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1  Introduction
It has been widely recognized that network slicing will play an important role in future 
mobile networks to support highly diverse quality of service (QoS) requirements from 
end users [1, 2]. Network slicing (NS) is defined as a technology to logically separate 
network functions and resources into multiple network slices (NSs) within a common 
physical infrastructure [3, 4]. Along with the benefits, the introduction of NS also brings 
many design challenges to the sliced radio access networks. Especially, handoff is cru-
cial for keeping users connected while communication environment changes (e.g., user 
movement) [4], as it affects not only QoS of users but also network performance in terms 
of handoff rate, resource utilization, NS re-configuration frequency, etc. Considering the 
introduction of NS, conventional reference signal received power (RSRP)-based handoff 
schemes [5] are not applicable to RAN slicing. This happens because the target base sta-
tion (BS) could not provide the required service for users if only considering RSRP when 
handoffs occur, and thus RSRP-based handoff scheme is unable to achieve the aim to 
provide guaranteed QoS for mobile users. Therefore, it is obligatory to design new hand-
off mechanisms dedicated for RAN slicing.
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In slice-based mobile networks, the state of the network is constantly changing 
due to many factors, such as user arrival/departure, user mobility and randomness of 
access conditions. We need to make handoff decision according to the user’s move-
ment, as well as changes in the network environment and traffic load, in order to 
provide users with satisfactory access and transmission performance. In traditional 
mobile networks, the problem of handoff has attracted much research attentions. 
But very limited studies focus on the handoff problem for RAN slicing. In slice-
based mobile networks, network slices and BS do not have a one-to-one correspond-
ence. 3GPP standard TR.38.300 [5] states that the network slice is always composed 
of the RAN part and the core network (CN) part. Therefore, in the RAN slicing 
handoff problem, both the constraints of RAN and CN parts need to be considered. 
Moreover, in NS-based network architecture, in addition to the NS selection deci-
sion, the UE’s BS association scheme needs to be considered. In other words, before 
the UE makes a handoff decision, we need to jointly consider BS association and NS 
selection.

Depending on the network status and user requirements, users may face the fol-
lowing scenarios when a handoff occurs: (1) switch to different slices on same BS; (2) 
switch to different base stations with the same slice; and (3) switch to different slices 
of different base stations. Thus RAN slicing handoff problem becomes much more 
complicated than the traditional BS handoff problem. Besides, the random nature 
of wireless channels, user mobility and the randomness of the access situation will 
cause the dynamics of the available resources in the network. All aforementioned 
factors may affect the user’s handoff result.

In this paper, we propose an intelligent handoff strategy based on deep reinforce-
ment learning for slice-based mobile networks. The main contributions of this work 
include:

1.	 In traditional mobile networks, handoff performs to achieve optimal matching 
between mobile users and access points. We proposed an intelligent handoff algo-
rithm to obtain the optimal matching between mobile users, network slices and 
access points in slice-based mobile networks.

2.	 In this work, the user handoff problem in slice-based mobile network is modeled as 
an MDP. We thus resort to reinforcement learning theory [6, 7] and propose an intel-
ligent handoff algorithm based on deep reinforcement learning. The users observe 
and independently learn the network states in order to select a suitable slice/base sta-
tion pair to access.

3.	 The effectiveness of our proposed handoff algorithm is validated via simulation 
experiments. The numerical results show that compared with the typical handoff 
algorithm in traditional networks, the proposed algorithm can enable users to obtain 
better transmission performance.

The rest of the paper is organized as follows. In Section II, we present the related 
work. In section III, we describe the system model. Section IV formulates the hand-
off problem in slice-based mobile networks. We present the solution to the handoff 
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problem in Section V. Section VI provides numerical results for the performance 
comparison. Finally, Section VII concludes the paper.

2 � Related work
In this section, we overview the related work from two perspectives, handoff algo-
rithm design for traditional cellular networks and handoff for sliced networks.

