
NetWarden: Mitigating Network Covert Channels without Performance Loss

Jiarong Xing Adam Morrison Ang Chen

Rice University

Abstract

Network covert channels are an advanced threat to the secu-

rity and privacy of cloud systems. One common limitation

of existing defenses is that they all come at the cost of per-

formance. This presents significant barriers to their practical

deployment in high-speed networks. We sketch the design of

NetWarden, a novel defense whose key design goal is to pre-

serve TCP performance while mitigating covert channels. The

use of programmable data planes makes it possible for Net-

Warden to adapt defenses that were only demonstrated before

as proof of concept, and apply them at linespeed. Moreover,

NetWarden uses a set of performance boosting techniques

to temporarily increase the performance of connections that

have been affected by channel mitigation, with the ultimate

goal of neutralizing its impact on performance. Our simula-

tion provides initial evidence that NetWarden can mitigate

several covert channels with little performance disturbance.

As ongoing work, we are working on a full system design and

implementation of NetWarden.

1 Introduction

Network covert channels are an advanced class of security

threats to cloud systems. An attacker can exfiltrate secret

information from compromised VMs via channels that are

not intended for carrying data. Two typical classes of network

covert channels are timing channels [7, 8, 15, 24, 27, 34, 38],

which modulate packet timing, and storage channels [4, 9,

16, 18, 22, 29, 33], which embed data inside packet headers.

As an example of the former, an attacker could use large and

small inter-packet delays (IPDs) to encode ones or zeros in a

secret message [8]. As an example of the latter, an attacker

could embed secret data in the TCP sequence number [9] or

ACK [28, 29] fields. Covert channels can leak data without

raising suspicion from a firewall that typically only inspects

packet payload. Existing work has shown that both timing and

storage channels can propagate over long distances [8,28], and

the TCSEC criteria (Trusted Computer Security Evaluation

Criteria) require protection against both of them [11].

Over the years, researchers have developed a variety

of solutions to detect and mitigate network covert chan-

nels [5, 8, 9, 14, 30, 32]. For instance, in order to detect timing

channels, existing detectors rely on statistical properties of

legitimate traffic IPDs, such as first-order statistics (e.g., mean

and variance) [8], or higher-order entropy [14]. In order to

detect storage channels, existing detectors analyze packet

header fields that could be used to encode data (e.g., TCP se-

quence number [9]) and look for anomalies. Upon detection,

a range of mitigation techniques can then be applied, includ-

ing adding random delays to packet transmission [5, 14], or

setting a header field to a controlled value [9, 30].

It is perhaps unsurprising that no detector—whether for

timing or storage channels—can achieve 100% accuracy. This

is because the characteristics of network traffic can be highly

non-deterministic, both in terms of timing and header values,

as they depend on subtle interactions between the hosts and

the network. For instance, a timing channel detector may

raise a false alarm if IPDs suddenly increase, but this may be

caused merely by congestion. As a trickier example, consider

the partial ACK channel [28]. Suppose that a connection has

transmitted N bytes of data, an attacker could send a partial

ACK to acknowledge the n-th byte, leaking a secret δ = N−n.

As long as n is chosen to be in a valid range (i.e., between

the last ACK and N), the channel will successfully hide itself

in the permitted behaviors of TCP. Note that this example

reveals a deeper problem—designing a perfect detector is

close to impossible without having complete visibility into

what actually happened on all nodes (e.g., whether the [n..N]

bytes have been successfully received). However, if complete

visibility were attainable, then arguably we should not have

security holes to begin with. In fact, the partial ACK channel

was discovered ten years ago [28], but we are not aware of a

working defense even today.

To compensate for detection inaccuracy, we could be more

aggressive in mitigation—e.g., applying a blanket defense to

all connections that might contain a channel. The obvious

consequence here is performance degradation. Since most

connections may be benign, an aggressive defense may un-

duly penalize legitimate flows. For instance, one extreme

defense against partial ACKs is to drop all ACK packets that

do not acknowledge N; but what if data from n to N has ac-

tually been dropped or garbled? A slightly milder defense,

as proposed later in this work, would be to rewind the ACK

number to the last-seen value; but it may still cause unneces-

sary retransmissions, i.e., performance penalty. Overall, we

are faced with a concrete instance of the more general phe-

nomenon that security comes with the cost of performance.

