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Analysis and forecasting of sequential data, key problems in various do-
mains of engineering and science, have attracted the attention of many
researchers from different communities. When predicting the future
probability of events using time series, recurrent neural networks
(RNNs) are an effective tool that have the learning ability of feedfor-
ward neural networks and expand their expression ability using dynamic
equations. Moreover, RNNs are able to model several computational
structures. Researchers have developed various RNNs with different ar-
chitectures and topologies. To summarize the work of RNNs in forecast-
ing and provide guidelines for modeling and novel applications in future
studies, this review focuses on applications of RNNs for time series fore-
casting in environmental factor forecasting. We present the structure, pro-
cessing flow, and advantages of RNNs and analyze the applications of
various RNNs in time series forecasting. In addition, we discuss limita-
tions and challenges of applications based on RNNs and future research
directions. Finally, we summarize applications of RNNs in forecasting.

1 Introduction

Along with the rapid development of information technology, a variety of
information systems are widely used in people’s daily life. These systems
produce massive amounts of noisy time series data, which are unstable and
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fluctuate (Singh, Basant, Malik, & Jain, 2009). In addition, the relationship
between variables in these data is complex and nonlinear. Efficiently us-
ing these time series data to mine useful information is a hot topic in data
processing. To the best of our knowledge, time series forecasting plays a
critical role in many engineering and scientific applications (Zhang, 2003).
Generally better forecasting is the key factor for providing better decision
making and monitoring management. Furthermore, time series forecasting
has attracted the attention of researchers from various fields. Recently, the
literature on forecasting research has focused on the development of infor-
mation technology and artificial intelligence (Sadaei, Guimaraes, Silva, Lee,
& Eslami, 2017). Therefore, a variety of models and methodologies have
been provided for sequential data prediction (Raza & Khosravi, 2015; Tas-
cikaraoglu & Uzunoglu, 2014).

The methodologies for time series forecasting almost entirely rely on two
different methods: traditional methods and artificial intelligence algorithms
(Bontempi, Taieb, & Borgne, 2013). Traditional models, such as multiple
sources linear regression (Mahmoud, 2008) and Fourier expansion methods
(Sanz-Serna, 2009), are simple and easy to achieve. Most of these methods
are based on mathematical theories. However, these methods have poor
adaptability and unpredictable performance with increasing model com-
plexity. In recent decades, artificial intelligence algorithms, including artifi-
cial neural networks (ANNs; Zhang, Patuwo, & Hu, 1998), support vector
machines (SVM; Tay & Cao, 2007), and recurrent neural networks (RNNs;
Garcia-Pedrero & Gomez-Gil, 2010), have attracted attention and have been
successfully used for time series forecasting. Though these models have
good learning ability and recognize the complexity and nonlinearity in the
patterns of data sets, they have some shortcomings. The ANN can easily
fall into a local optimum solution and has a complex learning process. The
SVM requires a large storage space and longer training time when handling
large amounts of data. These methods still need to be improved to achieve
better forecasting accuracy. Fortunately, RNNs have proven to be suitable
for time series forecasting due to their ability to capture sequence data rela-
tions in time, in contrast to feedforward neural networks (FFNNs; Bebis &
Georgiopoulos, 2009). The RNN (Mandic & Chambers, 2001) is also a class
of ANN in which connections between units form a directed cycle. This
cycle establishes an internal state of the network that allows it to show dy-
namic temporal behavior. Due to advances in their architecture and training
methods, various RNNs with different architectures and topologies have
been widely and successfully applied for time series forecasting in various
domains, such as electric power, environmental factors, finance, and eco-
nomics (Motlagh & Khaloozadeh, 2016; Alzahrani, Shamsi, Dagli, & Fer-
dowsi, 2017; Zheng, Yuan, & Chen, 2017).

RNNs are considered to be an extremely promising category of meth-
ods for time series prediction and may be able to be used to compen-
sate for the shortcomings of traditional forecasting models. RNNs were
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developed from the Hopfield network in 1982 (Hopfield, 1982). Early RNNs
were powerful dynamic systems that were able to correct errors through
backpropagation and use of a gradient algorithm. However, RNNs were
difficult to train and suffered from the vanishing or exploding gradient
problem (Le & Zuidema, 2016), which cannot solve the long-term depen-
dency problem. Therefore, this method was not widely used until the 1990s.
To solve this problem, a major breakthrough was made by introducing
a vastly improved LSTM-based architecture that used a gate mechanism
to prevent backpropagated errors from vanishing or exploding to remem-
ber inputs for a long period of time. LSTM networks (Gers, Schmidhu-
ber, & Cummins, 2000) were subsequently proven to be more effective
and accurate than conventional RNNs and helped lead to the renaissance
in AI.

As one of the most promising types of time series prediction models,
RNNs have been widely studied in theory and applied in many fields. There
is an extensive literature base regarding different applications of RNNs in
time series forecasting, including electric power forecasting, environmen-
tal factor forecasting, and finance and economics forecasting. However, a
single summary of applications on RNNs in time series forecasting has not
been published. In addition, many novel fields need to be explored for ap-
plications of RNNs, and further research is required to improve the perfor-
mance of models based on RNNs in dynamic real-time systems; these are
important and challenging problems. In recent years, with the emergence
of big data and deep learning, forecasting large-scale system has become
feasible because of the abundant data and hierarchical representations in
deep architectures. Therefore, novel deep learning models based on RNNs
are becoming increasingly popular.