2.1 � Handoff for traditional cellular networks

In recent years, existing handoff strategies in traditional networks usually take into 
account UE SINR, QoS, mobility and traffic load of the base stations [8, 9]. In [8], 
the authors design a handoff algorithm based on the estimated load of the cell and 
improve the system energy efficiency by combining the handoff strategy with the base 
station sleep strategy. The authors of [9] propose a new handoff algorithm that effec-
tively controls the base station transmission power and reduces redundant handoff. 
In addition, some research work uses machine learning to solve the handoff prob-
lem [10–12]. The authors of [10] proposed a learning-based smart handoff strategy, 
which reduces the number of handoffs under the premise of guaranteeing user service 
quality. In LTE-based heterogeneous networks, the authors of [13] and [12] model 
the user handoff problem as a Markov decision process (MDP) problem and propose 
a handoff decision based on the value iterative algorithm. In [11], the authors aim to 
maximize the user’s QoE (quality of experience) and propose a handoff strategy based 
on reinforcement learning.

3 � Handoff for sliced networks
Very little attention is paid to the handoff problem in slice-based mobile network. 
Specifically, the authors of [14] proposed a multi-agent reinforcement learning-based 
smart handoff scheme to minimize handover cost while maintaining user QoS. Sev-
eral different kinds of handoff type in sliced network have been considered in this 
work. In work [15], the authors proposed a device association scheme for RAN slicing 
by exploiting a hybrid FL reinforcement learning (HDRL) framework, to improve net-
work throughput while enhancing data security.

Besides handoff algorithm design, a few works have studied user association prob-
lem in sliced networks, which can also give some insights for designing handoff algo-
rithm in sliced networks. In work [16], the authors proposed a unified framework for 
user association in RAN slicing with aim of maximizing resource utilization while 
guaranteeing QoS of users. Both admission control and resource allocation in RAN 
slicing have been carefully investigated by the authors. In work [17], the authors 
investigated the optimal selection of end-to-end slices with the aim of improving net-
work resources utilization while guaranteeing the QoS of users.

4 � System model
We consider a slice-based mobile network model as shown in Fig.  1 [5, 18], which 
consists of M base stations and N network slices. Different slices share system trans-
mission resources, including wireless transmission bandwidth and power at the RAN 
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and slice capacity at the CN. A slice may cover multiple BSs, one BS may also be cov-
ered by multiple slices, and transmission resources in the BS are allocated to multi-
ple slices. In slice-based networks, the base stations can be connected to each other 
through the Xn interface, and each base station is connected to the Access and Mobil-
ity Management Function (AMF) in the core network through the NG interface. 
Through the SDN interface, information exchange can be performed between the BS 
and the BS, and between the BS and the AMF. One UE may be in the coverage of 
multiple BSs. The slice information accessible on different BSs is learned through BS 
broadcast, and the appropriate slice access is selected therefrom. Through the RAN, 
the user can select the AMF that supports the accessed slice. Through the AMF, the 
user is assigned the corresponding core network resource.

In slice-based mobile networks, user mobility and dynamic network conditions may 
lead to different access conditions at different times for mobile users. At different times, 
users can adaptively adjust their access policies through dynamic handoff according to the 
perceived network environment and changes in service requirements. As shown in Fig. 1, 
a user may be within the coverage of multiple slice signals of multiple different BSs. It is 
assumed that the user can periodically receive network status information within the sig-
nal range, such as the available bandwidth of the slice and the average transmission delay. 
According to the dynamic changes of the network status, the user will decide whether to 
switch the access slice to obtain better access and transmission performance. Switching the 
access slice is a complicated process. The network needs to complete the conversion of the 
user access state through a series of signaling interactions, which brings additional process-
ing cost and signaling overhead to the network. Therefore, when performing the handoff 
decision in slice-based mobile networks, it is necessary to consider how to improve the 
transmission performance of the user, and consider the impact of the additional processing 
cost and signaling overhead on the system performance.

Fig. 1  Network slice-based network architecture. We consider a slice-based mobile network model as 
shown in this figure, which consists of M base stations and N network slices. Different slices share system 
transmission resources, including wireless transmission bandwidth and power at the RAN and slice capacity 
at the CN. A slice may cover multiple BSs, one BS may also be covered by multiple slices, and transmission 
resources in the BS are allocated to multiple slices
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5 � Problem formulation
In this paper, we consider that the user will check the current network status periodically 
and decide whether to perform handoff decision to obtain better transmission performance 
according to the current network status. For users, the goal is to maximize their long-term 
transmission performance. In this section, we model the handoff problem into a Markov 
decision process.