Unfortunately, performance is a non-negotiable requirement

in datacenters.

We sketch the design of a novel network primitive called

NetWarden, which is a broad-spectrum defense against net-

work covert channels in a performance-preserving manner.

The starting observation in NetWarden is that programmable



data planes in modern switch hardware provides a feasible

basis towards efficient and practical channel defense. Con-

cretely, programmable data planes can perform per-packet

operations over header fields, which enables NetWarden to

inspect and modify headers for storage channel mitigation

without stalling the traffic. Programmable data planes can also

support sophisticated data structures directly in switch hard-

ware, which NetWarden leverages to monitor each connection

and discover problematic protocol behaviors (e.g., abnormal

IPDs, incorrect ACKs). Moreover, both features can run at

linespeed with nanoseconds of extra delay.

Building upon programmable data planes as a starting ba-

sis, NetWarden also uses a set of performance boosting tech-

niques that can counteract the performance penalty due to

channel defense. These techniques are inspired by a recent

result in the security community, which has shown that the

TCP congestion control mechanism can be manipulated by

an attacker to artificially inflate the sending rate [19]. Net-

Warden borrows similar techniques from this attack result,

but uses them for a very different goal instead—boosting the

performance of connections affected by channel defense.

Concretely, NetWarden uses ACK boosting and receive

window boosting to increase the sending rate of a connec-

tion. ACK boosting creates the illusion of a fast network,

and receive window boosting creates the illusion of a high-

performance receiver, ramping up the sending window of

the data source. NetWarden also caches excess packets tem-

porarily at the switch; should any packets be dropped on their

way to the receiver, NetWarden can still serve the data to the

receiver as a proxy. NetWarden then uses them in combina-

tion with defense techniques that usually lead to performance

degradation—by borrowing and refining existing defenses

and customizing them to programmable data planes—so that

they neutralize each other’s effects.

This paper is intended as a first step towards a defense that

can mitigate network covert channels while preserving net-

work performance. We sketch the initial design of NetWarden

and provide preliminary evidence on its feasibility. We then

summarize the open research questions and conclude with

our ongoing exploration.

2 Overview

In this section, we describe more background on network

covert channels, introduce building blocks for a practical de-

fense, and then give an overview of NetWarden.

2.1 State of the art

Covert timing channels. Since Lampson proposed the no-

tion of covert timing channels in 1970 [23], researchers have

demonstrated that network covert channels can exfiltrate in-

formation over a long distance by modulating IPDs [8,14,27].

The simplest channel, for instance, uses large and small IPDs

to transmit bits of one or zero. An attacker can further increase

the stealth of a channel by mimicking the IPD characteristics

of regular traffic [14].

Detection. Timing channel detectors rely on statistical tests

of IPD distributions. A simple example is shape test [8], which

uses first-order statistics (e.g., mean, variance) of IPDs to dis-

tinguish covert and normal traffic. More advanced detectors

could also use the distribution [32], regularity [8], or higher-

order entropy [14] of IPDs for channel detection. However,

practically, these detectors can only be used in an offline man-

ner, as streaming high-speed traffic through these statistical

detectors in real time would cause enormous overhead.

Mitigation. In principle, mitigating timing channels is easy.

A defense could be to inject random delays to network traffic,

with the goal of disturbing the IPD modulation [5]. How-

ever, this is only practical if detectors can precisely pinpoint

flows for delay randomization. Otherwise, false positives in

statistical detectors would cause normal flows to be penalized.

Covert storage channels. The simplest storage channels

(Type-I) can encode data in optional or unused TCP/IP header

fields, such as Type of Service (ToS), Urgent Pointer, and

IP identification (IPID) fields [12]. More advanced channels

(Type-II) encode data in header fields that are essential for

protocol correctness, such as the TCP initial sequence num-

ber [9]. A particularly tricky class of channels (Type-III) can

hide themselves in the inherent non-determinism of network

traffic, such as the partial ACK channel [28].