This review summarizes applications of RNNs in forecasting, mainly
considering environmental factor forecasting. The structure, processing
flow, and advantages of RNNs are introduced. In addition, the limitations
and challenges of the current state of RNNs are discussed. Simultaneously,
future research directions of RNNs and new areas are discussed. We believe
that this review can be used as a guide for researchers regarding the appli-
cations of RNNs in data forecasting. The review is structured as follows.
Section 2 explains the structure, processing flow, and advantages of RNNs
in detail. In section 3, applications for time series forecasting based on RNNs
are summarized and evaluated, including limitations and challenges. The
research direction is explored in section 4, and section 5 summarizes the key
conclusions.

2 Recurrent Neural Networks

This section focuses on the theory of RNNs and introduces their structure,
processing flow, and advantages.
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2.1 Structure of RNNs. The RNN is a class of ANN that allows nodes
to be connected to directed loops; the RNN can be easily confused with the
recursive neural network (Pollack, 1990). The formulation of the RNN en-
sures that it can show dynamic temporal behavior. The RNN can generate
memory states of past data, process sequential data, and establish depen-
dencies between data from different times. While FFNNs can be used only
to establish mapping relations between data, they cannot be used to ana-
lyze the time dependence of past signals. In theory, RNNs can handle arbi-
trary input sequences, and weight sharing is adopted in a recursive manner.
Not only can RNNs learn long-range temporal dependencies, but they can
also efficiently simulate a universal Turing machine, which can perform al-
most any computation. In general, RNNs provide flexible machine learning
tools that have the learning ability of FFNNs and can expand their expres-
sion ability depending on dynamic equations. Hence, RNNs can be used for
tasks such as image processing, speech recognition, or time series predic-
tion (Lee, Tseng, Wen, & Tsao, 2017; Sak, Senior, & Beaufays, 2014; Verdejo,
Herreros, Luna, Ortuzar, & Ayuso, 1991).

RNNs were introduced in the 1980s (Rumelhart, Hinton, & Williams,
1988), and their use includes Hopfield networks, Elman networks, and
Jordan networks (Chen, 2001; Cao, 2001; Kalinli & Sagiroglu, 2006; Turk,
Barisci, Ciftci, & Ekmekci, 2015). Hopfield networks were developed by
John Hopfield (1982), and all of the connections in RNNs are symmetrical.
Moreover, the RNN can address temporal dependencies. Subsequently, in
1990, the Elman network was first proposed (Elman, 1990) for language pro-
cessing, which has incomparable advantages for dealing with inertial input
and output data. Therefore, the Elman network has been universally used
for system modeling, time series prediction, and adaptive control. Jordan
networks and Elman networks have similarities (Song, 2011). Their context
units are fed from the output layer rather than the hidden layer, the context
units in Jordan networks appear as the state layers, and their output can be
passed directly to the hidden node. These networks are also called simple
recurrent networks (SRNs; Cruse, 1996). The nonlinear autoregressive neu-
ral network with exogenous input (NARX; Chen, Billings, & Grant, 1990)
is a mature dynamic forecasting model that uses a recurrent neural archi-
tecture. The NARX has limited feedback architectures that come only from
output neurons instead of hidden neurons. It has been verified that this
type of learning architecture with hidden states can produce more effective
results in the NARX model than in other recurrent architectures. In recent
years, these models have led to great achievements in natural language pro-
cessing and sequence labeling (Collobert, Weston, Karlen, Kavukcuoglu, &
Kuksa, 2011; Mikolov, Karafiát, Burget, Cernocký, & Khudanpur, 2010; Yao,
Zweig, & Hwang, 2013).

Apart from the above models, there are also RNN variants (Dinarelli &
Tellier, 2016), such as the bidirectional recurrent neural network (BRNN;
Schuster & Paliwal, 1997). The state of SRNs in the t moment is only
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related to the state of the past, while the state of the BRNNs at the t mo-
ment is related not only to the state of past but also to the state of future.
The long short-term memory network (LSTM) is an improved RNN variant
that Hochreiter and Schmidhuber (1997) proposed. The LSTM is character-
ized by its basic unit, which has a memory cell that can store a state of time
and is protected while storing, writing, and reading information. The LSTM
is also a deep learning system that efficiently avoids the vanishing gradient
or explosion problem (Gers & Schraudolph, 2003). With the rapid devel-
opment of deep learning, the LSTM network has played an increasingly
important role because of the convergence of the learning process (Fernán-
dez, Graves, & Schmidhuber, 2007). Therefore, it has gradually replaced the
classic RNN.

