M. Rogers, R. Berthier, R. B. Bobba, W. H. Sanders, and
T. J. Overbye, “Scpse: Security-oriented cyber-physical state estimation
for power grid critical infrastructures,” IEEE Transactions on Smart Grid,
vol. 3, no. 4, pp. 1790–1799, 2012.

[19] T. Hughes and O. Sheyner, “Attack scenario graphs for computer network
threat analysis and prediction,” Complexity, vol. 9, no. 2, pp. 15–18, 2003.

[20] A. A. Ramaki, M. Amini, and R. E. Atani, “Rteca: Real time episode
correlation algorithm for multi-step attack scenarios detection,” computers
& security, vol. 49, pp. 206–219, 2015.

[21] D. Yu and D. Frincke, “Improving the quality of alerts and predicting
intruder’s next goal with hidden colored petri-net,” Computer Networks,
vol. 51, no. 3, pp. 632–654, 2007.

[22] A. Shameli-Sendi, J. Desfossez, M. Dagenais, and M. Jabbarifar, “A
retroactive-burst framework for automated intrusion response system,”
Journal of Computer Networks and communications, vol. 2013, 2013.

[23] S. Fayyad and C. Meinel, “Attack scenario prediction methodology,” in
2013 10th International Conference on Information Technology: New
Generations. IEEE, 2013, pp. 53–59.

[24] B. M. Bowen, S. Hershkop, A. D. Keromytis, and S. J. Stolfo, “Baiting
inside attackers using decoy documents,” in International Conference on
Security and Privacy in Communication Systems. Springer, 2009, pp.
51–70.

[25] V. Conitzer and T. Sandholm, “New complexity results about nash equi-
libria,” Games and Economic Behavior, vol. 63, no. 2, pp. 621–641, 2008.

[26] V. E. Urias, W. M. Stout, and H. W. Lin, “Gathering threat intelligence
through computer network deception,” in 2016 IEEE Symposium on Tech-
nologies for Homeland Security (HST). IEEE, 2016, pp. 1–6.

[27] T. Micro, “The custom defense against targeted attacks,” Available
at http://www.trendmicro. fr/media/wp/custom-defense-against-targeted-
attacks-whitepaper-en.pdf (2020/03/28).

[28] S. Yadav, A. K. K. Reddy, A. N. Reddy, and S. Ranjan, “Detecting
algorithmically generated malicious domain names,” in Proceedings of the

10th ACM SIGCOMM conference on Internet measurement, 2010, pp. 48–
61.

[29] A. K. Kaushik, E. S. Pilli, and R. Joshi, “Network forensic system for
port scanning attack,” in 2010 IEEE 2nd International Advance Computing
Conference (IACC). IEEE, 2010, pp. 310–315.

[30] M. I. Center, “Apt1: Exposing one of china’s cyber espionage units,”
Mandian. com, 2013.

[31] M. Ussath, D. Jaeger, F. Cheng, and C. Meinel, “Advanced persistent
threats: Behind the scenes,” in 2016 Annual Conference on Information
Science and Systems (CISS). IEEE, 2016, pp. 181–186.

[32] L. R. Rabiner, “A tutorial on hidden markov models and selected applica-
tions in speech recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp.
257–286, 1989.

[33] B. Bauer and K. Karl-Friedrich, “Towards an automatic sign language
recognition system using subunits,” in International Gesture Workshop.
Springer, 2001, pp. 64–75.

[34] L. Rabiner and B. Juang, “An introduction to hidden markov models,” ieee
assp magazine, vol. 3, no. 1, pp. 4–16, 1986.

[35] “Mitre adversarial tactics, techniues, and common knowledge, 2020,”
Available at https://attack.mitre.org/techniques/enterprise.

[36] “The evolving face of cyber threats whitepaper, ibm, 2017.”
[37] S.-Z. Yu and H. Kobayashi, “An efficient forward-backward algorithm

for an explicit-duration hidden markov model,” IEEE signal processing
letters, vol. 10, no. 1, pp. 11–14, 2003.

[38] N. Poolsappasit, R. Dewri, and I. Ray, “Dynamic security risk management
using bayesian attack graphs,” IEEE Transactions on Dependable and
Secure Computing, vol. 9, no. 1, pp. 61–74, 2011.

[39] P. Mell, K. Scarfone, and S. Romanosky, “Common vulnerability scoring
system,” IEEE Security & Privacy, vol. 4, no. 6, pp. 85–89, 2006.

[40] P. Ammann, D. Wijesekera, and S. Kaushik, “Scalable, graph-based net-
work vulnerability analysis,” in Proceedings of the 9th ACM Conference
on Computer and Communications Security, 2002, pp. 217–224.

[41] E. Miehling, M. Rasouli, and D. Teneketzis, “A pomdp approach to the
dynamic defense of large-scale cyber networks,” IEEE Transactions on
Information Forensics and Security, vol. 13, no. 10, pp. 2490–2505, 2018.

[42] S. Jajodia and S. Noel, “Topological vulnerability analysis,” in Cyber
situational awareness. Springer, 2010, pp. 139–154.

[43] M. Al Amin, S. Shetty, L. Njilla, D. Tosh, and C. Kamouha, “Attacker
capability based dynamic deception model for large-scale networks,” EAI
Endorsed Transactions on Security and Safety, vol. 6, no. 21, 2019.

[44] H. Kurniawati, D. Hsu, and W. S. Lee, “Sarsop: Efficient point-based
pomdp planning by approximating optimally reachable belief spaces.” in
Robotics: Science and systems, vol. 2008. Zurich, Switzerland., 2008.

[45] D. Silver and J. Veness, “Monte-carlo planning in large pomdps,” in
Advances in neural information processing systems, 2010, pp. 2164–2172.

[46] E. Talvitie and S. Singh, “Learning to make predictions in partially
observable environments without a generative model,” Journal of Artificial
Intelligence Research, vol. 42, pp. 353–392, 2011.

[47] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, no. 2-3, pp. 235–
256, 2002.

[48] P. Mell, K. Scarfone, and S. Romanosky, “A complete guide to the common
vulnerability scoring system version 2.0,” in Published by FIRST-forum of
incident response and security teams, vol. 1, 2007, p. 23.

[49] A. Steinberg, “Open interaction network model for recognizing and pre-
dicting threat events,” in 2007 Information, Decision and Control. IEEE,
2007, pp. 285–290.

[50] S. J. Yang, H. Du, J. Holsopple, and M. Sudit, “Attack projection,” in Cyber
Defense and Situational Awareness. Springer, 2014, pp. 239–261.

[51] X. Ou, S. Govindavajhala, and A. W. Appel, “Mulval: A logic-based
network security analyzer.” in USENIX security symposium, vol. 8. Bal-
timore, MD, 2005, pp. 113–128.

[52] “Arcsight, “esm: Enterprise security manager [ol],”,” Available at
http://cn.linkedin.com/topic/enterprise-security-manager.

20 VOLUME 4, 2016