Detection. A common strategy for detection is to inspect

all header fields, and look for the existence of header fields

that are rarely used or contain suspicious values. However, the

need to inspect (and potentially modify) all packet headers

already makes most software-based detectors impractical.

Mitigation. Temporarily shelving performance concerns,

Type-I channels can be mitigated by setting optional header

fields to controlled values. Type-II channels can also be mit-

igated using a similar strategy, but the defense needs to be

stateful and apply the same actions to all packets in the flow to

maintain protocol correctness (e.g., adding a fixed offset to all

TCP sequence numbers [9]). Type-III channels are the hardest,

as they exploit the non-determinism in network traffic.

Limitations of existing defenses. To summarize, although

covert timing and storage channels have been studied exten-

sively, only proof-of-concept detection and mitigation systems

exist, and their deployment is hindered by a) the need to per-

form per-packet operations at linespeed (for detection), and

b) the performance penalty a naïve countermeasure would

incur (for mitigation). As a result, the feasibility of designing

an efficient, practical, and performance-preserving defense

remains an open research question.



2.2 Towards a practical defense

We aim to answer this research question by designing Net-

Warden, which uses a combination of techniques to achieve a

practical covert channel defense.

Technique #1: Using programmable data planes. Our first

observation is that the advent of programmable data planes

provides a suitable basis for NetWarden. A recent trend in dat-

acenters is that the networking hardware is becoming increas-

ingly programmable, both at the hosts (e.g., smart NICs [26])

and in the network (e.g., programmable switches [6]). Pro-

grammable data planes provide a set of new features that

were originally designed for better networking, but we rec-

ognize that the same features map surprisingly well to the

requirements of covert channel defense.

First, this new type of hardware can perform per-packet

header operations at linespeed. The packet processing pipeline

on emerging switches can be programmed using high-level

languages, such as P4 [2], to specify custom match/action

behaviors and perform header modifications. This can be

used as a building block for storage channel defense. Second,

programmable data planes have a fine-grained timestamping

facility. This was originally designed for achieving higher

network visibility for diagnosis, but it also provides useful

support for timing channel detection. Finally, they support

sophisticated data structures that can sustain linespeed reads

and writes using stateful registers. We can use this feature for

per-connection monitoring and precise channel mitigation.

Technique #2: Fastpath/slowpath defense. Since pro-

grammable data planes were not designed with channel de-

fense in mind, there are many needed functionalities they

do not directly support. For instance, the timestamping fa-

cility only provides packet timestamps, but statistical tests

over IPDs are not implementable in switch hardware. Also, as

we will discuss later, the performance boosting defenses also

cannot be supported in the data plane. Therefore, another de-

sign principle of NetWarden is to offload as many primitives

as possible to the data plane as a fastpath defense, and then

perform a slowpath defense on the switch control plane for

the rest. The control plane of modern switches has general-

purpose CPUs and RAMs, and it is quite powerful. As a point

of comparison1, the available CPU cycles per second and the

amount of RAM on a popular switch model [3] match these

of a T3.large VM instance on Amazon EC2 [1]!

Technique #3: Performance boosting. Finally, as we moti-

vated before, NetWarden specifically designs for a key goal

of performance-preserving defense. In addition to customiz-

ing existing (and performance-degrading) defenses for pro-

grammable data planes, we also design performance-boosting

defenses to neutralize the overall performance impact. These

defenses are more expensive to perform, because they need

1Wedge 100BF-32X switch: 4×1.6 GHz cores, 8GB RAM; Amazon EC2

T3.large VM instance: 2×2.5 GHz vCPUs, 8GB RAM.

ToR switch

…

Covert timing channels

0

Covert storage channels

1 01 1

Innocent payload

ACK = 01101

SrcPort DstPort TCP 

header

01101!

Figure 1: NetWarden can be deployed in a ToR switch as a

broad-spectrum defense against network covert channels.

to involve the control plane and cannot run at linespeed. How-

ever, NetWarden only needs to apply them to a small number

of connections in a “default-off” fashion.