The structure of the recurrent neural network is closely related to the per-
formance of the network (Awano et al., 2011). On the one hand, the inter-
nal dynamics of large-scale RNNs is complicated and confusing. However,
the internal dynamics will greatly increase the storage of the network and
calculation cost of the training algorithm. On the other hand, the dynamic
characteristics of small-scale RNNs are relatively singular. The information
contained in complex problems does not contain a learning ability and can-
not meet the requirements of RNNs for processing information. The per-
formance of RNNs is determined by their structure and training algorithm.
Therefore, the activity and number of hidden neurons in RNNs are adjusted
according to the object of study, which changes their topology. Improving
the performance of RNNs has become a hot topic of recent research (Gil,
Cardoso, & Palma, 2009).

2.2 Processing Flow of RNNs. A simple adaptation on the standard
FFNNs enables RNNs to simulate continuous data. A multilayer neural net-
work can only map input vectors and output vectors (Riedmiller, 1994), but
RNNs can theoretically map an entire historical data set. At each time point,
a node can accept an input, update the state of the hidden layer, and predict
a result, as shown in Figure 1.

The forward propagation of RNNs is similar to the perceptron model
that has only one hidden layer. The difference is that the hidden layer in
the RNN not only receives an input from the outside but also accepts the
value calculated from the activation function at the last moment. The output
vector of the multilayer neural network is given by the activation function
of the output layer. The input value of each output layer unit is the output
value of all hidden layers connected to the unit. The number of output layer
units and selection of the activation function mainly rely on application
scenarios of neural networks. It should be emphasized that sigmoid, hy-
perbolic tangents, and the ReLU are widely used as activation functions in
RNNs. Next, it is necessary to consider how to select the appropriate model
parameters. In general, RNNs are trained with a common gradient-based
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Figure 1: Simple recurrent neural network.

Figure 2: The RNN unfolds over time for the computation.

algorithm, such as real-time recurrent learning (RTRL) or backpropagation
through time (BPTT), to derive the RNN parameters.

The RNN is shown in Figure 2 to unfold over time. The RNN can be con-
sidered to be a deep feedforward neural network with the same weights
among all of its layers (LeCun, Bengio, & Hinton, 2015). RNNs include in-
put units, output units, and hidden units, the vector sequences of which are
marked as (x1, . . . , xT ), (o1, . . . , oT ), and (s1, . . . , sT ), respectively. The out-
put and hidden states can be expressed by the following equations:
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Figure 3: Structure of the LSTM cell.

st = f (wsxxt + wssst−1 + bs), (2.1)

ot = wosst + bo. (2.2)

In these equations, wsx is the input-to-hidden weight vector, wss is the
hidden-to-hidden weight vector, wos is the output-to-hidden weight vector,
bo and bs are the biases, and u, v , and w are the network parameters. The
same parameters are used at each time step, and f is an activation function
such as tanh.

RNNs can easily process sequence data. However, traditional RNNs suf-
fer from vanishing or exploring gradients when the number of time steps
is large, and they fail to capture the long-term evolution. LSTMs effec-
tively solve these problems by introducing a gate mechanism to prevent
backpropagated errors from vanishing or exploding and were subsequently
shown to be more effective than traditional RNNs. Figure 3 represents the
structure of an LSTM cell that is mainly configured by three multiplicative
gates and one memory cell. The data flow into the block is controlled by the
input gate, and the decision of when to reset the memory cell state is made
by the forget gate. In addition, the output data flow from the block is con-
trolled by the output gate. The last memory cell is used to store the state of
the block. The entire computation can be expressed as a series of equations
as follows:

it = σ (wixxt + wihht−1 + wicct−1 + bi), (2.3)

ft = σ (w f xxt + w f hht−1 + w f cct−1 + b f ), (2.4)
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ot = σ (woxxt + wohht−1 + wocct−1 + bo), (2.5)

ct = ftct−1 + ittanh(wcxxt + wchht−1 + bo), (2.6)

ht = ottanh(ct ), (2.7)

where it , ft and ot are the calculation methods of the input gate, forget gate
and output gate, respectively, at time t: ct is the calculation method of the
memory cell at time t. ht is all of the output of the LSTM cell at time t; σ

and tanh are the sigmoid and hyperbolic tangent activation functions, re-
spectively; w are the weight matrices; and b are the bias vectors. The LSTM
memory units easily catch the complex correlation features within the time
series in both the short and long terms, a significant improvement com-
pared with traditional RNNs via the function of the different gates.

2.3 Advantages of Recurrent Neural Networks. RNNs provide flex-
ible machine learning tools that not only have the learning abilities of
FFNNs but also expand their expression abilities based on dynamic equa-
tions. Therefore, RNNs can directly handle complex spatiotemporal data
and build complicated dynamic systems. Due to temporal and spatial data
being used in many fields, such as modeling electric power, finance and
economics, and processing environment time series, RNNs are promising
candidates for a variety of applications (Wu, Wang, Jiang, Ye, & Xue, 2015;
Giles, Kuhn, & Williams, 1994). In addition, RNNs have undergone signifi-
cant performance improvements in time series forecasting.