Considering the system model of Fig. 1, at each decision point, the agent (UE) needs to 
make a decision to select the best slice for the user to access. This may change the state of 
the network, causing the network to transfer to another state. Based on this, we model the 
handoff problem into a Markov decision process. In order to solve the handoff problem 
using the relevant theory of MDP, we need to define the state S of the system, the action A 
and the reward function R of the action.

Considering the UE as the agent, the handoff problem in slice-based network can be 
described by the quaternion M = (S, A, P, R):

State: Let s ∈ S be the network state, where S is the set of all states. If there are N slices in 
the network, M base stations, s = [I ,B1,1, . . . ,Bj,k , . . .BM,N ] where I = (j, k) represents the 
current access state, and Bj,k represents the available bandwidth that the network can pro-
vide when user accesses slice j through base station k. According to the actual network situ-
ation, when the BS k is not associated with the slice j, we can remove the corresponding Bj,k 
from the state vector to reduce our state space. Since network resources are limited, we use 
bmax
j,k  to indicate the maximum bandwidth that the network can provide when accessing 

slice j through base station k.
Action: In the slice selection model, we define the action as the user’s choice behavior for 

the slice. When a user needs to access the network, it has N slices to choose from, and each 
slice is associated with one or more BSs. Therefore, the selection of the BS is also required 
while selecting the slice. Let action a = (j, k) denote that the UE accesses the slice j through 
the BS k, and a ∈ A where A = {(j, k)|1 ≤ j ≤ N , 1 ≤ k ≤ M} is action space. When the 
selected action is performed, the agent transfers to the next state with a certain transition 
probability.

Transition probability: P = {pas,s′ |s, s
′ ∈ S, a ∈ A} is a state transition probability set. pas,s′ 

is the probability that the state transfer from s to s’ when performs action a. We assume that 
this probability is unknown.

Reward: There are two main factors that need to be considered when defining the imme-
diate reward of action a at state s. One is the transmission rate obtained when the user takes 
action a. The second is whether action a causes the handoff to occur. There are many ways 
to quantify the user’s reward function. We will take the reward obtained by taking action a 
in state s as:

where f (s, a) is the service rate obtained by the user, and g(s, a) is the handoff overhead 
generated after the action is taken. When the UE transfers from  
s = [I ,B1,1, . . . ,Bj,k , . . .BM,N ] to s′ = [I ′,B′

1,1, . . . ,B
′
j,k , . . .B

′
M,N ] by performing action a, 

its handoff overhead function is defined as [12, 13]:

(1)r(s, a) = f (s, a)− g(s, a)
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Here, KI ,I ′ represents the handoff overhead when switching from the access state I to 
the access state I’. The value of KI ,I ′ depends on the signaling overhead, processing delay, 
etc., caused by the handoff performed in the actual network.

6 � Methods
6.1 � Q‑learning

Q-learning is a kind of temporal-difference learning algorithm. Its advantage is that it 
does not need to know the environment model and can be used for continuous tasks. It 
can be known from the definition of the action value function that the state value func-
tion V ∗(s) and the action value function Q∗(s, a) corresponding to the optimal strategy 
π∗ satisfy the following relationship:

That is to say, if we have obtained the action value function of the system through 
learning, under the state s, the action corresponding to the maximum action value func-
tion is the optimal strategy. In Q-learning algorithm, the formula for updating the Q 
value is stated as follows [11]

where αt denotes the learning rate and γ denotes the discount factor. As can be seen 
from Eq. (4), in state s, action a is selected, and the action function value is updated by 
the obtained reward R and the largest Q(s′, a).

In reinforcement learning problem, the agent not only needs to learn to get the opti-
mal strategy, but also to make the decision by the learned strategy. This is also the prob-
lem of exploration and exploitation in the Q-learning algorithm. In this case, we adopt 
the ε - greedy strategy, that is, the agent randomly selects an action with the probability 
of ε and selects the best learning currently learned by the probability of 1− ε . Then, by 
slowly reducing the value of ε , the algorithm is finally converged and the optimal strategy 
is obtained.

6.2 � Deep Q‑learning algorithm

In the previous section, the implementation of the Q-learning algorithm is based on a 
precondition: the state space and the action space are discrete, and the state space and 
the action space cannot be very large. It is worth noting that the value function is in a 
table. For state value functions, the index is the state. For action value functions, the 
index is a state-action pair. The iterative update of the value function is actually an iter-
ative update of this table. Therefore, this form of reinforcement learning is also called 
tabular reinforcement learning.