NetWarden. Combining these techniques, NetWarden can be

easily deployed on a Top-of-Rack (ToR) switch to protect a

rack of machines that host sensitive data (e.g., file servers).

NetWarden is also a broad-spectrum defense in that it can

serve as a general-purpose platform to support a wide range of

existing and new defenses. Figure 1 shows a concrete example

scenario for using NetWarden.

3 Solution Sketch

Next, we sketch a tentative design of NetWarden, describe

how it adapts existing defenses for programmable data planes,

and introduce its performance boosting techniques. Figure 2

shows the fastpath and slowpath components of NetWarden,

which collaboratively detect and defend against covert chan-

nels while preserving network performance.

3.1 The fastpath defense

The fastpath consists of three components: a) connection

monitoring, b) IPD characterization, and c) storage channel

defenses (that degrade performance).

Connection monitoring. NetWarden uses a per-connection

monitoring data structure in the fastpath, which is inspired

by the Dapper [13] system that performs TCP monitoring

for performance diagnosis. The data structure organizes TCP

connections in a key/value store, where the key is a TCP con-

nection’s four tuples (i.e., source/destination IPs and ports),

and the value is an index to a set of register arrays. Using this

index, we can further write into or read from stateful registers

that record the TCP state for each direction of this connection,

such as a) the highest ACK and SEQ numbers, b) the receive

window sizes, and c) IPDs observed for this connection. Ev-

ery time NetWarden receives a packet, it uses its four tuples

as key to index this table. If NetWarden finds an entry in the

table, it uses the packet’s header fields and timestamp to up-

date the monitored values in the register arrays. Upon a miss,

NetWarden needs to send this packet to the control plane for

entry installation.



Key (4-tuple) Val

10.0.0.2:22:1.2.3.4:80 1

10.0.1.3:80:152.2.0.9:87 2

10.0.0.4:22:150.12.0.1:53 0

10.0.0.4:21:150.12.0.2:52 3

idx rwnd ACK time

0 65535 182 0.045

1 6000 9182 0.053

2 2048 3817 0.029

3 1000 4523 0.061

Connection	table State	variables

Packet	buffers Statistical	tests

Traffic

Fast	path	(data	plane)

Slow	path	(control	plane)

Figure 2: NetWarden consists of a fastpath defense on the

data plane, and a slowpath defense on the control plane.

IPD characterization. If NetWarden keeps all IPDs for all

connections, it would soon run out of memory and need to

evict data to the control plane. Monitoring systems such as

Marple [31] use this design, because they passively observe

the traffic and only perform analysis offline. However, as an

online defense, NetWarden needs to run at linespeed, so it

should avoid such heavyweight evictions as much as possible.

To address this, a possible approach is to keep k counters

for a fixed numbers of IPD intervals [0, t2), [t2, t3), · · · , [tk,∞).

When a packet comes in, NetWarden computes the IPD be-

tween its timestamp and the last-seen packet timestamp from

the same flow, and increments a counter for that IPD interval.

Such a data structure approximates the IPD distribution on

the data plane, and trades off some accuracy for efficiency.

Storage channel defenses. NetWarden also adapts a set of

existing defense techniques for programmable data planes.

Type-I channel defenses are the easiest, as they are simply

header modifications (e.g., setting fixed values to ToS, Urgent

Pointer, and IPID fields). Type-II channels require stateful

defenses. For instance, consider the TCP initial sequence num-

ber channel [9]. NetWarden can replace a sequence number s

with s′, but then it also needs to apply the same offset s′− s

to subsequent packets in order to preserve correctness. The

needed state is recorded in the connection table, which sup-

ports linespeed reads and writes. The main benefit NetWarden

provides for these defenses is efficient hardware support.

Type-III channels exploit the non-determinism of network

traffic, such as the partial ACK channel [28]. To the best of

our knowledge, NetWarden is the first system that can de-

fend against this channel, using a technique that we call ACK

rewinding. If NetWarden sees an ACK packet that acknowl-

edges an offset that is lower than the highest sequence number

seen in this connection, it rewinds the ACK value to a smaller

value. Such a value could be a previous ACK number before

the last burst of packets were received, or it could be a pre-

vious ACK number offsetted by a controlled amount; either

way would mitigate the partial ACK channel. This comes at

the cost of unnecessary retransmissions, but such inefficiency

would be addressed later by performance boosters.