Traditional neural networks applied in time series prediction easily sink
into a local optimum and have a complex learning process, resulting in a
relatively slow computation speed. RNNs are tools that can obtain high
precision and good performance when processing time series predictions
based on a large number of data sets. The most fundamental characteris-
tic of RNNs is their short-term memory. The understanding of short-term
memory directly affects the design of the RNN structure and indirectly in-
fluences the weights of the training methods. RNNs require more virtual
connections and much more memory for simulations than the conventional
BPNN. RNNs achieve a better effect due to the rough repetition of similar
patterns present in sequence data. These regular but subtle time series are
important to make useful predictions.

RNNs are known to be local feedback networks, in which only local con-
nections are active. The network’s generalization capability is remarkably
enhanced by not learning complex and fully connected recurrent architec-
tures. In addition, redundant connections are eliminated (Tsoi, 1998). It is
also important for different configurations of RNNs to choose appropri-
ate learning parameters, an appropriate number of hidden nodes, and ap-
propriate activation functions. Compared with the traditional multilayer
perceptron, RNNs have a feedback connection and memory storage. They
can also process sequence data at each time step while accepting the input,
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updating the hidden state, and predicting the next value. Though RNNs
have the computational capability to process sequential data, learning long-
range temporal dependencies is difficult when a decreasing stochastic gra-
dient is used for training. To solve this problem, LSTMs were proposed to
introduce memory units to decide whether to forget and update hidden
states. As a result, LSTMs have been proven to be more effective than tra-
ditional RNNs (Gers & Schmidhuber, 2001).

RNNs can directly and vividly reflect the dynamic characteristics of the
system as well as represent the direction of modeling and identify neural
networks. They also contain feedback information in the internal state of
the networks. The nonlinear dynamic behavior of the system is described
using network internal feedback. Therefore, the prediction performance of
RNNs is better than that of feedforward networks when dealing with time
series data. Theoretically, RNNs can handle any length of sequence data
(Bodén, 2002). In practice, however, to reduce computational complexity,
it is assumed that the recurrent state is only related to the previous states.
Similar to the standard forward propagation, the BPTT contains important
chain rules. The difference of RNNs is that the activation of the hidden layer
depends on the loss function and affects the output layer and hidden layer
at the next moment. In summary, RNNs have strong computing power and
are the most widely used neural network models.

3 Environmental Factor Forecasting

The environment encompasses many aspects, such as the atmosphere, wa-
ter, soil, and weather. According to the current situation and developmen-
tal trend, the quality of the environment is predicted scientifically, which
contributes to human health and the normal production and life. As an im-
portant subject, environmental forecasting models have been given increas-
ing attention by decision makers of environmental planning. We mainly
introduce environment factor forecasting based on RNNs in this section. In
addition, Table 1 shows the application of RNNs in environmental factor
forecasting and describes the prediction objects, data source, current meth-
ods, and results.

3.1 Water Factor Forecasting. Accurate prediction of water, including
water level predictions, runoff predictions, and flood forecasting, is neces-
sary and plays an important role in the regulation and protection of wa-
ter quality. To date, ANNs, especially RNNs, have attracted attention and
have been accepted as powerful tools for water factor forecasting. Many
researchers have made great progress in forecasting the water factor.

Accurate forecasting of runoff, including rivers and stormwater, is im-
portant in water resource planning and management. Over the years,
considerable research has been carried out in this area, and numerous
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runoff forecast models based on RNNs have been proposed. Zhang (2011)
developed a model based on RNNs with the Levenberg-Marquardt back-
propagation training algorithm to predict stormwater runoff. The exper-
imental results indicated that the improved model was successful for
making stormwater runoff predictions in which the best number of hidden
neurons and delays in the tapped delay lines were 50 and 11, respectively.
Saharia and Bhattacharjya (2012) presented the distributed time-lagged re-
current neural network (TRLNN)–based runoff prediction model, which
had the advantages of a dynamic neural network, integration of morpho-
metric properties, and adaptation of a semidistributed modeling approach.
The TRLNN was used in conjunction with geomorphologic information to
achieve better forecasting results, and the TRLNN was shown to be a sig-
nificant improvement over all of the other models in this review. Duong,
Nguyen, Bui, Nguyen, and Snasel (2014) employed the RFNN, a hybrid of
the RNN and fuzzy theory, to predict the Srepok runoff in Vietnam with
changes in climate. The RFNN can make accurate predictions in comparison
to an environmental model called SWAT on the same data set because the
relative error of the RFNN is low. Additionally, the RFNN does not requires
as many data as the SWAT. Subsequently, the NARX-RNN was suggested
for predicting the rate of water flow (WFT); the NARX-RNN is based on the
most relevant parameters, solar irradiance and air temperature. The results
indicated that the presented model had an acceptable accuracy for next-day
forecasting, which provided valuable information to the photovoltaic wa-
ter pumping system (Haddad, Mellit, Benghanem, & Daffallah, 2016). In the
same year, Shoaib, Shamseldin, Melville, and Khan (2016) explored the po-
tential of wavelet-coupled time-lagged recurrent neural network (TLRNN)
models to accurately predict runoff. Wavelet-coupled TLRNN models with
large depths were proven to be insensitive to the selection of the wavelet
function because all wavelet functions have similar performance, while the
db8 wavelet function was shown to have the best performance with the
static MLP.