However, in some scenarios, the state space could be very large. Even in some cases, 
we will face the problem of continuous state space. At this point, value iterative func-
tions and tabular reinforcement learning algorithms such as Q-learning will no longer 

(2)g(s, a) =

{

KI ,I ′ , I �= I ′

0, I = I ′

(3)V ∗(s) = max
a

Q∗(s, a)

(4)Q(s, a) = Q(s, a)+ αt [R+ γ max
a∗

Q(s′, a∗)− Q(s, a)]
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be applicable. We need to represent the value function using the value function 
approximation method. Common approximation methods include linear approxima-
tion, neural network approximation and so on. In the value function approximation 
method, the value function corresponds to an approximation function Q̂(s, a) . When 
the approximating value function structure is determined, then the value function 
approximation is equivalent to the parameter approximation, and the update of the 
value function is equivalent to the parameter update.

The Deep Q-Learning (DQN) algorithm is a kind of end-to-end learning algorithm 
that combines deep learning and reinforcement learning. It is an effective way to solve 
the problem of continuous state space. Its modifications to Q-learning are mainly 
reflected in:

1.	 DQN uses a deep neural network to approximate the value function. As mentioned 
above, the method of value function approximation consists of linear value function 
approximation and nonlinear value function approximation. In practical problems, 
since it is difficult to guarantee the linear relationship between input and output, it is 
obvious that the method of linear approximation cannot obtain accurate value func-
tion approximation results. Therefore, the researchers propose to solve this problem 
by using nonlinear approximation. A commonly used method in nonlinear approxi-
mation is to use neural networks for value function approximation. When a neural 
network training for value function approximation is completed, the current state 
s and action a are input, and the output is the corresponding action value function 
Q(s, a).

2.	 DQN uses experience replay training to enhance the learning process of learn-
ing. An important condition when training a neural network is that the data of the 
training set must satisfy the independent and identical distribution. However, there 
is a correlation between the training concentration data obtained by the reinforce-
ment learning sampling. If these data are used for sequential training, it is easy to 
cause instability of the neural network. To solve this problem, DQN uses experience 
replay mechanism to break the correlation between data. The agent stores the data 
in an experience replay pool and then uses the uniform random sampling method to 
extract data from the experience replay pool for neural network training.

3.	 DQN independently sets the target network to handle the TD bias in the temporal-
difference algorithm separately. Unlike the tabular reinforcement learning algorithm, 
when DQN uses the neural network to approximate the value function, it actually 
updates the parameter value θ. Since the parameter update method in the neural net-
work is the gradient descent method, the update of the parameters in the DQN actu-
ally becomes an update process of supervised learning. The update strategy is

where r + γ maxa′ Q(s′, a′; θ) is called the TD target. From Eq. (5), we can see that 
the parameter θ used in calculating the TD target is the same as the parameter θ 
used in calculating the gradient. This easily leads to the correlation between the data, 
which makes the training results unstable. In order to solve this problem, the target 

(5)θt+1 = θt + α[r + γ max
a′

Q(s′, a′; θ)− Q(s, a; θ)]∇Q(s, a; θ)
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network method is adopted in DQN to further reduce the correlation between data. 
The basic idea is: The network parameter for calculating the TD target is denoted as 
θ− , and the network parameter for which the calculated value function is approxi-
mated is denoted as θ. In the process of executing the algorithm, the network param-
eters for the approximation of the action value function are updated every step. The 
parameters used to calculate the TD target network are updated every certain num-
ber of steps. Therefore, the parameter update strategy is

6.3 � DQN‑based handoff decision algorithm

In this section, we apply the DQN algorithm to the handoff problem of network slices. 
Based on the theoretical model in Section III and the analysis in Section IV-B, we design 
the architecture diagram of the deep reinforcement learning algorithm shown in Fig. 2. 
During the execution of the algorithm, the physical network needs to provide informa-
tion such as network status, user actions and reward functions. Using this information, 
the agent performs deep Q-learning algorithm as shown in algorithm 1 for training.