3.2 The slowpath defense

The slowpath defense runs on the switch control plane. In

addition to installing match/action entries upon a table miss, it

has three more modules for channel defense: a) statistical IPD

tests, b) timing channel defense, and c) performance boosters.

Statistical IPD tests. This module queries the IPD intervals

for selected connections, and performs statistical tests for tim-

ing channel detection. As a defense platform, NetWarden can

easily support existing detectors (e.g., Kolmogorov-Smirnov

test [32] or regularity test [8]), or new detectors that may be

developed in the future. The main novelty here is to offload

IPD characterization to the data plane, which is heavyweight

and needs to be performed per packet, and to perform statis-

tical tests in software on aggregated IPD data. As ongoing

work, we are also exploring whether certain simple tests (e.g.,

detecting skewed distributions) can be done on the data plane.

Timing channel defense. This module injects random delays

to packets in suspicious connections to disrupt potential tim-

ing modulation. NetWarden temporarily buffers such packets

in the control plane, and sends them to the destination in any

desired order and at a time of its own choice. This obviously

may lead to packet reordering and increased delay, but our

performance boosters would counteract this impact.

Performance boosters. The performance boosters in Net-

Warden can temporarily increase the performance of certain

TCP connections. However, this may cause data packets to

be transmitted at a time when the receiver is not yet ready to

process them, so the control plane needs to be involved for

buffering. We discuss them in detail in the next subsection.

3.3 Performance boosting

TCP performance depends on a) the amount of available data

to send, b) the network condition, and c) the receiver’s ability

to process new data. NetWarden cannot control a), but it can

create the illusion that b) and c) are better than they actually

are, and increase the TCP performance as a result.

ACK boosting. This technique prefetches data from the

sender by generating ACK packets from NetWarden. When

NetWarden sees an incoming packet from the sender, it for-

wards the packet to the receiver, and at the same time, im-

mediately generates an ACK on behalf of the receiver. This

hides the latency for a) the data packet to propagate to the

receiver, b) the receiver to process the data and generate the

real ACK, and c) for the ACK to propagate back to the sender.

In effect, it creates the illusion of a shorter RTT as perceived

by the sender, thus ramping up the sending rate faster. Al-

though NetWarden forwards all data packets to the receiver,

it still needs to buffer the prefetched data in the control plane

temporarily, in case it needs to serve the data to the receiver

again if packets are dropped from NetWarden to the receiver.

The buffered data can be gradually removed when the actual

ACKs from the receiver arrive at NetWarden. Such ACKs do



not need to be forwarded to the sender, since from the sender’s

perspective, the corresponding data packets have already been

successfully received. This technique works more effectively

when NetWarden is deployed close to the sender (data source),

which corresponds to typical scenarios where NetWarden is

co-located with a rack of servers that host sensitive data.

Receive window boosting. This technique generates an ACK

packet on behalf of the receiver with a large receive window,

creating the illusion of a high-performance receiver. This aims

to remove any limit posed by the actual receive buffer size

when the sender is computing the sending window (i.e., the

minimum between the congestion window and the receive

window). As before, the prefetched data is buffered in the

control plane, and NetWarden serves the data as a proxy.

4 Initial Validation

We have built a preliminary NetWarden prototype for initial

validation. Our prototype is written in P4 (for the fastpath)

and Python (for the slowpath), and runs in a software-based

simulator [3]. It implements a) a simple defense against a stor-

age channel that encodes data in the receive window size field,

by setting the window size to a smaller (therefore safe) value,

b) a defense against a timing channel that uses large/small

IPDs by injecting random delays, and c) the receive window

boosting and ACK boosting techniques. In the timing channel

setup, the server is sending a file to the remote client; in the

storage channel setup, the client is uploading a file to the

server; in both cases, the server attempts to exfiltrate data

via covert channels. NetWarden is directly connected to the

server for defense.