Flood forecasting is necessary and plays a vital role in planning flood
regulations and protection measures. Deshmukh and Ghatol (2010) com-
pared the Jordan and Elman networks for rainfall-runoff modeling. They
collected data from the upper area of the Wardha River in India and used
context units to expand the multilayer perceptron, a processing element
that can remember past events. We found that the MSE and NMSE for
the Jordan network were 0.0187 and 0.0357, respectively, which were lower
than those of the Elman neural network, demonstrating that the Jordan net-
work was more versatile and outperformed the Elman neural network. Roy,
Choudhury, and Saharia (2010) noted a flood forecasting model using a fo-
cused time-Lagaed recurrent neural network (TLRN) with three memories:
TDNN, gamma memory, and Laguerre. The model performance results in-
dicated that a TLRN with gamma memory had better applicability, followed
by a TDNN with Laguerre memory.
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Subsequently, Chang, Chen, and Chang (2012) proposed a reinforced
real-time recurrent learning algorithm (RTRL) for two-step-ahead (2SA)
forecasting using RNNs to investigate two well-known benchmark se-
quence data sets and runoff in Taiwan flood events. For comparison, the
original RTRL algorithms—the RNN, ESN, BPNNI, and BPNNII—were
also used. It was shown that the novel reinforced 2SA weight adjustment
technique had excellent feasibility and good precision for real-time 2SA
forecasting by combining preliminary forecasting information with an on-
line learning process. Future work will focus on the development of novel
model forecasting on ungauged basins. Chen, Chang, and Chang (2013)
incorporated the closest antecedent messages into an online learning pro-
ceeding, in which the authors considered multistep-ahead (MSA) forecasts
for water factor research. A MAS-reinforced RTRL algorithm for RNNs
(R-RTRLNN) was proposed that adequately adjusted the model parameters
repeatedly according to the current information to improve reliability and
forecast accuracy. The results showed that the presented R-PTRLNN had
good practicability and much better capability than comparative methods
for MSA flood forecasts.

In recent years, significant water-level fluctuations have taken place and
may be related to climate change. Therefore, water-level forecasting is a
method to ensure sustainable water use. Guldal and Tongal (2010) dis-
cussed and compared the RNN, neurofuzzy approach, adaptive network-
based fuzzy inference system (ANFIS), and classical stochastic models, such
as the autoregressive (AR) and autoregressive moving average (ARMA)
approaches. The results showed that the use of the generated RNN and
ANFIS models had a good ability to learn and predict lake level changes.
Afterward, Chang, Chen, Lu, Huang, and Chen (2014) performed a similar
study in terms of flood forecasting using reinforced RNNs. They used three
models—the BPNN, the Elman neural network, and the NARX network—
to construct floodwater storage pond (FSP) water-level forecast models in
two scenarios as model inputs. A gamma test was used to obtain effective
factors that remarkably influenced the FSP water level. The experimental
results showed that the NARX network had a higher applicability than
the BPNN and Elman network. The method provided effective coefficients
within 0.9 to 0.7 (scenario I) and 0.7 to 0.5 (scenario II) in the testing phase.
They found that the presented NARX models were valuable and beneficial
for urban flood control. We conclude with comments on possible future re-
search directions in this field.

3.2 Weather Factor Forecasting. Weather forecasting has attracted con-
siderable attention from various research teams due to its effort to sus-
tain global human life. The main goal of weather forecasting is to predict
the temperature, rain, wind, and special weather disasters of a local area.
These predictions are important to many fields, including flight navigation,
agriculture, tourism, and transportation. We generally depend on weather
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forecasters to guide the planning of our daily routines. Numerous signifi-
cant developments in weather forecasting have been proposed that make
use of statistical modeling techniques and machine learning with remark-
able success.

To achieve 24 hour weather forecasting of southern Saskatchewan, Maq-
sood, Khan, Huang, and Abdallah (2005) developed a soft computing
model based on a radial basis function network (RBFN). Compared with
the multilayered perceptron (MLP), ERNN, and Hopfield model (HFM),
the RBFN was faster and more reliable than the other weather forecast-
ing methods, exhibited good approximation and learning abilities, and was
easier to train for faster convergence. It is important to consider other signif-
icant seasonal factors, such as rainfall and snowfall. Subsequently, these re-
searchers contrasted the performance of the MLP, ERNN, and RBFN using
several statistical measures to predict the weather of Vancouver, Canada.
The empirical results clearly demonstrated the RBFN was much faster and
more reliable for weather forecasting than other network models (Maqsood
& Abraham, 2007). Over the past decade, coupled with the development
of data and GPU-accelerated computing, deep learning has been widely
used in many fields, such as in speech recognition and computer vision.
Salman, Kanigoro, Heryadi, and IEEE (2015) investigated deep learning
for weather forecasting. Particularly, they compared the forecasting per-
formance of the RNN, conditional restricted Boltzmann machine (CRBM),
and convolutional network (CN). The experimental results showed that the
RNN had good performance for rainfall prediction. In the future, other deep
learning algorithms will be used to accurately represent, classify, and pre-
dict time issues.