In this algorithm, we design the neural network used for the approximation of the 
value function as the three-layer neural network, namely the input layer, the hidden 

(6)θt+1 = θt + α[r + γ max
a′

Q(s′, a′; θ−)− Q(s, a; θ)]∇Q(s, a; θ)

Fig. 2  Deep reinforcement learning. We design the architecture diagram of the deep reinforcement learning 
algorithm as shown in this figure. During the execution of the algorithm, the physical network needs to 
provide information such as network status, user actions and reward functions. Using this information, 
the agent performs deep Q-learning algorithm as shown in algorithm 1 for training. we design the neural 
network used for the approximation of the value function as the three-layer neural network
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layer and the output layer. The input layer consists of a set of nodes representing the 
state-action space, and the number of nodes depends on the size of the state-action 
space. According to the theoretical model in Section IV, we take the user’s current access 
status, network available resource status and access actions as inputs. The output layer 
consists of a node whose output represents the Q-value of the neural network fit under 
the current parameters. The nodes between the input layer and the hidden layer, hidden 
layer and output layer are fully connected model. The value of the connection weight 
between each pair of nodes determines the ability of the neural network to correctly 
approximate the Q value.

In the actual network scenario, the RAN obtains related information of all network 
slices through the CN and notifies the UE of the slice information and the correspond-
ing resource information. The UE stores the acquired information and learns using the 
DQN algorithm. In the actual handoff, the UE first determines its current state and 
obtains the Q-value corresponding to each action through the currently trained neural 
network. Then agents choose handoff action according to the ε − greedy strategy. It is 
worth noting that although the algorithm is an online learning algorithm; the agent can 
collect training information and train its strategy in the background in the gap between 
every two decision time points. In addition, the resulting strategy of training can also be 
applied to similar scenarios. Therefore, the DQN-based handoff algorithm can efficiently 
perform and make handoff decisions in accordance with the policies it has learned.
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6.4 � DQN‑based handoff process

In detail, as shown in Fig. 3, the UE periodically measures and reports the obtained QoS 
to the source BS and NS, and the source SDN controller checks if the handover trigger 
condition is satisfied (such the received SINR is lower than a threshold). Then the UE 
uses DQN to select the target BS and NS and sends the handover request to the corre-
sponding SDN controllers. After the confirmation of handover command, this handover 
is executed by the target and the source SDN controllers. Before the handover is com-
pleted, the target SDN controller calculates the reward value of this handover decision 
and then broadcasts the reward to the UEs. The UEs served by the same type of this tar-
get NS use DQN to update Q-table. Finally, the resource of source BS and NS is released 
by the SDN controller.

7 � Results and discussion
In this section, we compare the DQN-based handoff algorithm with greedy, RSS-based 
and other algorithms to verify the performance of our proposed algorithm. In greedy 
algorithm, the UE always choose the action with the highest reward. And the UE which 
performs RSS-based algorithm selects the slice that provides the largest received signal 
strength (RSS). In addition, with reference to [13], we consider the following two handoff 
strategies: (1) At each decision point, the UE selects the slice that provides the largest 
available bandwidth, which we denote as BW-based. (2) At each decision point, the UE 
does not perform a handoff action, and we denote this policy as fixed.

UE Source 
access unit

Target 
access unit

Source SDN 
controller

Target SDN 
controller

QoS Measurement 
Report Handoff Trigger 

Condi�on CheckHandoff 
Triggering 

Link Measurement 
Report

DQN for target BS and 
NS selec�on

Handoff 
Request Handoff 

Request
Handoff Request ACK

Handoff 
CommandHandoff 

Command
Handoff 

Execu�on Handoff 
Execu�on 

Reward 
Value

DQN for Q-table 
update Handoff 

Completed Resource 
Release

Fig. 3  DQN-based handoff process. As shown in the figure, the UE periodically measures and reports the 
obtained QoS to the source BS or NS, and the source SDN controller checks if the handover trigger condition 
is satisfied. Then the UE uses DQN to select the target BS and NS and sends the handover request to the 
corresponding SDN controllers. After the confirmation of handover decision, this handover is executed by the 
target and the source SDN controllers. Before the handover is completed, the target SDN controller calculates 
the reward value of this handover decision and then broadcasts the reward to the UEs. The UEs served by the 
same type of the target NS use DQN to update Q-table. Finally, the resource of source BS and NS is released 
by the SDN controller
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7.1 � Simulation settings