Baseline systems. Our main comparison is between a) the

simple defenses (e.g., shrinking receive window size, adding

random delays), and b) the performance-boosting defenses,

both in terms of defense effectiveness and performance im-

pacts. We have additionally used a scenario without any de-

fenses (i.e., native performance, but vulnerable to attacks) as

the baseline. Since our initial prototype runs in software simu-

lation, we note that the high-level trends are more meaningful

than the actual (software-based) measurements.

Defense effectiveness. We found that both defenses are ef-

fective against the tested channels. When there is no defense

deployed, using the storage channel, the attacker can success-

fully embed data in the receive window; using the timing

channel, it can achieve a decoding error rate as low as 4%.

When either defense is applied, the storage channel based on

the receive window size is no longer usable; for the timing

channel, the simple defense increases the decoding error rate

from 4% to 50%, and the performance-boosting defense in-

creases the error rate to 49.3%, both rendering the decoding

close to a random guess.

Performance impacts. For the storage channel attack, the

data transfer took 49.52s to finish under the simple defense.

0

30

60

N S B

T
im
e

Defense

(a) Storage channel

0

35

70

N S B

T
im
e

Defense

(b) Timing channel

Figure 3: NetWarden mitigates network covert channels in

a performance-preserving manner. N: no defense; S: simple

defense; B: performance-boosting defense.

This is in comparison to the “no defense” baseline, where the

transfer took 32.98s. Therefore, the simple defense inflates the

transfer time by 50.1%, a significant performance degradation.

Using the performance-boosting defense, however, NetWar-

den achieved a transfer time of 33.09s, which only represents a

0.3% increase. For the timing channel, “no-defense” achieved

a 58.15s transfer time, the simple defense inflated this to

68.91s (a 18.5% increase), and the performance-boosting de-

fense only took 59.76s (a 2.8% increase).

Summary. The preliminary results above suggest that Net-

Warden seems to be a promising defense against network

covert channels with minimum performance loss.

5 Related Work

We have already discussed related work on timing and storage

channels, so we focus on other related projects here.

Normalizers. Normalizers can eliminate ambiguities in pro-

tocol payloads, preventing attacks due to inconsistent TTL

values [17] or TCP retransmissions [35–37]. The key ap-

proach is to normalize traffic payload to a deterministic byte

stream. However, even deterministic payload streams can con-

tain covert channels; NetWarden focuses on the latter.

Active wardens. Existing research has developed active war-

dens for covert channel defense [9, 12, 25], but most wardens

are only proof-of-concept systems that are hard to deploy due

to their inefficiency. In addition, none of the existing wardens

has considered performance preservation as a key design goal.

Programmable data planes. Programmable data planes

have been used for a wide variety of tasks [10,13,20,21,31,39].

NetWarden is most related to Dapper [13] on TCP perfor-

mance diagnosis. However, the primary goal of NetWarden is

to use programmable data planes for security.

6 Ongoing Work

NetWarden is ongoing work, and there are quite a few open

issues to be explored as next steps. First, we are developing



principled approaches to identifying the boundary between

the fastpath and the slowpath for an “optimal” division of

labor. Second, estimating how much performance boosting

NetWarden should perform for a connection requires a careful

design. If we boost the performance of a connection too much,

this would consume the bandwidth of contending flows. We

would like to design defenses that not only preserve perfor-

mance for a single connection, but also ensure fairness across

TCP flows. Moreover, since many TCP variants exist, we

would like to understand how NetWarden should perform the

boosting differently, or whether we could design a universal

strategy for preserving performance. Last but not least, our

prototype and experimental results are in a very preliminary

stage. We plan to continue our investigation on NetWarden by

developing a full hardware-based prototype and evaluating it

with realistic traffic speeds and deployment scenarios.

7 Acknowledgments

We thank Qiao Kang, Kuo-Feng Hsu, and the anonymous

reviewers for their valuable feedback. This work was partially

supported by an NSF grant CNS-1801884.