Recently, there has been much work on air quality forecasting using
RNNs. Prakash, Kumar, Kumar, and Jain (2011) employed a wavelet-based
Elman model to predict air pollution. The model results underlined that the
high efficiency of the RNN was greater than those of the network models
used in previous studies. In the same year, Wu, Feng, Du, and Li (2011) de-
scribed an improved Elman neural network relying on a new activation
function to predict the peak values of PM10 air pollutants in the area of
Wuhan, China. The improved Elman model provided low RMSE values and
MAE values compared with the Elman model. Then a study was carried
out to develop and compare different soft computing intelligence method-
ologies, such as the FFNN, NARX, and an adaptive neurofuzzy inference
system (ANFIS), to forecast the emissions of CO2 in the city of Nis. The
data sets included air temperature, wind direction, traffic frequency, time
of day, atmospheric stability, and CO2 concentration. The study showed
that the presented models offered more effective and accurate assessments
using available expert knowledge. Simultaneously the NARX network per-
formed the best in terms of evaluation because it considered both previ-
ous states and inputs, but it required a more advanced training method,
and its computational time was significant. In addition, computational
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intelligence methodologies can be used in other interesting applications in
future research (Ciric, Cojbasic, Nikolic, Zivkovic, & Tomic, 2012).

Ong et al. (2014) introduced a deep recurrent neural network (DRNN)
that was trained by exploiting a new autoencoder (AE) pretraining method
called DynAE that was especially developed for the PM2.5 concentration
predictions in Japan. The main advantage of this method was that deep
learning techniques on temporal predictions were improved. The experi-
ments demonstrated that the presented method performed PM2.5 concen-
tration predictions with enhanced accuracy compared to the FFNN, RNN,
and DFNN. The latest research, by Oprea, Popescu, and Mihalache (2016),
presented a short-time PM2.5 air prediction model based on the FFNN and
RNN. The accuracy of each model was evaluated using the RMSE, IA, R2,
and R. The major contribution of this work was verifying that the best neu-
ral network had a feedforward architecture. In future work, the PM2.5 pre-
dictive model can be put into practical use, such as in the PM2.5 monitoring
station.

Apart from air quality, studies on drought, hurricanes, and other natu-
ral disaster predictions have also gradually increased, such as analysis of
the surface of the ozone layer based on the RNN (Biancofiore et al., 2015).
Mohammadinezhad and Jalili (2013) developed a prediction model using
echo state networks that is a class of RNN based on remote sensing data to
predict drought conditions. They used the Kronecker product to reduce the
number of parameters to be optimized and supplied three evolution meth-
ods: a genetic algorithm, simulated annealing, and differential evolution.
The method based on different optimization technologies achieved an av-
erage accuracy of 74.25%, which outperformed the other methods. Future
work will compare the performance of this method with those of other clas-
sic techniques. Fang, Wang, Murphey, Weber, and MacNeille (2014) stud-
ied the MLP and ERNN algorithms to forecast specific humidity from three
weather stations. The results showed that the ERNN is a promising alter-
native to for this forecast. In the future, we should focus on other state-of-
the-art time series forecasting models.

The accurate prediction of hurricane occurrences is important and can
directly reduce economic loss and save human lives. Kordmahalleh, Se-
fidmazgi, Homaifar, and ACM (2016) introduced a sparse RNN with an
agile topology for trajectory forecasting of Atlantic hurricanes. The topol-
ogy of the RNN was optimized through a customized genetic algorithm.
The proposed approach had a high degree of correlation and accuracy for
6 and 12 hours ahead of the trajectory forecast of four catastrophic Atlantic
hurricanes. In the future, exploring the proposed approach for tracking
other Atlantic hurricanes and comparing the results with different tech-
niques should be the main focus. In a recent study, Le, El-Askary, Allali, and
Struppa (2017) applied RNNs for drought prediction in California. The cor-
relation coefficients varied by approximately 0.7, which was quite similar to
the current observed precipitation levels and PZI values for 2016 compared
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to those of the 1997–1998 season. The result of this study contributed to
the prediction that drought conditions will continue to persist and showed
that precipitation associated with the 2015–2016 EI Nino season continued
to weaken compared with the historic 1997–1998 EI Nino season.

3.3 Artificial Environment Factor Forecasting. The scope of the artifi-
cial environment gradually increased, along with the development of so-
cial economies, such as supporting facilities, public service facilities, and
traffic. This section primarily discusses traffic forecasting based on RNNs,
which has been vital and critical for traffic control with the rapid increase of
vehicles.

Many researchers have used RNNs for traffic forecasting, an area that
requires highly accurate information on traffic congestion management in
intelligent transportation systems. A novel dynamic time-delay recurrent
wavelet neural network (WNN) model was discussed by Jiang and Adeli
(2005) that incorporated the self-similar, singular, and fractal properties dis-
covered in the traffic flow and achieved high prediction accuracy. Sheu, Lan,
and Huang (2009) presented a novel real-time recurrent (RTRL) algorithm
to train nonlinear traffic dynamics measured in different aspects. Thus, the
goal of accurate prediction which is affected by time intervals, time lags,
and time periods, can be achieved.