We consider the network scenario as shown in Fig. 1. The user’s position is fixed or low-
speed motion near its initial position, and therefore, its channel condition can be con-
sidered to be unchanged. In the range covered by the signals of the three base stations, 
two network slices are deployed for the UE to select, and the deployment relationship 
is the same as that of Fig. 1. The system parameters are listed in Table 1. The maximum 
bandwidth that the network can provide when the BS k accesses the slice j is randomly 
selected from [0, 10] units. In order to simplify the model, we assume that the signal-
ing overhead Kx,y satisfies Kx,y = Ky,x . In order to simulate a real dynamic network sce-
nario, refer to [11, 12], the number of users in each slice dynamically changes with time. 
The user will arrive at the network according to the Poisson process with the parameters 
λ = [λ1, λ2,…,λn] and the leave with the parameter μ = [μ1, μ2, …, μn], where λn denotes 
the user arrival parameter of the nth slice and μn denotes the user leaving parameter of 
the n-th slice.

On this basis, the three-layer fully connected neural network is used for the approxi-
mation of value functions in reinforcement learning. The relevant parameters are shown 
in Table 2. The input layer contains 8 neurons, indicating the state and action. The hid-
den layer consists of 25 neurons whose activation function is set to the sigmoid function. 
The output layer has one neuron, and the activation function is a linear function. During 
the execution of the DQN algorithm, we set the exploration parameter to 0.1, the inter-
val number C to 5 and the discount factor to 0.9.

Table 1  Network parameters

Parameter Value

Number of BSs M 3

Number of slices N 2

Number of UEs Less than 8

bmax
j,k U[0,10] units

handoff signaling overhead Kx ,y 1060

arrival parameter λ [2, 1, 1, 2]

leaving parameter μ [1, 2, 1, 2]

Table 2  Algorithm parameters

Parameter Value

Number of input neurons 8

Number of hidden neurons 25

Number of output neurons 1

Learning rate 0.001

Exploration parameter ε 0.1

C 5

discount factor γ 0.9
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7.2 � Numerical results

According to Tables 1 and 2, in the network scenario shown in Fig. 1, this section com-
pares the performance of the DQN algorithm with other algorithms by simulation. The 
result is the mean of 100 random simulation results.

Figure  4 shows the overall cumulative reward of the system as the handoff decision 
progresses. As can be seen from the figure, as the number of decision steps increases, 
the cumulative return of each strategy gradually increases. Among them, the DQN-
based handoff algorithm performs better than other algorithms. And as the number of 
decision steps increases, the advantages of the algorithm become more apparent. As 
mentioned earlier, the fixed algorithm takes a non-handoff strategy and cannot actively 
switch when there are better slices. BW-based only considers the currently available 
bandwidth, and RSS only considers channel conditions. Both schemes do not consider 
handoff overhead. Although greedy takes into account bandwidth, channel conditions 
and handoff overhead, it does not consider the behavior of other users and the impact 
of external environment changes. Therefore, its performance is lower than the spectrally 
efficient RSS algorithm. The proposed DQN algorithm can comprehensively consider 
the bandwidth, channel conditions, handoff overhead and the change law of the external 
environment in a learning way to obtain more optimized performance. Further, Fig. 5 
shows the variation in system throughput as the number of decision steps increases. As 
can be seen from the figure, the DQN algorithm always achieves the highest throughput 
performance.

In Figs. 6 and 7, we compare the handoff probability and the cumulative handoff times 
of different algorithms with the progress of the handover decision. As can be seen from 
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Fig. 4  Cumulative reward. This figure shows the overall cumulative reward of the system as the handoff 
decision progresses. In the figure, as the number of decision steps increases, the cumulative return of each 
strategy gradually increases. Among them, the DQN-based handoff algorithm performs better than other 
algorithms. And as the number of decision steps increases, the advantages of the algorithm become more 
apparent
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Fig. 5  Throughput. This figure shows the variation in system throughput as the number of decision steps 
increases. As shown in the figure, the DQN algorithm always achieves the highest throughput performance
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Fig. 6  Handoff probability. We compare the handoff probability of different algorithms with the progress of 
the handover decision in this figure. In the initial stage of decision-making, the handoff probability number 
of DQN algorithm is higher than greedy, RSS and fixed algorithm. However, as the decision progresses, the 
handoff probability of DQN algorithm decreases quickly
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the figure, in the initial stage of decision-making, the handoff number of DQN algo-
rithm is slightly higher than greedy, RSS and fixed algorithm. However, as the deci-
sion progresses, the number of handoffs required by the DQN algorithm is gradually 
reduced. As mentioned earlier, due to the non-handoff strategy, the handoff number 
of the fixed algorithm is always zero. Since we assume that the location of each user is 
fixed in the simulation, the channel conditions of the user relative to each base station 
do not change. Therefore, the RSS algorithm does not perform handoff after finding the 
base station with the best signal strength and has fewer handoff times. BW-based algo-
rithm only considers the currently available bandwidth and does not consider the sign-
aling overhead caused by handoff, so the number of handoffs is high. Although greedy 
comprehensively considers the bandwidth, channel conditions and handoff overhead, it 
does not consider the behavior of other users and the influence of external environment 
changes and also makes the number of handoffs relatively high. It is worth noting that 
after 30 decision times, the DQN algorithm only performs two more handoffs than the 
RSS algorithm, but the throughput performance is improved by nearly 30% compared to 
the RSS algorithm.