References

[1] Amazon EC2 instance types. https://aws.amazon.c

om/ec2/instance-types/.

[2] The P4 language repositories. https://github.com

/p4lang.

[3] Tofino: World’s fastest P4-programmable Ethernet

switch ASICs. https://www.barefootnetworks.c

om/products/brief-tofino/.

[4] C. Abad. IP checksum covert channels and selected

hash collision. USA, University of California, 2001.

[5] A. Belozubova, A. Epishkina, and K. Kogos. Random

delays to limit timing covert channel. In Proc. Euro-

pean Intelligence and Security Informatics Conference

(EISIC), 2016.

[6] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McK-

eown, M. Izzard, F. Mujica, and M. Horowitz. Forward-

ing metamorphosis: Fast programmable match-action

processing in hardware for SDN. ACM SIGCOMM

Computer Communication Review, 43(4):99–110, 2013.

[7] S. Cabuk. Network covert channels: Design, analysis,

detection, and elimination. PhD thesis, Purdue Univer-

sity, 2006.

[8] S. Cabuk, C. E. Brodley, and C. Shields. IP covert timing

channels: Design and detection. In Proceedings of the

ACM Conference on Computer and Communications

Security (CCS), 2004.

[9] D. M. Dakhane and P. R. Deshmukh. Active warden

for TCP sequence number base covert channel. In Pro-

ceedings of the International Conference on Pervasive

Computing (ICPC), 2015.

[10] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and

R. Soulé. NetPaxos: Consensus at network speed.

In Proceedings of the Symposium on SDN Research

(SOSR), page 5. ACM, 2015.

[11] Department of Defense. Trusted computer system eval-

uation criteria (TCSEC). (DoD 5200.28-STD), 1985.

[12] G. Fisk, M. Fisk, C. Papadopoulos, and J. Neil. Eliminat-

ing steganography in Internet traffic with active wardens.

In Proceedings of the International Workshop on Infor-

mation Hiding (IH), 2002.

[13] M. Ghasemi, T. Benson, and J. Rexford. Dapper: Data

plane performance diagnosis of TCP. In Proceedings of

the Symposium on SDN Research (SOSR), pages 61–74.

ACM, 2017.

[14] S. Gianvecchio and H. Wang. Detecting covert timing

channels: An entropy-based approach. In Proceedings of

the ACM Conference on Computer and Communications

Security (CCS), 2007.

[15] S. Gianvecchio, H. Wang, D. Wijesekera, and S. Jajodia.

Model-based covert timing channels: Automated mod-

eling and evasion. In Proceedings of the International

Workshop on Recent Advances in Intrusion Detection

(RAID), pages 211–230. Springer, 2008.

[16] J. Giffin, R. Greenstadt, P. Litwack, and R. Tibbetts.

Covert messaging through TCP timestamps. In Pro-

ceedings of the International Workshop on Privacy En-

hancing Technologies (PETS), pages 194–208. Springer,

2002.

[17] M. Handley, C. Kreibich, and V. Paxson. Network intru-

sion detection: Evasion, traffic normalization and end-to-

end protocol semantics. In Proceedings of the USENIX

Security Symposium, 2001.

[18] A. Hintz. Covert channels in TCP and IP headers. Pre-

sentation at DEFCON, 10:16, 2002.

[19] S. Jero, E. Hoque, D. Choffnes, A. Mislove, and C. Nita-

Rotaru. Automated attack discovery in TCP congestion

control using a model-guided approach. In Proceed-

ings of the Network and Distributed System Security

Symposium (NDSS), 2018.

[20] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé,

C. Kim, and I. Stoica. NetChain: Scale-free sub-RTT

coordination. In Proceedings of the 15th USENIX Sym-

posium on Networked Systems Design and Implementa-

tion (NSDI), pages 35–49, 2018.

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://github.com/p4lang
https://github.com/p4lang
https://www.barefootnetworks.com/products/brief-tofino/
https://www.barefootnetworks.com/products/brief-tofino/


[21] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster,

C. Kim, and I. Stoica. NetCache: Balancing key-value

stores with fast in-network caching. In Proceedings of

the 26th Symposium on Operating Systems Principles

(SOSP), pages 121–136. ACM, 2017.