An, Song, and Zhao (2011) used a model for traffic flow forecasting based
on echo state neural networks (ESNs). ESNs can effectively avoid the trou-
blesome problem of using random network structure generation and train-
ing using least squares algorithms, as well as comparisons with the FFNN.
The experimental results revealed that the ESN method had better forecast-
ing performance, which proved its validity. To predict traffic speeds, Ma,
Tao, Wang, Yu, and Wang (2015) designed a scheme based on the LSTM
using remote microwave sensor data. The LSTM was compared with three
typologies of RNNs (the Elman NN, TDNN, and NARX) and other clas-
sical statistical models, such as the SVM and a Kalman filter based on the
same data set. The experiments demonstrated that the LSTM, an effective
approach for learning time series with a long time dependency and auto-
matically identifying the optimal time lags, outperformed the other algo-
rithms in terms of accuracy and stability. Future studies should consider
inputting spatial and temporal information into the LSTM and studying
forecasting performance with different data aggregation levels. Adding
multiple layers to the LSTM to enhance the learning capability of neural
network is a potential path for improving the method. A similar study was
carried out by Tian and Pan (2015). They used the LSTM RNN model to fore-
cast short-term traffic flows, and the data set was collected from the Caltrans
Performance Measurement system. Four classical prediction methods were
selected for comparison: the random walk (RW), SVM, feedforward vector
machine, and stacked autoencoder (SAE). Three aspects of those models
were tested and compared: forecast accuracy, memory capability of long
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historical data, and generalization ability with different intervals of predic-
tion. The experimental results showed that both the MAPE and RMSE were
lowest, with the different prediction intervals, which proved that the LSTM
was able to effectively capture the nonlinearity and randomness of traffic
flow and achieve good prediction accuracy and generalization.

Other research based on the LSTM NN for traffic prediction includes that
by Chen, Lv, Li, and Wang (2016), Fu, Zhang, and Li (2016), and Zhao, Chen,
Wu, Chen, and Liu (2017). Future work should focus on comprehensive
traffic forecasts, and other machine learning techniques should be used to
enhance performance, while inputting social media, weather information,
and other factors into the model. In addition, the LSTM can also be used
for predicting dynamic origin-destination (OD) matrices in a subway net-
work, which also requires additional factors to be input into the OD ma-
trices of other transport systems. The results validated that the presented
model achieved better performance in comparison with traditional tools,
such as the calendar methodology and vector autoregression. Future inves-
tigations will be carried out to reduce the computational time and achieve
better performance (Toque, Come, Mahrsi, & Oukhellou, 2016).

There are RNNs that use other deep learning algorithms, such as the
convolutional neural network (CNN), for time series forecasting. Lai, Wei-
Cheng, Yiming, and Hanxiao (2017) presented a novel deep learning frame-
work, the long- and short time-series network (LSTNet), which used the
CNN to extract short-term load dependency patterns among variables and
the RNN to discover long-term patterns and trends. The experimental re-
sults showed that the LSTNet indeed achieved significant performance
improvements over those of several baseline methods. In this period, a spa-
tiotemporal image-based approach was adopted by Yu, Wu, Wang, Wang,
and Ma (2017) to predict large-scale transportation network traffic, in which
the deep convolutional neural network (DCNN) was used to obtain spa-
tial dependencies in different links and the LSTM was presented to learn
the long-term temporal dependencies of each link. The authors compared
the novel model with the LSTM, DCNN, SAE, and SVM using the same
data set. The numerical tests revealed that the SRCN outperformed other
methods with respect to accuracy and stability. However, additional factors,
such as weather, social events, and traffic control, should be considered, as
well as the pretraining methods to enhance the model’s performance. Li,
Yu, Shahabi, and Yan (2017) designed experiments to present a deep learn-
ing framework for traffic flow prediction, which included both spatial and
temporal dependencies. The methods significantly outperformed conven-
tional approaches when evaluating two large-scale, real-world traffic data
sets. In the future, applying the presented method to other spatiotemporal
prediction tasks will be studied.

This review mainly introduces current applications of RNNs in time
series forecasting. RNNs are being applied in various fields, such as en-
vironmental factor forecasting. Moreover, the methods used, including the
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classic RNNs, improved RNNs, hybrid models of RNNs, and other models,
enhance prediction accuracy and obtain good prediction effects. Numerous
theoretical studies and practical implementations have been carried out by
researchers in many fields. In the future, RNNs can be extended to other
fields, such as agricultural applications, while seeking better optimization
algorithms and using more advanced RNN technology.

4 Limitations and Challenges

In nearly all scientific and industrial fields, such as finance, economics, hy-
drology, and telecommunication and electrical systems, research on time
series forecasting has attracted attention in recent years (Nogales, Contr-
eras, Conejo, & Espinola, 2002; Kim, 2003; Chen & Chen, 2015). Forecasting
time series events in these fields is challenging because of the high volatility
and multiple influencing factors. It is also difficult to process data that have
nonlinearities, low reliability, and high heterogeneity. However, accurate
predictions and evaluations of time series data in these fields are extremely
important for effective decision making, intelligent monitoring, scientific
management, and risk assessment for future events.