Figures 8 and 9 show the convergence of neural network parameters in the DQN algo-
rithm. Figure 8 shows the relationship between the weight of the connection between 
the input layer neurons and the hidden layer neurons and the number of trainings. As 
shown in the figure, after 100,000 trainings, the weight parameters tend to be stable. 
Further, as shown in Fig. 9 the convergence of the action value function where Q(s,a1), 
Q(s,a2) and Q(s,a3), respectively, correspond to the action value functions corresponding 
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Fig. 7  Number of handoff. In this figure, we compare the handoff probability and the cumulative handoff 
times of different algorithms with the progress of the handover decision. As shown in the figure, at the 
beginning of decision-making, the handoff number of DQN algorithm is slightly higher than greedy, RSS and 
fixed algorithm. However, as the decision progresses, the number of handoffs required by the DQN algorithm 
is gradually reduced. It is worth noting that after 30 decision times, the DQN algorithm only performs 
two more handoffs than the RSS algorithm, but the throughput performance is improved by nearly 30% 
compared to the RSS algorithm
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to the three different actions by the user in the same state s. As shown in the figure, the 
convergence of the action value function corresponding to the state s is similar to that in 
Fig. 8. As the number of training increases, it tends to stabilize after about 100,000 train-
ing sessions.

As can be seen in conjunction with Figs.  3, 4, 5, 6, 7, 8 and 9, the DQN algorithm 
can achieve a better cumulative return. In the actual network, by increasing the number 

0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

1

0

1

2

3

4

5

6

Number of training

P
ar

am
et

er

Fig. 8  Parameter convergence. This figure shows the relationship between the weight of the connection 
between the input layer neurons and the hidden layer neurons and the number of trainings. As shown in the 
figure, after 100,000 trainings, the weight parameters tend to be stable

0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

-20

-10

0

10

20

30

40

Number of training

Q
(s

,a
)

Q(s,a1)

Q(s,a2)

Q(s,a3)

Fig. 9  Value function convergence. This figure gives the convergence of the action value function where 
Q(s,a1), Q(s,a2) and Q(s,a3), respectively, correspond to the action value functions corresponding to the three 
different actions by the user in the same state s. As shown in the figure, the convergence of the action value 
function corresponding to the state s is similar to that in Fig. 8
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of handoff times, the system can achieve higher throughput. It is worth noting that 
although the algorithm is an online learning algorithm, the agent can collect training 
information and train its strategy in the background in the gap between every two deci-
sion time points, thus accelerating the convergence of the algorithm. In addition, the 
resulting strategy of training can also be applied to similar scenarios. Therefore, the 
DQN-based handoff algorithm can efficiently perform and make handoff decisions in 
accordance with the policies it has learned.

8 � Conclusion
In this paper, we propose an intelligent handoff strategy based on reinforcement learning 
in slice-based mobile networks. Considering the dynamic network state, we model the 
handoff problem as a Markov decision process (MDP). We thus resort to reinforcement 
learning theory and propose an intelligent handoff algorithm based on deep reinforce-
ment learning. The effectiveness of our proposed handoff algorithm is validated via sim-
ulation experiments. The numerical results show that compared with the typical handoff 
algorithm in traditional networks, the proposed algorithm can enable users to obtain 
better transmission performance.
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