[22] E. Jones, O. Le Moigne, and J.-M. Robert. IP trace-

back solutions based on time to live covert channel.

In Proceedings of 12th IEEE International Conference

on Networks (ICON), volume 2, pages 451–457. IEEE,

2004.

[23] B. Lampson. A note on the confinement problem. Com-

munications of the ACM, 16, 1973.

[24] K. S. Lee, H. Wang, and H. Weatherspoon. PHY covert

channels: Can you see the idles? In Proceedings of the

11th USENIX Symposium on Networked Systems Design

and Implementation (NSDI), pages 173–185, 2014.

[25] G. Lewandowski, N. B. Lucena, and S. J. Chapin. Ana-

lyzing network-aware active wardens in IPv6. In Pro-

ceedings of the International Workshop on Information

Hiding (IH), pages 58–77. Springer, 2006.

[26] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy,

and K. Atreya. IncBricks: Toward in-network computa-

tion with an in-network cache. ACM SIGOPS Operating

Systems Review, 51(2):795–809, 2017.

[27] X. Luo, E. W. W. Chan, and R. K. C. Chang. TCP

covert timing channels: Design and detection. In Pro-

ceedings of the IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN), 2008.

[28] X. Luo, E. W. W. Chan, and R. K. C. Chang. CLACK:

A network covert channel based on partial acknowledg-

ment encoding. In Proceedings of the IEEE Interna-

tional Conference on Communications (ICC), 2009.

[29] X. Luo, E. W. W. Chan, R. K. C. Chang, and W. Lee. A

combinatorial approach to network covert communica-

tions with applications in web leaks. In Proceedings of

the IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN), 2011.

[30] G. R. Malan, D. Watson, F. Jahanian, and P. Howell.

Transport and application protocol scrubbing. In Pro-

ceedings of the IEEE International Conference on Com-

puter Communications (INFOCOM), 2000.

[31] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun,

M. Alizadeh, V. Jeyakumar, and C. Kim. Language-

directed hardware design for network performance mon-

itoring. In Proceedings of the Conference of the ACM

Special Interest Group on Data Communication (SIG-

COMM), pages 85–98. ACM, 2017.

[32] P. Peng, P. Ning, and D. S. Reeves. On the secrecy of

timing-based active watermarking trace-back techniques.

In Proceedings of IEEE Symposium of Security and

Privacy, 2006.

[33] C. H. Rowland. Covert channels in the TCP/IP protocol

suite. First Monday, 2(5), 1997.

[34] G. Shah, A. Molina, M. Blaze, et al. Keyboards and

covert channels. In Proceedings of the USENIX Security

Symposium, 2006.

[35] U. Shankar and V. Paxson. Active mapping: Resisting

NIDS evasion without altering traffic. In Proceedings

of the IEEE Symposium on Security and Privacy, 2003.

[36] G. Varghese, J. A. Fingerhut, and F. Bonomi. Detecting

evasion attacks at high speeds without reassembly. In

ACM SIGCOMM Computer Communication Review,

volume 36, pages 327–338. ACM, 2006.

[37] M. Vutukuru, H. Balakrishnan, and V. Paxson. Efficient

and robust TCP stream normalization. In Proceedings

of the IEEE Symposium on Security and Privacy, 2008.

[38] X. Wang and D. S. Reeves. Robust correlation of en-

crypted attack traffic through stepping stones by manipu-

lation of interpacket delays. In Proceedings of the ACM

Conference on Computer and Communications Security

(CCS), pages 20–29. ACM, 2003.

[39] N. Yaseen, J. Sonchack, and V. Liu. Synchronized net-

work snapshots. In Proceedings of the Conference of the

ACM Special Interest Group on Data Communication

(SIGCOMM), pages 402–416. ACM, 2018.


	Introduction
	Overview
	State of the art
	Towards a practical defense

	Solution Sketch
	The fastpath defense
	The slowpath defense
	Performance boosting

	Initial Validation
	Related Work
	Ongoing Work
	Acknowledgments