To obtain high precision, widely known work on RNNs has been carried
out that proposes new forecasting techniques and architectures from multi-
ple models. The problem of traditional networks is that they have slow con-
vergence and poor stability, which lead to overfitting. Overall, traditional
methods and techniques have poor prediction accuracy on sequential data.
Recurrent neural networks are widely used because of their powerful dy-
namic characteristics, excellent architecture, and training methods. RNNs
have many advantages, including associative memory, adaptive learning,
fast optimization, and strong robustness. They have been shown to be feasi-
ble and to obtain good predictive performance with generalized capability,
but they need to be improved regarding time sequence predictions.

Some shortcomings and challenges need to be improved. On the one
hand, conventional methods involve few influencing factors and do not
take other complicated factors into account, such as social media, local
events, and weather conditions. RNNs as a class of data-driven models are
different from traditional models and require a large number of data sets to
obtain accurate predictions. On the other hand, it is necessary to consider
how to simultaneously establish optimal model parameters and structures,
as well as to reduce the computational time for training. RNNs mainly focus
on short-term prognostics, while applications of RNNs for long-term pre-
diction are relatively scarce and have poor prediction accuracy, as shown in
the literature. Most research compares the performance of RNNs only with
that of traditional neural networks. However, several studies have been
devoted to combining RNNs with other deep learning algorithms (LeCun
et al., 2015; Zuo, Fan, Blasch, & Ling, 2017), such as the recurrent temporal
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restricted Boltzmann machine (RTRBM; Sutskever, Hinton, & Taylor, 2008;
Wang, Wang, Zhao, & Wang, 2017) and convolutional LSTM (ConvLSTM;
Shi et al., 2015; Zhu, Zhang, Shen, & Song, 2017). In addition, the combi-
nation of RNNs and other deep learning methods applied to time series
forecasting in the fields noted will be key in future studies.

These problems are not easily dealt with. In future work, we will take
other complex factors into account in models to obtain higher prediction
accuracy. As many sequence data as possible have been obtained and used
to train and test the models. In addition, further investigations will be car-
ried out to enhance the learning capability of neural networks and reduce
computational time, leading to faster training. It is also important for RNNs
to store information for a long time. Moreover, long-term predictions using
RNNs and their hybrid models will lead to new breakthroughs. More re-
searchers are needed to study long-term forecasts in various fields. Such
studies can increase scientific and forecasting accuracy. Simultaneously, we
expect that deep learning methods will be combined with RNNs to provide
precise predictions for select time series problems and compare the pre-
dictive performance with the shallow models. Finally, expanding into new
areas for forecasting research is of great value to solve real-world problems.

The aim of this review is to describe the applications of RNNs in fore-
casting that have great practical and economic value in many fields. The ar-
eas of application are mainly environmental factors based on current work.
Of course, many novel fields need to be explored. For example, accurate
and efficient predictions of water quality changes play a significant role
in environmental planning and can prevent water deterioration and dis-
ease outbreak in aquaculture, as well as guide scientific breeding. More-
over, environmental factor predictions in solar greenhouse or aquaponics
are also worthwhile research directions. With the development of the Inter-
net of things and computer technology, real-time, multivariate, and high-
dimensional water quality data are obtained quickly and accurately. It is
of great significance and value to construct models using these time series
data to lead to the healthy growth of aquatic products and scientific man-
agement of aquatic works. There are some conventional methods for con-
structing water quality models (Chau, 2006; Faruk, 2010; Chang, Tsai, Chen,
Coynel, & Vachaud, 2015; Gazzaz, Yusoff, Aris, Juahir, & Ramli, 2012; Na-
jah, El-Shafie, Karim, & El-Shafie, 2013). Liu et al. (2013) presented a hybrid
approach that combines support vector regression with a genetic algorithm
to solve the aquaculture water quality prediction problem. Liu, Wei, and
Chen (2013) proposed a fuzzy neural network to solve the problem of dis-
solved oxygen forecasting. These models have had an effect on helping to
facilitate early warning and reduce losses. However, there are still many dis-
advantages. To solve the problem of poor robustness and low precision of
traditional forecasting models, RNNs are a promising tool for making high-
precision water quality predictions. We believe that future applications of
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RNNs in forecasting will expanded to other areas that few people have con-
sidered to date, such as aquaculture.

5 Conclusion

In this review, we have presented a number of preliminary publications
on the applications of RNNs in the time series analysis and forecasting. As
we have summarized, RNNs have been applied for forecasting time series
data in most scientific and industrial fields, but mainly in environmental
factor forecasting. In addition, we present the structure, processing flow,
and advantages of RNNs in this review. Furthermore, RNNs, such as the
Elman neural network, LSTM neural network, and improvement models
can be powerful prediction alternatives to traditional neural networks and
can obtain better prediction results for some problems. We also present the
limitations and challenges of prediction models based on RNNs and dis-
cuss the future development of RNNs to make predictions from sequential
data. This review provides useful guidance for RNN modeling and novel
research fields in subsequent studies.
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